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Abstract
Fully inductive knowledge graph models can be trained on multiple domains
and subsequently perform zero-shot knowledge graph completion (KGC) in new
unseen domains. This is an important capability towards the goal of having
foundation models for knowledge graphs. In this work, we introduce a more
expressive and capable fully inductive model, dubbed TRIX, which not only
yields strictly more expressive triplet embeddings (head entity, relation, tail en-
tity) compared to state-of-the-art methods, but also introduces a new capability:
directly handling both entity and relation prediction tasks in inductive settings.
Empirically, we show that TRIX outperforms the state-of-the-art fully inductive
models in zero-shot entity and relation predictions in new domains, and outper-
forms large-context LLMs in out-of-domain predictions. The source code is
available at https://github.com/yuchengz99/TRIX.

1 Introduction
Fully inductive knowledge graph models can perform zero-shot Knowledge Graph Completion
(KGC), which predicts missing facts in entirely new domains that were not part of the training
data. This is particularly challenging because these new domains may contain just unseen relation
types and new entities [1–3]. Fully inductive models are trained on one or multiple Knowledge
Graphs (KG) with a specific set of relations. Previous work has emphasized the importance of
double-equivariance [2], that is, equivariance to permutations of both entity ids and relation ids,
as a fundamental property that fully inductive models must have to transfer across KG domains.
Intuitively, this equivariance allows models to focus on the underlying structural invariances, despite
semantic differences and variations in identifiers across different KGs.

However, despite the notable achievements of current fully inductive models, several open challenges
remain, including: (1) Limited expressivity of existing methods; (2) Insufficient support for relation
prediction tasks; and (3) Underexploration of the abilities of Large Language Models (LLMs) to
perform the same tasks. More precisely, existing state-of-the-art fully inductive models, such as
ULTRA [1], have expressivity limitations, as we show in Section 4.3, which implies that certain
non-isomorphic triplets inevitably get the same representations, and therefore necessarily the same
predictions despite their differences. Since increased expressive power tend to translate into better
downstream performances in traditional graph tasks [4–7], an open question is whether improving the
expressivity of fully inductive models would also improve their empirical performance. Additionally,
existing fully inductive models are primarily designed for entity prediction tasks, answering queries
such as (?, relation, tail entity) or (head entity, relation, ?), where the goal is to predict the head
or tail entity of a given triplet. Consequently, they miss the equally important relation prediction
tasks, namely queries such as (head entity, ?, tail entity), where the goal is to predict the missing
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Figure 1: Overview of TRIX showcasing how a KG in a given domain is represented in TRIX’s
double-equivariant architecture through entity embedding and relation embedding iterative updates.

relation between two entities [8–11]. Finally, while large-context LLMs have demonstrated notable
performance in KGC tasks [12–16], their effectiveness in the inductive setting of our interest, where
test KGs come from new domains, remains largely underexplored. Therefore, an evaluation and
comparison with fully inductive graph models is needed to understand whether fully inductive graph
models are necessary or if repurposing LLMs would suffice.

Our approach. In this paper, we aim to address the open challenges in fully inductive models. We
first show that the limited expressive power of the state-of-the-art fully inductive models ULTRA [1]
arises from its approach in capturing relation interactions, obtained by counting the number of entities
sharing a pair of relations, rather than which entities share those relations. Then, we propose TRIX
(Transferable Relation-Entity Interactions in crossing patterns (X-patterns)), which we show to return
strictly more expressive triplet representations than existing methods. As illustrated in Figure 1, given
any input KG, TRIX first constructs a graph of relations, where each node is a relation from the
original graph and edges denote shared entities among those relations. Then, it refines relation and
entity representations by iteratively applying graph neural network layers over the graph of relations
and the original graph. In this way, TRIX obtains representations of relation and entities directly
applicable to zero-shot tasks.

We demonstrate that, by design, TRIX efficiently handles relation prediction tasks, a capability
lacking in existing state-of-the-art fully inductive models. In particular, TRIX can answer relation
prediction queries in a single forward pass, while existing fully inductive models require performing
a number of forward passes equal to the number of relations, for a single relation prediction query.

Finally, we explore the capabilities of LLMs for KGC by designing a comprehensive set of experi-
ments. We demonstrate that, while LLMs can do KGC accurately given enough context about the
background knowledge, they rely on the textual information (and its semantics), and therefore fail
to utilize the actual graph information, given in the context. We show that this result has several
implications, including failure cases when the relation names are not given due to privacy concerns,
or simply when they are not known by the LLMs.

Contributions. Our key contributions are as follows: (1) We propose a novel fully inductive model
on KGs, TRIX, which exhibits greater expressive power compared to prior methods and can handle
relation predictions efficiently; (2) We show that the increased expressiveness of TRIX allows it to
surpass state-of-the-art methods in 57 KG datasets in both entity and relation predictions; (3) We
present an experimental study of LLMs on the same tasks and show that existing LLMs have limited
capabilities in exploiting graph information, which are needed to perform tasks on new domains.

2 Related Work
Fully Inductive Models over KGs. Original efforts in inductive Knowledge Graph Completion
primarily focused on handling new entities at test time, but not new relations [8, 17–25]. However,
emerging methodologies tackle inductive learning scenarios with both new entities and new relations
in test [1–3]. Gao et al. [2] approaches the problem by treating relations as set elements and employing
DSS layers [26] to learn representations equivariant to permutations of both node and relation ids.
On the other hand, Lee et al. [3] and Galkin et al. [1] introduce relation graphs to capture relation
representations based on their interactions. In this work, we extend the latter approach by proposing a
novel design for relation graphs, which allows to capture more expressive structural patterns in KGs.

Knowledge Graph Completion with Large Language Models. Despite the impressive capabilities
of pretrained LLMs, their application to KGC has primarily focused on leveraging textual information
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rather than exploiting the underlying graph structure [13]. Recent efforts aims to enhance LLM
performance in KGC by incorporating neighborhood or path information between entities as part of
prompts in an in-context learning approach [14–16]. However, these approaches have mainly been
applied in transductive settings. Li et al. [27] investigated zero-shot link prediction tasks with LLMs
but only considered scenarios involving new relations, not new entities. The effectiveness of LLMs in
KGC tasks with both new entities and new relations remains unexplored. Furthermore, the extent to
which LLMs exhibit double-equivariance, a crucial property for inductive reasoning on KGs [2], has
yet to be thoroughly investigated. In this work, we address these gaps by conducting comprehensive
experiments to evaluate the double-equivariance property of LLMs in KGC tasks.

3 Preliminaries
A Knowledge Graph G is a tuple (V,E,R) where V is a finite set of entities, R is a finite set of
relations and E ∈ (V ×R× V ) is a finite set of edges representing relations between entities. We
denote by Gtrain = (Vtrain, Etrain, Rtrain) the training graph, and by Ginf = (Vinf, Einf, Rinf) the test (or
inference) graph. Since we focus on inductive settings, where the test graph comes from a different
domain, the training and the test graphs have disjoint entity and relation sets, that is, Vinf ̸⊂ Vtrain and
Rinf ̸⊂ Rtrain. Despite being unseen, it is however assumed that the test graph shares certain structural
patterns with the training graph. These structural similarities imply the existence of invariances
sufficient for accurate predictions. Consequently, models trained on the training graph can transfer the
learned knowledge to the test graph, leveraging the shared structural patterns for effective predictions.

Since KGs are often incomplete [28], KGC has been widely utilized to infer missing information by
predicting missing triplets. KGC comprises two key tasks: entity prediction[29] addresses queries
(h, r, ?) which predicts the tail entity given a head entity h and a relation r (or, equivalently, predict
the head); relation prediction[8], on the other hand, focuses on queries (h, ?, t), aiming to predict the
existence of a link between a head entity h and a tail entity t, and determining the relation type.

To perform entity and relation predictions in inductive settings, Gao et al. [2] recently identified
the concept of double-equivariance, i.e., equivariance to both entity and relation ids permutations,
as a necessary property that fully inductive models must possess. This property ensures that the
architecture does not use relation and entity IDs, but, instead, captures the interactions among them.
Indeed, even if relations and entities vary across datasets, the interactions between them may be similar
and transferable. Existing fully inductive models achieve double equivariance either by designing
architectures that are intrinsically equivariant to both permutation groups [2], or by constructing a
relation graph that captures relation interactions regardless of their ids or semantics [1–3]. Since
the latter tends to be a lighter approach, which also yields better results in practice, we will in the
following focus on that. In particular, these methods first construct a relation graph where entities
are relations and edges represent the number of times two relations share an entity. This relation
graph is then passed to a standard graph neural network with labeling trick [30] to obtain relation
representations conditioned on the query of interest, which can directly be used in inductive settings.
We show how TRIX extends this approach and constructs a relation graph that does not merely count
the number of entities shared among two relations, but identify which entities are shared, an approach
that we show to return strictly more expressive representations in Section 4.3.

Finally, we remark that existing fully inductive models typically begin by applying the labeling
trick [30] to obtain initial relative relation representations, conditioned on the query relation [1]. How-
ever, in the relation prediction (h, ?, t), there is no specific query relation available for conditioning,
as this is unknown and constitutes the target of our query. As a result, existing methods must convert
relation prediction into a triplet ranking problem, evaluating the possibility of (h, r, t) for all relations
r in the relation set. This implies that the model needs to perform one forward pass for each relation.
In contrast, we show in the next section that TRIX can perform the task in one single forward pass.

4 TRIX Framework
As discussed in previous sections, existing fully inductive models suffer from limited expressivity due
to the way in which they construct the relation graph and inefficiency in relation prediction tasks due
to the message passing scheme. We fill in these gaps by proposing the framework of TRIX, in which
the design of our new relation graph records the entity property to enhance expressive power and to
the design of iterative message passing mechanism makes relation prediction in one forward pass
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possible. Then we explore TRIX’s theoretical properties, such as expressiveness and time complexity.
An overview of TRIX is illustrated in Figure 1.

4.1 Relation Adjacency Matrix

Existing methods have limited expressive power. For instance, the relation graphs of both ULTRA [1]
and InGram [3] are too invariant: In Figure 6 we show how the edges of the relation graphs of these
existing methods (how many common entities two relations have) are not expressive enough for the
entity prediction task. We increase expressiveness by including entity information, that is, edges
between two relations contain information of which entities share these relations. Given the graph
G, with adjacency matrix AV ∈ R|V |×|V |×|R| (entity adjacency matrix), TRIX first constructs a
relation graph GR with adjacency matrix AR (relation adjacency matrix). Entities in AR represent
the relations in AV , and edges in AR denote entities (in AV ) that share two relations (in AV ).
Specifically, for any pair of relations ri, rj ∈ R in the original graph G, we count how many times
each entity vk ∈ V is part of triplets involving these two relations as: (1) the head entity in both (that
is, how many triplets like (vk, ri, ⋆) and (vk, rj , ⋆) exist, where ⋆ is a placeholder for entities), (2) the
tail entity in both (that is (⋆, ri, vk) and (⋆, rj , vk)), (3) the head in the first and the tail in the other
(that is (vk, ri, ⋆) and (⋆, rj , vk)), or (4) vice-versa (that is (⋆, ri, vk) and (vk, rj , ⋆)).

Since we keep these four roles (head-head, tail-tail, head-tail, tail-head) separate, and we count the
above for each entity v ∈ V , the relation adjacency matrix AR is a tensor of shape |R|×|R|×|V |×4.
Note that this is in contrast with previous methods [1, 3], that, despite also maintaining the distinct
roles, do not differentiate which entities participate in the role but only how many, a choice that
impacts the expressive power as we shall see next.

Mathematically, we first construct two matrices Eh ∈ R|V |×|R| and Et ∈ R|V |×|R| capturing how
many times each entity v ∈ V is the head of triplets involving relation r ∈ R, or the tail, respectively.
Then, we construct four different intermediate relation adjacency matrices capturing the four roles
Ahh

R , Att
R, Aht

R , and Ath
R ∈ R|R|×|R|×|V |. These can be directly obtained by leveraging Eh and

Et. For instance, the entry Ahh
R [ri, rj , vk], which counts how many times vk ∈ V is part of triplets

involving both relation ri ∈ R and relation rj ∈ R while being the head entity in both, can be
obtained by multiplying entries in Eh as follows:

Ahh
R [ri, rj , vk] = Eh[vk, ri] ∗Eh[vk, rj ]. (1)

The equations for Att
R, Aht

R , Ath
R are obtained equivalently by substituting Eh with Et appropriately

and we refer the reader to Appendix B for explicit definitions. These four intermediate adjacency
relations are then stacked along the last dimensions, yielding a single AR ∈ R|R|×|R|×|V |×4. Figure 1
((a), (b), (c) and (d)) contains an illustrative example of these four matrices. Finally, we remark that,
although the shape |R| × |R| × |V | × 4 of AR might look massive, it is in fact just an additional list
of edge attributes and takes negligible additional space when relying on sparse matrix representations.

4.2 Iterative Entity and Relation Embedding Updates

Existing fully inductive models [1, 3] sequentially perform message passing on the relation adjacency
matrix to derive relation representations and subsequently on the entity adjacency matrix using the
derived relation representations. As mentioned in Section 3, this sequential message passing does
not align with the labeling trick and leads to inefficiency in relation prediction task. We propose a
simultaneous refinement process through iterative updates which aligns well with labeling tricks of
both relation and entity prediction task. With the more informative relation adjacency matrix AR

proposed in the last part, this iterative embedding update scheme also makes full use of the entity
information in AR to generate strictly more expressive triplet embeddings. Specifically, we perform
message passing updates on AR, employing the entity representations as relation embeddings (since
entities in AV correspond to relations in AR). Subsequently, we proceed with message passing
layers on AV , utilizing the recently updated relation representations as the relation embeddings. This
iterative process is repeated multiple times, ensuring a cohesive refinement of both relation and entity
representations throughout the procedure.

In this subsection, we describe mathematically the iterative updates on the entity adjacency matrix
and the relation adjacency matrix for the two tasks of interest, namely entity and relation predictions.
TRIX is not jointly trained on both tasks, but the proposed framework can be adapted to either solve

4



TRIX: A More Expressive Model for Zero-shot Domain Transfer in Knowledge Graphs

entity prediction or relation prediction tasks with different initial embeddings. The objective functions
for optimizing the model for these tasks are in Appendix F.1.

Let X(i) ∈ R|V |×d and Z(i) ∈ R|R|×d denote the entity representations and the relation represen-
tations of dimension d at any given layer i. Following previous methods [1, 3], we use NBFNet
layers with labeling tricks [30] to obtain relative representations conditioned to the query of interest.
Therefore, we will use subscripts to denote the conditioning set. For example, X(i)

h,r and Z
(i)
h,r will

denote the entity and relation representations conditioned on entity h and relation r. With a slight
abuse of notation, we will then refer to the relative representation of entity u conditioned on entity h

and relation r as X(i)
h,r(u), and, similarly, Z(i)

h,r(r
′) will denote the relative representation of relation

r′ conditioned on entity h and relation r.

Embeddings for Entity Prediction Tasks. For an entity prediction query (h, r, ?), we leverage the
labeling trick and initialize the embeddings of entities and relations to be conditioned on h and r as:

X
(0)
h,r(u) = INITV (h, u), Z

(0)
h,r(r

′) = INITR(r, r
′) (2)

where INIT is the initialization function for embeddings. The initial embeddings for entity h and
for relation r are set to all-one vectors, while all the other entities and relations receive initial zero
vectors. Subsequently, we perform iterative updates as follows:

X
(i)
h,r(u) = GNNLayer(i)V (AV ,X

(i−1)
h,r ,Z

(i−1)
h,r , u)

= UP(i)
V

(
X

(i−1)
h,r (u),AGG(i)

V

(
MSG(i)

V (X
(i−1)
h,r (v),Z

(i−1)
h,r (r′))|(u, r′, v) ∈ AV

))
(3)

Z
(i)
h,r(r

′) = GNNLayer(i)R (AR,Z
(i−1)
h,r ,X

(i)
h,r, r

′)

= UP(i)
R

(
Z

(i−1)
h,r (r′),AGG(i)

R

(
MSG(i)

R (Z
(i−1)
h,r (r′′),X

(i)
h,r(u))|(r

′, u, r′′) ∈ AR

))
(4)

GNNLayer(i)V and GNNLayer(i)R are NBFNet layers where UP(i), AGG(i) and MSG(i) stand for
update, aggregation, and message functions at the i-th layer, respectively. Following NBFNet, the
message function is DistMult, the aggregation function is sum, and the update function is a multi-layer
perceptron. The pseudo code is shown in Algorithm 1 in the Appendix. The final entity embeddings
are passed to a multi-layer perceptron for entity prediction.

In knowledge graphs, every relation typically has a corresponding reverse relation. To handle the
entity prediction query (?, r, t), we can simply transform it into (t, r−1, ?) by utilizing the reverse
relation and treat it as a tail prediction as above.

Embeddings for Relation Prediction Tasks. For a relation prediction query (h, ?, t), we leverage
the labeling trick and initialize the embeddings of entities and relations to be conditioned on h and t
as follows:

X
(0)
h,t (u) = INIT(h, t, u), Z

(0)
h,t (r

′) = 1d, (5)

where 1d is an all-one vector of dimension d. This means that the initial embedding for entity h
is set to all-one vectors, the initial embedding for entity t is set to all-minus-one vectors, while all
the other entities receive initial zero vectors. Furthermore, the relations are initialized all to all-one
vectors. Subsequently, we perform iterative embedding updates as follows. Same as entity prediction,
GNNLayer(i)V and GNNLayer(i)R are NBFNet layers:

Z
(i)
h,t(r) = GNNLayer(i)R (AR,Z

(i−1)
h,t ,X

(i−1)
h,t , r)

= UP(i)
R

(
Z

(i−1)
h,t (r),AGG(i)

R

(
MSG(i)

R (Z
(i−1)
h,t (r′),X

(i−1)
h,t (u))|(r, u, r′) ∈ AR

))
(6)

X
(i)
h,t(u) = GNNLayer(i)V (AV ,X

(i−1)
h,t ,Z

(i)
h,t, u)

= UP(i)
V

(
X

(i−1)
h,t (u),AGG(i)

V

(
MSG(i)

V (X
(i−1)
h,t (v),Z

(i)
h,t(r))|(u, r, v) ∈ AV

))
(7)

The pseudo code is shown in Algorithm 2 in the Appendix. The final relation embeddings are passed
to a multi-layer perceptron for the prediction.
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4.3 TRIX Properties

We conduct a theoretical analysis to compare the expressiveness of TRIX with existing relation-graph
based fully-inductive models, namely ULTRA [1], InGram [3] and DEq-InGram [2]. More precisely,
we aim to investigate the power of both methods to distinguish non-isomorphic triplets. All proofs
can be found in Appendix B. We begin by showing that TRIX is at least as expressive as ULTRA and
InGram, since it can distinguish all non-isomorphic triplets that they can distinguish. DEq-InGram is a
variant of InGram by applying Monte Carlo sampling in inference [3]. Each sampling of DEq-InGram
is actually a forward pass of InGram. So for simplicity in the proof we do not include DEq-InGram.
Lemma 1 (TRIX at least as powerful as ULTRA and InGram). Any non-isomorphic triplet that can
be distinguished by ULTRA or InGram can also be distinguished by TRIX with certain choices of
hyperparameters and initial embeddings.

We prove this by showing ULTRA and InGram are actually special cases of TRIX. That is, there exist
choices of hyperparameters such that TRIX can precisely implement ULTRA and InGram respectively
to reproduce the message passing process of them and can get the same triplet embeddings. However,
the contrary is not true: there exist cases where ULTRA or InGram cannot obtain the same triplet
embeddings as TRIX, regardless of hyperparameter or weight choices.
Lemma 2 (TRIX can distinguish triplets ULTRA and InGram cannot). There exist non-isomorphic
triplets that can be distinguished by TRIX but that cannot be distinguished by ULTRA and InGram.

We prove this by constructing exemplary triplets that are clearly non-isomorphic, and then showing
that they can be distinguished by TRIX but can not be distinguished by ULTRA and InGram. Finally,
we can combine Lemmas 1 and 2 into Theorem 1.
Theorem 1 (TRIX is more expressive than ULTRA and InGram). TRIX is strictly more expressive
than ULTRA and InGram in distinguishing between non-isomorphic triplets in KGs.

We remark here that the additional expressive power comes from including which entities share
two relations, at the cost of an additional dimension in the relation adjacency matrix. Prior relation
graphs [1–3] consider all entities as isomorphic: the feature describing the entities shared by two
relations is simply how many entities they have in common. It is not uncommon to have many pairs
of relations with similar entity counts when these entities are non-isomorphic. Then the relations
incorrectly tend to get similar or even same embedding. TRIX distinguish these relations by recording
entities in the additional dimension in the relation graph. Through the proposed iterative updates, non-
isomorphic entities get diverse embeddings and non-isomorphic relations also get diverse embeddings,
thus the expressive power gets boosted. In the following, we discuss the complexity of TRIX.

Time Complexity. Recall that the entity adjacency matrix AV ∈ R|V |×|V |×|R| has |V | entities and
|R| relations. Denote by α the maximum number of unique relations one single entity connects
to as the head or the tail in AV . Then, the relation adjacency matrix AR ∈ R|R|×|R|×|V |×4 has
|R| entities, |V | relations and at most 4|V |α2 edges. Assuming there are L rounds of iterative
updates and embedding dimension is d, which we consider constant, the time complexity of TRIX
is O(|E|+ |V |α2) while the time complexity of ULTRA is O(|E|+ |V |+ |R|2) for each forward
pass, which results in O(|E| + |V | + |R|2) for entity prediction and in O((|E| + |V | + |R|2)|R|)
for relation prediction, as it needs to perform one forward pass for each relation in the relation set.
We expand on this in Appendix B, where we show that, in practice, the number of edges in the
relation graph is much smaller than 4|V |α2, which therefore results in a complexity ∼ 10× worse
than ULTRA in entity prediction, and ∼ 20× better than ULTRA in relation prediction.

5 Experiments
We perform a comprehensive set of experiments to answer the following questions: (1) How does
TRIX compare to state-of-the-art fully inductive models in inductive entity and relation prediction
tasks and, in particular, does the increased expressiveness translate into better performance? (2) Can
the accuracy of TRIX increase with more data in the pre-training? (3) Can LLMs make inductive
inferences based on the structural information in KGs? To be more specific, are LLMs equivariant to
permutations of relation and entity ids? And, can they do inductive tasks where the relation semantic
is hidden and the model needs to leverage the structural information in the input? In the following,
we report our main results and refer to Appendix F for additional experiments, including an ablation
study on the importance of the proposed relation adjacency matrix and the iterative updates.
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Figure 2: Zero-shot MRR (higher is better) in the entity prediction task. TRIX outperforms ULTRA
on 34 datasets, while being comparable on 14 datasets and being outperformed on 6 datasets. It even
outperforms supervised baselines on 30 out of 40 datasets.

TRIX Implementation Details. We train one TRIX model for entity prediction and another TRIX
model for relation prediction. For relation prediction, TRIX updates relation and entity embedding for
3 rounds, while for entity prediction, for 5 rounds. GNNLayerR and GNNLayerV in Equations (3),
(4), (6) and (7) are NBFNet layers with hidden dimension 32. In pre-training, the model is trained for
10 epochs with 10000 steps per epoch with early stopping. In fine-tuning, the model is trained for 3
epochs with 1000 steps per epoch with early stopping. We use a batch size of 32, AdamW optimizer
and learning rate of 0.0005.

5.1 Zero-Shot Inference and Fine-Tuning of Fully Inductive Models

Datasets & Evaluation. We undertake a comprehensive evaluation across 57 distinct KGs coming
from different domains, and split them into three categories: inductive entity and relation (e, r)
datasets, inductive entity (e) datasets, and transductive datasets (Appendix E). We follow the procedure
prescribed by ULTRA [1] and pretrain on 3 datasets (WN18RR, CoDEx-Medium, FB15k237). We
choose ULTRA as our baseline since it is the state-of-the-art double equivariant model that is capable
of doing zero-shot fully inductive inference on the large KGs of our interests. For entity prediction
task, we report Mean Reciprocal Rank (MRR) and Hits@10 as the main performance metrics
evaluated against the full entity set of the inference graph. For each triplet, we report the results of
predicting both head and tail. Only in three datasets from Lv et al. [31] we report tail-only metrics,
as in the baselines. For relation prediction, we report MRR and Hits@1 as the main performance
metrics evaluated against the full relation set of the inference graph. We choose Hits@1 instead of
Hits@10 because for some datasets the number of relations is less than 10.

Entity Prediction Results. We present the MRR and Hits@10 results across 57 KGs, along with
the corresponding baseline (ULTRA) outcomes in Table 1 and Figure 2. Detailed per-dataset results,
including standard deviations, are provided in Tables 16 and 17. In short, TRIX outperforms
ULTRA by a significant margin (∼ 3% average absolute improvement) in zero-shot scenarios, while
demonstrating ∼ 0.7% average absolute improvement after fine-tuning in inference tasks. This
demonstrates the importance of the additional expressiveness, which results in better performance.

Relation Prediction Results of Graph Models. We present the average MRR and Hits@1 results
across 57 KGs, alongside the results for ULTRA in Table 2 (Hits@10 is not chosen because some
domains have too few relations). Detailed per-dataset results, including standard deviations, are
available in Tables 18 and 19. TRIX outperforms ULTRA significantly in zero-shot inference
scenarios, exhibiting substantial advantages, with an average absolute improvement of 7.4% in
Hits@1. Moreover, after fine-tuning, TRIX shows an average absolute improvement of 4.7% in
Hits@1 in inference tasks. Notably, the zero-shot inference results obtained by TRIX even surpass
those of ULTRA after finetuning. This underscores the effectiveness of TRIX in relation predictions.
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Table 1: Average entity prediction MRR and Hits@10 over 57 KGs from distinct domains. The
results over each of the 57 KGs are given in Appendix F.

Model
Inductive e, r Inductive e Transductive Total Avg Pretraining

(23 graphs) (18 graphs) (13 graphs) (54 graphs) (3 graphs)

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA zero-shot 0.345 0.513 0.431 0.566 0.312 0.458 0.366 0.518 N/A N/A
TRIX zero-shot 0.368 0.540 0.455 0.592 0.339 0.500 0.390 0.548 N/A N/A

ULTRA fine-tuned 0.397 0.556 0.442 0.582 0.379 0.543 0.408 0.562 0.407 0.568
TRIX fine-tuned 0.401 0.556 0.459 0.594 0.390 0.558 0.418 0.569 0.415 0.563

Table 2: Average relation prediction MRR and hits@1 over 57 KGs from distinct domains. The
results over each of the 57 KGs are given in Appendix F.

Model
Inductive e, r Inductive e Transductive Total Avg Pretraining

(23 graphs) (18 graphs) (13 graphs) (54 graphs) (3 graphs)

MRR H@1 MRR H@1 MRR H@1 MRR H@1 MRR H@1
ULTRA zero-shot 0.785 0.691 0.714 0.590 0.629 0.507 0.724 0.613 N/A N/A
TRIX zero-shot 0.842 0.770 0.756 0.611 0.752 0.647 0.792 0.687 N/A N/A

ULTRA fine-tuned 0.823 0.741 0.716 0.591 0.707 0.608 0.759 0.659 0.876 0.817
TRIX fine-tuned 0.850 0.785 0.759 0.615 0.785 0.693 0.804 0.706 0.879 0.797
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Figure 3: Heatmaps of cosine similarities of relation embed-
dings in test with varying number of training domains. More
domains shows stronger embedding differentiation.

Testing Zero-shot Meta-Learning
Ability of TRIX. In this experiment,
we investigate the meta-learning ca-
pability of TRIX. That is, following
Thrun and Pratt [32, pp. 4], we can
define that a fully inductive model is
able to learn-to-learn when increasing
the number of learning domains im-
proves the inference performance on
new domains. Here, we aim to under-
stand the impact of including more do-
mains in the zero-shot performance of
TRIX. We use the WikiTopics dataset
[2], which divides the Wikidata-5M [33] into 11 distinct, non-overlapping domains, resulting in 11
unique KGs, each containing different and non overlapping relation and entity sets. We then proceed
by training TRIX on a randomly sampled increasing number of domains (until early-stopped) and
evaluate their performance on the remaining domains. Table 3 show that as the number of domains in
the training increases, the zero-shot inference capability of TRIX improves. Additionally, Figures 3a
and 3b illustrate the cosine similarities between the relation embeddings after training, averaged
across different query relations, when training with one or four domains, respectively. By adding
domains in the training mixture, the model can see more invariances and the relation embeddings get
more distinct and expressive, which then translates into more accurate prediction in unseen domains.

5.2 Relation and Entity Prediction with LLMs

To evaluate whether long-context LLMs can make zero-shot relation and entity predictions based on
the structural patterns of the graph, we design three different tasks containing both relation prediction
and entity prediction. In these tasks, all triplets (head entity, relation, tail entity) of the KG are
provided in the prompt. The tasks differ in how entities and relations are represented. The goal of
these experiments is to underscore the shortcomings of LLMs in capturing the structural patterns,
which is due to being sensitive to permutations of IDs and relying on semantic information.

Experiment Setup. Since all the triplets of KGs are provided in the prompt (approximately 700,000
tokens per query), we selected the Gemini Pro models (Gemini-1.5-flash and Gemini-1.5-pro [34])
as the baseline because they offer the largest token size (1,048,576 tokens for Gemini-1.5-flash),
whereas other models, such as GPT-4 (32,000 tokens) and Llama 3.1-70B Instruct (128,000 tokens),

8
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Table 3: TRIX Entity Prediction Hits@10 on WiKiTopics with varying pre-training domains.

# pre-train domains Average Art Award Edu Health Infra Sci Sport Tax

1 domain 0.413 0.380 0.428 0.263 0.601 0.556 0.369 0.385 0.324
2 domains 0.459 0.439 0.462 0.282 0.700 0.656 0.423 0.366 0.358
3 domains 0.458 0.432 0.472 0.300 0.623 0.679 0.431 0.376 0.361
4 domains 0.483 0.432 0.464 0.294 0.744 0.724 0.448 0.382 0.396

have limited token capacities. Due to the cost of the Gemini Pro model, we evaluated on 30 samples
from the CoDEx-S dataset [35]. The prompts used followed previous works [14, 36]. We report
in the following relation prediction results, while entity prediction results and further experimental
details, including prompts, can be found in Appendix D.

0.0 0.2 0.4 0.6 0.8

LLM Task 3

LLM Task 2

LLM Task 1

ULTRA Tasks 1,2,3

TRIX Tasks 1,2,3

Relation Prediction Hits@1 on CoDEx-S

Figure 4: Relation prediction Hits@1 of Gemini-
1.5-Pro on three tasks against fully inductive
models. Double-equivariant graph models al-
ways give consistent performance but LLM per-
formance changes drastically with metasyntactic
tokens (Task 2) and ID permutations (Task 3).

Task 1: In-domain LLM predictions. The en-
tities and relations are expressed by their names
in natural language, which means that the LLM
is queried in the way it was trained on. This
task evaluates the in-domain prediction capac-
ity of long-context LLMs. Figure 4 (and Ap-
pendix D.1) shows that the LLM handles the
in-domain relation prediction nearly as well as
TRIX and better than ULTRA.

Task 2: Out-of-domain LLM predictions. The
neighbor entities of the head entity and the rela-
tions that connect the head entity with its neigh-
bors are replaced with metasyntactic words [37]
like foo, bar and baz across the whole KG to
simulate information from a new domain (with
new entities and relations) while other entities
and relations are still expressed by their names
in natural language. This task tests whether long-context LLMs reason on the KG’s structural in-
formation for the inductive predictions of the metasyntactic words, or if they just simply rely on its
pre-trained semantic information. Figure 4 (details in Appendix D.2) shows that with metasyntactic
words, Gemini-1.5-pro fails to make consistent accurate predictions. Hence, the good performance in
Task 1 likely came from its in-distribution syntax, which means that even SOTA long-context LLMs
struggle making relation predictions in new KGs domains using only relational information.

Task 3: Double-equivariant LLM predictions. All the entities and relations are expressed with
IDs (e.g. “entity 64”, “relation 22”) as in Shu et al. [14]. The mappings from entities and relations
to their IDs are given to the LLM and the IDs are shuffled in each test run. This task tests whether
long-context LLMs are (double) equivariant to entity and relation ID permutations. Figure 4 (details
in Appendix D.3) shows that the performance of a long-context LLM changes drastically with the
permutation of relation and entity IDs. Only for 38.5% of all queries the model makes consistent
predictions across 3 runs, which indicates LLM is quite sensitive to the input permutations of the KG.
With the whole graph sent as an edge list, the task resembles long text understanding and retrieval
tests akin to “a needle in a haystack” [38–40] where LLMs show increasingly better performance
on context lengths up to 128k tokens. However, our results indicate that such (often synthetic)
benchmarks might be overestimating real long-context reasoning capabilities of LLMs (let alone
adding a simple relation prediction task on top of the input context).

6 Conclusion
In this paper we considered the fully inductive link prediction task in KGs. We identified the open
challenges in existing fully inductive models, and proposed TRIX, a novel architecture designed to
improve expressiveness and support efficient relation prediction tasks. Through comprehensive ex-
periments spanning 57 diverse KGs datasets, we demonstrate that increased expressiveness translates
into better performance. Additionally, our experimental study sheds light on the limitations of LLMs
in exploiting graph information in new domains for entity and relation prediction tasks.
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A Pseudo Codes of Iterative Embedding Updates
Algorithm 1 and Algorithm 2 show the iterative embedding updates in entity prediction task and
relation prediction task respectively.

Algorithm 1 TRIX embedding updates for the entity prediction task
Require: Query (h, r, ?); relation adjacency matrix AR; entity adjacency matrix AV ; number of updates L
Ensure: Final entity embedding X

(L)
h,r

X
(0)
h,r = INITV (h) ▷ Label h with all-ones vector and the rest with all-zeros

Z
(0)
h,r = INITR(r) ▷ Label r with all-ones vector and the rest with all-zeros

for i← 1 to L do
for u ∈ V do

X
(i)
h,r(u) = UP(i)

V

(
X

(i−1)
h,r (u),AGG(i)

V

(
MSG(i)

V (X
(i−1)
h,r (v),Z

(i−1)
h,r (r′))|(u, r′, v) ∈ AV

))
end for
for r′ ∈ R do

Z
(i)
h,r(r

′) = UP(i)
R

(
Z

(i−1)
h,r (r′),AGG(i)

R

(
MSG(i)

R (Z
(i−1)
h,r (r′′),X

(i)
h,r(u))|(r

′, u, r′′) ∈ AR

))
end for

end for

Algorithm 2 TRIX embedding updates for the relation prediction task
Require: Query (h, ?, t); relation adjacency matrix AR; entity adjacency matrix AV ; number of updates L
Ensure: Final relation embedding Z

(L)
h,t

Z
(0)
h,t = 1|R|×d

X
(0)
h,t = INIT(h, t) ▷ Label h with all-ones vector, t with all-negative-ones and the rest with all-zeros

for i← 1 to L do
for r ∈ R do

Z
(i)
h,t(r) = UP(i)

R

(
Z

(i−1)
h,t (r),AGG(i)

R

(
MSG(i)

R (Z
(i−1)
h,t (r′),X

(i−1)
h,t (u))|(r, u, r′) ∈ AR

))
end for
for u ∈ V do

X
(i)
h,t(u) = UP(i)

V

(
X

(i−1)
h,t (u),AGG(i)

V

(
MSG(i)

V (X
(i−1)
h,t (v),Z

(i)
h,t(r))|(u, r, v) ∈ AV

))
end for

end for

B Expressive Power

0 50 100150200250300350

0
50

100
150
200
250
300
350

1.0

0.5

0.0

0.5

1.0

(a) TRIX.
0 50 100150200250300350

0
50

100
150
200
250
300
350

1.0

0.5

0.0

0.5

1.0

(b) ULTRA.

Figure 5: Heatmaps of cosine similarities of relation embed-
dings on NELL995 with TRIX and ULTRA. TRIX gets more
diverse relation embeddings than that of ULTRA.

The expressive power of a GNN
refers to its ability of distinguish-
ing non-isomorphic graphs. Pre-
vious works [41] have shown that
the expressive power of GNN is
bounded by Weisfeiler–Leman tests.
Recent works [42] also extend We-
isfeiler–Leman tests on relational
graphs. The expressive power in link
prediction is limited due to the auto-
morphic node problem [43]. Labeling
trick [18, 30] breaks the symmetry of
entity embedding in link prediction by
assigning each node a unique feature
vector based on its structural properties.

Section 4.3 shows that TRIX is more expressive than existing relation-graph based double-equivariant
models. Before going into the details, we discuss the implications of this expressivity increase, such
that the relation embeddings that become more distinguishable. Figure 5 shows the heatmaps of
cosine similarity of relation embeddings of ULTRA and TRIX on the NELL995 dataset. The heatmap
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of TRIX shows more shade ranges than that of ULTRA, which indicates that the relation embeddings
of TRIX are more distinct.

In the following part we discuss the expressive power of TRIX. We start by formally introducing the
four intermediate relation adjacency matrices. Specifically, recall that the entity adjacency matrix
AV ∈ R|V |×|V |×|R| is obtained by stacking four relation adjacency matrices capturing the four roles
Ahh

R (head-head), Att
R (tail-tail), Aht

R (head-tail), and Ath
R (tail-head). These can be directly obtained

by leveraging Eh and Et, that is:

Ahh
R [ri, rj , vk] = Eh[vk, ri] ∗Eh[vk, rj ], Att

R[ri, rj , vk] = Et[vk, ri] ∗Et[vk, rj ],

Aht
R [ri, rj , vk] = Eh[vk, ri] ∗Et[vk, rj ], Ath

R [ri, rj , vk] = Et[vk, ri] ∗Eh[vk, rj ].

Next we will discuss the details of the proof.
Lemma 1 (TRIX at least as powerful as ULTRA and InGram). Any non-isomorphic triplet that can
be distinguished by ULTRA or InGram can also be distinguished by TRIX with certain choices of
hyperparameters and initial embeddings.

Proof. In this proof we consider the task of entity prediction.

TRIX is at least as expressive as ULTRA. Suppose ULTRA first updates relation embedding with a
k1-layer GNN and then updates entity embedding with another k2-layer GNN. We will show that
there is a TRIX with (k1 + k2) rounds of iterative updates that will get the same embeddings as
ULTRA. TRIX uses the same initial relation entity embedding as ULTRA and uses the all-one matrix
as initial entity embedding. To be consistent with ULTRA, TRIX uses NBFNet as the GNNLayer.

For the first k1 rounds, ULTRA only updates relation embedding with message passing on relation
graphs. ULTRA’s message passing function on relation graph is

Z
(i)
h,r(r

′) = UP(i)
R,ULTRA

(
Z

(i−1)
h,r (r′),AGG(i)

R,ULTRA

(
MSG(i)

R,ULTRA(Z
(i−1)
h,r (r′′)|(r′, r′′) ∈ AULTRA

R

))
For TRIX, we choose the message passing functions on relation graph as follows:

X
(i)
h,r(u) = UP(i)

V,TRIX

(
X

(i−1)
h,r (u),

AGG(i)
V,TRIX

(
MSG(i)

V,TRIX(X
(i−1)
h,r (v),Z

(i−1)
h,r (r′))|(u, r′, v) ∈ ATRIX

V

))
= X

(i−1)
h,r (u) = 1d

Z
(i)
h,r(r

′) = UP(i)
R,TRIX

(
Z

(i−1)
h,r (r′),

AGG(i)
R,TRIX

(
MSG(i)

R,TRIX(Z
(i−1)
h,r (r′′),X

(i)
h,r(u))|(r

′, u, r′′) ∈ ATRIX
R

))
Both ULTRA and TRIX use the non-parametric DistMult as the message function. If X(i)

h,r is an
all-one matrix, we have

MSG(i)
R,ULTRA(Z

(i−1)
h,r (r′′)|(r′, r′′) ∈ AULTRA

R )

=MSG(i)
R,TRIX(Z

(i−1)
h,r (r′′),X

(i)
h,r(u))|(r

′, u, r′′) ∈ ATRIX
R )

Both ULTRA and TRIX use sum as the aggregation function. If UP(i)
R,ULTRA and UP(i)

R,TRIX always

have the same parameter, it will end up with the same Z
(k1)
h,r .

For the last k2 layers, ULTRA only updates entity embedding. ULTRA marks the head entity with the
query relation embedding. ULTRA’s message passing function on the original knowledge graph is:

X
(i)
h,r(u) = UP(i)

V,ULTRA

(
X

(i−1)
h,r (u),

AGG(i)
V,ULTRA

(
MSG(i)

V,ULTRA(X
(i−1)
h,r (v),Z

(k1)
h,r (r′))|(u, r′, v) ∈ AULTRA

V

))
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For TRIX, it also marks the head entity with the query relation embedding as ULTRA does. We
choose the message passing functions on relation graph as follows:

X
(i+k1)
h,r (u) = UP(i+k1)

V,TRIX

(
X

(i+k1−1)
h,r (u),

AGG(i+k1)
V,TRIX

(
MSG(i+k1)

V,TRIX(X
(i+k1−1)
h,r (v),Z

(i+k1−1)
h,r (r′))|(u, r′, v) ∈ ATRIX

V

))
Z

(i+k1)
h,r (r′) = UP(i+k1)

R,TRIX

(
Z

(i+k1−1)
h,r (r′),

AGG(i+k1)
R,TRIX

(
MSG(i+k1)

R,TRIX(Z
(i+k1−1)
h,r (r′′),X

(i+k1)
h,r (u))|(r′, u, r′′) ∈ ATRIX

R

))
= Z

(i+k1−1)
h,r (r′) = Z

(k1)
h,r

If UP(i)
V,ULTRA and UP(i+k1)

V,TRIX always have the same parameter, the relation and entity embedding from
ULTRA and TRIX are exactly the same. Since the embeddings are the same, any non-isomorphic
triplet that can be distinguished by ULTRA can also be distinguished by TRIX.

TRIX is at least as expressive as InGram. Suppose InGram first updates relation embedding with a
k1-layer GNN and then updates entity embedding with another k2-layer GNN. We will show that
there is a TRIX with (k1 + k2) rounds of iterative updates that will get the same embeddings as
InGram. TRIX uses the same random initial relation entity embedding as InGram and uses the all-one
matrix as initial entity embedding. To be consistent with InGram, TRIX uses an extension of GATv2
as the GNNLayer.

For the first k1 rounds, InGram only updates relation embedding with message passing on relation
graphs. InGram’s message passing function on relation graph is

Z
(i)
h,r(r

′) = UP(i)
R,InGram

(
Z

(i−1)
h,r (r′),AGG(i)

R,InGram

(
MSG(i)

R,InGram(Z
(i−1)
h,r (r′′)|(r′, r′′) ∈ AInGram

R

))
For TRIX, we choose the message passing functions on relation graph as follows. Here with a slight
abuse of notation, ATRIX

R,hh and ATRIX
R,tt are the relation adjacency matrices for the head-head and tail-tail

connections respectively.

X
(i)
h,r(u) = UP(i)

V,TRIX

(
X

(i−1)
h,r (u),

AGG(i)
V,TRIX

(
MSG(i)

V,TRIX(X
(i−1)
h,r (v),Z

(i−1)
h,r (r′))|(u, r′, v) ∈ ATRIX

V

))
= X

(i−1)
h,r (u) = 1d

Z
(i)
h,r(r

′) = UP(i)
R,TRIX

(
Z

(i−1)
h,r (r′),

AGG(i)
R,TRIX

(
MSG(i)

R,TRIX(Z
(i−1)
h,r (r′′),X

(i)
h,r(u))|(r

′, u, r′′) ∈
(
ATRIX

R,hh ∪ATRIX
R,tt

)))
TRIX picks the same message function as InGram. If X(i)

h,r is an all-one matrix, we have

MSG(i)
R,InGram(Z

(i−1)
h,r (r′′)|(r′, r′′) ∈ AInGram

R )

=MSG(i)
R,TRIX(Z

(i−1)
h,r (r′′),X

(i)
h,r(u))|(r

′, u, r′′) ∈
(
ATRIX

R,hh ∪ATRIX
R,tt

)
)

Both InGram and TRIX use sum as the aggregation function. If UP(i)
R,InGram and UP(i)

R,TRIX always

have the same parameter, it will end up with the same Z
(k1)
h,r .

For the last k2 layers, InGram only updates entity embedding. InGram’s message passing function on
the original knowledge graph is:

X
(i)
h,r(u) = UP(i)

V,InGram

(
X

(i−1)
h,r (u),

AGG(i)
V,InGram

(
MSG(i)

V,InGram(X
(i−1)
h,r (v),Z

(k1)
h,r (r′))|(u, r′, v) ∈ AInGram

V

))
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For TRIX, we choose the message passing functions on relation graph as follows and change the
entity embedding to the same initial entity embedding as InGram:

X
(i+k1)
h,r (u) = UP(i+k1)

V,TRIX

(
X

(i+k1−1)
h,r (u),

AGG(i+k1)
V,TRIX

(
MSG(i+k1)

V,TRIX(X
(i+k1−1)
h,r (v),Z

(i+k1−1)
h,r (r′))|(u, r′, v) ∈ ATRIX

V

))
Z

(i+k1)
h,r (r′) = UP(i+k1)

R,TRIX

(
Z

(i+k1−1)
h,r (r′),

AGG(i+k1)
R,TRIX

(
MSG(i+k1)

R,TRIX(Z
(i+k1−1)
h,r (r′′),X

(i+k1)
h,r (u))|(r′, u, r′′) ∈ ATRIX

R

))
= Z

(i+k1−1)
h,r (r′) = Z

(k1)
h,r

If UP(i)
V,InGram and UP(i+k1)

V,TRIX always have the same parameter, the relation and entity embedding from
InGram and TRIX are exactly the same. Since the embeddings are the same, any non-isomorphic
triplet that can be distinguished by InGram can also be distinguished by TRIX.

Lemma 2 (TRIX can distinguish triplets ULTRA and InGram cannot). There exist non-isomorphic
triplets that can be distinguished by TRIX but that cannot be distinguished by ULTRA and InGram.

Proof. TRIX is more expressive than ULTRA. Consider the two triplets (v21, r3, v24) and (v21, r3,
v25) in Figure 6, which are non-isomorphic because r1 ̸= r2, and assume they are not observable
(i.e., they do not exist in the input graph). Assume, however, we want to predict the existence of these
two, with the first one having label 1 (exists) and the second one having label 0 (does not exist). In
practice, this means that the first one represents a missing link in an incomplete KG, while the other
does not exist and should not be predicted as missing. The proof shows the impossibility of ULTRA
to distinguish these two and therefore to make different predictions for the two.

In the relation graph of ULTRA, r1 and r2 are automorphic. This implies that ULTRA will give r1
and r2 the same relation embedding. Since this embedding is then used by ULTRA to obtain the
entity embeddings, ULTRA will assign v24 and v25 the same entity embedding. Therefore, ULTRA
will assign (v21, r3, v24) and (v21, r3, v25) the same representation, and therefore it will necessarily
make the same prediction for these two (predict that they both exist or that they both do not exist,
even though the ground truth tell us only one exist).

On the contrary, in the relation graph of TRIX, r1 and r2 are not automorphic. This implies that TRIX
can give r1 and r2 different relation embeddings, and consequently v24 and v25 can get different entity
embeddings. Therefore, TRIX can assign (v21, r3, v24) and (v21, r3, v25) different representations,
and therefore it can make different predictions for these two (predict that only the first exists, as the
ground truth). Therefore, we have just shown that there exist two non-isomorphic triplets that TRIX
can distinguish but ULTRA cannot.

TRIX is more expressive than InGram. Consider the two triplets (v7, r3, v10) and (v7, r3, v11)
in Figure 7, which are non-isomorphic because r1 ̸= r2, and assume they are not observable (i.e.,
they do not exist in the input graph). Assume, however, we want to predict the existence of these
two, with the first one having label 1 (exists) and the second one having label 0 (does not exist). In
practice, this means that the first one represents a missing link in an incomplete KG, while the other
does not exist and should not be predicted as missing. The proof shows the impossibility of InGram
to distinguish these two and therefore to make different predictions for the two.

In the relation graph of InGram, r1 and r2 are automorphic. This implies that InGram will give r1
and r2 the same relation embedding. Since this embedding is then used by InGram to obtain the
entity embeddings, InGram will assign v10 and v11 the same entity embedding. Therefore, InGram
will assign (v7, r3, v10) and (v7, r3, v11) the same representation, and therefore it will necessarily
make the same prediction for these two (predict that they both exist or that they both do not exist,
even though the ground truth tell us only one exist).

On the contrary, in the relation graph of TRIX, r1 and r2 are not automorphic. This implies that TRIX
can give r1 and r2 different relation embeddings, and consequently v10 and v11 can get different entity
embeddings. Therefore, TRIX can assign (v7, r3, v10) and (v7, r3, v11) different representations,
and therefore it can make different predictions for these two (predict that only the first exists, as the
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Figure 6: A counter example graph with 10 disconnected components where there exist non-
isomorphic triplets that can be distinguished by TRIX but that cannot be distinguished by ULTRA. In
the figure, solid lines are edges observed in the knowledge graph and dashed lines are edges we want
to predict whether existing or not. As discussed in Appendix B, ULTRA always gives two dashed
edges the same embedding while TRIX can distinguish them.
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Figure 7: A counter example graph with 3 disconnected components where there exist non-
isomorphic triplets that can be distinguished by TRIX but that cannot be distinguished by InGram. In
the figure, solid lines are edges observed in the knowledge graph and dashed lines are edges we want
to predict whether existing or not. As discussed in Appendix B, InGram always gives two dashed
edges the same embedding while TRIX can distinguish them.

ground truth). Therefore, we have just shown that there exist two non-isomorphic triplets that TRIX
can distinguish but InGram cannot.

Theorem 1 (TRIX is more expressive than ULTRA and InGram). TRIX is strictly more expressive
than ULTRA and InGram in distinguishing between non-isomorphic triplets in KGs.

Lemma 1 shows that any non-isomorphic triplet that can be distinguished by ULTRA or InGram
can also be distinguished by TRIX. Lemma 2 shows that there exist non-isomorphic triplets that can
be distinguished by TRIX but that cannot be distinguished by ULTRA or InGram. From Lemmas 1
and 2 directly follows that TRIX is more expressive than ULTRA and InGram.
Proposition 1. Define α = max

i
(max(

∑
j

1Eh[i,j]>0,
∑
j

1Et[i,j]>0)) which means α is the maximum

number of unique relations one single entity connects to as the head or the tail. Then the relation
adjacency matrix has |R| nodes, O(|V |α2) edges and |V | relations.

Proof. The dimension of relation adjacency matrix is R|R|×|R|×|V |×4. Since each node is affiliated
with at most α relations and any two of these relations may generate four non-zero entries (one for
head-to-head; one for tail-to-tail; one for head-to-tail; one for tail-to-head) in the relation graph, each
node creates at most 4α2 non-zero entries in the relation adjacency matrix, implying that the number
of nodes is O(|V |α2). Moreover, the total number of edges in the relation adjacency matrix is at
most 4|V |α2.

Now, let us suppose there are L rounds of iterative updates and embedding dimension is d. The time
complexity of entity embedding update in TRIX is O(L|E|d + L|V |d2). The time complexity of
relation embedding update in TRIX is O(L|V |α2d+ L|R|d2). Since L and d are always O(1), the
time complexity of TRIX is O(|E|+ |V |α2) for each query.

The time complexity of relation feature propagation in ULTRA is O(L|R|2d+ L|R|d2). The time
complexity of entity feature propagation in ULTRA is O(L|E|d + L|V |d2). Since d and L are
always O(1), the time complexity of ULTRA is O(|E|+ |V |+ |R|2) for each entity prediction query.
However, it goes to O(|E||R|+ |V ||R|+ |R|3) for each relation prediction query.
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Table 4: Statistics of relation graph in pre-training datasets.

α # relation # edge in original graph # edge in relation graph

WN18RR 7 11 86835 314481
FB15k237 53 237 272115 2247123
CoDExMedium 19 51 185584 706534

For completeness, we report in the following the statistics of the original graph and the relation graph
in three exemplary datasets as shown in Table 4. Empirically, the number of edges in the relation
graph is usually 4 to 10 times the number of edges in the original graph. This means for entity
prediction query, the complexity of ULTRA is up to 10 times better than TRIX. However, in relation
prediction, the complexity of TRIX is up to 20 times better than that of ULTRA since ULTRA needs
to perform one forward pass for each relation in the relation set.

C Computational Resources
We implemented TRIX using PyTorch [44] (offered under BSD-3 Clause license) and the PyTorch
Geometric library [45] (offered under MIT license) for efficient processing of graph-structured data.
All experiments were conducted on NVIDIA RTX A5000, NVIDIA RTX A6000, and NVIDIA
GeForce RTX 4090 GPUs, and on the Google’s Gemini API. For hyperparameter tuning and model
selection, we used the Weights and Biases (wandb) library [46].

D LLM Experiment Details
D.1 Details for Task 1

Relation Prediction Prompt of Task 1. In the following task, you will be given background knowl-
edge in the form of triplet (h, r, t) which means entity ’h’ has relation ’r’ with entity ’t’. Then you
will be asked some questions about the relationship between entities. Background knowledge: (Kris
Kristofferson, occupation, guitarist); (Willow Smith, genre, indie pop);. . . What is the relationship be-
tween entity ’Gaspard Monge’ and entity ’France’? Please choose one best answer from the following
relations:|parent organization|studies|cause of death|architectural style|unmarried partner|industry|. . . |.
You just need to give the relation and please do not give an explanation.

Entity Prediction Prompt of Task 1. In the following task, you will be given background knowl-
edge in the form of triplet (h, r, t) which means entity ’h’ has relation ’r’ with entity ’t’. Then you
will be asked some questions about the relationship between entities. Background knowledge: (Kris
Kristofferson, occupation, guitarist); (Willow Smith, genre, indie pop);. . . Predict the tail entity for
triplet (Gaspard Monge, country of citizenship, ?). Please give the 10 most possible answers. You
just need to give the names of the entities separated by commas and please do not give explanation.

In the prompt for relation prediction for all the three tasks, all relations in the dataset are listed with
’|’ as the delimiter. For the sake of simplicity in the presentation, in the next subsections we use ". . . "
to represent the rest of triplets and relations in the prompts.

Table 5 shows the Hits@1 of Gemini-1.5-pro on in-domain relation prediction task. Table 6 shows
the Hits@10 of Gemini-1.5-flash on in-domain entity prediction task. We use Gemini-1.5-flash for
entity prediction tasks for the sake of reducing costs of experiments. We run the experiment 3 times
with the same prompt in English to see if it can generate consistent answers. Gemini performs the
task quite well and shows consistency across 3 runs. This indicates given background knowledge in
the prompt, LLMs has the capacity to handle in-domain relation and entity predictions well.

D.2 Details for Task 2

Relation Prediction Prompt of Task 2. In the following task, you will first be given background
knowledge in the form of triplet (h, r, t) which means entity ’h’ has relation ’r’ with entity ’t’.
Then you will be asked some questions about the relationship between entities. Please notice
that some words are replaced with metasyntactic words in the following paragraph. Background
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Table 5: Task 1: In-domain LLM relation predictions Hits@1 on CoDEx-S.

Run #1 Run #2 Run #3 Worst
Gemini-1.5-pro 0.933 0.933 0.933 0.933
ULTRA 0.820 0.820 0.820 0.820
TRIX 0.935 0.935 0.935 0.935

Table 6: Task 1: In-domain LLM entity predictions Hits@10 on CoDEx-S.

Run #1 Run #2 Run #3 Worst
Gemini-1.5-flash 0.308 0.308 0.308 0.308
ULTRA 0.667 0.667 0.667 0.667
TRIX 0.670 0.670 0.670 0.670

knowledge: (foo, baz, guitarist); (Willow Smith, genre, bar);. . . What is the relationship between
entity ’foo’ and entity ’bar’? Please choose one best answer from the following relation IDs:|parent
organization|studies|quux|baz|. . . |. You just need to give the relation and please do not give an
explanation.

Entity Prediction Prompt of Task 2. In the following task, you will first be given background
knowledge in the form of triplet (h, r, t) which means entity ’h’ has relation ’r’ with entity ’t’. Then
you will be asked some questions about the relationship between entities. Please notice that some
words are replaced with metasyntactic words in the following paragraph. Background knowledge:
(foo, baz, guitarist); (Willow Smith, genre, bar);. . . Predict the tail entity for triplet (foo, garply, ?).
Please give the 10 most possible answers. You just need to give the names of the entities separated by
commas and please do not give explanation.

Table 7 shows the Hits@1 of Gemini-1.5-pro on out-domain relation prediction task. Table 8 shows
the Hits@10 of Gemini-1.5-flash on out-domain entity prediction task. The neighbor entities of
the head entity and the relations that connect the head entity with its neighbors are replaced with
metasyntactic words. We run the experiment 3 times with different metasyntactic words but the
underlying structural pattern is exactly the same as in the in-domain task. The results indicate the
LLM can not do the out-of-domain task well. This means the LLM relied more on the known
semantic description of the words instead of the structural pattern of the graph so that when there are
new entities and relations, it can not perform inductive reasoning on them.

D.3 Details for Task 3

Relation Prediction Prompt of Task 3. In the following task, entities and relations will be
expressed with their IDs. You will first be given the mapping from entities to their IDs and the
mapping from relations to their IDs. Then you will be given background knowledge in the form
of triplet (h, r, t) which means entity ’h’ has relation ’r’ with entity ’t’. Finally you will be asked
some questions about the relationship between entities. Entity mapping: Mireille Darc is entity
’8831’; Breton is entity ’20512’; Tomas Tranströmer is entity ’1641’. . . Relation mapping: located in
the administrative terroritorial entity is relation ’15’ . . . Background knowledge: (15443, 16, 1093);
(21198, 16, 9387); (14854, 8, 10218). . . What is the relationship between entity ’18127’ and entity
’1799’? Please choose one best answer from the following relation IDs:|45|48|27|35|. . . |. You just
need to give the ID of that relation and please do not give an explanation.

Entity Prediction Prompt of Task 3. In the following task, entities and relations will be expressed
with their IDs. You will first be given the mapping from entities to their IDs and the mapping from
relations to their IDs. Then you will be given background knowledge in the form of triplet (h, r,
t) which means entity ’h’ has relation ’r’ with entity ’t’. Finally you will be asked some questions
about the relationship between entities. Entity mapping: Mireille Darc is entity ’8831’; Breton is
entity ’20512’; Tomas Tranströmer is entity ’1641’. . . Relation mapping: located in the administrative
terroritorial entity is relation ’15’ . . . Background knowledge: (15443, 16, 1093); (21198, 16, 9387);
(14854, 8, 10218). . . Predict the tail entity for triplet (18127, 45, ?). Please give the 10 most possible
answers. You just need to give the IDs of the entities separated by commas and please do not give
explanation.
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Table 7: Task 2: Out-of-domain LLM relation predictions Hits@1 on CoDEx-S. Effects of Metasyn-
tactic Words on Relation Predictions on CoDEx-S.

Run #1 Run #2 Run #3 Worst

Gemini-1.5-pro 0.667 0.667 0.633 0.633
ULTRA 0.820 0.820 0.820 0.820
TRIX 0.935 0.935 0.935 0.935

Table 8: Task 2: Out-of-domain LLM entity predictions Hits@10 on CoDEx-S. Effects of Metasyn-
tactic Words on Entity Predictions on CoDEx-S.

Run #1 Run #2 Run #3 Worst

Gemini-1.5-flash 0.212 0.250 0.327 0.212
ULTRA 0.667 0.667 0.667 0.667
TRIX 0.670 0.670 0.670 0.670

Table 9 shows the Hits@1 of Gemini-1.5-pro on relation prediction in Task 3. Table 10 shows the
Hits@10 of Gemini-1.5-flash on entity prediction in Task 3. The entities and relations are expressed
as IDs. We run the experiment 3 times with permutated IDs but the underlying structural pattern is
exactly the same as in the in-domain task. The results demonstrate that the LLM is very sensitive to
ID permutation so that its performance is inconsistent across 3 permutations.

E Datasets
The statistics of all 57 datasets used in the experiments in presented in Tables 11,12,13. All datasets
are publicly available under open licenses (MIT or CC-BY).

F Detailed Experiment Results of Entity and Relation Prediction
F.1 Loss Function

TRIX is trained by minimizing the binary cross entropy loss over positive and negative triplets.

For entity prediction, the loss function is:

Loss = − log p(h, r, t)−
n∑

i=1

1

n
log(1− p(h′

i, r, t
′
i))

where (h, r, t) is the positive triplet and (h′
i, r, t

′
i) is a negative triplet by corrupting the head or the

tail. n is the number of negative triplets per positive triplet.

For relation prediction, the loss function is:

Loss = − log p(h, r, t)−
n∑

i=1

1

n
log(1− p(h, r′i, t))

where (h, r, t) is the positive triplet and (h, r′i, t) is a negative triplet by corrupting the relation. n is
the number of negative triplets per positive triplet.

F.2 Ablation Study

We conducted multiple experiments to gain deeper insights into the pre-training quality of TRIX
and to quantify the impact of the proposed adjacency matrix and the iterative updating scheme on
its performance. We compare the performance of (1) TRIX, (2) TRIX without iterative updates,
and (3) TRIX without iterative updates and without our relation graph (using the relation graph of
ULTRA). We can not do test TRIX w/o proposed relation graph and w/ iterative updates because
iterative updates are impossible with the prior relation graphs since entities are not included as edges
connecting relations in prior relation graphs and thus the message passing on prior relation graphs
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Table 9: Task 3: Out-of-domain LLM relation predictions Hits@1 on CoDEx-S. Effects of Input
Permutations on Relation Predictions on CoDEx-S.

Permutation #1 Permutation #2 Permutation #3 Worst

Gemini-1.5-pro 0.346 0.731 0.615 0.346
ULTRA 0.820 0.820 0.820 0.820
TRIX 0.935 0.935 0.935 0.935

Table 10: Task 3: Out-of-domain LLM entity predictions Hits@10 on CoDEx-S. Effects of Input
Permutations on Entity Predictions on CoDEx-S.

Permutation #1 Permutation #2 Permutation #3 Worst

Gemini-1.5-flash 0.212 0.250 0.231 0.212
ULTRA 0.667 0.667 0.667 0.667
TRIX 0.670 0.670 0.670 0.670

Table 11: Transductive datasets (16) used in the experiments. Train, Valid, Test denote triples in the
respective set. Task denotes the prediction task: h/t is predicting both heads and tails, tails is only
predicting tails.

Dataset Reference Entities Rels Train Valid Test Task

CoDEx Small [35] 2034 42 32888 1827 1828 h/t
WDsinger [47] 10282 135 16142 2163 2203 h/t
FB15k237_10 [47] 11512 237 27211 15624 18150 tails
FB15k237_20 [47] 13166 237 54423 16963 19776 tails
FB15k237_50 [47] 14149 237 136057 17449 20324 tails
FB15k237 [48] 14541 237 272115 17535 20466 h/t
CoDEx Medium [35] 17050 51 185584 10310 10311 h/t
NELL23k [47] 22925 200 25445 4961 4952 h/t
WN18RR [49] 40943 11 86835 3034 3134 h/t
AristoV4 [50] 44949 1605 242567 20000 20000 h/t
Hetionet [51] 45158 24 2025177 112510 112510 h/t
NELL995 [52] 74536 200 149678 543 2818 h/t
CoDEx Large [35] 77951 69 551193 30622 30622 h/t
ConceptNet100k [53] 78334 34 100000 1200 1200 h/t
DBpedia100k [54] 99604 470 597572 50000 50000 h/t
YAGO310 [55] 123182 37 1079040 5000 5000 h/t

would not use the entity embeddings. The data presented in Table 14 clearly demonstrates that both
the proposed relation graph and the iterative update scheme significantly enhance the prediction
performance.

F.3 Detailed Results

Table 15 shows an an overview of TRIX performance improvement compared with ULTRA. Table 16
shows detailed zero-shot entity prediction MRR and Hits@10. Table 17 shows detailed fine-tuned
entity prediction MRR and Hits@10. Table 18 shows detailed zero-shot relation prediction MRR and
Hits@1. Table 19 shows detailed fine-tuned relation prediction MRR and Hits@1. From these tables
we can conclude TRIX outperforms the baseline model in both entity and relation prediction.
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Table 12: Inductive entity (e) datasets (18) used in the experiments. Triples denote the number of
edges of the graph given at training, validation, or test. Valid and Test denote triples to be predicted
in the validation and test sets in the respective validation and test graph.

Dataset Rels Training Graph Validation Graph Test Graph

Entities Triples Entities Triples Valid Entities Triples Test

FB v1 [8] 180 1594 4245 1594 4245 489 1093 1993 411
FB v2 [8] 200 2608 9739 2608 9739 1166 1660 4145 947
FB v3 [8] 215 3668 17986 3668 17986 2194 2501 7406 1731
FB v4 [8] 219 4707 27203 4707 27203 3352 3051 11714 2840
WN v1 [8] 9 2746 5410 2746 5410 630 922 1618 373
WN v2 [8] 10 6954 15262 6954 15262 1838 2757 4011 852
WN v3 [8] 11 12078 25901 12078 25901 3097 5084 6327 1143
WN v4 [8] 9 3861 7940 3861 7940 934 7084 12334 2823
NELL v1 [8] 14 3103 4687 3103 4687 414 225 833 201
NELL v2 [8] 88 2564 8219 2564 8219 922 2086 4586 935
NELL v3 [8] 142 4647 16393 4647 16393 1851 3566 8048 1620
NELL v4 [8] 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small [56] 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large [56] 65 46626 202446 29246 77044 10179 29246 77044 10184
HM 1k [57] 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k [57] 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k [57] 11 28601 57601 28744 57601 900 23792 48425 2124
IndigoBM [24] 229 12721 121601 12797 121601 14121 14775 250195 14904

Table 13: Inductive entity and relation (e, r) datasets (23) used in the experiments. Triples denote
the number of edges of the graph given at training, validation, or test. Valid and Test denote triples to
be predicted in the validation and test sets in the respective validation and test graph.

Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples Entities Rels Triples Valid Entities Rels Triples Test

FB-25 [3] 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716
FB-50 [3] 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879
FB-75 [3] 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106
FB-100 [3] 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 [3] 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131
WK-50 [3] 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 [3] 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144
WK-100 [3] 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496
NL-0 [3] 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 [3] 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 [3] 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 [3] 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 [3] 1258 55 7832 1709 53 2378 793 1709 53 2378 793

Metafam [58] 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL [58] 4636 100 10275 4636 100 10275 1055 4752 183 10685 597
Wiki MT1 tax [58] 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834
Wiki MT1 health [58] 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566
Wiki MT2 org [58] 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci [58] 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650
Wiki MT3 art [58] 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113
Wiki MT3 infra [58] 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405
Wiki MT4 sci [58] 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health [58] 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703

Table 14: Zero-shot entity prediction results of TRIX, TRIX without proposed relation graph and
TRIX without iterative update scheme.

MRR Hits@10

TRIX w/o proposed relation graph and w/o iterative updates 0.356 0.508
TRIX w/ proposed relation graph and w/o iterative updates 0.361 0.518
TRIX 0.390 0.548
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Table 15: An overview of TRIX performance improvement compared with ULTRA.

Task Entity Relation

Improvement zero-shot finetuned zero-shot finetuned

-2% and below 4 3 8 12
-2% to 0% 9 19 2 3
0% to 2% 15 24 6 7
2% and above 26 11 38 35

Total 54 57 54 57
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Table 16: Zero-shot entity prediction MRR and Hits@10 over 57 KGs from distinct domains.

Dataset ULTRA MRR TRIX MRR ULTRA Hits@10 TRIX Hits@10

CoDEx Small 0.472 0.472 0.667 0.670
CoDEx Large 0.338 0.335 0.469 0.469
NELL-995 0.406 0.472 0.543 0.629
YAGO 310 0.451 0.409 0.615 0.627
WDsinger 0.382 0.511 0.498 0.609
NELL23k 0.239 0.290 0.408 0.497
FB15k237_10 0.248 0.246 0.398 0.393
FB15k237_20 0.272 0.269 0.436 0.430
FB15k237_50 0.324 0.321 0.526 0.521
DBpedia100k 0.398 0.426 0.576 0.603
AristoV4 0.182 0.181 0.282 0.286
ConceptNet100k 0.082 0.193 0.162 0.345
Hetionet 0.257 0.279 0.379 0.420
FB-100 0.449 0.436 0.642 0.635
FB-75 0.403 0.401 0.604 0.611
FB-50 0.338 0.334 0.543 0.547
FB-25 0.388 0.393 0.640 0.650
WK-100 0.164 0.188 0.286 0.299
WK-75 0.365 0.368 0.537 0.513
WK-50 0.166 0.166 0.324 0.313
WK-25 0.316 0.305 0.532 0.496
NL-100 0.471 0.486 0.651 0.676
NL-75 0.368 0.351 0.547 0.525
NL-50 0.407 0.404 0.570 0.548
NL-25 0.395 0.377 0.569 0.589
NL-0 0.342 0.385 0.523 0.549
HM 1k 0.059 0.072 0.092 0.128
HM 3k 0.037 0.069 0.077 0.119
HM 5k 0.034 0.062 0.071 0.110
HM Indigo 0.440 0.436 0.648 0.645
MT1 tax 0.224 0.358 0.305 0.452
MT1 health 0.298 0.376 0.374 0.457
MT2 org 0.095 0.091 0.159 0.156
MT2 sci 0.258 0.323 0.354 0.465
MT3 art 0.259 0.284 0.402 0.441
MT3 infra 0.619 0.655 0.755 0.797
MT4 sci 0.274 0.290 0.449 0.460
MT4 health 0.624 0.677 0.737 0.775
Metafam 0.238 0.341 0.644 0.815
FBNELL 0.485 0.473 0.652 0.660
WN-v1 0.648 0.699 0.768 0.791
WN-v2 0.663 0.678 0.765 0.781
WN-v3 0.376 0.418 0.476 0.541
WN-v4 0.611 0.648 0.705 0.723
FB-v1 0.498 0.515 0.656 0.682
FB-v2 0.512 0.525 0.700 0.730
FB-v3 0.491 0.501 0.654 0.669
FB-v4 0.486 0.493 0.677 0.687
NL-v1 0.785 0.806 0.913 0.898
NL-v2 0.526 0.569 0.707 0.768
NL-v3 0.515 0.558 0.702 0.743
NL-v4 0.479 0.538 0.712 0.765
ILPC Small 0.302 0.303 0.443 0.455
ILPC Large 0.290 0.307 0.424 0.428
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Table 17: Finetuned entity prediction MRR and Hits@10 over 57 KGs from distinct domains.

Dataset ULTRA MRR TRIX MRR ULTRA Hits@10 TRIX Hits@10

WN18RR 0.480 ± 0.000 0.514 ± 0.003 0.614 ± 0.000 0.611 ± 0.005

FB15K237 0.368 ± 0.000 0.366 ± 0.002 0.564 ± 0.000 0.559 ± 0.002

CoDEx Medium 0.372 ± 0.000 0.365 ± 0.001 0.525 ± 0.000 0.521 ± 0.001

CoDEx Small 0.490 ± 0.003 0.484 ± 0.001 0.686 ± 0.003 0.676 ± 0.003

CoDEx Large 0.343 ± 0.002 0.348 ± 0.002 0.478 ± 0.002 0.481 ± 0.002

NELL-995 0.509 ± 0.013 0.506 ± 0.030 0.660 ± 0.006 0.648 ± 0.016

YAGO 310 0.557 ± 0.009 0.541 ± 0.050 0.710 ± 0.003 0.702 ± 0.021

WDsinger 0.417 ± 0.002 0.502 ± 0.001 0.526 ± 0.002 0.620 ± 0.001

NELL23k 0.268 ± 0.001 0.306 ± 0.010 0.450 ± 0.001 0.536 ± 0.007

FB15k237_10 0.254 ± 0.001 0.253 ± 0.001 0.411 ± 0.001 0.408 ± 0.002

FB15k237_20 0.274 ± 0.001 0.273 ± 0.001 0.445 ± 0.002 0.441 ± 0.001

FB15k237_50 0.325 ± 0.002 0.322 ± 0.001 0.528 ± 0.002 0.522 ± 0.002

DBpedia100k 0.436 ± 0.008 0.457 ± 0.026 0.603 ± 0.006 0.619 ± 0.012

AristoV4 0.343 ± 0.006 0.345 ± 0.009 0.496 ± 0.004 0.499 ± 0.010

ConceptNet100k 0.310 ± 0.004 0.340 ± 0.008 0.529 ± 0.007 0.564 ± 0.001

Hetionet 0.399 ± 0.005 0.394 ± 0.004 0.538 ± 0.004 0.534 ± 0.005

WN-v1 0.685 ± 0.003 0.705 ± 0.007 0.793 ± 0.003 0.798 ± 0.005

WN-v2 0.679 ± 0.002 0.682 ± 0.004 0.779 ± 0.003 0.780 ± 0.002

WN-v3 0.411 ± 0.008 0.425 ± 0.010 0.546 ± 0.006 0.543 ± 0.006

WN-v4 0.614 ± 0.003 0.650 ± 0.002 0.720 ± 0.001 0.722 ± 0.002

FB-v1 0.509 ± 0.002 0.515 ± 0.000 0.670 ± 0.004 0.682 ± 0.000

FB-v2 0.524 ± 0.003 0.525 ± 0.000 0.710 ± 0.004 0.730 ± 0.000

FB-v3 0.504 ± 0.001 0.501 ± 0.000 0.663 ± 0.003 0.669 ± 0.000

FB-v4 0.496 ± 0.001 0.493 ± 0.000 0.684 ± 0.001 0.687± 0.000

NL-v1 0.757 ± 0.021 0.804 ± 0.007 0.878 ± 0.035 0.899 ± 0.001

NL-v2 0.575 ± 0.004 0.571 ± 0.003 0.761 ± 0.007 0.764 ± 0.006

NL-v3 0.563 ± 0.004 0.571 ± 0.007 0.755 ± 0.006 0.759 ± 0.006

NL-v4 0.469 ± 0.020 0.551 ± 0.001 0.733 ± 0.011 0.772 ± 0.004

ILPC Small 0.303 ± 0.001 0.303 ± 0.001 0.453 ± 0.002 0.455 ± 0.001

ILPC Large 0.308 ± 0.002 0.310 ± 0.002 0.431 ± 0.001 0.431 ± 0.003

HM 1k 0.042 ± 0.002 0.072 ± 0.000 0.100 ± 0.007 0.128 ± 0.000

HM 3k 0.030 ± 0.002 0.069 ± 0.000 0.090 ± 0.003 0.119 ± 0.000

HM 5k 0.025 ± 0.001 0.074 ± 0.021 0.068 ± 0.003 0.118 ± 0.013

HM Indigo 0.432 ± 0.001 0.436 ± 0.000 0.639 ± 0.002 0.645 ± 0.000

FB-100 0.444 ± 0.003 0.436 ± 0.001 0.643 ± 0.004 0.633 ± 0.003

FB-75 0.400 ± 0.003 0.401 ± 0.000 0.598 ± 0.004 0.611 ± 0.000

FB-50 0.334 ± 0.002 0.334 ± 0.000 0.538 ± 0.004 0.547 ± 0.000

FB-25 0.383 ± 0.001 0.393 ± 0.000 0.635 ± 0.002 0.650 ± 0.000

WK-100 0.168 ± 0.005 0.188 ± 0.000 0.286 ± 0.003 0.299 ± 0.000

WK-75 0.380 ± 0.001 0.368 ± 0.000 0.530 ± 0.009 0.513 ± 0.000

WK-50 0.140 ± 0.010 0.166 ± 0.000 0.280 ± 0.012 0.313 ± 0.000

WK-25 0.321 ± 0.003 0.300 ± 0.009 0.535 ± 0.007 0.493 ± 0.006

NL-100 0.458 ± 0.012 0.482 ± 0.002 0.684 ± 0.011 0.691 ± 0.001

NL-75 0.374 ± 0.007 0.351 ± 0.000 0.570 ± 0.005 0.525 ± 0.000

NL-50 0.418 ± 0.005 0.405 ± 0.002 0.595 ± 0.005 0.555 ± 0.012

NL-25 0.407 ± 0.009 0.377 ± 0.000 0.596 ± 0.012 0.589 ± 0.000

NL-0 0.329 ± 0.010 0.385 ± 0.000 0.551 ± 0.012 0.549 ± 0.000

MT1 tax 0.330 ± 0.046 0.397 ± 0.001 0.459 ± 0.056 0.508 ± 0.002

MT1 health 0.380 ± 0.002 0.376 ± 0.000 0.467 ± 0.006 0.457 ± 0.000

MT2 org 0.104 ± 0.001 0.098 ± 0.002 0.170 ± 0.001 0.162 ± 0.002

MT2 sci 0.311 ± 0.010 0.331 ± 0.012 0.451 ± 0.042 0.526 ± 0.005

MT3 art 0.306 ± 0.003 0.289 ± 0.004 0.473 ± 0.003 0.441 ± 0.001

MT3 infra 0.657 ± 0.008 0.672 ± 0.003 0.807 ± 0.007 0.810 ± 0.002

MT4 sci 0.303 ± 0.007 0.305 ± 0.003 0.478 ± 0.003 0.482 ± 0.001

MT4 health 0.704 ± 0.002 0.702 ± 0.002 0.785 ± 0.002 0.785 ± 0.002

Metafam 0.997 ± 0.003 0.997 ± 0.003 1.000 ± 0.000 1.000 ± 0.000

FBNELL 0.481 ± 0.004 0.478 ± 0.004 0.661 ± 0.011 0.655 ± 0.012
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Table 18: Zero-shot relation prediction MRR and Hits@1 over 57 KGs from distinct domains.

Dataset ULTRA MRR TRIX MRR ULTRA Hits@1 TRIX Hits@1

CoDEx Small 0.900 0.961 0.820 0.935
CoDEx Large 0.892 0.902 0.824 0.837
NELL-995 0.583 0.578 0.437 0.457
YAGO 310 0.646 0.783 0.403 0.598
WDsinger 0.668 0.720 0.546 0.621
NELL23k 0.669 0.756 0.548 0.657
FB15k237_10 0.688 0.795 0.550 0.711
FB15k237_20 0.695 0.834 0.558 0.758
FB15k237_50 0.717 0.876 0.591 0.812
DBpedia100k 0.650 0.717 0.509 0.582
AristoV4 0.254 0.389 0.201 0.265
ConceptNet100k 0.181 0.650 0.083 0.469
Hetionet 0.634 0.809 0.524 0.707
WN-v1 0.836 0.792 0.740 0.613
WN-v2 0.853 0.764 0.790 0.572
WN-v3 0.707 0.741 0.577 0.568
WN-v4 0.860 0.764 0.803 0.570
FB-v1 0.646 0.705 0.523 0.599
FB-v2 0.695 0.713 0.570 0.590
FB-v3 0.679 0.742 0.553 0.644
FB-v4 0.638 0.766 0.488 0.665
NL-v1 0.636 0.657 0.358 0.453
NL-v2 0.742 0.780 0.652 0.696
NL-v3 0.669 0.725 0.544 0.612
NL-v4 0.606 0.794 0.489 0.691
ILPC Small 0.905 0.919 0.843 0.872
ILPC Large 0.875 0.894 0.799 0.829
HM 1k 0.626 0.663 0.447 0.414
HM 3k 0.592 0.664 0.439 0.418
HM 5k 0.605 0.672 0.452 0.428
HM Indigo 0.681 0.852 0.559 0.765
FB-100 0.830 0.921 0.728 0.880
FB-75 0.698 0.822 0.555 0.747
FB-50 0.696 0.780 0.575 0.699
FB-25 0.687 0.805 0.565 0.724
WK-100 0.887 0.907 0.812 0.869
WK-75 0.911 0.916 0.875 0.883
WK-50 0.865 0.868 0.793 0.818
WK-25 0.857 0.881 0.760 0.823
NL-100 0.743 0.884 0.564 0.796
NL-75 0.795 0.788 0.692 0.699
NL-50 0.680 0.755 0.569 0.636
NL-25 0.688 0.742 0.562 0.614
NL-0 0.632 0.658 0.502 0.519
MT1 tax 0.985 0.975 0.976 0.958
MT1 health 0.721 0.973 0.561 0.949
MT2 org 0.974 0.986 0.951 0.973
MT2 sci 0.976 0.964 0.961 0.941
MT3 art 0.881 0.885 0.798 0.825
MT3 infra 0.962 0.940 0.935 0.905
MT4 sci 0.933 0.966 0.891 0.944
MT4 health 0.826 0.937 0.719 0.898
Metafam 0.124 0.291 0.000 0.011
FBNELL 0.700 0.726 0.564 0.605
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Table 19: Finetuned relation prediction MRR and Hits@1 over 57 KGs from distinct domains.

Dataset ULTRA MRR TRIX MRR ULTRA Hits@1 TRIX Hits@1

WN18RR 0.914 ± 0.004 0.783 ± 0.009 0.871 ± 0.001 0.634 ± 0.007

FB15K237 0.795 ± 0.017 0.924 ± 0.005 0.709 ± 0.025 0.870 ± 0.024

CoDEx Medium 0.919 ± 0.032 0.931 ± 0.001 0.870 ± 0.048 0.886 ± 0.001

CoDEx Small 0.942 ± 0.007 0.964 ± 0.002 0.900 ± 0.014 0.943 ± 0.002

CoDEx Large 0.907 ± 0.000 0.908 ± 0.003 0.850 ± 0.000 0.845 ± 0.004

NELL-995 0.630 ± 0.000 0.578 ± 0.000 0.513 ± 0.000 0.457 ± 0.000

YAGO 310 0.930 ± 0.002 0.826 ± 0.000 0.891 ± 0.004 0.666 ± 0.000

WDsinger 0.730 ± 0.012 0.721 ± 0.004 0.603 ± 0.020 0.627 ± 0.007

NELL23k 0.688 ± 0.008 0.755 ± 0.004 0.571 ± 0.009 0.658 ± 0.005

FB15k237_10 0.688 ± 0.000 0.795 ± 0.000 0.550 ± 0.000 0.711 ± 0.000

FB15k237_20 0.695 ± 0.000 0.846 ± 0.011 0.558 ± 0.000 0.778 ± 0.017

FB15k237_50 0.728 ± 0.013 0.903 ± 0.003 0.618 ± 0.027 0.858 ± 0.006

DBpedia100k 0.650 ± 0.000 0.780 ± 0.003 0.509 ± 0.000 0.665 ± 0.006

AristoV4 0.254 ± 0.000 0.498 ± 0.002 0.201 ± 0.000 0.381 ± 0.002

ConceptNet100k 0.612 ± 0.000 0.712 ± 0.005 0.488 ± 0.000 0.551 ± 0.003

Hetionet 0.737 ± 0.031 0.922 ± 0.002 0.646 ± 0.041 0.862 ± 0.005

WN-v1 0.844 ± 0.021 0.776 ± 0.021 0.754 ± 0.029 0.591 ± 0.034

WN-v2 0.834 ± 0.008 0.765 ± 0.009 0.766 ± 0.013 0.574 ± 0.015

WN-v3 0.707 ± 0.000 0.756 ± 0.044 0.577 ± 0.000 0.594 ± 0.064

WN-v4 0.861 ± 0.005 0.804 ± 0.013 0.795 ± 0.007 0.651 ± 0.026

FB-v1 0.650 ± 0.008 0.705 ± 0.000 0.513 ± 0.014 0.599 ± 0.000

FB-v2 0.675 ± 0.035 0.713 ± 0.000 0.547 ± 0.040 0.590 ± 0.000

FB-v3 0.677 ± 0.007 0.742 ± 0.000 0.556 ± 0.006 0.644 ± 0.000

FB-v4 0.690 ± 0.026 0.766 ± 0.000 0.560 ± 0.035 0.665 ± 0.000

NL-v1 0.719 ± 0.061 0.590 ± 0.036 0.504 ± 0.113 0.341 ± 0.066

NL-v2 0.668 ± 0.064 0.811 ± 0.000 0.549 ± 0.090 0.740 ± 0.000

NL-v3 0.646 ± 0.014 0.757 ± 0.004 0.484 ± 0.022 0.643 ± 0.009

NL-v4 0.570 ± 0.030 0.822 ± 0.011 0.412 ± 0.056 0.735 ± 0.011

ILPC Small 0.922 ± 0.001 0.919 ± 0.000 0.876 ± 0.001 0.872 ± 0.000

ILPC Large 0.875 ± 0.000 0.894 ± 0.000 0.799 ± 0.000 0.829 ± 0.000

HM 1k 0.626 ± 0.000 0.663 ± 0.000 0.447 ± 0.000 0.414 ± 0.000

HM 3k 0.592 ± 0.000 0.664 ± 0.000 0.439 ± 0.000 0.418 ± 0.000

HM 5k 0.605 ± 0.000 0.672 ± 0.000 0.452 ± 0.000 0.428 ± 0.000

HM Indigo 0.726 ± 0.005 0.835 ± 0.002 0.614 ± 0.004 0.746 ± 0.003

FB-100 0.851 ± 0.006 0.921 ± 0.000 0.769 ± 0.016 0.880 ± 0.000

FB-75 0.754 ± 0.020 0.822 ± 0.000 0.638 ± 0.032 0.747 ± 0.000

FB-50 0.696 ± 0.000 0.780 ± 0.000 0.575 ± 0.000 0.699 ± 0.000

FB-25 0.684 ± 0.021 0.805 ± 0.000 0.563 ± 0.024 0.724 ± 0.000

WK-100 0.924 ± 0.003 0.916 ± 0.001 0.879 ± 0.002 0.885 ± 0.003

WK-75 0.911 ± 0.000 0.937 ± 0.003 0.875 ± 0.000 0.910 ± 0.003

WK-50 0.865 ± 0.000 0.881 ± 0.007 0.793 ± 0.000 0.840 ± 0.014

WK-25 0.897 ± 0.002 0.905 ± 0.007 0.834 ± 0.005 0.860 ± 0.011

NL-100 0.803 ± 0.008 0.885 ± 0.005 0.678 ± 0.012 0.793 ± 0.008

NL-75 0.795 ± 0.000 0.790 ± 0.000 0.678 ± 0.000 0.671 ± 0.000

NL-50 0.808 ± 0.000 0.774 ± 0.000 0.704 ± 0.000 0.683 ± 0.000

NL-25 0.737 ± 0.000 0.709 ± 0.000 0.622 ± 0.000 0.606 ± 0.000

NL-0 0.632 ± 0.000 0.655 ± 0.006 0.502 ± 0.000 0.518 ± 0.002

MT1 tax 0.990 ± 0.001 0.995 ± 0.001 0.984 ± 0.001 0.990 ± 0.001

MT1 health 0.929 ± 0.044 0.973 ± 0.000 0.867 ± 0.087 0.949 ± 0.000

MT2 org 0.981 ± 0.014 0.987 ± 0.001 0.963 ± 0.027 0.978 ±0.001

MT2 sci 0.977 ± 0.001 0.990 ± 0.001 0.961 ± 0.001 0.984 ± 0.002

MT3 art 0.907 ± 0.012 0.887 ± 0.003 0.851 ± 0.024 0.828 ± 0.005

MT3 infra 0.966 ± 0.003 0.970 ± 0.001 0.947 ± 0.006 0.952 ± 0.003

MT4 sci 0.954 ± 0.002 0.972 ± 0.001 0.929 ± 0.002 0.952 ± 0.001

MT4 health 0.951 ± 0.006 0.986 ± 0.001 0.919 ± 0.010 0.979 ± 0.002

Metafam 0.368 ± 0.029 0.265 ± 0.044 0.112 ± 0.036 0.024 ± 0.022

FBNELL 0.720 ± 0.013 0.766 ± 0.004 0.576 ± 0.020 0.639 ± 0.006
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