Object-Centric Learning of Neural Policies for Zero-shot Transfer over Domains
with Varying Quantities of Interest

Vishal Sharma, Aniket Gupta, Prayushi Faldu, Rushil Gupta, Mausam, and Parag Singla

Indian Institue of Technology Delhi, India
vishal.sharma@cse.iitd.ac.in, cs1190327 @iitd.ac.in, csy217548 @cse.iitd.ac.in, rushilgupta358 @ gmail.com,
mausam @cse.iitd.ac.in, parags @cse.iitd.ac.in

Abstract

Our goal is to learn policies that generalize across variation in
quantities of interest in the domain (e.g., number of objects,
motion dynamics, distance to the goal) in a zero shot man-
ner. Recent work on object-centric approaches for image and
video processing has shown significant promise in building
models that generalize well to unseen settings. In this work,
we present Object Centric Reinforcement Learning Agent
(ORLA), the first object-centric approach for model-free RL
in perceptual domains. ORLA works in three phases: first,
it learns to extract a variable number of objects masks, via
an expert trained using encoder-decoder architecture, which
in turn generates data for fine-tuning a YOLO based model
for extracting bounding boxes in unseen settings. Second,
bounding boxes are used to construct a symbolic state con-
sisting of object positions across a sequence of frames. Fi-
nally, a Graph Attention Network (GAT) based architecture
is employed over extracted object positions to learn a dense
state embedding, which is then decoded to get the final policy
that generalizes to unseen environments. Our experimenta-
tion over a number of domains shows that ORLA can learn
significantly better policies that transfer across variations in
different quantities of interest compared to existing baselines,
which often fail to do any meaningful transfer.

Introduction

Deep reinforcement learning (RL) has achieved significant
success in learning policies for unstructured environments,
e.g., where a state is input as an image. Indeed, Deep RL has
often surpassed humans on a number of such problems, such
as Atari games (Silver et al. 2016). On the other hand, the
task of learning policies that can generalize to unseen envi-
ronments can be particularly challenging (Kirk et al. 2021).
In this paper, we take a step towards strengthening Deep
RL’s zero-shot transfer capability, by studying the setting of
transfer over quantities of interest.

Even if a (high-level) domain has an unstructured state,
its each environment may be characterized by various (la-
tent) quantities of interest (Qols), such as number of objects
of each type (e.g., number of legs of a centipede, number of
balls/bricks in the game, number of enemies to kill), the nu-
merical attributes of each object (e.g., position or velocity of

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Zero-Shot

- -

. . -

Train Instances

Test Instances

Figure 1: Given the interactions in environments with three
or fewer balls, where the goal is to keep the balls from
falling, our objective is to learn a policy which would do
well on an environment with four or more balls.

each object, maximum force of every muscle), or other de-
rived features that make the instance easy or hard (e.g., dis-
tance of the robot to the goal). Our goal is to study transfer
across these Qols. In particular, given a small set of learn-
ing environments governed by a set of Qols, how do we ef-
fectively generalize to environments with unseen (generally
higher) values of these Qols? Figure 1 shows an example
domain, where transfer is over the number of balls in game
playing.

A natural question arises: what might be an effective
model for this problem? Our premise is that existing RL
models which work directly on the perceptual input, obliv-
ious of the object representations may not generalize - a
thesis confirmed by our experiments. We take recourse to
recently developed object-centric models for images, and
videos (Burgess et al. 2019; Kossen et al. 2020; Locatello
et al. 2020), which have shown a lot of promise in achieving
better interpretability, robustness to noise, and ability to gen-
eralize to unseen settings. Motivated by these works, we use
the object-centric representations for the task of model-free
RL and propose the first object-centric approach for learn-
ing neural policies, which can transfer well across Qols in
the underlying environment in a zero-shot manner.

Our model, referred to as Object-centric Reinforcement
Learning Agent (ORLA), works in three phases. (1) We ex-
tract object masks that encode object positions in a sequence
of frames. This is done using a novel pipeline where we
first train an expert using an auto-encoder-based architecture
where the object masks are regularized by a Gaussian distri-
bution. The data from the expert is used to do supervised
fine-tuning of a YOLO (Jocher et al. 2022) based model
for learning object bounding boxes. This model has the ca-
pability to generalize to a variable number of objects. (2)

The bounding boxes output by YOLO are used to retrieve
object positions in each frame to build an object-centric
state representation for the underlying MDP. (3) This state
representation is passed through a Graph Attention Net-
work (Velickovi¢ et al. 2018) (GAT) to learn a dense state
embedding, which captures object interactions. Each object
node in GAT maintains numerical attributes of that object
(e.g., position, velocity) as explicit features, enabling bet-
ter transfer over Qols that depend on such attributes. The
dense embedding is then passed through an action decoder
network to output the policy in the current state. This pol-
icy naturally generalizes to unseen environments, due to the
inductive nature of GATs.

We design two different categories of domains to test
ORLA compared to CNN-based agents and other relevant
baselines. In the first category of domains, we study game-
playing with balls and pedal, where we transfer across the
number of balls, and motion dynamics in two different set-
tings: (i) vertical ball movement, and (ii) diagonal ball move-
ment. In the latter case, we also test with balls having dif-
ferent behavioral characteristics. In the second category of
domains, we study navigation in environments with (i) un-
seen distance from the goal, and (ii) variable number of
sub-goals in an adaptation of the traveling salesman prob-
lem. Our results indicate the superior performance of our
approach compared to baselines, which often fail to do any
meaningful transfer.

In summary, we make the following contributions. (1) We
study the transfer in RL task, (a) on domains that are ob-
served as unstructured images, even if they have underlying
objects and other structures, and (b) for transfer to domains
that vary quantities of interest, such as the number of ob-
jects or other numerical attributes of the objects/domain. (2)
We present an object-centric RL formulation where the im-
age is converted into a symbolic object representation, and
RL agent is trained on top of the symbolic representation.
(3) We construct new domains and experimental settings to
study this task. (4) Through a series of experiments, we find
that our object-centric RL is able to effectively achieve the
required transfer to target domains, whereas other baselines
are not able to do any meaningful transfer.

Related Work

Object-centric Representations: MONet (Burgess et al.
2019) learns to decompose scenes into various objects us-
ing an unsupervised loss. COBRA (Watters et al. 2019) uses
MONet to learn a transition model of a continuous control
environment to be used in model predictive control. Though
similar to our work in spirit, their architecture does not sup-
port interactions among objects and does not do model-free
RL. STOVE (Kossen et al. 2020) uses variational autoen-
coders to explicitly predict the object positions for learning
the dynamics of the environment, rather than the policy. An-
other series of works (Kipf, van der Pol, and Welling 2020;
Locatello et al. 2020; Wu et al. 2022) learn object-centric
representations using slot attention for learning the dynam-
ics of the environment, but do not focus on learning the pol-

icy.

Transfer Learning in RL: Earlier works use domain ran-
domization for generalization in RL, focusing primarily on
how to sample a set of training instances from an underly-
ing distribution with the hope that the test instance will be
close to the training instances (Kirk et al. 2021). Another
line of work takes an object-centric approach; for example,
NerveNet (Wang et al. 2018) studies the size and disabil-
ity transfer tasks by formulating an agent as a graph and
learning a Graph neural network-based policy. Shared Mod-
ular Policy (Huang, Mordatch, and Pathak 2020) (SMP) tries
to learn a shared policy for multiple agent morphologies.
However, both NerveNet and SMP assume that objects, their
properties, and whether they affect each other or not are ex-
plicitly provided. That essentially means that nodes, node
features, and edges of the graph are provided by the environ-
ment. This significantly restricts their application in compar-
ison to ours, where we extract these from raw image frames
in a self-supervised manner. (Zambaldi et al. 2019) also do
experiments on the size-transfer task, by viewing the output
of a CNN as a set of entities and using attention to learn a
policy; however, they do not predict the positions of the ob-
jects explicitly, and the entities do not directly tie to a spe-
cific object in the scene. COBRA (Watters et al. 2019) also
studies transfer learning but takes a model-based approach
rather than a model-free one like ours. For a broad overview
of generalization in RL, we direct readers to the survey (Kirk
et al. 2021).

Generalized Neural Policies in Planning: Learning gen-
eralized policies that can solve any instance of a domain is
a well-studied problem in planning (Srivastava, Immerman,
and Zilberstein 2008; Hu and De Giacomo 2011; Belle and
Levesque 2016). A series of recent works (Garg, Bajpai, and
Mausam 2019, 2020; Sharma et al. 2022; Stahlberg, Bonet,
and Geffner 2022) focuses on learning generalized neu-
ral policies by converting an environment into an instance-
graph and then learning a policy to study the size-transfer
task in stochastic relational planning. However, unlike our
work, where we learn the graph’s structure from raw im-
ages, they rely entirely on the available transition model of
the environment to learn the instance-graph.

The ORLA Agent

We are interested in learning generalizable neural policies
that would work for zero-shot transfer over quantities of in-
terest (Qols) in a domain. In our setting, these Qols may
be latent, i.e., may not be directly accessible in the inter-
actions with the environment, e.g., motion dynamics. Say,
we are playing a game in an environment with perceptual
input, with goal as moving the pedal to prevent the ball(s)
from hitting the ground (Figure 1). We ask: if the agent is
allowed to interact with environments with & or fewer balls,
and learns a policy over them, would it generalize to play the
same game in an environment with greater than & balls? Or
equivalently, would the learned policy generalize when the
motion dynamics in the game are different from those seen
during training? We note that humans have a remarkable ca-
pability to achieve this kind of transfer, but it is not clear if
modern-day Al agents can achieve this effectively.

A naive approach to do this would be to train a standard

RL model, which takes a sequence of frames as input, and
then produces an action to be taken as output. These algo-
rithms have been shown to do very well, often beating hu-
man players, such as in the Game of Atari. But the problem,
in this case, is more challenging since the network has to
learn to transfer across variations in Qols. We first did a sim-
ple experiment to examine whether a Dueling DQN based
agent (Wang et al. 2016) generalizes in such a setting. In-
terestingly, it fails completely on this task (see Section). A
follow-up question would be: what would be a better way
of modeling such transfer tasks? What if we could directly
learn the policy over a symbolic state representation, such as
object positions and their interactions?

We borrow some definitions and notations from the area
of Relational Markov Decision Processes (Boutilier, Reiter,
and Price 2001; Sanner 2010) to define our problem state-
ment. We deal with structured domains, consisting of objects
of various types that can interact with each other. Each do-
main is characterized by some quantities of interest (Qols),
which are human interpretable. In this set-up, a domain can
be thought of as a parameterized environment, where a spe-
cific assignment to the parameters instantiates a (ground) en-
vironment in which an agent interacts. Then, given a set of
training environments of a domain, our objective is to learn a
policy that is applicable to any environment of that domain.

Motivated by the earlier discussion, we take a three-
pronged approach to attack this problem: (1) We first pro-
pose to extract object positions in a self-supervised manner
without any object-level annotations. (2) The extracted po-
sitions are used to construct a symbolic state representation.
(3) We learn a policy over the symbolic state in a manner that
could generalize to varying values of Qols. We next describe
each of these aspects of our model in detail.

Self-Supervised Object Extraction

The aim of our Object Extractor (OE) is to extract the posi-
tions of each object in a given frame. Object extraction is a
well-studied problem in computer vision, but most success-
ful models require supervised data (Jocher et al. 2022; He
et al. 2017), which is not directly available to us. Therefore,
we pose the following question: can we use a supervised ob-
ject extractor model pre-trained on an existing dataset and
fine-tune it on our training instances in a self-supervised
way? To this end, we propose a novel self-supervised train-
ing algorithm that generates a supervised dataset to fine-
tune a pre-trained model for object extraction. Our algorithm
first learns a set of expert object extractors (expert-OE),
Expert = {Experty, ..., Experty}, where each Expert;
learns to extract objects in the frames from the i*” environ-
ment in an unsupervised manner. We note that a single envi-
ronment corresponds to a specific combination of values for
Qols, and we learn a different expert for each environment.
Next, these experts are used to generate a single dataset of
{(frame, objects)}, corresponding to all the training envi-
ronments. Finally, a supervised object extractor, applicable
on any environment from the domain, is fine-tuned using this
dataset. We next describe the details.

Environment Specific Object Extraction The Expert
Object Extractor (expert-OE) of an instance is an auto-
encoder architecture that takes a frame in an environment as
input and locates objects in it. For this, it first disassembles
a given image (f;) into a set of constituting objects and then
uses a decoder to compose the objects to form the original
input image. There are three sub-modules: 1) An Attention
U-Net (Oktay et al. 2018) that takes the image as input and
returns a set of K object masks (where K is the maximum
number of objects in the instance), 2) A Gaussian module
that enforces each object mask to look like a 2D Gaussian
centered at the object’s center, and 3) A Decoder that recon-
structs the input image.

Encoder: Let there be an environment / with K objects
in it. Given a frame f;, the Attention U-Net gives K object
masks {m:}X representing the K objects in the instance
(See Figure 2). Next, we want each of these object masks
to look like a 2D Gaussian with the mean at the center of
one of the objects. For this, for each object mask m¢ of ob-
ject ¢, our Gaussian module generates a 2D Gaussian mask
with mean as (3, % Y mi(j. k). Yo b * 3, mi (i, k)
and standard deviation as Y'. This is similar to the Gaus-
sian Module used in I-CSWM (Gupta et al. 2021). Here, the
mean of each g! represents the position of the i*" object.
Next, to capture each object’s visual depiction (e.g. color,
texture, shape), a content image is generated as c; = f; ® gi,
where ® represents the Hadamard product.

Decoder: Our decoder outputs the regenerated input im-

age (ft) by taking all the object contents ci and combin-
ing them at their respective positions (mean of the cor-
responding g!) on a colored background?. For each train-
ing instance ¢ of a given domain, we play 25 episodes us-
ing a random policy and collect a very small dataset D,
of states seen (ref. Table 1 in Appendix for exact details).
We train each instance’s expert-OE independently using the

loss: 10SSegpert = mse(ft, ft) + ZlK:l mse(m?, g).

Generalized Object Extraction Next, for each training
Environment ¢, we create a supervised dataset by labeling
each image in D; using the corresponding expert-OE i.e.
DE = {(f, Expert;(f))| Vf € D;}. Finally, we fine-
tune a YOLO (Jocher et al. 2022), pretrained on ImageNet,
jointly over all environments using the dataset D = U; DE.
We picked YOLO as it satisfies our requirement of transfer,
i.e., it can extract a varying number of objects in the frame.
For an input image in an environment, YOLO provides a
set of bounding boxes around objects along with a confi-
dence value. We pick the bounding boxes with the top K
confidence scores, where K is the maximum possible num-
ber of objects in that environment. We define the position
pk = [p¥[x], p¥[y]] of an object oF as the center of its bound-
ing box.

We also need to assign a type to each object. For ex-
ample, the balls and the pedal should be assigned a differ-

'for our expts, we assume a diagonal ¥ with o, = o, = 2.5.

In our work, all our environments had fixed background color.
However, we can easily relax this assumption by using the standard
practice of subtracting the mean image of the dataset from f;.

my 9t l
® PY A Ct
> U-Net > »| Gaussian >®
Module Hadamard

’ Product

Decoder —> 108Sexpert :

: }
l : Ezxpert,
: Tl > Y

lossyoro

Type
Encoder

History
ek K
{(of 1t)}y

K
type(of 1)y

H =
fe

{(oh)}

Symbolic State Graph (G)
represents symbolic state s;

- y

: Experty

. . A

nefu]

[T]

C Maxpool

GAT | —> — — | mp | —>(st)
ge
1] 1]

Figure 2: (Top Left) The figure shows training details of our unsupervised expert Object extractor. (Top Right) Shows training
of YOLO based object extractor using multiple Experts. (Bottom) The Figure shows a forward pass from ORLA that takes an
image as input, converts it into a symbolic state graph, and then uses GAT based architecture to get the policy.

ent type. We assume that the total number of types across
all the environments in the domain is known apriori. Then,
each object is assigned a type using k-means clustering over
the extracted masks. Specifically, we assign type(o*) =k-
means(Y OLO(f;)[0*]). During training, the clustering is
done over the set of objects { Expert;(f) Vf € D}, and
assuming the number of clusters to be equal to the given
number of object types in the domain.® During inference,
we simply assign the type of object using the k-means.

Symbolic State Representation

Like conventional deep RL agents that stack the last few
frames to incorporate the history, we incorporate the history
in our symbolic state representation. However, since our OE
gives an unordered set of objects, so it is not straightfor-
ward to provide the history; We first have to match each
object o” at time ¢ to some object o at time ¢t — 1 (called
history-object). In our case, for an object 0¥, we pick the
object o' nearest to its position in the last time step, i.e.,
I = argmin(dist(pF,pF |)), dist denotes the Euclidean
k€L

distance, and L denotes all objects at time ¢ — 1 with type
same as o”. In our experiments, we found this simple method
to work satisfactorily and we leave the use of finer methods
for future work.

Next, rather than simply stacking object positions at
the last few time steps, we compute a velocity vector at
time t. It computes difference in positions and direction
of change for each object and is given as vf = [pflz] —

k l
phofa], pE[y) = ph [y], tan— (BB

the history-object of the object o”.

)} , where o is

31f no. of object types is not known, an off-the-shelf method
may be used to find the number of clusters, e.g. Elbow method

We organize the extracted objects in the form of a graph
called Symbolic State Graph (SSG) G(V, E) representing a
symbolic space. Its vertex set V' contains a node for each
object detected in the scene, and has a fully connected adja-
cency matrix, i.e., E = {(u,v)|Vu,v € V}. A node for an
object o* has input features given by [pf || vF || type(o¥)],
where || denotes the concatenation operator.

Learning a Generalized Policy

We will now discuss the details of our architecture to learn a
policy in the symbolic state. ORLA can be trained using any
standard deep RL algorithm. In our current implementation,
we have used a value-network based algorithm as described
below. We also share details of how to adapt our set-up to
other RL algorithms.

Value Network: Our value network is primarily based
on Graph Attention Network (Velickovi¢ et al. 2018). First,
we compute a set of node embeddings (ne) by applying a
GAT on G. For a vertex v € V, ne[v] = GAT(G)[v].
Next, a global embedding representing a global view of the
state is computed by feature-wise pooling over all node em-
beddings, i.e., ge = maxzpool,cy (nelv]). Finally, a feed-
forward network (MLP in Figure 2) takes ge as input and
predicts the value of the state V(s) = mipy(ge) and the
Advantage function of an action a € A as A(s,a) =
mlp(ge). The g-value of an action a € A is computed
as q(s,a) = V(s) + A(s,a) — ﬁ > wea Als,a’) where A
denotes the set of all actions.

Training Details: We adapt dueling DQN to training on
multiple instances and keep a separate experience replay
buffer for each training instance. Each training instance is
picked in a round-robin fashion to generate an episode, and
the (s¢, ag, r¢, S¢41) pairs of that episode are pushed into the
instance’s experience buffer. Note that s; are state represen-
tation of a frame f;. A batch is sampled from the instance’s

experience buffer to update the value network.

While training the value network above, we freeze the
weights of the YOLO. Expermenting with a jointly trained
model is a direction for future work. We note that ORLA
can be adapted to any other base algorithm by changing
the final MLP that processes the ge. For example, to use an
actor-critic method, the final MLP can be forked to provide
the policy and a baseline function. We tried PPO (Schul-
man et al. 2017), A2C (Mnih et al. 2016), and dueling
DQN (Wang et al. 2016) in our initial experiments and
found that, in general, across all baselines, Dueling DQN
performed best. We therefore use dueling DQN for ORLA
and all baselines in our experiments for a fair comparison.
Exploring other RL algorithms in detail is a direction for fu-
ture work.

Experiments and Results

We compare four models in our experiments.

(1) Random Policy (RND), which takes a random action
with uniform probability.

(2) Nature CNN (CNN) represents a model with unstruc-
tured representation space. We use a nature CNN (Mnih
et al. 2015) architecture with 3 CNN layers followed by
dense layers and train it jointly on the set of training en-
vironments of a given domain.

(3) Gold-GAT (G-GAT) fetches the gold positions of
each object in the frame from the environment and use these,
rather than from our generalized object extractor’s (YOLO)
output, to train the value-network of ORLA while keeping
everything else exactly the same as in ORLA. This helps us
highlight the effectiveness of our object extractor.

(4) ORLA, for which we use the standard pretrained
YOLO architecture (Jocher et al. 2022). We use a GAT with
2 layers. Our mlpy has one hidden layer with 128 units and
a single output unit. And, mip_4 has one hidden layer with
128 units and an output layer with units equal to the size of
action space.

For finer details on the architecture and training, refer to
section in the Appendix. We also tried the method proposed
in (Zambaldi et al. 2019). However, their code is publicly
not available, and we did not get any response from the au-
thors. We tried replicating their architecture on our own, but
it failed to train even on training environments for multiple
hyperparameter settings.

We now discuss two case studies. In each case study, we
have two domains that capture various complexities of the
underlying task to be performed. For all experiments, we
report the zero-shot transfer reward on the test environment
vs. the number of frames seen during training (Figure 3). We
also show goal reachability on one domain.

Case Study 1: Balls and Pedal

In this case study, we want to study our model’s zero-shot
transfer capabilities when the Qols capturing the size and
motion dynamics vary in the test environments in compari-
son to what is seen in the training environments. We create
two domains in this category that have two types of objects
(a set of balls and a pedal) that can interact with each other
and have natural dynamics.

Domain 1: Column-Balls (CB) In the Column-Balls
(CB) version of the domain, the balls always move in a fixed
column, and the pedal is controlled by the agent using three
actions: left, right, and noop. The agent’s task is to reach a
maximum score of +21 with a reward function given as +1
if the ball hits the pedal, -1 if it hits the ground, and O oth-
erwise. We create five environments having 1, 2, 3, 4, and 5
balls, respectively. We use environments 1-3 for training and
4-5 for testing. For the training environments, the column of
the balls is fixed, but the starting y-point and the direction of
movement (up or down) are sampled for each episode. How-
ever, during testing, we also sample the column for each ball
along with its starting y-point and the direction (up or down)
at the start of each episode.

Size Transfer: Figure 3(a) shows the results of the zero-
shot transfer reward vs. the number of frames seen for test
environments 4 and 5 when trained on environments 1-3.
We can see that ORLA is able to generalize to unseen test
environments with 4 and 5 balls with a very high reward.
As expected, the GAT trained on gold positions (G-GAT)
performs the best. ORLA performs only slightly worse than
G-GAT, highlighting the efficacy of our object extractor. In-
terestingly, the CNN policy fails to generalize, performing
only slightly better than the random policy (RND).

Looking at the rewards vs. #frames curves on the training
environments (Figure 5 in Appendix), we observe that the
CNN model achieves the best possible reward in all training
environments however it fails to generalize to environments
4-5, highlighting the lack of generalization capabilities of
the CNN model.

Dynamics and size Transfer (Ball Direction): Next, to
study the dynamics transfer task, we create a domain called
Diagonal-Balls (DB), where we allow the balls to move
freely in any direction rather than just columns. Here the
Qol is the direction of the ball movement. We sample the
start position and direction of each ball at the start of each
episode. We create two test environments of this domain
with 4 and 5 balls each.

Figure 3(e) shows the results of this experiment where
we compare ORLA, CNN, and RND policies. Interestingly,
ORLA is able to do a zero-shot transfer with a very high
margin in comparison to the CNN policy even when the un-
derlying dynamics (movement direction and hence velocity
direction) of the balls are changed.

Domain 2: Multitype Diagonal Ball (MDB) In the Mul-
titype Diagonal Ball (MDB) domain, the pedal has to avoid
certain balls while trying to hit some other balls, thus in-
creasing the task’s complexity as compared to CB. There is
a paddle and two types of balls: red and green. The balls
can move in any direction, which is sampled at the start of
each episode. The task is to get the maximum reward in a
fixed-length episode with a reward function given as +1 if
the paddle hits the green ball, -1 if the green ball hits the
floor, -1 if the red ball hits the paddle, +1 if the red ball hits
the ground, and O otherwise. We create a total of five en-
vironments; the first one has 1 green ball, the second has 1
green and 1 red ball, the third one has 2 green and 1 red ball,
the four one has 2 green and 2 red balls, and the fifth one has

CB : Test Env-4 CB : Test Env-5

MDB : Test Env-4

MDB : Test Env-5

20 20 80
60
o 10 ° 10 © ©
© o c 40 ©
g 0 g o 3 s
4 4 & 20 -4
-10 -10 0
4
—20 -20 =20 —60
0 1 2 3 4 0 1 2 3 0 1 2 3 4 0 1 2 3 4
#Frames le6 #Frames #Frames le6 #Frames le6
(a) Column Ball (CB) (b) Multitype Diagonal Ball (MDB)

Pizza : Test Env-3 Pizza : Test Env-4

Pizza : Test Env-5

Nav : Test Env-2

15
100 0 250
50
e e
g 0 g
& —50 &
-100
#Frames le6 #Frames le6 #Frames le6 #Frames le6
(c) Pizza (d) Navigation (Nav)
CB -> DB : Test Env-4 CB -> DB : Test Env-5
20
20
10 10 LEGEND
° kel —— ORLA
';“ 0 g 0 — G-GAT
Q [
*_10 < ~10 —— CNN
J ---- RND
-20 -20
0 1 2 3 4 0 3 4
#Frames le6 #Frames le6

(e) Figure shows the results of the dynamics transfer experiment. It
shows zero-shot reward on the Diagonal Ball (DB) domain when the
model is trained on the environments 1-3 of the Column Ball (CB)

domain

Figure 3: Figure shows the zero-shot transfer reward on the test environments vs. #frames seen on the training environments
for all domains. The dashed line represents the reward of a uniform random policy over 500 episodes to counter stochasticity in
the policy. For all other methods, we take an average of 10 episodes. (See Figure 5 in the Appendix for graphs on all train and

test environments of all domains.)

3 green and 2 red balls. We train on environments 1-3 and
test on environments 4 and 5.

Size Transfer: Figure 3(b) shows the results of this ex-
periment regarding the zero-shot size transfer task. Inter-
estingly, ORLA performs equally well as compared to the
G-GAT on both test environments. While CNN also per-
forms better than RND, ORLA’s performance always re-
mains above CNN’s.

We want to note that since the domains CB and MDB
have the same types of objects, we do not retrain our object
extractor on MDB. Rather we use the same extractor from
CB, highlighting the modularity of our approach.

In summary on this case study, we find that the object-
centric approach of ORLA makes it much more amenable to
transfer across both size of the domain (number of objects)
and numerical attributes of objects (direction of movement).
In comparison, the vanilla CNN based approach tends to
overfit on the training environments, and is not able to per-

form much meaningful transfer.

Case Study 2: Robot Navigation

In this second case study, we experiment with two domains
set in the context of robot Navigation in a grid world. In the
first domain (Navigation), the Qol that we vary from train
to test environments is the distance between the robot and
the goal location. In the second domain (Pizza), a robot has
to reach a goal with a choice to collect some Pizzas (sub-
goals) to get a better reward. Here the Qol, which we vary
from train to test environments, is the number of sub-goals
(Pizzas) available (size-transfer task). The lack of any natu-
ral dynamics and inclusion of sparse rewards separates this
case study from the earlier one (which has gravity as natural
dynamics).

Domain 3: Navigation (Nav) The Navigation (Nav) do-
main has two objects: a robot and a goal. The aim of the

012345678910
012345678910

0123456782910

(b) CNN

(a) ORLA

Figure 4: Figure shows the goal coverage for best-trained
models of ORLA and CNN on the Navigation domain when
trained on a smaller robot to goal distance and transferred
to a much larger distance in a zero-shot manner. Here, the
robot always starts from the location (5, 5) (marked as R in
the figure), and the goal is kept in the remaining 120 cells
one by one. In both images, a green cell represents that the
robot was able to reach the goal placed at that cell and a red
cell represents the robot could not reach the goal.

robot is to reach the goal in a 2D 11 x 11 grid. The Agent
gets a 0 reward when at goal (and the episode ends) and -1
otherwise. At each time step, the (train and test) environ-
ment returns an image that represents the grid (without any
grid lines). During both training and testing, the robot al-
ways starts from the center location (5,5).

Using the Navigation (Nav) domain, we want to study
whether a robot can learn to reach a goal kept at a distance
much farther than what is seen during training. For this, dur-
ing training, the location of the goal is kept closer to the
robot by randomly sampling the goal locations from the co-
ordinate range (5 + 2,5 + 2), i.e., the maximum distance
between the goal from the robot is 4. At test time, we again
keep the robot at the center of the grid (5, 5) and sample the
goal anywhere in the 11 x 11 grid, i.e., with a maximum
distance of 10.

Results: Figure 3(d) shows the zero-shot transfer results
on this domain. We see that ORLA performs equally well as
compared to the G-GAT, while CNN performs much worse
than random. We suspect CNN’s performance to be due to
overfitting, since it is otherwise able to train well on the
training environments.

To further analyze the performance, we additionally check
the goal coverage of the robot by placing the robot at the
center of the grid (5,5) and placing the goal at all the other
120 locations one by one. Figure 4 shows the goal coverage
results for ORLA and CNN policy. Here, each green cell
represents that the robot was able to reach a goal kept at that
cell when starting from location (5,5). We can see that the
goal-coverage of ORLA is 100% whereas CNN could only
reach those cells that were seen during the training (with an
exception of a couple of additional grid cells).

Domain 4: Pizza We create the Pizza domain to test our
model’s capabilities on the size-transfer task, where varia-
tion in size represents the number of sub-goals available to
the robot. In the Pizza domain, there is a 6 x 6 2D grid world
with three types of objects: Robot, Goal, and Pizza, placed

at different locations. The goal of the robot is to reach the
goal location while collecting as many pizzas as possible.
Reaching the goal gives a +5 reward (ending the episode),
collecting a Pizza gives a reward of +25, after which the
pizza changes color to red and can not be collected again,
and -1 otherwise. Note that the robot can directly reach the
goal without collecting any Pizza, but for the best reward, it
will have to solve a traveling salesman problem with a fixed
final node (goal). Thus, this is quite a challenging domain
for the network.

We create two training environments, one with a single
Pizza and another one with two Pizzas. We tested on three
environments with 3, 4, and 5 Pizzas, respectively. The lo-
cation of the robot, all Pizzas, and the goal are sampled ran-
domly at the start of each episode for both training and test-
ing.

Results: Figure 3(c) shows the results of zero-shot trans-
fer on the three test environments. We again notice that CNN
fails to transfer. ORLA performs worse than random in the
initial part of the training and trains slower than G-GAT but
finally gets close to it. We hypothesize that the slow learning
behavior of ORLA is possibly due to the noise in the output
of the object extractor and/or in the k-Means clustering used
for assigning the type to each object.

In summary, in case study 2, we study long horizon
sparse-reward environments. We find that these are more
challenging to both ORLA and CNN, but ORLA consis-
tently outperforms CNN, showcasing its better transfer ca-
pabilities. Our results also indicate that the lack of good per-
formance may sometimes be due to incorrect identification
of object masks (or their clusters), suggesting a research di-
rection for future.

Conclusions & Future Work

In this work, we have tackled the problem of zero-shot pol-
icy transfer across domains with variations in underlying
quantities of interest. Our approach is object-centric, and
consists of three major components. These include (1) a
novel object extractor trained in a self-supervised manner,
(2) a symbolic state consisting of object positions and veloc-
ities constructed from extracted objects, and (3) a GAT based
module that takes the symbolic state and decodes it into a
policy. Our approach effectively generalizes when transfer-
ing across the number of objects, motion dynamics, and dis-
tance from the goal state, which is demonstrated through an
extensive set of experiments in two different domains, and a
variety of settings. In contrast, a vanilla Dueling DQN base-
line fails to do any meaningful transfer in most cases.

Directions for future work include experimenting with
other model-free RL algorithms, evaluating the efficacy of
our model in a few shot transfer setting, trying out on do-
mains with varying object sizes and shapes, as well as more
complicated motion dynamics, and extending our object-
centric approach to a model-based RL setting.

Limitations

There are some technical limitations and assumptions made
by our work. We assume that the number of types of objects

(two in case study 1: balls and pedal; 2-3 in case study 2:
robot, goal, pizza) are given to the model. We also assume
a maximum number of objects known to us — this is used as
an input to the object extractor, which attempts to extract no
more than this number of objects. Finally, we assume that
the background is not noisy and has a consistent color. We
believe all of these assumptions can, in principle, be relaxed
with suitable modifications to the architecture. Since our fo-
cus was to provide the first demonstration of transfer across
Qols, we did not perform these experiments and leave those
for future work.

There are no direct ethical implications of this work, as it
is still being tested in toy domains, with the goal of enhanc-
ing the capability of modern day deep RL systems.

References

Belle, V.; and Levesque, H. J. 2016. Foundations for gen-
eralized planning in unbounded stochastic domains. In Fif-
teenth International Conference on the Principles of Knowl-
edge Representation and Reasoning.

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order MDPs. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
volume 1, 690-700.

Burgess, C. P.; Matthey, L.; Watters, N.; Kabra, R.; Higgins,
1.; Botvinick, M. M.; and Lerchner, A. 2019. MONet: Unsu-
pervised Scene Decomposition and Representation. CoRR,
abs/1901.11390.

Garg, S.; Bajpai, A.; and Mausam. 2019. Size indepen-
dent neural transfer for RDDL planning. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 29, 631-636.

Garg, S.; Bajpai, A.; and Mausam. 2020. Symbolic network:
generalized neural policies for relational MDPs. In Interna-
tional Conference on Machine Learning, 3397-3407.
Gupta, R.; Sharma, V.; Jain, Y.; Liang, Y.; Broeck, G. V. d.;
and Singla, P. 2021. Towards an Interpretable Latent Space
in Structured Models for Video Prediction. arXiv preprint
arXiv:2107.07713.

He, K.; Gkioxari, G.; Dollar, P.; and Girshick, R. 2017. Mask
R-CNN. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), 2980-2988.

Hu, Y.; and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
Twenty-Second International Joint Conference on Artificial
Intelligence.

Huang, W.; Mordatch, I.; and Pathak, D. 2020. One policy to
control them all: Shared modular policies for agent-agnostic

control. In International Conference on Machine Learning,
4455-4464. PMLR.

Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.;
NanoCode012; Kwon, Y.; Michael, K.; TaoXie; Fang, J.;
imyhxy; Lorna; Yifu, Z.; Wong, C.; V, A.; Montes, D.;
Wang, Z.; Fati, C.; Nadar, J.; Laughing; UnglvKitDe; Sonck,
V.; tkianai; yxNONG; Skalski, P.; Hogan, A.; Nair, D.;
Strobel, M.; and Jain, M. 2022. ultralytics/yolov5: v7.0 -
YOLOVS SOTA Realtime Instance Segmentation.

Kipf, T.; van der Pol, E.; and Welling, M. 2020. Contrastive
Learning of Structured World Models. In International Con-
ference on Learning Representations.

Kirk, R.; Zhang, A.; Grefenstette, E.; and Rocktischel, T.
2021. A survey of generalisation in deep reinforcement
learning. arXiv preprint arXiv:2111.09794.

Kossen, J.; Stelzner, K.; Hussing, M.; Voelcker, C.; and Ker-
sting, K. 2020. Structured Object-Aware Physics Prediction
for Video Modeling and Planning. In International Confer-
ence on Learning Representations.

Locatello, F.; Weissenborn, D.; Unterthiner, T.; Mahendran,
A.; Heigold, G.; Uszkoreit, J.; Dosovitskiy, A.; and Kipf,
T. 2020. Object-Centric Learning with Slot Attention. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and
Lin, H., eds., Advances in Neural Information Processing
Systems, volume 33, 11525-11538. Curran Associates, Inc.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-

ternational conference on machine learning, 1928-1937.
PMLR.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control

through deep reinforcement learning. nature, 518(7540):
529-533.

Oktay, O.; Schlemper, J.; Folgoc, L. L.; Lee, M.; Heinrich,
M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N. Y.;
Kainz, B.; et al. 2018. Attention u-net: Learning where to
look for the pancreas. arXiv preprint arXiv:1804.03999.

Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (rddl): Language description. Unpublished ms. Aus-
tralian National University, 32: 27.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Sharma, V.; Arora, D.; Geifler, F.; Mausam; and Singla, P.
2022. SymNet 2.0: Effectively handling Non-Fluents and
Actions in Generalized Neural Policies for RDDL Rela-
tional MDPs. In Proceedings of the Thirty-Eighth Confer-
ence on Uncertainty in Artificial Intelligence, volume 180
of Proceedings of Machine Learning Research, 1771-1781.
PMLR.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, 1.; Lillicrap, T;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529(7587): 484-489.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning Generalized Plans Using Abstract Counting. In
Twenty-Third AAAI Conference on Artificial Intelligence.
Stahlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. Proceedings of

the 32nd International Conference on Automated Planning
and Scheduling.

Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. Interna-
tional Conference on Learning Representations.

Wang, T.; Liao, R.; Ba, J.; and Fidler, S. 2018. NerveNet:
Learning Structured Policy with Graph Neural Networks. In
International Conference on Learning Representations.

Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International conference on ma-
chine learning, 1995-2003. PMLR.

Watters, N.; Matthey, L.; Bosnjak, M.; Burgess, C. P.; and
Lerchner, A. 2019. Cobra: Data-efficient model-based 1l
through unsupervised object discovery and curiosity-driven
exploration. arXiv preprint arXiv:1905.09275.

Wu, Z.; Dvornik, N.; Greff, K.; Kipf, T.; and Garg,
A. 2022. SlotFormer: Unsupervised Visual Dynamics
Simulation with Object-Centric Models. arXiv preprint
arXiv:2210.05861.

Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li,
Y.; Babuschkin, I.; Tuyls, K.; Reichert, D.; Lillicrap, T.;
Lockhart, E.; Shanahan, M.; Langston, V.; Pascanu, R.;
Botvinick, M.; Vinyals, O.; and Battaglia, P. 2019. Deep
reinforcement learning with relational inductive biases. In
International Conference on Learning Representations.

Appendix: Object-Centric Learning of Neural
Policies for Zero-shot Transfer over Latent
Symbolic Quantities

Architectures

Expert Object-Extractor: It takes as input an image with
3 channels (RGB) and outputs a set of K Gaussian masks
with their means at the objects’ centers. We use the Attention
U-Net architecture as proposed in the original work (Oktay
et al. 2018) for our encoder. It takes a (50, 50, 3) size prepro-
cessed image as input and downsamples it using four convo-
lution blocks with 32, 64, 128, and 256 hidden channels,
with 2x2 maxpooling between consecutive layers. It then
upsamples the output using convolution blocks with 128,
64, and 32 hidden channels. The last convolution block has
output channels equal to the number of objects. We use the
learning rate of 5e-4. The output of the Attention U-Net is
passed through the Gaussian module to get a gaussian mask
for each channel in the extractor output. It creates a gaus-
sian mask with its mean at the object’s center and fixed o,
and o, of 2.5. Hadamard Product of the gaussian masks with
the original image gives objects’ content which are used to
regenerate the original image by combining them at their re-
spective positions on the background. We use a seed value
of 4 for both Numpy and PyTorch.

YOLOVS: We use the YOLOVS model as proposed in the
work by (Jocher et al. 2022) with their default hyperparam-
eters. The outputs of the Expert Object-Extractors are used
to create a labelled dataset to give supervision to fine-tune
pretrained YOLO model.

Policy Network: Our policy network uses a GAT based
architecture to encode the symbolic-state-graph in a fixed-
dimension (128 dim) feature vector, which is used to
learn the advantage and value functions. The symbolic-
state-graph is passed twice through graph attention net-
works. Maxpooling over the node features gives the fixed-
dimension feature vector, which is passed through two
MLPs to learn the advantage and value functions. The Ad-
vantage network consists of two layers with an output di-
mension equal to the size of the action space. The Value net-
work consists of 2 layers with output of unit dimension. Both
the MLP networks have 128 units in the hidden layers and
use LeakyRelu non-linearity. For the policy network, we use
the epsilon-greedy method with an initial exploration rate
equal to 1, which decreases by a factor of 0.01 after every
episode. It uses the Adam optimizer with a learning rate of
0.00025.

Training

We train all models on a cluster of Quadro P5000 GPUs with
16GB GPU memory and with 128 GB RAM. We train each
of our Expert Object-Extractors with a maximum time limit
of 4 hours and take the checkpoint with the least MSE on a
validation dataset. These checkpoints are then used to gen-
erate labels for the training dataset to provide supervision to
YOLO. We fine-tune YOLO for a maximum of 90 epochs
with a maximum time limit of 1 hour time. It takes around 5
minutes to learn clusters in the K-Means clustering module.

We give a maximum of 24 hours to train the policy network
or other baselines for a satisfactory training time.

The number of frames used for training the Expert Object-
Extractor for different environments is given in Table 1.

Detailed Results

Figure 5 shows both the training and test results on various
domains.

Environment | Instance #Episodes (Train) #Frames (Train) #Episodes (Val) #Frames (Val)
Column Ball (CB) 1 25 23443 10 9438

2 25 12996 10 5214

3 25 8961 10 3557
Multitype Diagonal | Uses CB’s
Ball (MDB) extractor
Navigation (Nav) - 25 6770 10 3495
Pizza (Pizza) 1 250 12972 100 5156

2 250 13482 100 5262

Table 1: Table shows the number of episodes and frames used to train experts in various domains. For MDB, we do not train
any experts rather, we use the experts trained on Column Ball

CB : Train Env-1

30 CB : Train Env-2 CB : Train Env-3 CB : Test Env-4 CB : Test Env-5
20
20 T
10
© 10 © © ©
g o g o g g
&’_10 £-10 & &
-20 -20
-30
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
#Frames 1le6 #Frames 1le6 #Frames 1le6 #Frames 1le6 #Frames 1le6
(a) Column Ball (CB)
MDB : Train Env-1 MDB : Train Env-2 MDB : Train Env-3 MDB : Test Env-4 MDB : Test Env-5
20 40
e ke kel
g g 20 g
5 ° : H
2 x O <
20T T Y —20 (B
0 1 2 3 4 0o 1 2 3 4 1 2 3 4
#Frames 1le6 #Frames 1le6 #Frames 1le6

#Frames

#Frames 1le6
(b) Multitype Diagonal Ball (MDB)

Pizza : Train Env-1 Pizza : Train Env-2 Pizza : Test Env-3

Pizza : Test Env-4

Pizza : Test Env-5
150
100 150
<0 100 100
B B B 2 30 T 50
© © © 0 © ©
: : : PO -5 07
o o4 o -50 X _50 x _go
-100 -100 -100
-150
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
#Frames 1le6 #Frames 1e6 #Frames 1le6 #Frames 1le6 #Frames 1le6
(c) Pizza
250 Nav : Train Env-1 Nav : Test Env-2
0 LEGEND
° -250 2 —— ORLA
E —~500 é — G-GAT
_750 —— CNN
-1000 -==- RND
0 1 2 0 1 2
#Frames le6 #Frames le6
(d) Navigation (Nav)

Figure 5: Figure showing performance (average reward vs. #frames) of various methods on all domains on each of the train and
test environments.

