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Abstract

Large language models are shown to memo-001
rize privacy information such as social secu-002
rity numbers in training data. Given the sheer003
scale of the training corpus, it is challenging to004
screen and filter these privacy data, either man-005
ually or automatically. In this paper, we pro-006
pose Confidentially Redacted Training (CRT),007
a method to train language generation models008
while protecting the confidential segments. We009
borrow ideas from differential privacy (which010
solves a related but distinct problem) and show011
that our method is able to provably prevent un-012
intended memorization by randomizing parts013
of the training process. Moreover, we show014
that redaction with an approximately correct015
screening policy amplifies the confidentiality016
guarantee. We implement the method for both017
LSTM and GPT language models. Our experi-018
mental results show that the models trained by019
CRT obtain almost the same perplexity while020
preserving strong confidentiality.021

1 Introduction022

Language models (LM) have rich real-world ap-023

plications in, among others, machine translation024

(Bahdanau et al., 2015), AI chatbots (Hosseini-Asl025

et al., 2020), question answering (Kwiatkowski026

et al., 2019), and information retrieval (Ganguly027

et al., 2015). The advent of transformers (Vaswani028

et al., 2017) has fostered a dramatic advancement029

in the capabilities of generative neural language030

models, yet they come at a cost to privacy, as the031

amount of excess parameters in the LM enables032

it to memorize certain training samples. Recent033

works show that sensitive user information from034

the training dataset, such as address and name, can035

be extracted verbatim from text generation mod-036

els by querying the LM as an API (Carlini et al.,037

2019, 2021). How to train a high-performing lan-038

guage model without memorizing sensitive text has039

become a major research challenge.040

Existing solutions to this problem primarily 041

leverage differential privacy (DP) (Dwork et al., 042

2006). Differentially private learning algorithms 043

ensure that an attacker could not infer whether a 044

data point is used for training, let alone extracting 045

the sensitive information within that data point. 046

However, there are several mismatches between 047

the problem of privacy that DP addresses, and our 048

problem of preventing the memorization of sensi- 049

tive text (henceforth referred to as confidentiality). 050

First, confidential information in a natural language 051

dataset is sparse (e.g., the bulk of an email might 052

not carry confidential information). DP’s undis- 053

criminating protection for all sentences could be 054

unnecessarily conservative which limits the util- 055

ity of the trained model. Second, what needs to 056

be protected is the content of the sensitive text, 057

rather than the data context. For example, in the 058

sentence “My SSN is 123-45-6789.”, it is 059

the actual SSN that we hope to conceal rather than 060

the general information that someone entered her 061

SSN in a chatbot dialogue. Thirdly, the same sen- 062

sitive content could appear in many data points, 063

which makes the protection of the content more 064

challenging than protecting one data sample. These 065

differences motivate us to treat the problem of con- 066

fidentiality protection in LM separately with new 067

definitions. 068

Besides DP, we also consider classical tech- 069

niques of redaction and deduplication. Redaction 070

refers to the process of removing sensitive or classi- 071

fied information from a document prior to its publi- 072

cation in governmental and legal contexts. Dedupli- 073

cation is the procedure of detecting and removing 074

identical and nearly identical texts from a corpus. 075

The main challenge of applying these techniques is 076

that it is hard to manually redact a gigantic dataset 077

and automated tools are far from being perfect. 078

The contribution of this paper is fivefold. 079

1. We show that in the absence of a perfect 080

screening policy, the risk of a language model 081

1



SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

false negative

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Redaction with a
policy with recall 0.9
and high precision
compromises
confidentiality.

Redaction with a
policy with recall 1.0
but poor precision
results in useless data.

false positives

Our results:
1. Provable confidentiality ensures that these two are indistinguishable!
2. Approximate redaction policy amplifies the confidentiality guarantee.

Raw sensitive textPerfectly redacted text

Figure 1: An example from simulated dialog dataset CustomerSim. The yellow highlights are confidential
content (middle). Left shows the text after Redaction by a sequence labeling policy π. However, if the policy is not
perfect, there exists false negative or false positive samples as shown on the right.

memorizing sensitive content is real and can082

be efficiently exploited with only blackbox083

access to the model even if the learning algo-084

rithm satisfies the recently proposed notion of085

selective differential privacy (Shi et al., 2021).086

2. Inspired by differential privacy, we introduce087

a new definition of confidentiality which pre-088

cisely quantifies the risk of leaking sensitive089

text.090

3. We propose CRT to train language generation091

models while protecting confidential text. The092

method with deduplication and redaction oper-093

ations work even under imperfect confidential094

text labeling policies.095

4. We theoretically prove that CRT, combined096

with differentially private stochastic gradient097

descent (DP-SGD), provides strong confiden-098

tiality guarantees.099

5. Our experiments on both WikiText-2 and Cus-100

tomerSim datasets show that different models101

trained by CRT can achieve the same or better102

perplexity than existing solutions (against the103

attacks of Carlini et al. (2019, 2021)).104

To the best of our knowledge, we are the first that105

rigorously establish the role of deduplication and106

redaction in achieving provably stronger confiden-107

tiality (or the related differential privacy) guaran-108

tees; and the first that achieve provably confidential-109

ity in transformer models with only a mild utility110

loss.111

2 Background & Related Work 112

Next, we briefly introduce the relevant background 113

and discuss the related work to put our work in 114

context. 115

Language Modeling. Language modeling is a fun- 116

damental problem in natural language processing 117

(Devlin et al., 2019; Howard and Ruder, 2018; Raf- 118

fel et al., 2020). Consider a text sequence that con- 119

sists of multiple tokens from a vocabulary V , i.e., 120

w = (w1, w2, . . . , wn), where wi is the i-th token. 121

The goal of language modeling is to construct a gen- 122

erative model of the distribution Pr(w), by apply- 123

ing the chain rule Pr(w) =
∏n

i=1 Pr (wi | w<i) . 124

We let fθ(wi|w<i) denote the likelihood of token 125

wi when evaluating the neural network f with 126

parameters θ. A language model is trained to 127

maximize the probability of the data in a training 128

setW , by minimizing the negative log-likelihood 129

over each training example with the loss function 130

L(θ) = − log
∏n

i=1 fθ (wi | w<i) . Recurrent neu- 131

ral networks (RNNs) used to be a common choice 132

for the neural network architecture to estimate the 133

probability distribution Pr(w). (Hochreiter and 134

Schmidhuber, 1997; Mikolov et al., 2010). More 135

recently, large-scale Transformer-based language 136

models have replaced RNNs in state-of-the-art 137

models for all sorts of NLP tasks (Vaswani et al., 138

2017; Radford et al., 2019). Nevertheless, common 139

language models are vulnerable to privacy attacks 140

and possibly expose information about their sensi- 141

tive training data (Carlini et al., 2019, 2021). 142

Privacy-preserving NLP. Differentially private 143

(DP) learning methods (see, e.g., Abadi et al., 2016) 144
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has been applied to language models as a blanket145

solution for a number of privacy and security risks.146

McMahan et al. (2018) trained an RNN language147

model with DP guarantees in a federated learning148

setup. Anil et al. (2021) pre-trained BERT under149

DP on datasets with hundreds of millions of exam-150

ples. These paper also demonstrated that DP can151

effectively prevent data-extraction attacks in prac-152

tice even for algorithms with DP guarantees that are153

considered too weak from a theoretical-perspective154

(e.g., ϵ = 8 or 16). However, the strong protec-155

tion of DP often results in a substantial drop in156

the utility of the trained model, which makes them157

less desirable in practice. In fact, it was recently158

shown that it is necessary for deep learning models159

to memorize certain training data to achieve high160

accuracy (Feldman, 2020), which suggests that DP161

or any other techniques that require the model to162

not memorize any training data will perform poorly163

in the high-dimensional, power-law distributed real164

datasets. This motivates us to consider weakened165

models that only prevent memorizing the sensitive166

part of the text.167

Selective DP-SGD. The closest to us is perhaps the168

work of Shi et al. (2021), who proposed selective169

differential privacy (S-DP), which requires indistin-170

guishability between two datasets that differ only171

on a sensitive message. Correspondingly, they pro-172

pose an algorithm (Selective DP-SGD) for training173

RNN that adds noise only to the part of computa-174

tion that involves sensitive tokens. To define S-DP175

and to run selective DP-SGD, one needs to have176

access to a policy function F which determines177

which token is sensitive. This requirement limits178

the applicability of their approach to those applica-179

tions where such perfect F is known. We note that180

even for name-entity recognition the state-of-the-181

art model is far from being perfect, and which part182

of the text is considered sensitive is often ambigu-183

ous even for human annotators. We will see that184

naively running Selective DP-SGD with an approx-185

imate policy function does not provide a meaning-186

ful confidentiality guarantee and is vulnerable to187

practical data extraction attacks. Finally, we note188

that in the case when a perfect policy function is189

available, we can simply use it for redaction, which190

provides a perfect S-DP with ϵ = 0. A big part191

of our contribution is to refine S-DP to a (slightly192

different) definition called “confidentiality” and to193

demonstrate that we use an approximate screening194

policy to amplify the confidentiality parameter.195

3 The CRT Method and Theory 196

In this section, we develop our method with prov- 197

able confidentiality. 198

3.1 Formally defining confidentiality 199

Let the dataset be a collection of n data points — 200

each being a sequence of tokens. A “secret” x 201

is a contiguous subsequence of tokens within a 202

data point that is considered sensitive or confiden- 203

tial. The goal of our research is to allow us to 204

train language models on such datasets that could 205

contain secrets while provably prevent the model 206

from remembering that these secrets were. We start 207

by defining a formal definition of confidentiality, 208

which uses the following idea of indistinguishabil- 209

ity from the DP literature. 210

Definition 1 (Indistinguishability). We say that a 211

pair of distributions P,Q defined on the same prob- 212

ability space are (ϵ, δ)-indistinguishable if for any 213

measurable set S, 214

Pr
P
[S] ≤ eϵ Pr

Q
[S] + δ. 215

Definition 2 (Confidentiality). We say that A en- 216

sures that a secret x is (ϵ(x), δ)-confidential, if 217

for any dataset D that contains x in one of its 218

data points, and an alternative dataset D′ that re- 219

places x in D with a generic <MASK>, it holds that 220

(A(D),A(D′)) are (ϵ(x), δ)-indistinguishable. In 221

addition, we simply say that A ensures (ϵ, δ)- 222

confidentiality if ϵ(x) ≤ ϵ for all secret x. 223

This definition ensures that an attacker cannot 224

distinguish from the output of A (the trained lan- 225

guage model) whether it was x or <MASK> that 226

was used for training, thus formalizing the idea of 227

confidentiality. The protection should be viewed 228

as relative, rather than absolute. The definition 229

bounds the risk of any bad event by an multiplica- 230

tive factor of eϵ and an additive factor of δ, which 231

implies that anything that could happen when we 232

runA on the sensitive data could’ve happened with 233

with similar probability even if A runs on an alter- 234

native world where these sensitive information are 235

perfectly masked. 236

Connections to differential privacy. Our defi- 237

nition of confidentiality is related to (and inspired 238

by) (ϵ, δ)-differential privacy (DP) but is differ- 239

ent in several ways. DP is stronger (and im- 240

plies confidentiality!) requires A to ensure (ϵ, δ)- 241

indistinguishability for all D,D′ that can be mod- 242

ified from each other by adding or removing one 243
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individual person / data point (or tokens, depend-244

ing on the desired granularity); but for A to en-245

sure (ϵ, δ)-confidentiality, it only requires (ϵ, δ)-246

indistinguishability for specific D,D′ where D′247

replaces x in D with <MASK>. Moreover, it is248

more informative to define ϵ as a function of each249

specific x, which is different from DP (it resembles250

personalized DP (Ghosh and Roth, 2015)).251

The confidentiality definition makes sense for252

our problem because it protects the content of the253

sensitive text x rather than its existence. Specif-254

ically, a pre-processing algorithm that masks all255

sensitive text ensures (0, 0)-confidentiality but does256

not satisfy any non-trivial DP guarantees.257

Sometimes, it is useful to consider the confiden-258

tiality of multiple secret texts. For example, a se-259

cret key x could appear multiple times in multiple260

data points. Also, there might be multiple secret261

texts that are correlated to each other such that the262

knowledge of one would reveal other secrets.263

Definition 3 (Group Confidentiality). We say that264

A ensures that a list of sensitive texts S :=265

[x1, ..., xk] is (ϵ(S), δ)-(group) confidential, if for266

any dataset D that contains [x1, ..., xk] in up to k267

data points, and D′ being the version that replaces268

each element in S with <MASK>, it holds that269

(A(D),A(D′)) are (ϵ(S), δ)-indistinguishable.270

A special case of such group confidentiality is271

when S collects the all secret text in D, which272

protects all secret texts uniformly. We call this273

uniform-confidentiality. Note that the standard def-274

inition of confidentiality also protect every secret275

x, except that it protects each secret x individually,276

rather than together.277

Inspired by the recent development of Bayesian278

DP (Triastcyn and Faltings, 2020), we also define279

Bayesian confidentiality as follows.280

Definition 4 (Bayesian Confidentiality). Let D be281

a dataset that is fixed except a random secret x ∼ µ282

drawn from some distribution µ. Let D′ be ob-283

tained by replacing x with <MASK>1. Then A en-284

sures (ϵ, δ)-Bayesian Confidentiality if for any D′,285

(A(D),A(D′)) is (ϵ, δ)-indistinguishable, where286

A(D) is jointly distributed over x ∼ µ and A.287

The Bayesian confidentiality measures how288

much information an attacker could gain if he/she’s289

prior knowledge about this secret x is described by290

the distribution µ. This is a strict generalization291

because when µ is a single point mass at x, it recov-292

1Notice that D′ is fixed even though x is random.

ers Definition 2. The additional generality allows 293

us to quantify the stronger confidentiality guaran- 294

tee against weaker adversaries without complete 295

information. 296

3.2 Confidentially redacted training 297

In this section we describe the CRT method to train 298

language models with provable confidentiality guar- 299

antee. It includes two pre-processing operations 300

(deduplication and redaction) and a switching opti- 301

mization procedure. The overall idea is to screen 302

the corpus into two separate sets, one public set in- 303

cluding sentences with no confidential information, 304

and one private set including sentences containing 305

confidential content. We then use normal optimiza- 306

tion algorithms (e.g. SGD) on the public set and 307

differential privacy optimizer (e.g. DP-SGD) on 308

the private set. 309

Deduplication. The deduplication procedure 310

Dedup detects all sentences that appear multiple 311

times in the training data and replace them into 312

a single <MASK> from the second occurrence on- 313

wards (<MASK> is for proving purpose). 314

Redaction. The redaction procedure Redactπ 315

takes applies a sequence labelling policy π to 316

screen confidential content in the training corpus 317

D. π(s, x) = 1 if a token x in a sentence s should 318

be confidential. The labeled span in each detected 319

sentence is replaced with a special token <MASK>. 320

Note that we do not assume the policy is perfect. It 321

may label some non-sensitive tokens as sensitive 322

(false positives) and label some sensitive text as 323

non-sensitive (false negative, or 1−recall). 324

Redact and Dedup could be implemented man- 325

ually, but with the large text corpus nowadays it 326

is more common that these procedures are im- 327

plemented using automated tools. For example, 328

Dedup could be implemented efficiently with just 329

one pass of data using a bloom filter (Bloom, 1970) 330

(or other hashing tricks that also catches near- 331

duplicates). Bloom filter in particular, enjoys the 332

nice property that it could have false positives but 333

never any false negatives. Redactπ could be re- 334

alized by a named entity recognition model or a 335

personal-identifiable information (PII) detector. 336

Finally, CRT combines the two pre-processing 337

steps with normal optimizer and DP-SGD, the stan- 338

2DP-SGD uses Poisson-sampled Gaussian mechanisms
(with a random batchsize), thus cannot ensure all data points
are seen and some data points might be seen many times.
One epoch means the number of iterations that in expectation
covers |Dpri| data points.
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Algorithm 1: CRT
Input :Dataset D (after tokenization /

splitting), labelling policies π, πc,
number of epochs T

1 D′ ← Dedup(D)
2 D′′ ← Redactπ(D′)
3 Dpri ← {s ∈ D′′|∃x ∈ ss.t.π(s, x) =

1 or ∃x ⊂ s s.t. πc(s, x) = 1}
4 Dpub = {s ∈ D′′|s /∈ Dpri}.
5 for e = 1, ..., T do
6 Run one epoch of SGD with Dpub.
7 Run one epoch2 of DP-SGD with Dpri.
8 end

dard algorithm for deep learning with differential339

privacy. A pseudo-code of the algorithm is given340

in Algorithm 1.341

Besides using a sequence labeling policy π with342

balanced precision/recall as part of the redaction343

process. The algorithm uses another, more conser-344

vative, policy πc with nearly perfect recall to decide345

on the data points that do not contain sensitive text.346

In the situation when such πc isn’t available, we347

simply choose πc(s, x) = 1 for all tokens x in a348

sentence s and the second part becomes the vanila349

DP-SGD. It is also important that every data point350

that contains a <MASK> requires protection.351

3.3 Theoretical analysis352

We analyze the theoretical properties of the above353

method and show that they result in provable im-354

provements in the (regular, group and Bayesian)355

confidentiality parameters for any algorithms that356

are provably (ϵ(x), δ)-confidential as defined in357

Section 3.1.358

The following theorem captures the benefit of359

redaction in improving confidentiality.360

Proposition 5 (Confidentiality under redaction). If
A ensures (ϵ(x), δ)-Confidentiality for each token
x of sentence s ∈ S (S is a corpus), then A ◦
Redactπ ensures (ϵ̃(x), δ)-confidentiality with

ϵ̃(x) =

{
ϵ(x) if π(s, x) = 0

0 otherwise.

In addition, A ◦ Redactπ also satisfies
(ϵ̃(S), δ̃(S))-group confidentiality with

ϵ̃(S) =
∑

x∈s&s∈S
ϵ(x)1(π(s, x) = 0), δ̃(S) = k̃eϵ̃(S)δ

where k̃ :=
∑

x∈S 1(π(s, x) = 0).361

As an application of the above, if A ensures 362

(ϵ, δ)-confidentiality, and that the empirical recall 363

rates of the redaction policy on D is 1 − γ, then 364

the above proposition suggests that A ◦ Redactπ 365

improves the uniform-confidentiality over applying 366

A without redaction by a factor of γ. The proof is 367

in the appendix. 368

Redaction also improves Bayesian confidential- 369

ity in a way that mirrors the privacy amplification 370

by sampling from the DP literature. 371

Proposition 6 (Bayesian Confidentiality under 372

Redaction). If A ensures (ϵ, δ)-Bayesian Confi- 373

dentiality with respect to µ[x|π(s, x) = 0] for a 374

token x in a sentence s, then A ◦ Redactπ en- 375

sures (log(1 + γ(eϵ − 1)), γδ)-Bayesian Confiden- 376

tiality under µ if π has a false negative rate (i.e., 377

1−“Recall”) of γ under µ. 378

The proposition says that if the redaction pol- 379

icy is accurate for secrets x ∼ µ, then we can 380

have a stronger confidentiality parameter that scales 381

roughly at ϵ̃ = O(γϵ). The idea behind the proof 382

is that over the distribution of x ∼ µ, with prob- 383

ability 1− γ, Redactπ(D) = Redactπ(D
′), thus 384

A◦Redactπ(D) ≡ A◦Redactπ(D′). With prob- 385

ability γ, Redactπ(D),Redactπ(D
′) are different 386

and conditioning on the fact that Redactπ fails to 387

detect x. Note that π is also applied to other text 388

that are not sensitive, and could result in false pos- 389

itives, but they do not matter as the modification 390

of Redactπ to D and D′ will be identical. A full 391

proof is given in the appendix. 392

Next we turn to deduplication. 393

Proposition 7 (Group confidentiality under 394

deduplication.). If A ensures (ϵ(S), δ(S))- 395

Group Confidentiality, then A ◦ Dedup ensures 396

(ϵ(Unique(S)), δ(Unique(S)))-Group Confiden- 397

tiality. 398

Deduplication provides a stronger protection for 399

those cases where some secret x could appear mul- 400

tiple times in the dataset. 401

Theorem 8. Let DP-SGD from Algorithm 1 satis- 402

fies (ϵ, δ)-differential privacy. 403

1. Assume πc(s, x) = 1 for all secret tokens x 404

in a sentence s such that π(s, x) = 0, then 405

Algorithm 1 satisfies (ϵ1(π(s, x) = 0), δ)- 406

confidentiality. 407

2. Let S be a group containing m unique secrets 408

such that πc(s, x) = 1∀x ∈ s and s ∈ S 409

and that π detects γ̃-proportion of the unique 410
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secrets in S. Then Algorithm 1 satisfies411

(γ̃mϵ, γ̃meγ̃mϵδ)-group confidentiality for S.412

3. Let π, πc has a a recall of 1 − γ and 1 − δ2413

respectively on µ, then Algorithm 1 satisfies414

(log(1 + γ(eϵ − 1)), γδ + δ2)-Bayesian Con-415

fidentiality for µ.416

The theorem demonstrates that our CRT algo-417

rithm enjoys a full suite of confidentiality guaran-418

tees and they all benefit from the deduplication and419

redaction, particularly if π has high recall.420

Note that the CRT algorithm achieves the worst-421

case confidentiality guarantee if we have a non-422

trivial conservative screening policy that outputs423

πc(x) = 1 for all secret x that π misses, or we sim-424

ply run vanilla DP-SGD after deduplication and425

redaction. On the other hand, CRT still satisfies426

Bayesian confidentiality for each µ depending on427

the recall rate of πc under µ.428

4 Experiments429

We evaluate CRT by training two types of language430

model, LSTM and GPT-2, on two datasets: 1)431

WikiText-2, a classical text corpus for language432

modeling and 2) CustomerSim, a dialog dataset for433

conversation generation.434

WikiText-2. To minimize harm to the real world,435

we choose the already-public WikiText-2 (Merity436

et al., 2017). It is a collection of over 100 mil-437

lion tokens extracted from the set of verified Good438

and Featured articles on Wikipedia with potentially439

sensitive information. Following S-DP (Shi et al.,440

2021), we treat all the digits as secrets and use a la-441

beling rule based on regular expression to conduct442

the redaction. A more advanced sequence labeling443

model (e.g. BERT) can be used in real applications.444

CustomerSim. Following S-DP Shi et al. (2021),445

we simulate a dialog dataset called CustomerSim446

with synthetic user information. The dialog flow is447

simulated based on a fixed agenda and the language448

generation is template-based (Zhao and Eskénazi,449

2018). CustomerSim consists of 10 thousand ex-450

amples and over one million tokens. We treat user451

name, address, phone number, order, and tracking452

number as secrets, and use a regular expression to453

detect them for the redaction process.454

Experiment details. For LSTM model, we follow455

the setting in S-DP to choose a one-layer LSTM.456

Because S-DP requires hidden states of the sensi-457

tive input to be protected, it doesn’t support more458

layers nor Bidirectional LSTM. Since the advent of459

Transformers (Vaswani et al., 2017) significantly 460

improves the capabilities of generative language 461

models, we also test transformer-based language 462

model GPT-2 (Radford et al., 2019) from Hugging- 463

Face (Wolf et al., 2019). As for deduplication, 464

we use SHA-1 (Jarvinen, 2004) hash function to 465

encode sequences to SHA-1 hash code and then 466

remove identical sequences based on the same hash 467

code. For Bayesian Confidentiality, we treat the 468

uniform distribution over the secret sequences as 469

the distribution µ. More experiment details can be 470

found in Appendix A.3. 471

Baselines. For LSTM model, we compare three 472

different training approaches: (1) vanilla SGD (de- 473

noted by "No-DP-LSTM"), (2) Selective DPSGD 474

(denoted by "S-DP-LSTM") and (3) vanilla SGD 475

with CRT (denoted by "CRT-LSTM"). While for 476

GPT-2 model, we compare two different training 477

approaches: (1) vanilla SGD (denoted by "No-DP- 478

GPT") and (2) vanilla SGD with CRT (denoted by 479

"CRT-GPT"). Our implementation of S-DP-LSTM 480

model is built upon Shi et al. (2021)3. We run 481

the experiment for the GPT-2 model following Li 482

et al. (2021)4, in which they propose ghost clipping 483

method to alleviate the computational challenge of 484

running DP-SGD with large Transformers. 485

All the models are trained five times to reduce 486

randomness, and the parameters are tuned based 487

on the validation set performances. 488

5 Experimental Results 489

5.1 Evaluation procedure 490

We need to evaluate both model utilities and privacy 491

guarantees of the language models. We measure 492

predictive perplexity (PPL) and the top-1 next word 493

prediction accuracy (AccT1) for the quality of LM. 494

We also analyze the theoretical privacy budget (ϵ, 495

δ) and test whether language models are private 496

under attacks detailed below. 497

Canary Insertion Attack. Canary insertion is 498

proposed as a testing methodology for quantita- 499

tively assessing the risk of unintended memoriza- 500

tion (Carlini et al., 2019). It inserts random se- 501

quences called canaries into the training dataset, 502

then trains the model, and finally calculates the 503

following exposure for the inserted canaries to 504

measure a model’s potential for privacy risks. In 505

our experiment, we randomly generate 10 ca- 506

naries in the form of "My ID is: <random 507

3https://github.com/wyshi/lm_privacy
4https://github.com/lxuechen/private-transformers
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Figure 2: Model utility and confidentiality guarantee on WikiText-2 and CustomerSim datasets with µ being a
uniform distribution over the secret sequences in each dataset. PPL: Perplexity on the test set. AccT1: Top-1 next
word prediction accuracy. ϵ: Privacy guarantee in Bayesian Confidentiality. We fix δ = 8e− 5 for all models. Since
Selective DP-SGD with approximate policy gives ϵ = +∞, we show its result with a perfect screen policy. But
when a perfect policy is available, Redaction only gives ϵ = 0 and achieves the PPL of vanilla training with no
noise added (No-DP-LSTM). For other models we set γ = 0.1 to show the result under approximate policy.

6-digit number here>" Each canary is in-508

serted into the training dataset 20 times to generate509

more salient differences between models.510

Definition 9 (Canary Exposure). Given a canary
s[r], a model with parameters θ, and the random-
ness spaceR, the exposure of s[r] is

exposureθ = log2 |R| − log2 rankθ(s[r])

After training, we calculate empirical model per-511

plexity for all possibly-instantiated canaries and list512

them in sorted order. Then we can get the canary513

exposure based on the rank of a specific canary se-514

quence rankθ(s[r]) and the number of all possible515

candidates |R|. In our setting, we show the highest516

canary exposure in 10 canaries. For example, if a517

canary ranks 1st among 1M candidates, the canary518

exposure is 19.93.519

Membership Inference Attack. Membership In-520

ference is a widely used privacy attack method.521

Given a non-privately trained model, an adversary522

can predict whether or not a particular example523

was used to train the model. We adopt the member-524

ship inference attack in Carlini et al. (2021). The525

general idea is to calculate the given samples’ per-526

plexities under the model, rank them and choose527

the ones with the lowest perplexities, i.e., highest528

likelihood by the model. We can think of this pro-529

cess as training a binary classifier based on the530

perplexity feature. We also implement the group531

membership inference attack to show the group532

confidentiality. More details about the implementa-533

tion can be found in the Appendix.534

5.2 Overall performance 535

Figure 2 presents the results of model utilities and 536

confidentiality guarantees across our models of in- 537

terest on WikiText-2 and CustomerSim datasets. 538

Each point denotes a model for different epochs in a 539

training process. Since the X-axis is perplexity (the 540

lower the better) and Y-axis is ϵ in Bayesian Con- 541

fidentiality (the lower the better), a perfect model 542

will lie in the bottom-left corner. CRT-GPT and 543

DPSGD-GPT in general, perform better than S-DP- 544

LSTM, CRT-LSTM and, DPSGD-LSTM on the 545

test sets. Our model CRT-GPT’s performance is 546

close to No-DP-GPT in terms of PPL and AccT1 547

while preserving strong confidentiality. Besides, 548

CRT-GPT is better than DPSGD-GPT manifested 549

by a lower ϵ, which demonstrates that approxi- 550

mately correct screening policy amplifies the confi- 551

dentiality guarantee. 552

Differences can be witnessed in the results from 553

two different datasets: the models trained on Cus- 554

tomerSim achieve overall better performances than 555

those trained on WikiText-2. We think it’s due to 556

the fact that CustomerSim contains simple dialogs 557

from template-based simulations. 558

5.3 Attack results 559

Figure 3, 4 and 5 present the results from canary 560

insertion attack and individual/group membership 561

inference attack on WikiText-2 and CustomerSim 562

datasets. The X-axis is the false negative rate γ 563

of screening policy π, ranging from 0.0 to 0.5; the 564

Y-axis is the canary exposure (in Figure 3) and 565

membership inference accuracy (in Figure 4 and 5), 566
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which measures the effectiveness of the attacks.567

The lower the canary exposure or inference ac-568

curacy, the better protection the model provides569

against the attacks.570

0.0 0.1 0.2 0.3 0.4 0.5
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ca
na

ry
 E

xp
os

ur
e

WikiText-2

CRT-GPT
CRT-LSTM
No-DP-GPT
No-DP-LSTM
S-DP-LSTM

0.0 0.1 0.2 0.3 0.4 0.5
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ca
na

ry
 E

xp
os

ur
e

CustomerSim

CRT-GPT
CRT-LSTM
No-DP-GPT
No-DP-LSTM
S-DP-LSTM

Figure 3: Canary insertion attack result. CRT achieves
almost 0 canary exposure, which means it can prevent
unintended memorization.

For canary insertion attack, it can be seen from571

Figure 3 that the canary exposures for CRT-LSTM572

and CRT-GPT are both close to 0 which thus guar-573

antee excellent confidentiality. No-DP-LSTM and574

No-DP-GPT with mask can also attain great protec-575

tion at perfect screening policy accuracy (γ = 0),576

nonetheless a rise in γ results in a sharp increase577

in the exposure. It should be noticed that S-DP-578

LSTM also has high exposure, similar to No-DP579

models, given any γ above 0. This is because by the580

approximate policy many sensitive data has been581

falsely identified as non-sensitive, S-DPSGD does582

not protect these false negative samples and hence583

a privacy leakage.584
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Figure 4: Membership inference attack result. CRT at-
tains nearly 50% accuracy, indicating that the adversary
could not infer whether a data point is used for training.
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Figure 5: Group membership inference attack result.

For membership inference attack, we compare585

the inference accuracy with the benchmark value of 586

0.5, which equals the random guess performance. 587

In Figure 4 and 5, we see that DR-DPSGD-LSTM 588

and DR-DPSGD-GPT align well with the 0.5 hor- 589

izontal line, suggesting that they are rather safe 590

to the attack. The inference accuracy for No- 591

DP-LSTM/No-DP-GPT/S-DP-LSTM, in contrast, 592

surges above 0.5 as the false negative rate γ devi- 593

ates from 0.0, indicating that these models become 594

vulnerable to the attack under non-perfect screen 595

policy. In addition, No-DP and S-DP models show 596

even worse protection under the group attack than 597

the individual one in view of a higher inference 598

accuracy at certain γ. 599

5.4 CRT amplifies Bayesian Confidentiality 600

guarantees 601

Figure 6 shows that confidentially redacted train- 602

ing can help to amplify the confidentiality guaran- 603

tees. We set the ϵ′ in DP-SGD fixed and show the 604

corresponding ϵ in Bayesian Confidentiality with 605

different screen policy π. Both ϵ′ and ϵ are for 606

δ = 8e− 5. If the approximately screening policy 607

π has a high recall (γ is small), we will achieve 608

much improvement in the Bayesian Confidentiality 609

parameter ϵ by deduplication and redaction. For 610

example, with (ϵ′ = 1.0, γ = 0.1), we reduce the 611

ϵ to 0.2. 612

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 fo
r B

ay
es

ia
n 

Co
nf

id
en

tia
lit

y

′ = 3.0
′ = 2.0
′ = 1.0

Figure 6: Bayesian Confidentiality amplification result.
CRT helps to amplify the confidentiality guarantee.

6 Conclusion 613

In this paper, we propose confidentially redacted 614

training (CRT), a method to train language models 615

while protecting the secret texts. We introduce a 616

new definition of confidentiality which quantifies 617

the risk of leaking sensitive content. We prove the 618

effectiveness of CRT both theoretically and empiri- 619

cally on multiple datasets and language models. 620
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7 Broader Impact621

This work will alleviate ethical concerns of large-622

scale pre-trained language models. This paper pro-623

vides one promising solution to an important as-624

pect of NLP: training high quality language models625

for text generation without compromising confi-626

dential information. The current use cases of lan-627

guage models involve pretraining on public web628

corpus and fine-tuning on individual application629

data. However, the private application specific data630

often contains user-generated sensitive information.631

The proposed method in this paper aims to use632

as much individual fine-tuning data as possible,633

while does not leak or memorize any confidential634

information with provable guarantees. Without the635

method, one has to either use the general pretrain-636

ing LM without fine-tuning or manually filter sen-637

sitive information and fine-tuning on the remaining.638

It can be applied in broader applications that needs639

language models or text generation models.640

In our experiments, we use a simulation scheme641

to mimic confidential content in a real corpus. We642

did not compromise any real user’s confidential643

information.644
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A Appendix 767

A.1 Illustration of our proposed algorithm 768

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hi robot. It’s me again.

SYS: What is your full name?

USR: James Bing.

SYS: Is your shipping address still
81171 Nguyen Ford North 
Crystalbury, MO 52398?

USR: Yes!

SYS: The tracking number is KHSIDHUE25. 
What else can I do?

USR: Nothing else. Thank you!

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Raw dataset
SYS: Hello, I am the customer support 

bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Redaction with an
approximate policy
with balanced
precision/recall.

Deduplication
with a Bloom filter.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hi robot. It’s me again.

SYS: What is your full name?

USR: James Bing.

SYS: Is your shipping address still
81171 Nguyen Ford North 
Crystalbury, MO 52398?

USR: Yes!

SYS: The tracking number is KHSIDHUE25. 
What else can I do?

USR: Nothing else. Thank you!

Pre-processed dataset

(Noise added to the
gradients of all data
points with a <MASK>
or selected by a
conservative policy with
nearly perfect recall.

Selective noise-
adding DP-SGD<MASK>

<MASK>

<MASK>

<MASK>

<MASK>

<MASK>

with provable confidentiality.

<MASK>

Figure 7: An illustration of our proposed algorithm on a dataset with two data points. The first data point is the
example from Figure 1, and the second data point is modified to illustrate the various aspects of the pre-processing
steps. The red-colored mask indicates the masks produced by deduplication just for illustration purposes. In the
algorithm, both of them replace a sequence of tokens with the same special token <MASK>.

A.2 Proofs of Technical Results 769

Proof of Proposition 5. The first statement straigtforwardly follows from that Redactπ(D) = 770

Redactπ(D
′) if π(s, x) = 1 and that Redactπ(D) and Redactπ(D

′) remain a pair of neighbors differing 771

by only x. The group confidentiality claims follows from the standard calculation of small group privacy 772

from differential privacy, which applies the (single x) confidentiality iteratively. Let D̃ = Redactπ(D), 773

D̃′ = Redactπ(D
′) and S̃ = [x1, ..., xk̃] be the list of S that are not masked by π. For any measurable 774

event E 775

P[A ◦ Redactπ(D) ∈ E] = P[A(D̃)] ≤ eϵx1P[A(D̃−x1,+<MASK>) ∈ E] + δ 776

≤eϵx1+ϵ(x2)P[A(D̃−x1,2,+<MASK>2) ∈ E] + eϵx1δ + δ 777

... 778

≤e
∑k̃

i=1 ϵxiP[A(D̃′) ∈ E] + δ(1 + eϵx1 + eϵx1+ϵx2 + ...+ eϵx1+...+ϵxk̃−1) 779

≤eϵ̃(S)P[A ◦ Redactπ(D′) ∈ E] + keϵ̃(S)δ 780

781

Proof of Proposition 6. Consider a dataset D (in which one of the data point has x ∼ µ) and a fixed D′. 782

Denote the probability distributions p, q, r as shorthands for 783

p ∼ A ◦ Redactπ(D)|π(s, x) = 1 784

q ∼ A ◦ Redactπ(D)|π(s, x) = 0 785

r ∼ A ◦ Redactπ(D′)|π(s, x) = 0 786

Moreover, we use αp+ (1− α)q to denote the mixture distribution that samples from p with probability 787

α and q with probability 1− α. 788

Recall that the Hockey-Stick-divergence characterization of (ϵ, δ)-indistinguishsability (Barthe and
Olmedo, 2013), which says that (P,Q) are (ϵ, δ)-indistinguishsable if and only if

Heϵ(P∥Q) := Ey∼Q[(
dP

dQ
(y)− eϵ)+] ≤ δ.
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It suffices for us to bound the following quantity:789

H1+γ(eϵ−1)(A ◦ Redactπ(D)∥A ◦ Redactπ(D′)) = Heϵ((1− γ)p+ γq∥(1− γ)p+ γr)790

=γHeϵ(q∥(1− β)p+ βr) ≤ γ ((1− β)Heϵ(q∥p) + βHeϵ(q∥r))791

where β = 1+γ(eϵ−1)
eϵ . In the above, the second line follows from Theorem 2 of (Balle et al., 2018) (an792

identity called “Advanced Joint Convexity” by the authors) and the inequality is due to the (standard) joint793

convexity of the Hockey-Stick divergence. It remains to bound Heϵ(q∥p) and Heϵ(q∥r).794

Check that p, r,A ◦ Redactπ(D′) are identically distributed and that Heϵ(q∥r) ≤ δ by our assumption795

on A’s Bayesian confidentiality guarantee w.r.t. µ(x|π(s, x) = 0). This completes the proof.796

Proof of Proposition 7. The proof is straightforward as Dedup(D) differs from Dedup(D′) only by797

Unique(S).798

Proof of Theorem 8. The proof for the first statement follows from the fact that DP implies (ϵ, δ)-799

confidentiality and Proposition 5. Notably, if πc catches all x that is missed by π, then we get that800

for all secret x, ϵ(x) ≤ ϵ.801

The proof of the second statement applies Proposition 7 and the second part of Proposition 5.802

The proof of the third statement applies Proposition 6 but requires a separate treatment of the case when803

x is missed by both π and πc. Let the event that a secret x is not selected by the conservative policy be E804

and let A be a generic algorithm satisfying (ϵ, δ1) Bayesian confidentiality under µ,805

P[A(D) ∈ S] ≤ P[A ◦ Redactπ(D) ∈ S ⊂ Ec] + δ806

≤ eϵP[A(D′) ∈ S ⊂ Ec] + δ1 + δ2807

≤ eϵP[A(D′) ∈ S] + δ1 + δ2.808

This completes the proof.809

A.3 More Details on Experiments810

We choose the one-layer LSTM with an embedding size of 200 and a hidden size of 200. We choose811

distill-gpt25 as the GPT-2 model, which has 6 layers, 768 dimension and 12 heads. Vocabulary size812

for GPT-2 is 50257. Our experiments are conducted on NVIDIA TITAN-Xp GPU. For LSTM models,813

we tune the hyperparameters of the learning rate (lr) among {20, 10, 5, 1, 0.1, 0.05, 0.01}, batch size814

(bs) and the epochs among {5, 10, 30, 50, 100}. We finally choose {lr=20, bs=256, epochs=50} for815

No-DP-LSTM, {lr=0.1, bs=5, epochs=50} for S-DPSGD-LSTM and {lr=0.05, bs=10, epochs=100} for816

CRT-LSTM. The same set of hyperparameters are tuned for GPT model as well. Our final choice for817

DPSGD-GPT/CRT-GPT model is {lr=5e-4, bs=256, epochs=10}. The actual run-time of algorithms818

depends on implementation details. Here, we outline estimates of the run-time for training. Running one819

epoch on CRT-LSTM takes 2 hours wheras the same task on CRT-GPT only takes 20 minutes since the820

implementation of Li et al. (2021) is highly efficient. We use autodp6, an automating differential privacy821

computation for the privacy analysis. Noise scale σ is calculated numerically so that a DP budget of (ϵ, δ)822

is spent after T epochs.823

A.4 Membership Inference Attack Details824

In our experiments, we manually construct a dataset with 2000 sequences. We select 1000 sequences from825

the protected secrets used in the training data. And we randomly generate 1000 samples of similar format826

which are not used in the training data. In this way, a random guess generates an accuracy of 50%. For827

WikiText-2, since digits are protected, we use sentences with digits as the secrets. For CustomerSim, we828

choose customer addresses as the secrets.829

In order to show group confidentiality guarantees, we also conduct group membership inference attack.830

In this setting, we construct a dataset with 2000 groups, each of which includes 20 sentences. One half of831

5https://huggingface.co/distilgpt2
6https://github.com/yuxiangw/autodp
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the groups are “sensitive groups" with all 20 sentences drawn from protected secrets and the other half are 832

"insensitive groups" with all 20 sentences being random. We build the classifier based on the sum of the 833

perplexities in one group. 834

A.5 “The devil is in the details” – how things could go wrong with seemingly inocuous changes to 835

the algorithm. 836

In this section, we highlight various aspects of our algorithms and why certain choices in the pre-processing 837

steps need to be done in the specific way we recommend for our results to hold for them. 838

1. It is important that the definition of confidentiality is defined with respect to a perfectly redacted 839

version of the dataset. If we define it as in selective differential privacy, then there will not be an 840

amplification effect from redaction. This is because if we replace a secret x that can be detected 841

by π with another x′ that cannot be detected by π, then even if x is replaced with <MASK>, x′ will 842

not be and the two datasets are still different after redaction. In addition, the S-DP definition will 843

not be useful for us we do not know how to define a confidentiality parameter specific for each x or 844

Bayesian confidentiality parameter for each µ 845

2. Tokenization and splitting into individual “sentences” (data points) should go before redaction / de- 846

duplication. Otherwise redaction with an approximate screening policy and with an ideal screening 847

policy, or deduplication may cause misalignments, resulting in almost all data points being different 848

in the preprocessed version of D and D′. 849

3. Each data point should contain only “whole” natural sentences, otherwise the sensitive part of a 850

natural sentence could split into two data points. 851

4. Deduplication steps should replace duplicate text with the same <MASK>, otherwise 852

<MASK_Dedup> and <MASK_Redact> are not the same so even if all secrets are masked, there 853

will be a difference between the pre-processed versions of D and its neighbor, while in our approach 854

there are no differences and we achieve perfect confidentility (with ϵ = 0). 855

5. Any data point containing <MASK> needs to be put in Dpri. This is because otherwise our algorithm 856

that works on D′ will be a deterministic algorithm that is perfectly distinguishable from the alternative 857

world where the algorithm is random because the approximate policy π fails to redact certain secrets 858

x. 859

6. In the DP-SGD algorithm, the sampled minibatches should contain the whole minibatch from Dpri 860

or the whole minibatch from Dpub. Otherwise the noise always need to be added and the algorithm is 861

identical to the vanilla DP-SGD, and there is no benefit of having a portion of the data being public 862

comparing to all of the data are private. 863
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