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Abstract

Sparse attention methods exploit the inherent
sparsity in attention to speed up the prefilling
phase of long-context inference, mitigating the
quadratic complexity of full attention compu-
tation. While existing sparse attention meth-
ods rely on predefined patterns or inaccurate
estimations to approximate attention behavior,
they often fail to fully capture the true dynam-
ics of attention, resulting in reduced efficiency
and compromised accuracy. Instead, we pro-
pose a highly accurate sparse attention mech-
anism that shares similar yet precise attention
patterns across heads, enabling a more realistic
capture of the dynamic behavior of attention.
Our approach is grounded in two key observa-
tions: (1) attention patterns demonstrate strong
inter-head similarity, and (2) this similarity re-
mains remarkably consistent across diverse in-
puts. By strategically sharing computed accu-
rate patterns across attention heads, our method
effectively captures actual patterns while requir-
ing full attention computation for only a small
subset of heads. Comprehensive evaluations
demonstrate that our approach achieves supe-
rior or comparable speedup relative to state-of-
the-art methods while delivering the best over-
all accuracy. The code will be made available
upon publication.

1 Introduction

Long-context inference is essential for real-
world applications of large language models
(LLMs). Modern models like GPT-4.1 and Gemini
1.5 (Team et al., 2024) now support contexts up
to one million tokens, advancing multi-document
QA (Wang et al., 2024), code understanding (Bairi
et al., 2024; Ziftci et al., 2025), and multi-turn
dialogue (Zhang et al., 2025). Nonetheless, the
prefilling phase of long-context inference remains
time-consuming, as the vanilla attention mecha-
nism entails quadratic computational complexity
with respect to sequence length (Fu, 2024).
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Figure 1: Comparison of our method with baselines
across different models between latency (under 128K)
and the average score on Infinitebench.

Sparse attention offers a promising solution by
computing only significant attention scores, lever-
aging inherent sparsity in attention mechanisms.
Many works have discovered various patterns with
distinct characteristics and exploited them to per-
form sparse attention computations, such as the
sink pattern in (Xiao et al., 2024), the A-shape,
vertical-slash and block-sparse patterns in MInfer-
ence (Jiang et al., 2024). However, these static
patterns fail to generalize to varied inputs, as atten-
tion patterns inherently vary with different inputs
as shown in Figure 2. To cope with the funda-
mental requirements of dynamic patterns, MInfer-
ence dynamically adjusts the vertical-slash index,
and FlexPrefill (Lai et al., 2025) further adapts the
vertical-slash sparsity ratio dynamically and uses
pooled queries and pooled keys to estimate query-
aware block-wise patterns. However, we argue that
pooling-based pattern estimation struggles to fully
capture critical blocks due to the inaccuracies in-
herent in its approximations (detailed in Section 3).

Alternatively, we discover two interesting phe-
nomena. Firstly, the sparse pattern of many atten-
tion heads tends to be highly similar. More im-
portantly, the similarity relationships among these
heads remain largely consistent, even though the
sparse patterns themselves vary significantly across
different inputs, as shown in Figure 2. Conse-



quently, we propose a highly accurate sparse atten-
tion mechanism that shares similar yet precise atten-
tion patterns across heads, mitigating reliance on
predefined patterns and avoiding inaccurate pattern
estimation. By computing dense attention using
only a subset of heads, the prefilling is accelerated
while preserving its high accuracy.
Our contributions are summarized as follows:

* We empirically demonstrate two fundamental
properties of sparse attention patterns: (1) sim-
ilarity across attention heads and (2) similarity
consistency across different inputs.

* We propose SharePrefill, a novel highly
accuracy-preserving sparse attention method
to accelerate the prefilling phase by dynami-
cally generating accurate sparse patterns and
sharing them across heads.

* We conduct extensive experiments on several
different models and tasks and show that our
proposed method achieves superior or com-
parable speedup to state-of-the-art methods
while achieving the best overall accuracy.

2 Related Work

Existing sparse attention methods for accelerating
model inference can be categorized into two types:
training-free sparse attention and training-based
sparse attention. The former relies on predefined
sparse patterns or pattern estimation, while the lat-
ter involves training sparse models to dynamically
predict sparse patterns during inference.
Training-free Sparse Attention Several meth-
ods focus on predefined attention patterns, such as
shifted sparse attention (Chen et al., 2024), sink at-
tention (Xiao et al., 2024) and the A-shape, vertical-
slash and block-sparse patterns used in Mlnfer-
ence (Jiang et al., 2024). However, these patterns,
often derived from limited cases, lack the flexibil-
ity to effectively adapt to varying input demands.
Minference introduced partially dynamic patterns,
by adjusting vertical-slash indexes based on inputs.
FlexPrefill (Lai et al., 2025) adapts sparsity ratios
via cumulative thresholds and incorporates query-
aware sparse patterns to enhance flexibility. How-
ever, query-aware sparse patterns rely on pooled
query and key representations for pattern selection,
which may cause information loss and lead to less
accurate pattern estimation. Our method aligns
with this line of work but further enhances pattern
modeling by dynamically providing more precise

sparse patterns through pattern sharing, thereby
achieving better accuracy preservation.

Training-based Sparse Attention Training-
based sparse attention methods introduce attention
gates, train the gate-associated network, and auto-
matically predict important sequence segments dur-
ing inference. In this series of works, approaches
like MoBA (Lu et al., 2025) and NSA (Yuan et al.,
2025) continue training the entire model, while
SeerAttention (Gao et al., 2024) employs a linear
layer as a learnable gate, training only the attention
gate. Even though training-based sparse attention
methods show promising acceleration while main-
taining accuracy, the cost of resource-intensive and
time-consuming training hinders their widespread
practical applicability.

3 Static Patterns and Pooling-based
Pattern Estimation are Not Enough

Attention patterns are highly dynamic, showing
substantial variation both across different heads
and within the same head under different inputs, as
shown in Figure 2. In particular, the staircase-like
patterns in En.Dia and the highly irregular patterns
in Code.Debug deviate significantly from previ-
ously proposed static patterns like the vertical-slash
pattern (Jiang et al., 2024). The highly dynamic
nature intrinsic to attention mechanisms exposes
the limitations of fixed-pattern approaches and un-
derscores the need for adaptive, dynamic attention
modeling techniques.

FlexPrefill (Lai et al., 2025) leverages pooled
queries (Q) and keys (K) to estimate the average
attention scores within each block for identifying
critical regions, thus alleviating the reliance on pre-
defined patterns. However, we highlight that this
pooling-based method struggles to fully capture im-
portant blocks, and we identify that this challenge
is rooted in two critical aspects.

Disregard for Token Alignment: The pooling
operation disregards token-level position alignment
within the query (Q) and key (K) segments, while
attention mechanisms are inherently sensitive to
token-level position alignment. This discrepancy
leads to pooled results pool(Q) - pool(K) that
cannot accurately estimate the average of actual at-
tention scores for the block. For example, consider
two 1-dimensional ), K for 3 tokens: Q=[0, 0,
1], K=[0, 1, 0]. Due to ignoring position align-
ment, the pool(Q) - pool(K) appears slightly
signiﬁcant(%). However, all attention scores within



Code.Debug En.Dia

LO, H3

NN

L18, H4 L22, H4
Y

LO, H5 LO, H3

NN

L18, H4 L22, H4

LO, H5

L22, H2

(a) Visualization of attention patterns for different heads across
various tasks. Each group of three columns corresponds to the
heads within a specific task.
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(b) Similarity matrices show the pattern similarity between each
head and other heads across different tasks.

Figure 2: Attention patterns of different heads and their
similarity matrices across various tasks.

the block are actually zero, leading to an overesti-
mation of the block’s importance.

Smoothing of High-/Low- Values: The pooling
operation smooths out high and low values within
Q and K, which often contribute to high and low
attention scores, resulting in inaccurate importance
estimation. For instance, Q=[0, 0, 1], K=[0, -1,
1]. During pooling, the the high-value and low-
value elements in @ and K are diluted, resulting
in pool(Q) - pool(K) = 0, which is less than the
actual average of attention scores pool(Q-K) = é,
leading to an underestimation of the importance of
the block.

4 Observation: Dynamic Attention Heads
Exhibit Similar Patterns and Static
Similarity Relationships

We present the foundational observations motivat-
ing our method: different heads exhibit high simi-
larity, and the similarity remains highly consistent
across varying inputs and tasks. Specifically, these
observations distill into two key properties:

(1) Inter-head Pattern Similarity: We observe
many similar sparse patterns across attention heads,
both within and between layers, as shown in Fig-
ure 2(a). These patterns are derived from the Llama-
3-8B-Instruct-262k model using samples from dif-

ferent tasks in InfiniteBench (Zhang et al., 2024),
with each group of three columns corresponding
to heads from a specific task. For example, heads
such as (L18, H4), (L22, H2), and (L25, H7) in
the En.Dia task exhibit highly consistent staircase-
like patterns, where L is the layer index and H is
the head index. Additionally, Figure 2(b) shows
the statistical similarity matrix based on Jaccard
similarity scores (# intersection / # union) between
one head and all others. This measure avoids artifi-
cially high similarity values that could arise from
the presence of many zeros in these sparse patterns.
Notably, a large number of similarity scores exceed
0.5, indicating that each head has many similar
counterparts among the others.

(2) Cross-input Similarity Consistency: More
importantly, the similarity among attention heads
remains consistent regardless of the specific input
or task, even though the pattern of a given atten-
tion head varies across different inputs and tasks.
Figure 2(a) shows that (L18, H4), (L22, H2), and
(L25, H7) are highly similar in Code.Debug, con-
sistent with their previously observed similarity in
En.Dia (Property 1), though their patterns differ
between the two tasks. This highlights the consis-
tent similarity among attention heads across inputs
and tasks, suggesting that sparse patterns can po-
tentially transfer to similar heads, regardless of
context.

5 Proposed Approach

5.1 Problem Formulation

Generally, our goal is to replace dense attention
with sparse attention in attention layers to reduce
computational costs during the pre-filling phase,
while minimizing the output loss of each attention
layer, thereby accelerating the pre-filling process
while preserving accuracy. This can be formulated
as a multi-objective optimization problem:

min |[A(Q,K,V,M) - A(Q, K, V)|,
M (1

min | M|
M
where,
AQ,K,V,M) =0 (iQKT —c(1- M)) Vv,
Vd
1
AQ,K,V)=0|— KT)V
Q ) U(\/ZQ

We define A(Q, K,V ,M) as our sparse at-
tention, where M is a binary mask indicating



the sparse pattern applied in the sparse attention
computation, where 1 means the block is com-
puted, and O means it is skipped. The output is
O =A(Q, K,V,M) and a sufficiently large con-
stant ¢ ensures that attention score is approximately
zero, whenever M;; = 0. Here, o denotes the
softmax function. The primary optimization ob-
jective is to identify a pattern M that minimizes
the variance between the attention matrices of full
attention A(Q, K, V') and our proposed sparse at-
tention A(Q, K,V , M) , while also reducing the
computational time required for sparse attention
computation and sparse pattern generation.

5.2 Accelerating Prefilling via SharePrefill

Our main idea is to compute the full attention for
a subset of heads, identify the actual sparse pat-
terns, and share these patterns with other heads
that are known to exhibit similar behavior. This ap-
proach enables the remaining heads to approximate
the actual patterns without computing each one
separately, thus maintaining the model’s original
accuracy while accelerating inference.

As depicted in the overview of SharePrefill in
Figure 3, our approach involves two key compo-
nents: (1) Offline clustering to group heads based
on the similarity of their attention score maps. (2)
Online inference, where pivotal attention is con-
structed dynamically and shared with other heads
during the inference process. The overall algorithm
of SharePrefill is detailed in Algorithm 1.

Offline Clustering of Similar Heads We cluster
attention heads across layers into distinct groups
based on the similarity of their attention score maps,
performed in offline mode. The pre-computed clus-
ters serve as the foundation for constructing and
sharing sparse attention patterns within each cluster
during inference.

Given the consistent similarity between heads,
we perform clustering on their attention score
maps using a sample from the RetrKV task in
InfiniteBench. We first obtain compressed low-
dimensional representations of the attention scores
by training an autoencoder network on these at-
tention score maps (the network architecture is il-
lustrated in Appendix C). Next, we normalize the
representations and apply hierarchical clustering
with a distance threshold to group similar heads
into clusters, while isolating dissimilar heads as
noise clusters. Notably, we only store the layer and
head indices within clusters, rather than the sparse

patterns themselves. The actual sparse patterns
are dynamically generated during online inference,
ensuring adaptability to varying inputs.

Dynamic Pattern Construction and Sharing dur-
ing Inference During inference, we construct at-
tention patterns dynamically and share adaptive yet
accurate patterns among similar heads to facilitate
sparse attention computation. This is achieved by
computing the attention output for each layer while
maintaining an evolving global pattern dictionary,
which serves as the basis for sharing patterns across
similar heads.

In general, the online inference process—based
on dynamic pattern construction and shar-
ing—comprises three key steps, corresponding to
the three sub-algorithms outlined in Algorithm 1.
The algorithm takes the query matrix @, key matrix
K, value matrix V/, similarity threshold 7, sparsity
threshold ¢ and cumulative attention threshold y
as input. For simplicity, the illustration focuses
on a single head rather than a layer. However, in
practice, we perform sparse attention computation
layer-by-layer.

Pivotal Pattern Sharing (See Algorithm 4):
Before performing sparse attention computation,
we first query the global pivotal pattern dictionary
to check if a pivotal pattern is available for reuse. If
a pivotal pattern exists, it is shared with the corre-
sponding head; otherwise, the head computes full
attention using a dense pattern (i.e., a pattern with
all ones).

Sparse Attention Computation (See Algorithm
1): We then perform sparse attention computation
to obtain the output for the current layer while si-
multaneously computing the block-wise average
of QK values, denoted as /i, which captures the
average QK scores within each block (line 8 in
overall Algorithm 1). The sparse attention ker-
nel is implemented in Triton (Tillet et al., 2019),
following the block-wise strategy from FlashAtten-
tion 2 (Dao, 2024) and incorporating a block-wise
sparse pattern to determine computation regions.
Only blocks labeled as 1 in the sparse pattern are
computed, while those labeled as 0 are skipped.
During the computation for the final output, for
each block where the pattern value is one, we com-
pute the average QK value; for blocks where the
pattern value is 0, we assign the average QK value
as —oo.

Pivotal Pattern Construction (See Algo-
rithm 2): Subsequently, we use the obtained block-
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Figure 3: Overview of proposed SharePrefill. Attention heads are clustered offline based on the similarity of their
attention score maps to create a static head dictionary. During inference, each head retrieves its cluster index C;.
Pivotal Patterns are shared if available; otherwise, a dense pattern is assigned. The sparse attention output O is
computed using M, and A updates the dynamic pivotal pattern dictionary.

wise average QK values to compute the block-wise
average attention scores after applying softmax.
These scores are then used to construct new pivotal
patterns by applying a cumulative score threshold
v, which selects the minimal number of blocks
required to cover the target cumulative attention
score, as detailed in Algorithm 2. The resulting
patterns are then updated into the pivotal pattern
dictionary.

To ensure safe dynamic pattern sharing, we ver-
ify similarity before sharing patterns to prevent
incorrect sharing that could adversely impact accu-
racy. Specifically, we compute the Jensen-Shannon
(JS) distance between the block-wise average at-
tention score of the last row block of the current
head @ and the corresponding pivotal block-wise
average attention score of the last row a, which is
also stored in the pivotal pattern dictionary (line
6 in Algorithm 3). This distance serves as a mea-
sure to predict the similarity between the current
head and its corresponding pivotal head. If the JS
distance is below a given similarity threshold 7,
we share the pivotal pattern with the current head.
Otherwise, we fall back to a conservative vertical-
slash pattern (lines 7-11 in Algorithm 3) using a
cumulative threshold-based vertical-slash pattern
search algorithm (outlined in Algorithm 5), as pro-
posed in FlexPrefill (Lai et al., 2025). Additionally,
noisy clusters, which include dissimilar patterns,
also revert to the vertical-slash pattern.

To enhance efficiency, we exclude highly sparse

heads from the pivotal pattern construction and
sharing process, as we consider that computing
full attention for these heads to derive pivotal pat-
terns is not cost-effective in terms of acceleration.
For highly sparse heads, we instead fall back to
searching for a vertical-slash pattern for each head
(see line 10 in Algorithm 3), as the pattern often
serves as a suitable approximation for highly sparse
heads (Jiang et al., 2024). To identify these highly
sparse heads, we compute the Jensen-Shannon (JS)
distance between the block-wise average attention
score of the last row block of the current head a
and a uniform distribution u (see line 6 in Algo-
rithm 3). We then compare this distance to a pre-
defined sparsity threshold 6. If the JS distance is
not less than the threshold, we classify the head as
a highly sparse head.

6 Experiments

6.1

This section outlines the models, datasets, base-
lines, and implementation details of our method
in comparison with baseline methods. Additional
information is provided in Appendix A.

Settings

Models, Datasets, and Baselines We employ
two cutting-edge, renowned long-context LLMs:
(i) Llama-3-8B-Instruct-262k (Pekelis et al., 2024),
(i1) Qwen2.5-7B-Instruct (Team, 2024). The mod-
els are evaluated on InfiniteBench (Zhang et al.,
2024), a state-of-the-art public benchmark de-



SharePrefill

Algorithm 1 Sparse Attention

Algorithm 2 Construct Pivotal Pattern

1: Input: Q, K,V e RN*d; 5 7, y; 1, h

# Decide the pattern type based on Q, K, sparsity
threshold 6 and similarity threshold T
2: pattern < Determine Sparse Pattern (Q, K, 6, 7)

# Decide the sparse pattern M based on pattern,
Q, K and pattern threshold y
if pattern == shared_pivot then

M « Share Pivotal Pattern(/, h)
else if pattern == vertical_slash then

M « Search Vertical Slash Pattern(Q, K, y)
end if

# Compute the output O and block-averaged QK
values A by applying sparse pattern M
8: 0, A—AQ,K,V,M)

# Construct and update global dynamic pivotal pat-

AR O

terns via the newest block-averaged QK values A
and pattern threshold y

9: Construct Pivotal Pattern(A, v, 1, h)
return O

Algorithm 3 Determine Sparse Pattern

1: Input: Q, K; 6,7
# Take a representative query subset

2: select @ = Q[—block_size:]
# Compute estimated block-averaged average atten-
tion a and pivotal block-averaged attention a

3: a« softmax(pool(QKT) /\/E)
# Retrieve cluster index c in head_dict,

4: ¢ « lookup(/, h; head_dict )

# Fetch the pivotal representative a
5: a « lookup(c; pivotal_pattern_dict)

# Compute sparsity and similarity divergence
6: dsparse — \JSD(a||u), dsim < VJSD(alla)

# Determine whether to use pattern sharing strategy
if dsparse <0 and dgj;, < T then
pattern « shared_pivot
else
pattern « vertical_slash
end if
return pattern

T oY

—_—

Input: A;y;1, h
if A is fully attention computed then
# Compute block-averaged attention score A by apply-
ing softmax on block-averaged QK values
A = softmax(A)
# Take the last row Q}"/i as pivotal representative
a «— A[—I:J
# Flatten and normalize attention score map
A « flatten(A/Y; ; A[L, j])
# Sort attention scores
I, « argsort(A)
# Obtain the minimum computational budget making
the sum of the scores exceeds y
K —min{k: Yer, 11 ALl 2 7 }
# Select index set
S «— I,[1:K]
# Convert index set S to mask pattern M
M « index_to_mask(S)
# Lookup cluster index c in head_dict
¢ « lookup(/, h; head_dict)
# Update M and a into pivotal_pattern_dict
pivotal_pattern_dict.update( {c: (@, M)})
end if

Algorithm 4 Share Pivotal Pattern

Input: [, 1

# Retrieve cluster index ¢ in head_dict
¢ « lookup(l, h; head_dict )

# Fetch the pivotal sparse pattern from the dynamic
pivotal_pattern_dict M

M — lookup(c; pivotal_pattern_dict )

if M not exist then

# Assign a dense pattern to the first head within the
cluster c for subsequent full attention computation
M — ones

else

# Share existing pivotal pattern M
end if
return M

Models \ Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV\ Avg
FlashAtm 2588 863 67.69 500 1266 2081 26.57 100.00 10000 1440 |38.16

FlexPrefill 1991 12.60 5721 550 1163  22.84 20.86 100.00 10000 13.80 |36.44

Minference 2551 850 6594 800 1214  22.08 32.86 100.00 10000 1640 |39.14
Llama-3-8B-Instruct-262k 8.00 39.14
ama nstruc Ours 2024 800 6332 1184 1194  24.11 30.00 100.00 100.00  21.00 [39.05
Ours (6= 1.01) 1935 1174 64.63 550 1196 2817 29.14 100.00 100.00  23.00 |39.35

FlashAtm 1553 3.18 3581 1050 395 1447 38.57 100.00 93.56 000 |31.56

FlexPrefill 1420 3.09 3188 800 354 1599 9.43 97.20 75.42 000 [25.88

Qwen2.5-7B-Instruct | Minference  14.83 2.86 3493 9.00 3.81 1497 38.29 96.78 76.78 0.00 [29.23
Ours 1531 2.88 3843 850 399 1726 57 99.49 87.46 0.00 [31.79

Table 1: Performance comparison of different methods on various models and tasks on InfiniteBench. The best and
second-best results are highlighted in bold and underlined, respectively.



Methods

|En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV| Avg |128K Latency (s)

Our w/o Sharing (7=0) 19.68
Our w/o Exclusion (6=1.01)| 19.35
Ours 20.24  8.00

11.86 6376 9.00 11.65

23.86
11.74 64.63 550 11.96 28.17
6332 11.84 11.94 24.11

25.14 22.00 100.00 22.00 |38.70 17.01
29.14 100.00 100.00 23.00 |39.35 20.02
30.00 100.00 100.00 21.00 |39.05 16.92

Table 2: Performance of ablation methods evaluated using LLaMA-3-8B-Instruct-262K on InfiniteBench.
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Figure 4: Perplexity results on PG-19 (Rae et al., 2020)
using different models and methods.

signed to assess comprehensive long-context under-
standing. This benchmark comprises synthetic and
realistic tasks across various domains, in both En-
glish and Chinese, with an average token count of
214K, allowing us to assess SharePrefill’s effective-
ness across a wide range of long-context scenarios.
Additionally, we include the long-context language
modeling task on the PG19 dataset (Rae et al.,
2020) to evaluate the models’ language modeling
capability. For efficiency evaluation, we conduct
latency benchmarks using the length-adjustable
prompts provided in MInference (Jiang et al., 2024).
We compare our method with two state-of-the-art
sparse attention methods (Jiang et al., 2024; Lai
et al., 2025) and the efficient full attention FlashAt-
tention 2 (Dao, 2024) to underscore its effective-
ness and efficiency in long-context tasks.

Implementation Details All our experiments
were conducted on a single NVIDIA A100 GPU
with 80GB of memory. For baseline implementa-
tions, we use the official FlashAttention 2 pack-
age 6, and adopt the official MInference reposi-
tory 5 for both MInference and FlexPrefill, which
includes the FlexPrefill implementation. For MIn-
ference, we employ the default vertical-slash pat-
tern configuration available in its code repository.
For FlexPrefill, we use the default parameters with
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Figure 5: Latency comparison of different approaches
across various context lengths using different models.

the sparse pattern threshold v = 0.1 and the cu-
mulative pattern threshold ¥ = 0.9 consistently
for all models. For a fair comparison, we also set
the cumulative pattern threshold y = 0.9 in our
method; The similarity threshold 7 is set to 0.2 and
the sparsity threshold ¢ to 0.3, unless otherwise
specified. Additionally, all the baseline methods
employ sparse computation during prefilling and
transition to dense computation during the decod-
ing phase.

6.2 Main Results

We compare our method with baselines and present
the main results on the aforementioned benchmarks
and models. The results demonstrate that our ap-
proach achieves superior or comparable speedup
while delivering the overall best accuracy.

InfiniteBench Table 1 shows that our method
preserves most of the model’s performance, achiev-
ing overall best accuracy maintenance. While our
method with default parameters shows slightly
lower accuracy compared to Mlnference, it
achieves significantly lower latency, as shown
in Figure 5 and Figure 1. However, our method
outperforms MInference in both accuracy and ef-
ficiency by sharing all similar attention heads, in-
cluding highly sparse ones.



1024

Head Number
5
=

=
o
S
@

1000

.

S @ 1 R “.\‘& @é &

N Q-“ <™ A < & <& q;&. é" Q‘)‘,
(59 §§ 55' &

Vertical-Slash Dense Shared
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Language Modeling We evaluate our method
against baselines on the language modeling task
based on the PG-19 dataset (Rae et al., 2020). As
shown in Figure 4, the perplexity of our method
closely approaches the performance of MInference
and FlashAttention 2, with the gap between them
being within about 1.0. Moreover, the perplexity
score of our method is significantly lower than that
of FlexPrefill, with reductions of approximately
1.0~4.0 in Qwen2.5-7B-Instruct and over 1.0 in
Llama-3-8B-Instruct-262k. These results demon-
strate the strong language modeling capabilities of
our approach.

Performance vs. Latency Figure 5 shows
the latency across different context windows un-
der Llama-3-8B-Instruct-262k and Qwen2.5-7B-
Instruct on a single A100. The results demon-
strate that our method achieves better or compara-
ble speedup compared to the baselines. Moreover,
Figure 1 compares our method with baselines under
different models in terms of model performance on
InfiniteBench and average latency under 128K on
the latency benchmark. The results indicate that
our method achieves a favorable tradeoff between
accuracy preservation and inference speedup.

7 Ablation Study

Analysis of Different Components To evalu-
ate the contributions of different components in
SharePrefill, we introduce two variants for the ab-
lation study: (1) Ours w/o sharing, which uses
only the vertical-slash pattern without pivotal pat-
tern sharing mechanism, corresponding to a sim-
ilarity threshold 7 = 0; (2) Ours w/o exclusion,
where removing highly sparse heads strategy and
all similar heads participate in the pattern sharing
mechanism, corresponding to a sparsity threshold

0 = 1.01 (selected to account for boundary condi-
tions, ensuring that patterns with ¢ =1 meet the
sharing-consideration criterion in line 7 of Algo-
rithm 3). Table 2 presents the ablation results on
Llama-3-8B-Instruct-262k. It first demonstrates
that removing the pattern sharing mechanism leads
to performance degradation, confirming the neces-
sity of our pattern sharing strategy in preserving
accuracy. Additionally, removing the strategy of
excluding highly sparse heads—where all similar
heads, including highly sparse ones, are allowed
to share patterns—results in reduced speedup but
improved performance. This demonstrates that the
strategy of excluding highly sparse heads enhances
efficiency while potentially degrading the model’s
accuracy maintenance potential. The observed ac-
curacy improvement when removing the exclusion
strategy can be attributed to more similar heads
participating in pattern sharing, rather than being
forced into predefined vertical-slash patterns. This
further validates the effectiveness of our pattern
sharing mechanism in maintaining accuracy.

Pattern Distribution Figure 6 shows the distri-
bution of dense, shared, and conservative vertical-
slash patterns used in Llama-3-8B-Instruct-262k.
The majority of attention heads adopt the vertical-
slash pattern, while only a small number require
the full-attention dense pattern—typically just 1 to
4 heads in total. Although the number of shared
patterns is limited, they play a significant role in
maintaining model accuracy as shown in Table 2.

8 Conclusion and Future Work

In this paper, we observe that attention heads ex-
hibit similarity, and this similarity remains consis-
tent across different inputs. Built on these observa-
tions, we propose a novel sparse attention method
that highly preserves accuracy while accelerating
the prefilling phase. Our method achieves this by
dynamically generating accurate patterns and shar-
ing them with other similar heads, thereby cap-
turing more realistic attention dynamics. We con-
duct extensive experiments across several models
and tasks, demonstrating that our proposed method
achieves superior or comparable speedups to state-
of-the-art approaches while delivering the highest
accuracy maintenance. The principle of similarity
between heads and the proposed pattern-sharing
mechanism holds the potential for accelerating the
decoding phase and extending to multi-modular
systems, which will be explored in future work.



Limitations

Although we provide observational and statistical
evidence on the similarity properties between at-
tention heads, the underlying explanation for the
highly consistent similarity relationships among
heads across different inputs remains unclear. This
open question requires further investigation. Ad-
ditionally, while our approach demonstrates effec-
tiveness in LLM prefilling on single devices, its
scalability to larger-scale scenarios requires further
study. Future work will focus on evaluating and
further enhancing the scalability of the proposed
approach. This includes exploring efficient pattern-
sharing mechanisms in scaled scenarios, such as
allowing each device to maintain a local partial
pivotal pattern dictionary or enabling a global dic-
tionary to be shared across devices through inter-
device communication.
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A More Details on Experimental Settings

A.1 Models

We employ two state-of-the-art long-context
language  models: Llama-3-8B-Instruct-
262k !(released under the Meta Llama License)
and Qwen2.5-7B-Instruct > (released under
the Apache 2.0 License). These models were
selected due to their strong capabilities in handling
long-context understanding tasks, with Llama-
3-8B-Instruct-262k supporting contexts of up to
262K tokens and Qwen2.5-7B-Instruct supporting
contexts of up to 128K tokens. Both models
support multiple languages, primarily English,
with Qwen2.5-7B-Instruct also demonstrating
excellent performance in Chinese. Additionally,
Qwen2.5-7B-Instruct supports up to 128K tokens
and demonstrates excellent multilingual perfor-
mance, with particular strength in Chinese. For
further details, refer to the model repositories, as
listed in 1 and 2

A.2 Datasets & Benchmarks

« InfiniteBench InfiniteBench * (Zhang et al.,
2024) is publicly released under the Apache-
2.0 License. It is a state-of-the-art benchmark
designed to evaluate long-context language
models with context lengths exceeding 100K
tokens. The benchmark consists of 12 unique
tasks, each carefully crafted to assess different

1https://huggingface.co/gradientai/
Llama-3-8B-Instruct-Gradient-262k

2https://huggingface.co/Qwen/QwenZ.
5-7B-Instruct

3https://huggingface.co/datasets/
xinrongzhang2022/InfiniteBench
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aspects of language processing and compre-
hension in extended contexts. These tasks en-
compass a mix of real-world scenarios and
synthetic constructs, including novels, dia-
logues, code, and math, ensuring a compre-
hensive evaluation of model capabilities. In
our experiments, we compare our method’s
long-context performance against baselines
across 10 tasks, using all available samples.
Consistent with MInference and FlexPrefill,
we excluded Code.Run and Math.Calc be-
cause they are highly challenging, with full-
attention models often scoring near 0.

* PG-19 Language Modeling Benchmark
(Rae et al., 2020) proposed a long-context lan-
guage modeling benchmark * that evaluates
perplexity on the PG-19 dataset and whose
repository is released under the Apache 2.0 li-
cense. Perplexity quantifies how well a model
predicts the next token in a sequence and is
commonly used to assess the language mod-
eling performance of long-context LLMs on
extended texts. PG-19 contains books with
lengths of up to 500K tokens, making it well-
suited for long-context evaluation. To assess
language modeling performance across differ-
ent context lengths, we conduct experiments
using 100 randomly selected samples from
the PG-19 dataset, truncating them to various
lengths ranging from 1K to 104K tokens. We
then report the average perplexity based on
these truncated samples. Due to high mem-
ory usage during perplexity computation, we
evaluate contexts with lengths of up to 104K
tokens.

Latency Benchmark We follow the latency
benchmarks provided in MInference > (Jiang
et al., 2024), which is released under the
MIT License. The prompts, sourced from
the Chain-of-Thought Hub (Fu et al., 2023)
(also released under the MIT License), were
trimmed to varying token lengths to measure
the prefilling stage latency. To ensure reliable
measurements, we conduct ten repeated ex-
periments after a warm-up phase and report
the average latency.

4https: //github.com/google-deepmind/pg19

Shttps: //github.com/microsoft/MInference.git
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A.3 Baselines

1. FlashAttention 2 ¢ (Dao, 2024): Flash At-
tention 2 is an I/O-aware exact attention al-
gorithm designed to improve the efficiency
of dense attention computation. It leverages
tiling techniques to minimize the number of
memory read and write operations between
GPU high-bandwidth memory (HBM) and
on-chip SRAM, thereby significantly reduc-
ing memory overhead and improving com-
putational throughput. As an optimized im-
plementation of dense attention, Flash Atten-
tion 2 enables faster and more scalable trans-
former inference and training, especially in
long-sequence scenarios.

2. Mlnference (Jiang et al., 2024): MInference
is a state-of-the-art sparse attention mech-
anism that exploits the static patterns ob-
served in the attention mechanisms of LLMs,
aiming to accelerate the prefilling phase for
long-context inputs. It first determines of-
fline which sparse pattern each attention head
belongs to. During inference, it approxi-
mates the sparse indices online and dynam-
ically computes attention using optimized cus-
tom kernels. This design enables significant
speedup while maintaining strong accuracy.

3. FlexPrefill (Lai et al., 2025): FlexPrefill is
another state-of-the-art sparse attention mech-
anism that enhances flexibility by incorporat-
ing cumulative-attention-based index selec-
tion and query-aware sparse patterns, enabling
more adaptive sparse attention during the pre-
filling phase of LLM inference.

A.4 Implementation Details

For offline clustering, we train an autoencoder on
the attention score map with a latent dimension
of 64. The model is trained for 1000 epochs with
early stopping and a learning rate of 1e-3. We then
apply the hierarchy clustering method fcluster from
scipy 7 package on the normalized compressed rep-
resentation using a distance threshold of 10, assign-
ing clusters with fewer than 5 samples to a noise
cluster.

B Detailed Algorithms

6h'ctps ://pypi.org/project/flash-attn
7h’ctps://scipy.org
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Algorithm S Search Vertical Slash Pattern

Input: Q, K; vy

# Compute a subset of the full attention map

A — softmax(QK7T /Vd), where Q@ c Q

# Sum and normalize attention scores along the vertical
and slash directions

ay « sum_vertical(A)/ Zi,j A[I,J'])
ags — sum_slash(A)/ i A[I,j])

# Sort vertical and slash attention scores
I, «— argsort(ay)
I — argsort(ag)

# Obtain the minimum computational budget making the
sum of the scores exceeds y

Ky —min{k: Y;er,[1:] @v [7]
Ks < min {k: ¥;cr [1:k] s [7]
# Select vertical and slash index
Sy « Li[1:Ky], Ss « Is[1: Ks]
S« S,USs

M « index_to_mask S

return M

Y}
v}

Vv

C Autoencoder Architecture

Autoencoder architecture is shown in Table 3.


https://pypi.org/project/flash-attn
 https://scipy.org

Encoder

Layer Type Parameters
Conv2d Conv2D out: 16, kernel: 3 X 3, padding: 1
RelLU Activation
MaxPool2d Pooling kernel: 4 x 4, stride: 4
Conv2d Conv2D in: 16, out: 32, kernel: 3 x 3, padding: 1
ReLU Activation
MaxPool2d Pooling kernel: 4 x 4, stride: 4
Flatten Transformation start_dim=1, end_dim=-1
Linear Fully Connected in: 468512, out: 64
Decoder
Layer Type Parameters
Linear Fully Connected in: 64, out: 468512
ReLLU Activation
Unflatten Transformation shape=(32, 121, 121)

ConvTranspose2d Transposed Convolution in: 32, out: 16, kernel: 4 X 4, stride: 2, padding: 1
ReLU Activation

ConvTranspose2d Transposed Convolution in: 16, out: 8, kernel: 4 X 4, stride: 2, padding: 1
ReLU Activation

ConvTranspose2d Transposed Convolution in: 8, out: 1, kernel: 4 X 4, stride: 4

Sigmoid Activation

Table 3: Network Architecture of the Autoencoder
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