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Abstract001

Sparse attention methods exploit the inherent002
sparsity in attention to speed up the prefilling003
phase of long-context inference, mitigating the004
quadratic complexity of full attention compu-005
tation. While existing sparse attention meth-006
ods rely on predefined patterns or inaccurate007
estimations to approximate attention behavior,008
they often fail to fully capture the true dynam-009
ics of attention, resulting in reduced efficiency010
and compromised accuracy. Instead, we pro-011
pose a highly accurate sparse attention mech-012
anism that shares similar yet precise attention013
patterns across heads, enabling a more realistic014
capture of the dynamic behavior of attention.015
Our approach is grounded in two key observa-016
tions: (1) attention patterns demonstrate strong017
inter-head similarity, and (2) this similarity re-018
mains remarkably consistent across diverse in-019
puts. By strategically sharing computed accu-020
rate patterns across attention heads, our method021
effectively captures actual patterns while requir-022
ing full attention computation for only a small023
subset of heads. Comprehensive evaluations024
demonstrate that our approach achieves supe-025
rior or comparable speedup relative to state-of-026
the-art methods while delivering the best over-027
all accuracy. The code will be made available028
upon publication.029

1 Introduction030

Long-context inference is essential for real-031

world applications of large language models032

(LLMs). Modern models like GPT-4.1 and Gemini033

1.5 (Team et al., 2024) now support contexts up034

to one million tokens, advancing multi-document035

QA (Wang et al., 2024), code understanding (Bairi036

et al., 2024; Ziftci et al., 2025), and multi-turn037

dialogue (Zhang et al., 2025). Nonetheless, the038

prefilling phase of long-context inference remains039

time-consuming, as the vanilla attention mecha-040

nism entails quadratic computational complexity041

with respect to sequence length (Fu, 2024).042

10 15 20 25 30 35
Latency (s)

34

35

36

37

38

39

40

41

In
fin

it
eB

en
ch

 S
co

re

Llama-3-8B-Instruct-262k

Ours

FlashAttn

MInference

FlexPrefill

10 15 20 25 30
Latency (s)

22

24

26

28

30

32

34

In
fin

it
eB

en
ch

 S
co

re

Qwen2.5-7B-Instruct

Ours

FlashAttn

MInference

FlexPrefill

Figure 1: Comparison of our method with baselines
across different models between latency (under 128K)
and the average score on Infinitebench.

Sparse attention offers a promising solution by 043

computing only significant attention scores, lever- 044

aging inherent sparsity in attention mechanisms. 045

Many works have discovered various patterns with 046

distinct characteristics and exploited them to per- 047

form sparse attention computations, such as the 048

sink pattern in (Xiao et al., 2024), the A-shape, 049

vertical-slash and block-sparse patterns in MInfer- 050

ence (Jiang et al., 2024). However, these static 051

patterns fail to generalize to varied inputs, as atten- 052

tion patterns inherently vary with different inputs 053

as shown in Figure 2. To cope with the funda- 054

mental requirements of dynamic patterns, MInfer- 055

ence dynamically adjusts the vertical-slash index, 056

and FlexPrefill (Lai et al., 2025) further adapts the 057

vertical-slash sparsity ratio dynamically and uses 058

pooled queries and pooled keys to estimate query- 059

aware block-wise patterns. However, we argue that 060

pooling-based pattern estimation struggles to fully 061

capture critical blocks due to the inaccuracies in- 062

herent in its approximations (detailed in Section 3). 063

Alternatively, we discover two interesting phe- 064

nomena. Firstly, the sparse pattern of many atten- 065

tion heads tends to be highly similar. More im- 066

portantly, the similarity relationships among these 067

heads remain largely consistent, even though the 068

sparse patterns themselves vary significantly across 069

different inputs, as shown in Figure 2. Conse- 070
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quently, we propose a highly accurate sparse atten-071

tion mechanism that shares similar yet precise atten-072

tion patterns across heads, mitigating reliance on073

predefined patterns and avoiding inaccurate pattern074

estimation. By computing dense attention using075

only a subset of heads, the prefilling is accelerated076

while preserving its high accuracy.077

Our contributions are summarized as follows:078

• We empirically demonstrate two fundamental079

properties of sparse attention patterns: (1) sim-080

ilarity across attention heads and (2) similarity081

consistency across different inputs.082

• We propose SharePrefill, a novel highly083

accuracy-preserving sparse attention method084

to accelerate the prefilling phase by dynami-085

cally generating accurate sparse patterns and086

sharing them across heads.087

• We conduct extensive experiments on several088

different models and tasks and show that our089

proposed method achieves superior or com-090

parable speedup to state-of-the-art methods091

while achieving the best overall accuracy.092

2 Related Work093

Existing sparse attention methods for accelerating094

model inference can be categorized into two types:095

training-free sparse attention and training-based096

sparse attention. The former relies on predefined097

sparse patterns or pattern estimation, while the lat-098

ter involves training sparse models to dynamically099

predict sparse patterns during inference.100

Training-free Sparse Attention Several meth-101

ods focus on predefined attention patterns, such as102

shifted sparse attention (Chen et al., 2024), sink at-103

tention (Xiao et al., 2024) and the A-shape, vertical-104

slash and block-sparse patterns used in MInfer-105

ence (Jiang et al., 2024). However, these patterns,106

often derived from limited cases, lack the flexibil-107

ity to effectively adapt to varying input demands.108

MInference introduced partially dynamic patterns,109

by adjusting vertical-slash indexes based on inputs.110

FlexPrefill (Lai et al., 2025) adapts sparsity ratios111

via cumulative thresholds and incorporates query-112

aware sparse patterns to enhance flexibility. How-113

ever, query-aware sparse patterns rely on pooled114

query and key representations for pattern selection,115

which may cause information loss and lead to less116

accurate pattern estimation. Our method aligns117

with this line of work but further enhances pattern118

modeling by dynamically providing more precise119

sparse patterns through pattern sharing, thereby 120

achieving better accuracy preservation. 121

Training-based Sparse Attention Training- 122

based sparse attention methods introduce attention 123

gates, train the gate-associated network, and auto- 124

matically predict important sequence segments dur- 125

ing inference. In this series of works, approaches 126

like MoBA (Lu et al., 2025) and NSA (Yuan et al., 127

2025) continue training the entire model, while 128

SeerAttention (Gao et al., 2024) employs a linear 129

layer as a learnable gate, training only the attention 130

gate. Even though training-based sparse attention 131

methods show promising acceleration while main- 132

taining accuracy, the cost of resource-intensive and 133

time-consuming training hinders their widespread 134

practical applicability. 135

3 Static Patterns and Pooling-based 136

Pattern Estimation are Not Enough 137

Attention patterns are highly dynamic, showing 138

substantial variation both across different heads 139

and within the same head under different inputs, as 140

shown in Figure 2. In particular, the staircase-like 141

patterns in En.Dia and the highly irregular patterns 142

in Code.Debug deviate significantly from previ- 143

ously proposed static patterns like the vertical-slash 144

pattern (Jiang et al., 2024). The highly dynamic 145

nature intrinsic to attention mechanisms exposes 146

the limitations of fixed-pattern approaches and un- 147

derscores the need for adaptive, dynamic attention 148

modeling techniques. 149

FlexPrefill (Lai et al., 2025) leverages pooled 150

queries (Q) and keys (K) to estimate the average 151

attention scores within each block for identifying 152

critical regions, thus alleviating the reliance on pre- 153

defined patterns. However, we highlight that this 154

pooling-based method struggles to fully capture im- 155

portant blocks, and we identify that this challenge 156

is rooted in two critical aspects. 157

Disregard for Token Alignment: The pooling 158

operation disregards token-level position alignment 159

within the query (Q) and key (K) segments, while 160

attention mechanisms are inherently sensitive to 161

token-level position alignment. This discrepancy 162

leads to pooled results 𝑝𝑜𝑜𝑙 (Q) · 𝑝𝑜𝑜𝑙 (K) that 163

cannot accurately estimate the average of actual at- 164

tention scores for the block. For example, consider 165

two 1-dimensional Q, K for 3 tokens: Q=[0, 0, 166

1], K=[0, 1, 0]. Due to ignoring position align- 167

ment, the 𝑝𝑜𝑜𝑙 (Q) · 𝑝𝑜𝑜𝑙 (K) appears slightly 168

significant(1
9 ). However, all attention scores within 169
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Code.Debug En.Dia

L0, H3 L0, H5 L5, H7 L0, H3 L0, H5 L5, H7

L18, H4 L22, H4 L22, H2 L18, H4 L22, H4 L22, H2

L31, H3 L31, H7 L25, H7 L31, H3 L31, H7 L25, H7

(a) Visualization of attention patterns for different heads across
various tasks. Each group of three columns corresponds to the
heads within a specific task.
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(b) Similarity matrices show the pattern similarity between each
head and other heads across different tasks.

Figure 2: Attention patterns of different heads and their
similarity matrices across various tasks.

the block are actually zero, leading to an overesti-170

mation of the block’s importance.171

Smoothing of High-/Low- Values: The pooling172

operation smooths out high and low values within173

Q and K, which often contribute to high and low174

attention scores, resulting in inaccurate importance175

estimation. For instance, Q=[0, 0, 1], K=[0, -1,176

1]. During pooling, the the high-value and low-177

value elements in Q and K are diluted, resulting178

in 𝑝𝑜𝑜𝑙 (Q) · 𝑝𝑜𝑜𝑙 (K) = 0, which is less than the179

actual average of attention scores 𝑝𝑜𝑜𝑙 (Q·K) = 1
9 ,180

leading to an underestimation of the importance of181

the block.182

4 Observation: Dynamic Attention Heads183

Exhibit Similar Patterns and Static184

Similarity Relationships185

We present the foundational observations motivat-186

ing our method: different heads exhibit high simi-187

larity, and the similarity remains highly consistent188

across varying inputs and tasks. Specifically, these189

observations distill into two key properties:190

(1) Inter-head Pattern Similarity: We observe191

many similar sparse patterns across attention heads,192

both within and between layers, as shown in Fig-193

ure 2(a). These patterns are derived from the Llama-194

3-8B-Instruct-262k model using samples from dif-195

ferent tasks in InfiniteBench (Zhang et al., 2024), 196

with each group of three columns corresponding 197

to heads from a specific task. For example, heads 198

such as (L18, H4), (L22, H2), and (L25, H7) in 199

the En.Dia task exhibit highly consistent staircase- 200

like patterns, where L is the layer index and H is 201

the head index. Additionally, Figure 2(b) shows 202

the statistical similarity matrix based on Jaccard 203

similarity scores (# intersection / # union) between 204

one head and all others. This measure avoids artifi- 205

cially high similarity values that could arise from 206

the presence of many zeros in these sparse patterns. 207

Notably, a large number of similarity scores exceed 208

0.5, indicating that each head has many similar 209

counterparts among the others. 210

(2) Cross-input Similarity Consistency: More 211

importantly, the similarity among attention heads 212

remains consistent regardless of the specific input 213

or task, even though the pattern of a given atten- 214

tion head varies across different inputs and tasks. 215

Figure 2(a) shows that (L18, H4), (L22, H2), and 216

(L25, H7) are highly similar in Code.Debug, con- 217

sistent with their previously observed similarity in 218

En.Dia (Property 1), though their patterns differ 219

between the two tasks. This highlights the consis- 220

tent similarity among attention heads across inputs 221

and tasks, suggesting that sparse patterns can po- 222

tentially transfer to similar heads, regardless of 223

context. 224

5 Proposed Approach 225

5.1 Problem Formulation 226

Generally, our goal is to replace dense attention 227

with sparse attention in attention layers to reduce 228

computational costs during the pre-filling phase, 229

while minimizing the output loss of each attention 230

layer, thereby accelerating the pre-filling process 231

while preserving accuracy. This can be formulated 232

as a multi-objective optimization problem: 233

min
M
|A(Q,K,V ,M ) − A(Q,K,V ) |,

min
M
|M |

(1) 234

where, 235

A(Q,K,V ,M ) = 𝜎
(

1
√
𝑑
QK𝑇 − 𝑐(1 −M )

)
V , 236

A(Q,K,V ) = 𝜎
(

1
√
𝑑
QK𝑇

)
V 237

We define A(Q,K,V ,M ) as our sparse at- 238

tention, where M is a binary mask indicating 239
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the sparse pattern applied in the sparse attention240

computation, where 1 means the block is com-241

puted, and 0 means it is skipped. The output is242

O = A(Q,K,V ,M ) and a sufficiently large con-243

stant 𝑐 ensures that attention score is approximately244

zero, whenever M𝑖 𝑗 = 0. Here, 𝜎 denotes the245

softmax function. The primary optimization ob-246

jective is to identify a pattern M that minimizes247

the variance between the attention matrices of full248

attention A(Q,K,V ) and our proposed sparse at-249

tention A(Q,K,V ,M ) , while also reducing the250

computational time required for sparse attention251

computation and sparse pattern generation.252

5.2 Accelerating Prefilling via SharePrefill253

Our main idea is to compute the full attention for254

a subset of heads, identify the actual sparse pat-255

terns, and share these patterns with other heads256

that are known to exhibit similar behavior. This ap-257

proach enables the remaining heads to approximate258

the actual patterns without computing each one259

separately, thus maintaining the model’s original260

accuracy while accelerating inference.261

As depicted in the overview of SharePrefill in262

Figure 3, our approach involves two key compo-263

nents: (1) Offline clustering to group heads based264

on the similarity of their attention score maps. (2)265

Online inference, where pivotal attention is con-266

structed dynamically and shared with other heads267

during the inference process. The overall algorithm268

of SharePrefill is detailed in Algorithm 1.269

Offline Clustering of Similar Heads We cluster270

attention heads across layers into distinct groups271

based on the similarity of their attention score maps,272

performed in offline mode. The pre-computed clus-273

ters serve as the foundation for constructing and274

sharing sparse attention patterns within each cluster275

during inference.276

Given the consistent similarity between heads,277

we perform clustering on their attention score278

maps using a sample from the Retr.KV task in279

InfiniteBench. We first obtain compressed low-280

dimensional representations of the attention scores281

by training an autoencoder network on these at-282

tention score maps (the network architecture is il-283

lustrated in Appendix C). Next, we normalize the284

representations and apply hierarchical clustering285

with a distance threshold to group similar heads286

into clusters, while isolating dissimilar heads as287

noise clusters. Notably, we only store the layer and288

head indices within clusters, rather than the sparse289

patterns themselves. The actual sparse patterns 290

are dynamically generated during online inference, 291

ensuring adaptability to varying inputs. 292

Dynamic Pattern Construction and Sharing dur- 293

ing Inference During inference, we construct at- 294

tention patterns dynamically and share adaptive yet 295

accurate patterns among similar heads to facilitate 296

sparse attention computation. This is achieved by 297

computing the attention output for each layer while 298

maintaining an evolving global pattern dictionary, 299

which serves as the basis for sharing patterns across 300

similar heads. 301

In general, the online inference process—based 302

on dynamic pattern construction and shar- 303

ing—comprises three key steps, corresponding to 304

the three sub-algorithms outlined in Algorithm 1. 305

The algorithm takes the query matrix Q, key matrix 306

K, value matrix V , similarity threshold 𝜏, sparsity 307

threshold 𝛿 and cumulative attention threshold 𝛾 308

as input. For simplicity, the illustration focuses 309

on a single head rather than a layer. However, in 310

practice, we perform sparse attention computation 311

layer-by-layer. 312

Pivotal Pattern Sharing (See Algorithm 4): 313

Before performing sparse attention computation, 314

we first query the global pivotal pattern dictionary 315

to check if a pivotal pattern is available for reuse. If 316

a pivotal pattern exists, it is shared with the corre- 317

sponding head; otherwise, the head computes full 318

attention using a dense pattern (i.e., a pattern with 319

all ones). 320

Sparse Attention Computation (See Algorithm 321

1): We then perform sparse attention computation 322

to obtain the output for the current layer while si- 323

multaneously computing the block-wise average 324

of QK values, denoted as Ã, which captures the 325

average QK scores within each block (line 8 in 326

overall Algorithm 1). The sparse attention ker- 327

nel is implemented in Triton (Tillet et al., 2019), 328

following the block-wise strategy from FlashAtten- 329

tion 2 (Dao, 2024) and incorporating a block-wise 330

sparse pattern to determine computation regions. 331

Only blocks labeled as 1 in the sparse pattern are 332

computed, while those labeled as 0 are skipped. 333

During the computation for the final output, for 334

each block where the pattern value is one, we com- 335

pute the average QK value; for blocks where the 336

pattern value is 0, we assign the average QK value 337

as −∞. 338

Pivotal Pattern Construction (See Algo- 339

rithm 2): Subsequently, we use the obtained block- 340
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Attention Score Map

...

Pivotal Pattern Sharing

Sparse Attention

Attention

RMS Norm

RMS Norm

FFN

clustering

(1) Offline clustering for similar heads (2) Online attention computation and pivotal pattern construction/sharing

+

Static Head Dictionary

：

：

Dynamic Pivotal 
Pattern Dictionary

Pivotal Pattern Construction

lookup C

pivotal
pattern

Figure 3: Overview of proposed SharePrefill. Attention heads are clustered offline based on the similarity of their
attention score maps to create a static head dictionary. During inference, each head retrieves its cluster index 𝐶𝑖 .
Pivotal Patterns are shared if available; otherwise, a dense pattern is assigned. The sparse attention output O is
computed using M , and Ã updates the dynamic pivotal pattern dictionary.

wise average QK values to compute the block-wise341

average attention scores after applying softmax.342

These scores are then used to construct new pivotal343

patterns by applying a cumulative score threshold344

𝛾, which selects the minimal number of blocks345

required to cover the target cumulative attention346

score, as detailed in Algorithm 2. The resulting347

patterns are then updated into the pivotal pattern348

dictionary.349

To ensure safe dynamic pattern sharing, we ver-350

ify similarity before sharing patterns to prevent351

incorrect sharing that could adversely impact accu-352

racy. Specifically, we compute the Jensen-Shannon353

(JS) distance between the block-wise average at-354

tention score of the last row block of the current355

head â and the corresponding pivotal block-wise356

average attention score of the last row ã, which is357

also stored in the pivotal pattern dictionary (line358

6 in Algorithm 3). This distance serves as a mea-359

sure to predict the similarity between the current360

head and its corresponding pivotal head. If the JS361

distance is below a given similarity threshold 𝜏,362

we share the pivotal pattern with the current head.363

Otherwise, we fall back to a conservative vertical-364

slash pattern (lines 7-11 in Algorithm 3) using a365

cumulative threshold-based vertical-slash pattern366

search algorithm (outlined in Algorithm 5), as pro-367

posed in FlexPrefill (Lai et al., 2025). Additionally,368

noisy clusters, which include dissimilar patterns,369

also revert to the vertical-slash pattern.370

To enhance efficiency, we exclude highly sparse371

heads from the pivotal pattern construction and 372

sharing process, as we consider that computing 373

full attention for these heads to derive pivotal pat- 374

terns is not cost-effective in terms of acceleration. 375

For highly sparse heads, we instead fall back to 376

searching for a vertical-slash pattern for each head 377

(see line 10 in Algorithm 3), as the pattern often 378

serves as a suitable approximation for highly sparse 379

heads (Jiang et al., 2024). To identify these highly 380

sparse heads, we compute the Jensen-Shannon (JS) 381

distance between the block-wise average attention 382

score of the last row block of the current head â 383

and a uniform distribution u (see line 6 in Algo- 384

rithm 3). We then compare this distance to a pre- 385

defined sparsity threshold 𝛿. If the JS distance is 386

not less than the threshold, we classify the head as 387

a highly sparse head. 388

6 Experiments 389

6.1 Settings 390

This section outlines the models, datasets, base- 391

lines, and implementation details of our method 392

in comparison with baseline methods. Additional 393

information is provided in Appendix A. 394

Models, Datasets, and Baselines We employ 395

two cutting-edge, renowned long-context LLMs: 396

(i) Llama-3-8B-Instruct-262k (Pekelis et al., 2024), 397

(ii) Qwen2.5-7B-Instruct (Team, 2024). The mod- 398

els are evaluated on InfiniteBench (Zhang et al., 399

2024), a state-of-the-art public benchmark de- 400
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SharePrefill

Algorithm 1 Sparse Attention

1: Input: Q,K,V ∈ R𝑁×𝑑ℎ ; 𝛿, 𝜏, 𝛾; 𝑙, ℎ
# Decide the pattern type based on Q, K, sparsity
threshold 𝛿 and similarity threshold 𝜏

2: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛← Determine Sparse Pattern (Q, K, 𝛿, 𝜏)

# Decide the sparse pattern M based on pattern,
Q, K and pattern threshold 𝛾

3: if 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 == shared_pivot then
4: M ← Share Pivotal Pattern(𝑙, ℎ)
5: else if 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 == vertical_slash then
6: M ← Search Vertical Slash Pattern(Q, K, 𝛾)
7: end if

# Compute the output O and block-averaged QK
values Ã by applying sparse pattern M

8: O, Ã←A(Q, K, V , M )

# Construct and update global dynamic pivotal pat-
terns via the newest block-averaged QK values Ã
and pattern threshold 𝛾

9: Construct Pivotal Pattern(Ã, 𝛾, 𝑙, ℎ)
return O

Algorithm 2 Construct Pivotal Pattern

Input: Ã; 𝛾; 𝑙, ℎ
if Ã is fully attention computed then

# Compute block-averaged attention score Ã by apply-
ing softmax on block-averaged QK values
Ã = softmax(Ã)

# Take the last row of Ã as pivotal representative
ã← Ã[−1:]
# Flatten and normalize attention score map
Ã← flatten(Ã/∑𝑖, 𝑗 Ã[𝐼, 𝑗])
# Sort attention scores
I𝒂 ← 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (Ã)
# Obtain the minimum computational budget making
the sum of the scores exceeds 𝛾
𝐾 ← min {k:

∑
𝑖∈I𝒂 [1:𝑘 ] Ã[𝑖] ≥ 𝛾 }

# Select index set
S ← I𝒂 [1 : 𝐾]
# Convert index set S to mask pattern M
M ← index_to_mask(S)

# Lookup cluster index 𝑐 in head_dict
c← lookup(𝑙, ℎ; head_dict)

# Update M and ã into pivotal_pattern_dict
pivotal_pattern_dict.update( {c: (ã, M )})

end if

Algorithm 3 Determine Sparse Pattern

1: Input: Q, K; 𝛿, 𝜏
# Take a representative query subset

2: select Q̂ = Q[−𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒:]
# Compute estimated block-averaged average atten-
tion â and pivotal block-averaged attention ã

3: â← softmax(pool(Q̂K𝑇 ) /
√
𝑑 )

# Retrieve cluster index 𝑐 in head_dict,
4: c← lookup(𝑙, ℎ; head_dict )

# Fetch the pivotal representative �̃�
5: ã← lookup(c; pivotal_pattern_dict )

# Compute sparsity and similarity divergence
6: 𝑑𝑠𝑝𝑎𝑟𝑠𝑒 ←

√︁
𝐽𝑆𝐷 (â| |u), 𝑑𝑠𝑖𝑚←

√︁
𝐽𝑆𝐷 (â| |ã)

# Determine whether to use pattern sharing strategy
7: if 𝑑𝑠𝑝𝑎𝑟𝑠𝑒 < 𝛿 and 𝑑𝑠𝑖𝑚 < 𝜏 then
8: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛← shared_pivot
9: else

10: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛← vertical_slash
11: end if

return 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

Algorithm 4 Share Pivotal Pattern
Input: 𝑙, ℎ
# Retrieve cluster index 𝑐 in head_dict
c← lookup(𝑙, ℎ; head_dict )

# Fetch the pivotal sparse pattern from the dynamic
pivotal_pattern_dictM
M ← lookup(c; pivotal_pattern_dict )
if M not exist then

# Assign a dense pattern to the first head within the
cluster 𝑐 for subsequent full attention computation
M ← ones

else
# Share existing pivotal pattern M

end if
return M

Models Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg

Llama-3-8B-Instruct-262k

FlashAttn 25.88 8.63 67.69 5.00 12.66 20.81 26.57 100.00 100.00 14.40 38.16
FlexPrefill 19.91 12.60 57.21 5.50 11.63 22.84 20.86 100.00 100.00 13.80 36.44
MInference 25.51 8.50 65.94 8.00 12.14 22.08 32.86 100.00 100.00 16.40 39.14

Ours 20.24 8.00 63.32 11.84 11.94 24.11 30.00 100.00 100.00 21.00 39.05
Ours (𝛿 = 1.01) 19.35 11.74 64.63 5.50 11.96 28.17 29.14 100.00 100.00 23.00 39.35

Qwen2.5-7B-Instruct

FlashAttn 15.53 3.18 35.81 10.50 3.95 14.47 38.57 100.00 93.56 0.00 31.56
FlexPrefill 14.20 3.09 31.88 8.00 3.54 15.99 9.43 97.29 75.42 0.00 25.88
MInference 14.83 2.86 34.93 9.00 3.81 14.97 38.29 96.78 76.78 0.00 29.23

Ours 15.31 2.88 38.43 8.50 3.99 17.26 44.57 99.49 87.46 0.00 31.79

Table 1: Performance comparison of different methods on various models and tasks on InfiniteBench. The best and
second-best results are highlighted in bold and underlined, respectively.
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Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg 128K Latency (s)

Our w/o Sharing (𝜏=0) 19.68 11.86 63.76 9.00 11.65 23.86 25.14 22.00 100.00 22.00 38.70 17.01
Our w/o Exclusion (𝛿=1.01) 19.35 11.74 64.63 5.50 11.96 28.17 29.14 100.00 100.00 23.00 39.35 20.02

Ours 20.24 8.00 63.32 11.84 11.94 24.11 30.00 100.00 100.00 21.00 39.05 16.92

Table 2: Performance of ablation methods evaluated using LLaMA-3-8B-Instruct-262K on InfiniteBench.
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Figure 4: Perplexity results on PG-19 (Rae et al., 2020)
using different models and methods.

signed to assess comprehensive long-context under-401

standing. This benchmark comprises synthetic and402

realistic tasks across various domains, in both En-403

glish and Chinese, with an average token count of404

214K, allowing us to assess SharePrefill’s effective-405

ness across a wide range of long-context scenarios.406

Additionally, we include the long-context language407

modeling task on the PG19 dataset (Rae et al.,408

2020) to evaluate the models’ language modeling409

capability. For efficiency evaluation, we conduct410

latency benchmarks using the length-adjustable411

prompts provided in MInference (Jiang et al., 2024).412

We compare our method with two state-of-the-art413

sparse attention methods (Jiang et al., 2024; Lai414

et al., 2025) and the efficient full attention FlashAt-415

tention 2 (Dao, 2024) to underscore its effective-416

ness and efficiency in long-context tasks.417

Implementation Details All our experiments418

were conducted on a single NVIDIA A100 GPU419

with 80GB of memory. For baseline implementa-420

tions, we use the official FlashAttention 2 pack-421

age 6, and adopt the official MInference reposi-422

tory 5 for both MInference and FlexPrefill, which423

includes the FlexPrefill implementation. For MIn-424

ference, we employ the default vertical-slash pat-425

tern configuration available in its code repository.426

For FlexPrefill, we use the default parameters with427
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Figure 5: Latency comparison of different approaches
across various context lengths using different models.

the sparse pattern threshold 𝜏 = 0.1 and the cu- 428

mulative pattern threshold 𝛾 = 0.9 consistently 429

for all models. For a fair comparison, we also set 430

the cumulative pattern threshold 𝛾 = 0.9 in our 431

method; The similarity threshold 𝜏 is set to 0.2 and 432

the sparsity threshold 𝛿 to 0.3, unless otherwise 433

specified. Additionally, all the baseline methods 434

employ sparse computation during prefilling and 435

transition to dense computation during the decod- 436

ing phase. 437

6.2 Main Results 438

We compare our method with baselines and present 439

the main results on the aforementioned benchmarks 440

and models. The results demonstrate that our ap- 441

proach achieves superior or comparable speedup 442

while delivering the overall best accuracy. 443

InfiniteBench Table 1 shows that our method 444

preserves most of the model’s performance, achiev- 445

ing overall best accuracy maintenance. While our 446

method with default parameters shows slightly 447

lower accuracy compared to MInference, it 448

achieves significantly lower latency, as shown 449

in Figure 5 and Figure 1. However, our method 450

outperforms MInference in both accuracy and ef- 451

ficiency by sharing all similar attention heads, in- 452

cluding highly sparse ones. 453
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Figure 6: Distribution of three sparse attention head
patterns in LLaMA-3-8B-Instruct-262K.

Language Modeling We evaluate our method454

against baselines on the language modeling task455

based on the PG-19 dataset (Rae et al., 2020). As456

shown in Figure 4, the perplexity of our method457

closely approaches the performance of MInference458

and FlashAttention 2, with the gap between them459

being within about 1.0. Moreover, the perplexity460

score of our method is significantly lower than that461

of FlexPrefill, with reductions of approximately462

1.0∼4.0 in Qwen2.5-7B-Instruct and over 1.0 in463

Llama-3-8B-Instruct-262k. These results demon-464

strate the strong language modeling capabilities of465

our approach.466

Performance vs. Latency Figure 5 shows467

the latency across different context windows un-468

der Llama-3-8B-Instruct-262k and Qwen2.5-7B-469

Instruct on a single A100. The results demon-470

strate that our method achieves better or compara-471

ble speedup compared to the baselines. Moreover,472

Figure 1 compares our method with baselines under473

different models in terms of model performance on474

InfiniteBench and average latency under 128K on475

the latency benchmark. The results indicate that476

our method achieves a favorable tradeoff between477

accuracy preservation and inference speedup.478

7 Ablation Study479

Analysis of Different Components To evalu-480

ate the contributions of different components in481

SharePrefill, we introduce two variants for the ab-482

lation study: (1) Ours w/o sharing, which uses483

only the vertical-slash pattern without pivotal pat-484

tern sharing mechanism, corresponding to a sim-485

ilarity threshold 𝜏 = 0; (2) Ours w/o exclusion,486

where removing highly sparse heads strategy and487

all similar heads participate in the pattern sharing488

mechanism, corresponding to a sparsity threshold489

𝛿 = 1.01 (selected to account for boundary condi- 490

tions, ensuring that patterns with 𝛿 =1 meet the 491

sharing-consideration criterion in line 7 of Algo- 492

rithm 3). Table 2 presents the ablation results on 493

Llama-3-8B-Instruct-262k. It first demonstrates 494

that removing the pattern sharing mechanism leads 495

to performance degradation, confirming the neces- 496

sity of our pattern sharing strategy in preserving 497

accuracy. Additionally, removing the strategy of 498

excluding highly sparse heads—where all similar 499

heads, including highly sparse ones, are allowed 500

to share patterns—results in reduced speedup but 501

improved performance. This demonstrates that the 502

strategy of excluding highly sparse heads enhances 503

efficiency while potentially degrading the model’s 504

accuracy maintenance potential. The observed ac- 505

curacy improvement when removing the exclusion 506

strategy can be attributed to more similar heads 507

participating in pattern sharing, rather than being 508

forced into predefined vertical-slash patterns. This 509

further validates the effectiveness of our pattern 510

sharing mechanism in maintaining accuracy. 511

Pattern Distribution Figure 6 shows the distri- 512

bution of dense, shared, and conservative vertical- 513

slash patterns used in Llama-3-8B-Instruct-262k. 514

The majority of attention heads adopt the vertical- 515

slash pattern, while only a small number require 516

the full-attention dense pattern—typically just 1 to 517

4 heads in total. Although the number of shared 518

patterns is limited, they play a significant role in 519

maintaining model accuracy as shown in Table 2. 520

8 Conclusion and Future Work 521

In this paper, we observe that attention heads ex- 522

hibit similarity, and this similarity remains consis- 523

tent across different inputs. Built on these observa- 524

tions, we propose a novel sparse attention method 525

that highly preserves accuracy while accelerating 526

the prefilling phase. Our method achieves this by 527

dynamically generating accurate patterns and shar- 528

ing them with other similar heads, thereby cap- 529

turing more realistic attention dynamics. We con- 530

duct extensive experiments across several models 531

and tasks, demonstrating that our proposed method 532

achieves superior or comparable speedups to state- 533

of-the-art approaches while delivering the highest 534

accuracy maintenance. The principle of similarity 535

between heads and the proposed pattern-sharing 536

mechanism holds the potential for accelerating the 537

decoding phase and extending to multi-modular 538

systems, which will be explored in future work. 539
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Limitations540

Although we provide observational and statistical541

evidence on the similarity properties between at-542

tention heads, the underlying explanation for the543

highly consistent similarity relationships among544

heads across different inputs remains unclear. This545

open question requires further investigation. Ad-546

ditionally, while our approach demonstrates effec-547

tiveness in LLM prefilling on single devices, its548

scalability to larger-scale scenarios requires further549

study. Future work will focus on evaluating and550

further enhancing the scalability of the proposed551

approach. This includes exploring efficient pattern-552

sharing mechanisms in scaled scenarios, such as553

allowing each device to maintain a local partial554

pivotal pattern dictionary or enabling a global dic-555

tionary to be shared across devices through inter-556

device communication.557
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A More Details on Experimental Settings662

A.1 Models663

We employ two state-of-the-art long-context664

language models: Llama-3-8B-Instruct-665

262k 1(released under the Meta Llama License)666

and Qwen2.5-7B-Instruct 2 (released under667

the Apache 2.0 License). These models were668

selected due to their strong capabilities in handling669

long-context understanding tasks, with Llama-670

3-8B-Instruct-262k supporting contexts of up to671

262K tokens and Qwen2.5-7B-Instruct supporting672

contexts of up to 128K tokens. Both models673

support multiple languages, primarily English,674

with Qwen2.5-7B-Instruct also demonstrating675

excellent performance in Chinese. Additionally,676

Qwen2.5-7B-Instruct supports up to 128K tokens677

and demonstrates excellent multilingual perfor-678

mance, with particular strength in Chinese. For679

further details, refer to the model repositories, as680

listed in 1 and 2681

A.2 Datasets & Benchmarks682

• InfiniteBench InfiniteBench 3 (Zhang et al.,683

2024) is publicly released under the Apache-684

2.0 License. It is a state-of-the-art benchmark685

designed to evaluate long-context language686

models with context lengths exceeding 100K687

tokens. The benchmark consists of 12 unique688

tasks, each carefully crafted to assess different689

1https://huggingface.co/gradientai/
Llama-3-8B-Instruct-Gradient-262k

2https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

3https://huggingface.co/datasets/
xinrongzhang2022/InfiniteBench

aspects of language processing and compre- 690

hension in extended contexts. These tasks en- 691

compass a mix of real-world scenarios and 692

synthetic constructs, including novels, dia- 693

logues, code, and math, ensuring a compre- 694

hensive evaluation of model capabilities. In 695

our experiments, we compare our method’s 696

long-context performance against baselines 697

across 10 tasks, using all available samples. 698

Consistent with MInference and FlexPrefill, 699

we excluded Code.Run and Math.Calc be- 700

cause they are highly challenging, with full- 701

attention models often scoring near 0. 702

• PG-19 Language Modeling Benchmark 703

(Rae et al., 2020) proposed a long-context lan- 704

guage modeling benchmark 4 that evaluates 705

perplexity on the PG-19 dataset and whose 706

repository is released under the Apache 2.0 li- 707

cense. Perplexity quantifies how well a model 708

predicts the next token in a sequence and is 709

commonly used to assess the language mod- 710

eling performance of long-context LLMs on 711

extended texts. PG-19 contains books with 712

lengths of up to 500K tokens, making it well- 713

suited for long-context evaluation. To assess 714

language modeling performance across differ- 715

ent context lengths, we conduct experiments 716

using 100 randomly selected samples from 717

the PG-19 dataset, truncating them to various 718

lengths ranging from 1K to 104K tokens. We 719

then report the average perplexity based on 720

these truncated samples. Due to high mem- 721

ory usage during perplexity computation, we 722

evaluate contexts with lengths of up to 104K 723

tokens. 724

• Latency Benchmark We follow the latency 725

benchmarks provided in MInference 5 (Jiang 726

et al., 2024), which is released under the 727

MIT License. The prompts, sourced from 728

the Chain-of-Thought Hub (Fu et al., 2023) 729

(also released under the MIT License), were 730

trimmed to varying token lengths to measure 731

the prefilling stage latency. To ensure reliable 732

measurements, we conduct ten repeated ex- 733

periments after a warm-up phase and report 734

the average latency. 735

4https://github.com/google-deepmind/pg19
5https://github.com/microsoft/MInference.git
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A.3 Baselines736

1. FlashAttention 2 6 (Dao, 2024): Flash At-737

tention 2 is an I/O-aware exact attention al-738

gorithm designed to improve the efficiency739

of dense attention computation. It leverages740

tiling techniques to minimize the number of741

memory read and write operations between742

GPU high-bandwidth memory (HBM) and743

on-chip SRAM, thereby significantly reduc-744

ing memory overhead and improving com-745

putational throughput. As an optimized im-746

plementation of dense attention, Flash Atten-747

tion 2 enables faster and more scalable trans-748

former inference and training, especially in749

long-sequence scenarios.750

2. MInference (Jiang et al., 2024): MInference751

is a state-of-the-art sparse attention mech-752

anism that exploits the static patterns ob-753

served in the attention mechanisms of LLMs,754

aiming to accelerate the prefilling phase for755

long-context inputs. It first determines of-756

fline which sparse pattern each attention head757

belongs to. During inference, it approxi-758

mates the sparse indices online and dynam-759

ically computes attention using optimized cus-760

tom kernels. This design enables significant761

speedup while maintaining strong accuracy.762

3. FlexPrefill (Lai et al., 2025): FlexPrefill is763

another state-of-the-art sparse attention mech-764

anism that enhances flexibility by incorporat-765

ing cumulative-attention-based index selec-766

tion and query-aware sparse patterns, enabling767

more adaptive sparse attention during the pre-768

filling phase of LLM inference.769

A.4 Implementation Details770

For offline clustering, we train an autoencoder on771

the attention score map with a latent dimension772

of 64. The model is trained for 1000 epochs with773

early stopping and a learning rate of 1e-3. We then774

apply the hierarchy clustering method fcluster from775

scipy 7 package on the normalized compressed rep-776

resentation using a distance threshold of 10, assign-777

ing clusters with fewer than 5 samples to a noise778

cluster.779

B Detailed Algorithms780

6https://pypi.org/project/flash-attn
7https://scipy.org

Algorithm 5 Search Vertical Slash Pattern
Input: Q, K; 𝛾
# Compute a subset of the full attention map
Â← softmax(Q̂K𝑇 /

√
𝑑), where Q̂ ⊂ Q

# Sum and normalize attention scores along the vertical
and slash directions
a𝒗 ← sum_vertical(Â)/ ∑𝑖, 𝑗 Â[𝐼, 𝑗])
a𝒔 ← sum_slash(Â)/ ∑𝑖, 𝑗 Â[𝐼, 𝑗])
# Sort vertical and slash attention scores
I𝒗 ← 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (a𝒗)
I𝒔 ← 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (a𝒔)
# Obtain the minimum computational budget making the
sum of the scores exceeds 𝛾
𝐾𝑣 ← min {k:

∑
𝑖∈I𝒗 [1:𝑘 ] a𝒗 [𝑖] ≥ 𝛾 }

𝐾𝑠 ← min {k:
∑
𝑖∈I𝒔 [1:𝑘 ] a𝒔 [𝑖] ≥ 𝛾 }

# Select vertical and slash index
S𝒗 ← I𝒗 [1 : 𝐾𝑣], S𝒔 ← I𝒔 [1 : 𝐾𝑠]
S ← S𝒗 ∪ S𝒔
M ← index_to_mask S
return M

C Autoencoder Architecture 781

782

Autoencoder architecture is shown in Table 3. 783
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Encoder

Layer Type Parameters

Conv2d Conv2D out: 16, kernel: 3 × 3, padding: 1
ReLU Activation
MaxPool2d Pooling kernel: 4 × 4, stride: 4
Conv2d Conv2D in: 16, out: 32, kernel: 3 × 3, padding: 1
ReLU Activation
MaxPool2d Pooling kernel: 4 × 4, stride: 4
Flatten Transformation start_dim=1, end_dim=-1
Linear Fully Connected in: 468512, out: 64

Decoder

Layer Type Parameters

Linear Fully Connected in: 64, out: 468512
ReLU Activation
Unflatten Transformation shape=(32, 121, 121)
ConvTranspose2d Transposed Convolution in: 32, out: 16, kernel: 4 × 4, stride: 2, padding: 1
ReLU Activation
ConvTranspose2d Transposed Convolution in: 16, out: 8, kernel: 4 × 4, stride: 2, padding: 1
ReLU Activation
ConvTranspose2d Transposed Convolution in: 8, out: 1, kernel: 4 × 4, stride: 4
Sigmoid Activation

Table 3: Network Architecture of the Autoencoder
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