

CULTURALLY GROUNDED REAL-WORLD EVALUATION OF KOREAN VISION–LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

VLMs perform well on standard benchmarks, yet their performance on authentic, culturally grounded tasks remains underexplored. We introduce HAERAE-VISION, a Korean real-world benchmark built from 86,052 question–image pairs across nine online platforms. Through a six-stage pipeline that applies appropriateness filtering, difficulty calibration, image dependency verification, checklist-based decomposition, and multi-phase human validation, we curate 653 rigorously validated items across 13 domains (0.76% survival). Each item is paired with a structured checklist rubric, enabling fine-grained evaluation beyond single-point correctness. We evaluate 39 VLMs spanning proprietary, open-weight, and Korean-specialized families under a unified protocol, and scoring with LLM judges demonstrates high reliability (Krippendorff’s $\alpha = 0.867$). Even the strongest systems (Gemini 2.5 Pro, GPT-5) remain below 50% accuracy, with errors concentrated in explicitness and procedural reasoning, while Korean-specialized models show no clear advantage over multilingual counterparts. These findings highlight persistent gaps in real-world multimodal reasoning. Our work further offers a reproducible methodology for constructing robust, culturally grounded benchmarks across languages.

1 INTRODUCTION

Why another cultural benchmark? Cultural benchmarks have been studied in both language-only and multimodal settings (Kiela et al., 2021; Liang et al., 2022; Kim & Jung, 2025; Ju et al., 2024; Son et al., 2023). Much of this work, however, adopts a narrow view of culture that emphasizes shallow, factoid-style tasks (e.g., identifying foods such as kimchi) (Park et al., 2024; Jeong et al., 2025). We instead treat culture as a broader communicative context: how native speakers actually converse, including colloquialisms, slang, elliptical phrasing, and other pragmatic cues, not merely region-specific facts. Moreover, existing evaluations often present clean, fully contextualized questions, whereas real user queries are messy, under-specified, and informal. This mismatch likely explains part of the gap between benchmark scores and real-world VLM performance (Li et al., 2025).

Online communities offer a promising source of authentic data: they contain organically occurring multimodal questions that reflect users' real information needs and communicative styles (Chen et al., 2024). Korean platforms span cultural practices, technical forums, and everyday problem-solving, making them an ideal setting for a culturally grounded benchmark. In this work, we curate 86,052 question–image pairs and process them through a six-stage pipeline to construct **HAERAE-Vision**. Each instance is open-ended and paired with solution-specific checklists, and model outputs are evaluated with LLM-based judges (Kim et al., 2024; Lee et al., 2024; Bai et al., 2024). This design both builds on and departs from prior Korean benchmarks that are primarily multiple-choice (Hwang et al., 2025).

The resulting benchmark presents a substantially more challenging task than prior Korean datasets. Even the strongest proprietary models, Gemini 2.5 Pro and GPT-5, reach only 48.54 and 48.01, respectively. By contrast, earlier Korean benchmarks report notably higher scores with older-generation models such as GPT-4o (e.g., KRETA (Hwang et al., 2025): 84.6; K-VISCUIT (Park et al., 2024): 89.5; K-MMB: 81.01; K-SEED: 76.98; K-DTCBench: 85.80 (Ju et al., 2024)). These gaps suggest that **HAERAE-Vision** captures underrepresented phenomena and sets a more realistic baseline for future Korean NLP benchmarks.

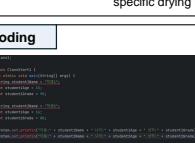
054	Natural Objects (Animals/Plants/Insects)		Question: 제주도 바다에서 본 생물 질문합니다. 사진에 있는 저 지렁이 같은 게 뭘까요? (I have a question about a marine organism I saw in the sea around Jeju Island. What is that worm-like creature in the photo?) Checklist: 1. 답변에 '당근고둥'이라는 정확한 명칭이 포함되었나요? (Does the answer include the accurate name 'Dendropoma maxima' (Donggunggogong)?) 2. 답변에서 '지렁이'가 아닌 '달팽이'임을 명확히 구분했나요? (Does the answer clearly distinguish that it is a 'snail' rather than a 'worm')?	055	Daily Life		Question: 강아지가 이런 패턴을 뜯어서 새로 붙이려 하는데 이런 건 어디서 살 수 있을까요? (My dog tore off this wood-grain baseboard (skirting board). Where can I buy the same type to replace it?) Checklist: 1. 제품 명칭을 '목재걸레받이'로 정확히 지칭했나요? (Does the answer correctly identify the product as wooden skirting board?) 2. '목재걸레받이'를 검색하여 온라인 구매를 권장했나요? (Does the answer recommend searching for and purchasing a 'wooden skirting board')?
056				057	Automotive/Transportation		Question: 자동차 핸들 위 둥그라미 친 이 장치는 뭐하는 용도인가요? (What is the purpose of this circled device above the car steering wheel?) Checklist: 1. 해당 답변이 장치를 운전자 감시 카메라(DMS)로 정확히 지칭하고 있나요? (Does the answer correctly identify the device as 'Driver Monitoring System (DMS)')? 2. 해당 답변이 운전자의 출석운전·주의 산만을 모니터링하는 기능을 설명하고 있나요? (Does the answer explain the function of monitoring driver drowsiness and distraction?)
058				059	Science		Question: 일반세균수 검사를 진행했는데 전부 이런 식으로 오염됐어요. 무슨 굳이 오염된 걸까요? 이것 때문에 산출도 못하고 있습니다. (I conducted a general bacteria count test, but everything got contaminated like this. What kind of contamination could this be?) Checklist: 1. 해당 답변은 배지 표면이 완전히 건조되지 않아 오염이 발생했음을 설명하고 있나요? (Does the answer explain that contamination occurred because the medium surface was not fully dried?) 2. 해당 답변은 배지 건조 시간(1~2시간) 및 구체적 건조 방법을 제시하고 있나요? (Does the answer suggest a drying time of 1~2 hours and provide specific drying methods for the medium?)
060				061	Coding		Question: Question에 String타입 변수 정의할 때 뺄간줄이 발생하는지 모르겠습니다. 인텔리제이션으로 새 프로젝트를 시작하면서 뭔가 달라진 걸까요...? (I don't understand why a red underline appears when defining a String variable. Did something change when I started a new project in IntelliJ?) Checklist: 1. 답변에 프로젝트 경로에 한글(또는 비-ASCII 문자) 포함 시 String 타입 정의 시 오류가 발생할 수 있다고 설명하고 있나요? (Does the answer explain that an error may occur when defining a String type if the project path contains Korean (or non-ASCII) characters?) 2. 답변에 프로젝트 경로를 영어로 변경하거나 File → Invalidate Caches & Restart로 IDE 캐시를 초기화하라고 안내하고 있나요? (Does the answer suggest changing the project path to English or using File → Invalidate Caches & Restart to reset the IDE cache?)
062				063			
064				065			
066				067			
068	Math		Question: 해당 내용은 너무 간결하게 되어서 풀이과정이 어렵네요. 각도 50도, 각도 50도가 무조건 50각이라는 보장이 있는 건지 (The solution is too concise, so the solving process is difficult to follow. Is there a guarantee that $\angle A$ and $\angle B$ are always 50°?) Checklist: 1. 해당 답변은 접힌 도형에서 겹치는 각이 대칭이므로 같다는 원리를 설명하고 있나요? (Does the answer explain the principle that overlapping angles in a folded figure are symmetric and therefore equal?) 2. 해당 답변은 삼각형의 세 각의 합이 180°임을 이용해 각 \angle 을 80°로 구하는 과정을 포함하고 있나요? (Does the answer use the fact that the sum of the three angles of a triangle is 180° to solve for $\angle C = 80^\circ$?)	069			
070				071			
071				072			
072				073			
073				074			
074				075			
075				076			

Figure 1: Representative examples from **HAERAE-Vision** across four of the 13 domains. Each example shows a Korean question with English translation, the corresponding image, and a truncated checklist of evaluation criteria (showing two items for brevity).

tic, demanding target for real-world performance that stresses not only cultural grounding but also general multimodal reasoning.

Our contributions are:

- **Authentic, curated data:** Starting from 86,052 question–image pairs across nine platforms, we apply rigorous filtering to produce 653 high-quality items covering 13 domains (0.76% survival).
- **Systematic quality pipeline:** A six-stage process combining appropriateness filtering, difficulty calibration, image dependency verification, checklist-based decomposition, and multi-phase human review.
- **Cultural grounding:** Tasks require Korean-specific knowledge (e.g., transport systems, cultural artifacts, colloquial visual cues) rarely represented in global benchmarks.
- **Replicable methodology:** A general pipeline and checklist-based evaluation framework that can be applied across languages and domains.

2 HAERAE-VISION

We present **HAERAE-Vision** not only as a benchmark but also as a methodological contribution: a principled, reproducible pipeline for transforming large-scale, noisy community data into high-quality multimodal evaluation problems. Our pipeline is intentionally designed to be generalizable across languages and cultures, enabling its direct application to other populations and domains.

2.1 DATASET CONSTRUCTION PIPELINE

We design a six-stage filtering pipeline that progressively removes noise while preserving authenticity and difficulty. Starting from 86,052 raw question–image pairs from nine Korean platforms, including general Q&A (KnowledgeIn), specialized communities (BRIC, Ruliweb, MonsterZym, Quasarzone), business platforms (i-Boss), and coding forums (Inflearn, Codeit, Okky), we obtain

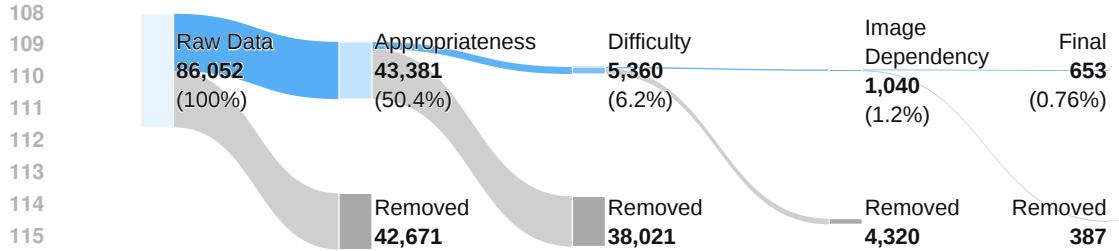


Figure 2: Count-based filtering funnel. Blocks show remaining items after each filter; percentages are relative to the raw set (86,052). The checklist-derivation step does not change counts and is omitted. The last block (*Human Validation*) reports the final dataset size (653).

653 high-quality evaluation problems (0.76% survival rate). Figure 2 illustrates the data reduction across stages.

Stage 1: Data Collection. Collect question–answer pairs containing images, prioritizing questions with adopted answers on KnowledgeIn (indicating asker-validated quality) and those with high engagement metrics (views, likes, comments) to capture questions that the community finds valuable.

Stage 2: Appropriateness Assessment. Each pair is screened along three axes: content safety (political/religious material, hate/discrimination, self-harm, adult content), objectivity (subjective or unverifiable prompts), and temporal stability (time-sensitive queries). Three tailored GPT-4o prompts return structured JSON flags for each axis. This stage filters out 42.7% of the raw data, ensuring that the remaining items are safe, verifiable, and temporally stable (Appendix B).

Stage 3: Difficulty Calibration. To prevent benchmark saturation, we remove questions that are trivially easy across models. Multiple strong models (GPT-4o, Gemini-1.5-Flash, Claude-3.5) are prompted with the ground-truth answer bundle, and their responses are scored for overlap (0–1). Items with consensus scores above 0.6 are excluded. This stage produces the largest reduction (87.6%), ensuring that the final dataset remains challenging even for state-of-the-art systems.

Stage 4: Image Dependency Verification. Verify that each question genuinely requires visual reasoning. For each item, a lightweight multimodal model (Gemini 2.0 Flash) generates answers with and without image access. An LLM rubric then labels the item as *image-required*, *no-image-needed*, or *uncertain* and assigns a 1–5 quality-gap score. Only items labeled as *image-required* are retained, ensuring that solving the problem cannot be reduced to text-only reasoning.

Stage 5: Checklist Generation. Convert answers into structured checklists containing 1–5 criteria, generated by o4-mini. These checklists capture the minimum necessary elements rather than exhaustive content, focusing on correctness, explanation, and reasoning steps. This design enables partial credit scoring and supports reproducible, automated evaluation across models.

Stage 6: Human Validation. Conduct a three-phase human validation with seven Korean-speaking annotators possessing relevant domain expertise. Phase 1 applies conservative filtering, removing any item flagged by either of two annotators. Phase 2 refines questions and regenerates or edits checklists for clarity. Phase 3 performs a final audit, consolidating categories and ensuring consistency. This rigorous process removes 31.4% of the remaining items, yielding a high-quality final set of 653 problems.

Together, these stages form a generalizable benchmark construction recipe that balances authenticity, difficulty, and cultural relevance. Beyond the Korean case, this pipeline can be directly applied to other languages and domains to produce culturally grounded multimodal benchmarks.

2.2 DATASET STATISTICS

Our final benchmark contains 653 problems with an average of 3.3 checklist items and 1.3 images per question, illustrating the multimodal nature of authentic community queries. Figure 3 presents the distribution across 13 categories, where Natural Objects and Gaming are the most represented, underscoring the visually oriented nature of community-driven questions. Platform survival rates

Figure 3: Overview of **HAERAE-Vision**. Left: domain distribution across 13 categories. Right: summary statistics of question length, number of images, and checklist items, highlighting the diversity and multimodal nature of the benchmark.

vary significantly (0.2% to 14.4%), showing distinct community characteristics. Scientific communities show high content appropriateness but lower image dependency, while visual-oriented platforms like gaming communities demonstrate the opposite pattern (detailed breakdown in Appendix D).

2.3 KOREAN CULTURAL GROUNDING

Our benchmark includes questions that require distinctively Korean cultural and linguistic knowledge, setting it apart from translated or synthetic datasets. Figure 4 shows representative examples spanning traditional culture (Korean paintings with classical calligraphy), modern technology (Seoul subway navigation, TV interfaces), entertainment (recognizing Korean actors in drama scenes), and historical documents (family registries). These culturally embedded questions constitute about one quarter of the dataset (23.7%) and often demand knowledge beyond what is captured in general-purpose training corpora.

Figure 4: Examples highlighting the cultural specificity of **HAERAE-Vision**: (a) Seoul subway interface, (b) traditional painting with calligraphy, (c) Korean drama scene requiring celebrity recognition, (d) TV channel settings, (e) historical family registry. Such culturally grounded items require knowledge rarely represented in English-centric datasets.

2.4 EVALUATION FRAMEWORK

Checklist-based Assessment. Our evaluation methodology centers on detailed checklists that decompose complex answers into specific, measurable criteria. Each problem includes 1–5 evaluation points that assess different aspects of model understanding and reasoning capability. This checklist

216 Table 1: Performance by category groups. For model families with multiple sizes, only the largest
 217 variant is shown. Full results across all model sizes and detailed 13-category breakdowns are in
 218 Appendix E. All scores are reported as mean_{SE}, where SE is the standard error over 3 independent
 219 runs (n=3).

Model	Entertainment	Scientific	Technical	Daily Life	Overall
<i>Proprietary Models</i>					
Gemini 2.5 Pro	40.52 _{0.61}	51.44 _{0.40}	53.89 _{0.79}	52.64 _{0.93}	48.54 _{0.11}
GPT-5	33.07 _{0.87}	48.14 _{0.96}	55.71 _{0.84}	55.98 _{0.75}	48.01 _{0.19}
GPT-5 Mini	27.38 _{0.81}	50.62 _{0.93}	51.88 _{0.74}	51.31 _{1.32}	45.21 _{0.70}
Perplexity Sonar-Pro	32.84 _{0.76}	47.98 _{0.59}	47.17 _{1.23}	49.64 _{0.64}	44.28 _{0.48}
Gemini 2.5 Flash	29.31 _{1.09}	45.04 _{0.98}	44.05 _{0.53}	48.72 _{1.38}	41.05 _{0.79}
Grok-4	26.88 _{0.67}	31.03 _{0.64}	44.18 _{0.80}	39.67 _{0.55}	36.08 _{0.30}
Gemini 2.5 Flash-Lite	18.39 _{0.59}	38.17 _{1.47}	32.74 _{0.84}	35.47 _{0.92}	30.29 _{0.24}
GPT-5 Nano	11.64 _{0.53}	20.10 _{1.24}	27.15 _{1.36}	29.68 _{0.54}	21.22 _{0.26}
<i>Open-source Models</i>					
Skywork-R1V3-38B	15.03 _{0.73}	35.31 _{0.88}	30.22 _{0.49}	33.75 _{0.72}	27.76 _{0.34}
Mistral Medium 3.1	13.74 _{0.80}	30.77 _{0.86}	28.87 _{0.67}	28.78 _{1.01}	24.86 _{0.56}
Gemma-3 27B	11.59 _{0.58}	25.80 _{0.61}	22.28 _{1.04}	30.85 _{0.61}	22.53 _{0.16}
Qwen2.5-VL-72B	10.89 _{0.66}	26.71 _{1.49}	21.60 _{0.53}	25.61 _{0.52}	20.58 _{0.46}
Pixtral Large	11.43 _{0.82}	21.79 _{0.50}	21.77 _{0.38}	25.65 _{0.91}	20.10 _{0.24}
InternVL3.5-38B	8.81 _{0.46}	23.25 _{0.61}	17.92 _{0.73}	23.36 _{0.78}	18.01 _{0.22}
Ovis2-34B	9.52 _{0.47}	21.88 _{0.55}	21.00 _{0.51}	24.82 _{0.58}	18.50 _{0.02}
Mistral Small 24B	6.46 _{0.29}	10.18 _{0.45}	13.30 _{0.66}	16.20 _{0.66}	11.20 _{0.01}
<i>Korean-specialized Models</i>					
VARCO-VISION 2.0 (14B)	7.87 _{0.80}	16.56 _{0.65}	16.88 _{0.57}	22.13 _{0.88}	15.55 _{0.29}
HyperCLOVA X-SEED-3B	6.25 _{0.25}	14.87 _{0.51}	11.99 _{0.50}	17.93 _{0.73}	12.66 _{0.10}

241 approach provides several advantages over traditional scoring methods: (1) Fine-grained assessment
 242 of partial understanding, (2) Reduced subjectivity through explicit criteria, (3) Diagnostic capability
 243 for pinpointing model weaknesses, (4) Scalability for automated evaluation, and (5) Reproducibility
 244 and transparency through structured outputs that allow independent re-scoring or cross-judge
 245 validation.

246 **LLM Judge Protocol.** We employ GPT-5-mini as our primary judge, using a structured prompt that
 247 enforces consistent scoring across all problems. Each checklist item is scored on a three-level scale:
 248 *met* (1.0), *partially met* (0.5), or *not met* (0.0), based on explicit evidence in the model’s response.
 249 The judge follows strict criteria: completeness statements (“all”, “every”) require explicit mentions
 250 for full credit, method explanations must include concrete steps, and multi-part requirements need
 251 at least two distinct examples. Every score is accompanied by supporting evidence, including direct
 252 quotes for positive scores or brief explanations for failures, to ensure auditability. The output is
 253 returned in a structured format with evidence blocks and fractional scores (e.g., “3.5/5” when two
 254 items are partially satisfied and three are fully met). We then parse these outputs programmatically
 255 to ensure consistent, reproducible evaluation across all 653 problems and 39 models.

257 3 EXPERIMENTAL SETUP

259 3.1 MODEL SELECTION

261 We evaluated 39 vision-language models (VLMs) spanning diverse families and scales. This
 262 included OpenAI’s GPT-5 series (GPT-5, GPT-5-Mini, GPT-5-Nano (OpenAI, 2025)),
 263 Google’s Gemini (2.5-Pro/Flash/Flash-Lite) and Gemma-3 (27B/12B/4B) (Google DeepMind,
 264 2025; Gemma Team, Google DeepMind, 2025), and proprietary systems on OpenRouter such
 265 as Perplexity-Sonar-Pro (Perplexity AI, 2025), xAI-Grok-4 (xAI, 2025), and several
 266 Mistral (Medium-3.1, Small-24B) and Pixtral (Large, 12B) models (Mistral AI, 2024;
 267 Agrawal et al., 2024). We further incorporated Skywork-R1V3-38B (Shen et al., 2025),
 268 AIDC-AI-Ovis2 (34B-1B) (Lu et al., 2025), and InternVL3.5 (38B-1B) (Wang et al., 2025).
 269 Finally, we tested Qwen2.5-VL (72B/7B/3B) (Bai et al., 2025), HyperCLOVA-3B (Yoo et al.,
 270 2024), and VARCO-VISION-2.0 (14B/1.7B) (NCSOFT AI Center, 2025).

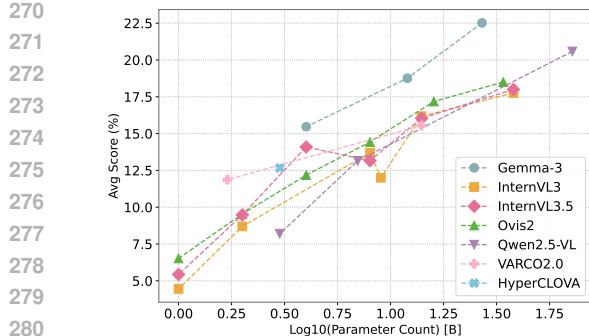


Figure 5: Performance scaling with model parameter count. Accuracy improves up to ~ 10 B parameters but shows diminishing returns thereafter, indicating that benchmark difficulty is not solved by naive scaling.

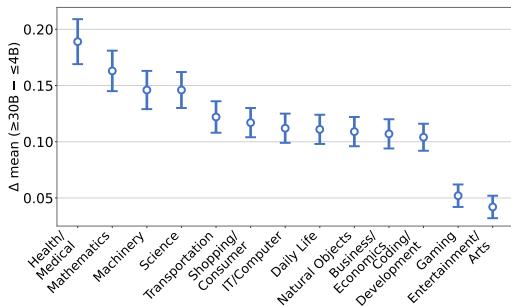


Figure 6: Domain-level results. Health/Medical shows the highest scores while Entertainment/Gaming remains hardest, confirming that culturally grounded tasks are especially challenging even for large models.

3.2 IMPLEMENTATION DETAILS

We standardized decoding parameters across all models using `temperature=0.6`, `top_p=0.95`, and `max_tokens=4096`, and evaluated each question-image pair three times, averaging the scores to reduce variance. Open-weight models with ≤ 35 B parameters were run locally on two NVIDIA H100 GPUs, while larger models (> 35 B) and proprietary models were accessed via the OpenRouter API with identical decoding parameters to ensure consistency. All model outputs were scored using GPT-5-mini as the evaluation judge with `temperature=1.0`.

4 RESULTS AND ANALYSIS

4.1 OVERALL PERFORMANCE

Table 1 summarizes the performance of 39 evaluated VLMs across four major category groups. Even the best-performing models—Gemini 2.5 Pro (48.5%) and GPT-5 (48.0%)—fall short of 50% accuracy, highlighting that authentic, culturally grounded multimodal queries remain far from solved. Proprietary systems consistently outperform open-weight counterparts, with the strongest open-weight models (Skywork-R1V3-38B: 27.8%, Qwen2.5-VL-72B: 25.3%) reaching roughly half the accuracy of top proprietary models. Neither search-augmented models (Perplexity Sonar-Pro: 44.3%) nor reasoning-specialized models (Skywork-R1V3) achieve notable gains, suggesting that solving this benchmark requires capabilities beyond current retrieval-augmented or reasoning-optimized architectures.

Korean-specialized models also struggled to achieve competitive results (VARCO-VISION 2.0 14B: 15.6%, HyperCLOVA X-SEED-3B: 12.7%), indicating that dedicated local models have yet to demonstrate clear advantages on this benchmark. Full per-model and per-domain results are provided in Appendix E.

4.2 PERFORMANCE BY MODEL SCALE

Grouping models by size tiers (Small ≤ 4 B, Medium 8–14B, Large ≥ 30 B) reveals a clear monotonic scaling effect. Large models achieve a mean score of 0.3009 (95% CI [0.2974, 0.3046], $n = 31,338$), more than double Medium (0.1460) and over triple Small (0.0854). All pairwise differences are statistically significant (permutation $p \approx 0.001$) with substantial effect sizes (Large–Small $\Delta = +0.2155$, Cohen’s $d \approx 0.78$). This pattern remains robust even when aggregating across runs (Large 0.2030 vs Small 0.0854), confirming that the scale effect is not an artifact of evaluation variance.

At the family level, commercial systems (Gemini, GPT, Sonar) consistently outperform open-weight models (e.g., InternVL3), with effect sizes in the $d = 0.7$ –1.2 range (e.g., Gemini-2.5-Pro vs In-

324 Table 2: Checklist rule statistics showing binary score distribution. The scores are averaged across
 325 models and domains.

Rule	p(0.0)	p(1.0)	avg_met	95% CI
Explicitness	92.1%	7.9%	0.079	0.075–0.084
Variety	90.1%	9.9%	0.099	0.089–0.109
Unknown	89.1%	10.9%	0.109	0.104–0.115
Synonym	88.0%	12.0%	0.120	0.097–0.143
Method	87.4%	12.6%	0.126	0.122–0.130
Completeness	87.4%	12.6%	0.126	0.116–0.136

334
 335 ternVL3 $\Delta \approx 0.49$, $d \approx 1.21$). The plateau beyond $\sim 10B$ parameters (Figure 5) highlights that
 336 model size alone is insufficient to close the performance gap, suggesting that improvements in rea-
 337 soning and cultural grounding are needed rather than just scaling.

339 4.3 PERFORMANCE BY DOMAIN

341 Performance varies widely across the 13 domains (global mean = 0.1987, range 0.1179–0.332).
 342 Health/Medical achieves the highest checklist satisfaction (0.332), followed by Science (0.250),
 343 while Entertainment/Arts (0.118) and Gaming (0.119) remain the most challenging. Within all do-
 344 mains, large models ($\geq 30B$) consistently outperform small models ($\leq 4B$) (permutation $p < 0.05$),
 345 with the largest gains in Health/Medical ($\Delta = +0.189$) and Mathematics ($\Delta = +0.163$). Even
 346 in Gaming and Entertainment, scale effects remain positive though absolute performance stays low
 347 (Figure 6).

349 4.4 ERROR ANALYSIS

351 We analyzed 59k checklist items across six rule types: EXPLICITNESS, VARIETY, METHOD, COM-
 352 PLETENESS, SYNONYM, and UNKNOWN. Table 2 shows that failures concentrate in EXPLICITNESS
 353 (92.1% unmet) and VARIETY (90.1%), indicating that models often omit key terms and fail to enu-
 354 merate required items. METHOD and COMPLETENESS fare slightly better (12.6% success each) but
 355 still expose major gaps in procedural reasoning. Partial credit (0.5) was assigned in under 1% of
 356 cases, so scoring was effectively binary.

357 Illustrative failure cases include:

- 358 • EXPLICITNESS: In medical queries requiring “side effects,” models described symptoms but
 359 omitted the term.
- 360 • VARIETY: In economics tasks asking for multiple risks, models listed only one.
- 361 • METHOD: In scientific problems, models gave only the final answer without steps.
- 362 • COMPLETENESS: In transit comparisons, answers covered system A but omitted system B.
- 363 • SYNONYM: In consumer queries, models failed to equate “sale” with “discount.”

365 We also observe a strong correlation between EXPLICITNESS and METHOD failures ($r = 0.73$),
 366 suggesting that vague responses systematically lack procedural explanations. These patterns are
 367 especially common in entertainment and gaming, where contextual reasoning is critical. Overall,
 368 error analysis highlights that current VLMs struggle most with explicitness and multi-step coverage.
 369 While larger models mitigate these issues somewhat, high failure rates persist, showing that cultural
 370 and procedural reasoning remain unresolved beyond parameter scaling.

372 4.5 EFFECT OF SEARCH-AUGMENTED INFERENCE

373 We evaluated whether enabling online access improves performance by comparing three models
 374 with and without web search capabilities. GPT-5 used its native browsing tool, while Mistral-
 375 Medium-3.1 and Qwen2.5-VL-72B-Instruct accessed the Exa API.

377 Results (Table 3) show no consistent benefit: Mistral sees moderate gains, but GPT-5 and Qwen2.5-
 VL actually perform worse. This can be explained by two limiting factors: language bias, since

378 Table 3: Performance with and without online access. Gains are inconsistent, highlighting limita-
 379 tions of current web search for Korean multimodal queries.
 380

381 Model	382 Offline	383 Online	384 Δ
GPT-5	48.01	46.25	-1.76
Mistral-Medium-3.1	24.86	31.47	+6.61
Qwen2.5-VL-72B-Instruct	25.31	17.24	-8.07

385
 386 Table 4: Inter-judge agreement across four LLM judges. Values show pairwise Pearson correlations
 387 (all > 0.86); Spearman correlations range from 0.866 to 0.901. Overall agreement across all judges
 388 yields Krippendorff’s $\alpha = 0.867$.
 389

390	391 GPT-5-mini	392 GPT-5	393 Gemini-2.5-Pro	394 Gemini-2.5-Flash
GPT-5-mini	1.000	0.868	0.900	0.903
GPT-5	0.868	1.000	0.897	0.863
Gemini-2.5-Pro	0.900	0.897	1.000	0.887
Gemini-2.5-Flash	0.903	0.863	0.887	1.000
Krippendorff’s $\alpha = 0.867$				

395
 396
 397
 398 Korean-relevant webpages are rarely surfaced by current search engines, and the lack of image-
 399 aware retrieval, as search tools cannot incorporate visual context and leave many queries under-
 400 specified. These findings suggest that **HAERAE-Vision** is robust to contamination from search-
 401 augmented models, and as web search improves, it can serve as a framework for tracking progress
 402 in both VLM capabilities and multimodal retrieval systems.
 403

404 4.6 VALIDATION AND RELIABILITY 405

406 We assessed evaluation reliability by measuring inter-judge agreement among four LLM judges
 407 (GPT-5, GPT-5-mini, Gemini-2.5-Pro, Gemini-2.5-Flash). A stratified random sample of 250 model
 408 responses (50 per 0.2-score interval) was re-evaluated under identical protocols. Table 4 shows
 409 consistently high correlations, with Pearson ranging from 0.863 to 0.903 and Spearman from 0.866
 410 to 0.901. Krippendorff’s $\alpha = 0.867$ exceeds the conventional 0.80 threshold, indicating substantial
 411 agreement across models with different architectures.
 412

413 We also measured alignment with human judgments using the same 250-sample dataset. Four inde-
 414 pendent annotators (non-authors) rated GPT-5-mini’s scores on a 5-point appropriateness scale (5 =
 415 very appropriate, 1 = very inappropriate), with each response reviewed by two annotators. The mean
 416 appropriateness score was 4.13 (SD = 1.23), with 73.2% of ratings in the 4–5 range. Inter-annotator
 417 agreement was substantial (Cohen’s $\kappa = 0.493$, Pearson $r = 0.673$, Spearman $\rho = 0.713$), and
 418 ± 1 -point agreement reached 98.4%. These results demonstrate that our LLM-as-a-judge setup pro-
 419 vides a consistent and reproducible evaluation signal, comparable to established benchmarks (Zheng
 420 et al., 2023; Liu et al., 2023). Analysis of low-rated cases shows most failures involved superficial
 421 keyword matching or excessive leniency (examples in G).
 422

423 5 DISCUSSION

424 5.1 CHECKLIST: BEYOND SIMPLE CORRECTNESS

425 Our checklist-based evaluation enforces strict standards that require comprehensive, context-aware
 426 explanations rather than simple answer matching, reflecting authentic user expectations in Korean
 427 online communities where brief correctness alone rarely satisfies information needs. The framework
 428 penalizes superficial responses—for example, simply stating that an insect is a “silverfish” earns no
 429 or partial credit, whereas full credit requires describing its appearance, explaining its habitat and
 430 behavior, and addressing safety implications. This design mirrors the detailed, context-rich answers
 431 valued by real users. Our error analysis supports this approach: models frequently produce correct

432 but incomplete answers, with 92.1% failing explicitness requirements, highlighting a persistent gap
 433 between current VLM outputs and real-world expectations for depth and clarity.
 434

435 **5.2 LIMITATIONS**

436 Our work has several limitations. First, the benchmark is limited to Korean language and cultural
 437 context, though the methodology is designed to generalize to other populations. Second, while the
 438 six-stage pipeline ensures high data quality, the stringent 0.76% survival rate may risk excluding
 439 rare but informative edge cases. Third, checklist-based evaluation relies on predefined criteria that,
 440 while comprehensive, may not capture every nuance of response quality.
 441

442 **5.3 ETHICS AND DATA GOVERNANCE**

443 All data are sourced from public Korean community posts under each site’s terms of use. Sensi-
 444 tive content is filtered, and personally identifiable information is removed or blurred. We release
 445 a balanced 20% development subset covering 12 categories, while the Health/Medical category is
 446 withheld due to privacy constraints. The full 13-category test set is hosted on a rate-limited, anonym-
 447 ous evaluation server to prevent overfitting and support fair model comparison.
 448

449 **6 RELATED WORK**

450 Recent work has highlighted the importance of cultural context in VLM evaluation. Cul-
 451 turalVQA (Nayak et al., 2024) revealed that current models are strongly biased toward high-resource
 452 cultural settings, underscoring the need for culturally grounded benchmarks.
 453

454 In the Korean context, several efforts have advanced cultural integration. K-Viscuit (Park et al.,
 455 2024) emphasizes human-validated, culture-centric multiple-choice VQA, KOFFVQA (Kim &
 456 Jung, 2025) introduces free-form Korean VQA, and Ko-PIQA (Choi et al., 2025) targets Korean
 457 commonsense and culturally grounded plausibility judgments beyond surface cues. Community-
 458 authentic datasets such as VQAonline (Chen et al., 2024) further demonstrate the value of sourcing
 459 real user queries for multimodal evaluation. Nevertheless, these lines of work still leave gaps in
 460 capturing the messy, under-specified multimodal question patterns common in user communities.
 461

462 Concurrently, benchmark research has shifted toward quality-focused evaluation. VLRMBench em-
 463 phasizes systematic error analysis and fine-grained, step-level signals for diagnosing model fail-
 464 ures (Ruan et al., 2025), while LIMO shows that carefully curated, high-fidelity examples can rival
 465 or outperform much larger datasets (Ye et al., 2025). These trends motivate our checklist-based
 466 scoring with LLM judges and our rigorous six-stage curation pipeline.
 467

468 Our work integrates these directions by combining cultural grounding, Korean specialization, and
 469 rigorous data curation. We collect authentic multimodal queries from diverse Korean online commu-
 470 nities and filter them through a six-stage pipeline with consensus-based difficulty filtering and multi-
 471 phase validation. This yields a challenging, high-fidelity benchmark with only 0.76% of initial data
 472 surviving, establishing what we believe to be a principled, replicable framework for cross-cultural
 473 multimodal evaluation that can be extended to other languages and populations.
 474

475 **7 CONCLUSION**

476 We introduce **HAERAE-Vision**, a Korean vision–language benchmark distilled from 86,052 com-
 477 munity questions into 653 rigorously validated items via a six-stage pipeline. The benchmark stress-
 478 tests current systems, with top performers below 50% accuracy and recurring failures in explicitness
 479 and procedural reasoning. Our contributions are a reproducible construction recipe for authentic
 480 multimodal items, culturally grounded tasks, and a checklist-based evaluation with reliable LLM
 481 judging. We release a balanced development subset and host the full test set on a rate-limited server
 482 to enable fair comparison across models.
 483

486 ETHICS STATEMENT
487488 We used ChatGPT and Claude to refine writing and assist with code scaffolding. All experiments
489 and analyses were independently designed and verified by the authors.
490491 REPRODUCIBILITY STATEMENT
492493 We release evaluation prompts, model outputs, and analysis code at <https://anonymous.4open.science/r/haerae-bench-vision-AA34> to ensure full reproducibility of our re-
494 sults.
495496 REFERENCES
497498 Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, et al.
499 Pixtral 12b. *arXiv*, 2024. URL <https://arxiv.org/abs/2410.07073>.
500501 Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, et al. Mt-bench-101: A fine-
502 grained benchmark for evaluating large language models in multi-turn dialogues. *arXiv preprint*
503 *arXiv:2402.14762*, 2024.
504505 Shuai Bai et al. Qwen2.5-vl technical report. *arXiv*, 2025. URL <https://arxiv.org/abs/2502.13923>.
506507 Chongyan Chen, Mengchen Liu, Noel Codella, Yunsheng Li, Lu Yuan, and Danna Gurari. Fully
508 authentic visual question answering dataset from online communities. In *European Conference*
509 *on Computer Vision*, pp. 252–269. Springer, 2024.
510511 Dasol Choi, Jungwhan Kim, and Guijin Son. Ko-piqa: A korean physical commonsense reasoning
512 dataset with cultural context. *arXiv preprint arXiv:2509.11303*, 2025.
513514 Gemma Team, Google DeepMind. Gemma 3 technical report. *arXiv*, 2025. URL <https://arxiv.org/abs/2503.19786>.
515516 Google DeepMind. Gemini 2.5 pro: Model card. <https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro.pdf>, June 2025.
517518 Taebaek Hwang, Minseo Kim, Gisang Lee, Seonuk Kim, and Hyunjun Eun. Kreta: A benchmark
519 for korean reading and reasoning in text-rich vqa attuned to diverse visual contexts. *arXiv preprint*
520 *arXiv:2508.19944*, 2025.
521522 Jihae Jeong, DaeYeop Lee, DongGeon Lee, and Hwanjo Yu. Everyday physics in korean contexts: A
523 culturally grounded physical reasoning benchmark, 2025. URL <https://arxiv.org/abs/2509.17807>.
524525 Jeongho Ju, Daeyoung Kim, SunYoung Park, and Youngjune Kim. Varco-vision: Expanding fron-
526 tiers in korean vision-language models. *arXiv preprint arXiv:2411.19103*, 2024.
527528 Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, et al. Dynabench: Re-
529 thinking benchmarking in nlp. *arXiv preprint arXiv:2104.14337*, 2021.
530531 Seungone Kim, Juyoung Suk, Ji Yong Cho, Shayne Longpre, Chaeeun Kim, Dongkeun Yoon, Gui-
532 jin Son, Yejin Cho, Sheikh Shafayat, Jinheon Baek, et al. The biggen bench: A principled
533 benchmark for fine-grained evaluation of language models with language models. *arXiv preprint*
534 *arXiv:2406.05761*, 2024.
535536 Yoonshik Kim and Jaeyoon Jung. Koffvqa: An objectively evaluated free-form vqa benchmark for
537 large vision-language models in the korean language. In *Proceedings of the IEEE/CVF Confer-
538 ence on Computer Vision and Pattern Recognition*, pp. 575–585, 2025.
539540 Yukyung Lee, Joonghoon Kim, Jaehhee Kim, Hyowon Cho, Jaewook Kang, Pilsung Kang, and Na-
541 jong Kim. Checkeval: A reliable llm-as-a-judge framework for evaluating text generation using
542 checklists. *arXiv preprint arXiv:2403.18771*, 2024.
543

540 Belinda Z Li, Been Kim, and Zi Wang. Questbench: Can llms ask the right question to acquire
 541 information in reasoning tasks? *arXiv preprint arXiv:2503.22674*, 2025.

542

543 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, et al. Holistic evaluation
 544 of language models. *arXiv preprint arXiv:2211.09110*, 2022.

545 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
 546 evaluation using gpt-4 with better human alignment. *arXiv preprint arXiv:2303.16634*, 2023.

547

548 Shiyin Lu et al. Ovis2.5 technical report. *arXiv*, 2025. URL <https://arxiv.org/abs/2508.11737>.

549

550 Mistral AI. Pixtral-large-instruct-2411: Model card. <https://huggingface.co/mistralai/Pixtral-Large-Instruct-2411>, November 2024.

551

552

553 Shravan Nayak, Kanishk Jain, Rabiul Awal, Siva Reddy, Sjoerd Steenkiste, Lisa Hendricks, Karolina
 554 Stanczak, and Aishwarya Agrawal. Benchmarking vision language models for cultural under-
 555 standing. In *Proceedings of EMNLP 2024*, pp. 5769–5790, 2024.

556

557 NCSOFT AI Center. Varco-vision-2.0 technical report. *arXiv*, 2025. URL <https://arxiv.org/abs/2509.10105>.

558

559 OpenAI. Gpt-5 system card. <https://openai.com/index/gpt-5-system-card/>, Au-
 560 gust 2025. Updated PDF: <https://cdn.openai.com/gpt-5-system-card-aug7.pdf>.

560

561

562 ChaeHun Park, Yujin Baek, Jaeseok Kim, Yu-Jung Heo, Du-Seong Chang, and Jaegul Choo. Evalu-
 563 ating visual and cultural interpretation: The k-viscuit benchmark with human-vlm collaboration.
 564 *arXiv preprint arXiv:2406.16469*, 2024.

565

566 Perplexity AI. Sonar pro: Model overview. <https://docs.perplexity.ai/getting-started/models/models/sonar-pro>, 2025.

567

568 Jiacheng Ruan, Wenzhen Yuan, Xian Gao, Ye Guo, Daixin Zhang, Zhe Xu, Yao Hu, Ting Liu,
 569 and Yuzhuo Fu. Vlrbench: A comprehensive and challenging benchmark for vision-language
 570 reward models, 2025. URL <https://arxiv.org/abs/2503.07478>.

571

572 W. Shen et al. Skywork-r1v3 technical report. *arXiv*, 2025. URL <https://arxiv.org/abs/2507.06167>.

573

574 Guijin Son, Hanwool Lee, Suwan Kim, Huiseo Kim, Jaecheol Lee, Je Won Yeom, Jihyu Jung,
 575 Jung Woo Kim, and Songseong Kim. Hae-rae bench: Evaluation of korean knowledge in language
 576 models. *arXiv preprint arXiv:2309.02706*, 2023.

577

578 Weiyun Wang et al. Internvl 3.5: Advancing open-source multimodal models in versatility, reason-
 579 ing, and efficiency. *arXiv*, 2025. URL <https://arxiv.org/abs/2508.18265>.

580

581 xAI. Grok 4: Model card. <https://data.x.ai/2025-08-20-grok-4-model-card.pdf>, August 2025.

582

583 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 584 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

585

586 Kyung-Min Yoo et al. Hyperclova x technical report. *arXiv*, 2024. URL <https://arxiv.org/abs/2404.01954>.

587

588 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, et al. Judging llm-as-
 589 a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*,
 590 36:46595–46623, 2023.

591

592

593