
Under review as a conference paper at ICLR 2022

FLOWX: TOWARDS EXPLAINABLE GRAPH NEURAL
NETWORKS VIA MESSAGE FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the explainability of graph neural networks (GNNs) as a step
towards elucidating their working mechanisms. While most current methods focus
on explaining graph nodes, edges, or features, we argue that, as the inherent
functional mechanism of GNNs, message flows are more natural for performing
explainability. To this end, we propose a novel method here, known as FlowX, to
explain GNNs by identifying important message flows. To quantify the importance
of flows, we propose to follow the philosophy of Shapley values from cooperative
game theory. To tackle the complexity of computing all coalitions’ marginal
contributions, we propose an approximation scheme to compute Shapley-like
values as initial assessments of further redistribution training. We then propose a
learning algorithm to train flow scores and improve explainability. Experimental
studies on both synthetic and real-world datasets demonstrate that our proposed
FlowX leads to improved explainability of GNNs.

1 INTRODUCTION

With the advances of deep learning, graph neural networks (GNNs) are achieving promising per-
formance on many graph tasks, including graph classification (Xu et al., 2019; Gao & Ji, 2019;
Chen et al., 2020), node classification (Kipf & Welling, 2017; Veličković et al., 2018; Wu et al.,
2019), and graph generation (Luo et al., 2021; You et al., 2018). Many research efforts have been
made to develop advanced graph operations, such as graph message passing (Kipf & Welling, 2017;
Veličković et al., 2018; Li et al., 2019), graph pooling (Yuan & Ji, 2020; Zhang et al., 2018; Ying
et al., 2018), and 3D graph operations (Schütt et al., 2017; Klicpera et al., 2020). Deep graph models
usually consist of many layers of these operations stacked on top of each other interspersed with
nonlinear functions. The resulting deep models are usually deep and highly nonlinear and complex.
While these complex systems allow for accurate modeling, their decision mechanisms are highly
elusive and not human-intelligible. Given the increasing importance and demand for trustworthy
and fair artificial intelligence, it is imperative to develop methods to open the black-box and explain
these highly complex deep models. Driven by these needs, significant efforts have been made to
investigate the explainability of deep models on images and texts. These methods are developed from
different perspectives, including studying the gradients of models (Simonyan et al., 2013; Smilkov
et al., 2017; Yang et al., 2019), mapping hidden features to input space (Zhou et al., 2016; Selvaraju
et al., 2017), occluding different input features (Yuan et al., 2020a; Dabkowski & Gal, 2017; Chen
et al., 2018), and studying the meaning of hidden layers (Yuan et al., 2019; Olah et al., 2018; Du
et al., 2018), etc. In contrast, the explainability of deep graph models is still less explored. Since
graph data contain limited locality information but have important structural information, it is usually
not natural to directly extend image or text based methods to graphs. Recently, several techniques
have been proposed to explain GNNs, such as XGNN (Yuan et al., 2020b), GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020), and SubgraphX (Yuan et al., 2021), etc. These methods
mainly focus on explaining graph nodes, edges, features, or subgraphs.

In this work, we observe and argue that message flows are the inherent functional mechanism of
GNNs and thus are more natural and intuitive for studying the explainability of GNNs. To this
end, we propose a message flow based explanation method, known as FlowX, to explain GNNs.
FlowX attributes GNN predictions to message flows and studies the importance of different message
flows. We first develop a systematic framework that lays the foundation on message flows for
naturally explaining the message passing in GNNs. With our framework, the FlowX first quantifies

1

Under review as a conference paper at ICLR 2022

the importance of flows by following the phylosophy of Shapley values. Since message flows cannot
be directly quantified to calculate marginal contributions, we propose an approximation scheme
as the initial assessments of different flows. We then propose a learning-based algorithm taking
advantages from the initial assessments to capture important flows in predictions. We conduct
extensive experiments on both synthetic and real-world datasets. Experimental results show that our
proposed FlowX outperforms existing methods significantly and consistently. Both quantitative and
qualitative studies demonstrate that our proposed FlowX leads to improved explainability of GNNs.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

With the advances of deep learning, several graph neural network approaches have been proposed to
solve graph tasks, including graph convolutional networks (GCNs) (Kipf & Welling, 2017), graph
attention networks (GATs) (Veličković et al., 2018), and graph isomorphism networks (GINs) (Xu
et al., 2019), etc. They generally follow a message-passing framework to learn graph node features.
Specifically, the new features of a target node are learned by aggregating messages flows passed
from its neighboring nodes. Without loss of generality, we consider the input graph as a directed
graph with n nodes and m edges. The graph is denoted as G = (V,E), where V = {v1, . . . , vn}
denotes nodes, and E = {eij} represents edges in which eij is the directed edge vi → vj . Then it
can be represented by a feature matrix X ∈ Rd×n and an adjacency matrix A ∈ Rn×n. Each node
vi is associated with a d-dimensional feature vector xi corresponding to the i-th column of X . The
element aij in A represents the weight of eij , and aij = 0 indicates eij does not exist. For the t-th
layer in GNNs, the message aggregation procedures can be mathematically written as a two-step
computation as

Aggregate: St = Xt−1Ât, (1)

Combine: Xt = M t(St), (2)

where Xt ∈ Rdt×n denotes the node feature matrix computed by the t-th GNN layer and X0 = X .
Here M t(·) denotes the node feature transformation function at layer t and Ât is the connectivity
matrix at layer t. Note that we name the elements in Ât as layer edges and âtjk indicates the layer
edge connecting node j and k in layer t. For example, in GCNs, the transformations are defined
as σ(W tSt) and Ât = D−

1
2 (A+ I)D−

1
2 where W t ∈ Rdt×dt−1 is a trainable weight matrix, σ(·)

denotes the activation function, I is an identity matrix to add self-loops to the adjacency matrix, and
D denotes the diagonal node degree matrix. We can stack T GNN layers on top of each other to form
a T -layer network, and the network function can be expressed as

f(G) = g(MT (MT−1(· · ·M1(X0Â1) · · ·)ÂT−1)ÂT).

When f(G) is a graph classification model, g(·) generally consists of a readout function, such as
global mean pooling, and a multi-layer perceptron (MLP) graph classifier. Meanwhile, when f(G) is
a node classification model, g(·) represents a MLP node classifier.

2.2 EXPLAINABILITY OF GRAPH NEURAL NETWORKS

A major limitation of GNNs is their lack of explainability. Thus, different methods have been proposed
to explain the predictions of GNNs, such as GraphLime (Huang et al., 2020), GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020), PGMExplainer (Vu & Thai, 2020), SubgraphX (Yuan
et al., 2021), XGNN (Yuan et al., 2020b), and GraphSVX (Duval & Malliaros, 2021). These methods
can be mainly grouped into four categories based on the views of their explanations. First, several
techniques provide explanations by identifying important nodes in the input graph. For example,
GradCAM (Pope et al., 2019) measures node importance by combining the hidden features and
gradients; LRP (Baldassarre & Azizpour, 2019) and Excitation BP (Pope et al., 2019) decompose the
predictions into several terms and assign these terms to different nodes; PGM-Explainer (Vu & Thai,
2020) builds a probabilistic graphical model by randomly perturbing the node features and employs
an interpretable Bayesian network to generate explanations. Second, several existing methods, such
as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), and GraphMask (Schlichtkrull

2

Under review as a conference paper at ICLR 2022

et al., 2021), explain GNNs by studying the importance of different graph edges. These methods
follow a similar high-level idea that learns masks to identify important edges while maximizing
the mutual information. Next, the recent study SubgraphX (Yuan et al., 2021) proposes to explain
GNNs via subgraphs. It incorporates the Monte Carlo tree search algorithm to explore subgraphs
and employs Shapley values to measure the importance. Finally, XGNN (Yuan et al., 2020b) focuses
on model-level explanations, which can provide high-level insights and general understanding. It
proposes to generate graph patterns that can maximize a certain model prediction. While those
methods explain GNNs from different views, none of them can provide explanations in terms of
message flows and we believe message flows are more natural for performing explainability.

To the best of our knowledge, GNN-LRP (Schnake et al., 2020) is the only algorithm that explains
GNNs by relevant walks. The relevant walk is defined as a T -length ordered edge sequence that
corresponds to a T -step directed path on the input graph. To study walk explainability, GNN-LRP
considers the GNN prediction as a function and decomposes it using higher-order Taylor expansions
to distribute prediction scores to relevant walks. Specifically, by using T -order Taylor expansion with
a proper root, each term in the Taylor expansion corresponds to a relevant walk and is regarded as
the importance score. While our proposed FlowX shares a similar explanation target, i.e., flow/walk,
with GNN-LRP, our method is fundamentally different. The GNN-LRP is developed based on score
decomposition while our method follows the phylosopy of Shapley values from cooperative game
theory as initial assessments and proposes a learning-based algorithm for the score generation. In
addition, GNN-LRP has several constraints on the activation function and bias term used in GNNs
while our method can be applied to general GNN models. Furthermore, as the GNN-LRP follows the
Gradient× Input scheme, it may not pass the model parameter randomization test and may not be
sensitive to model parameters (Adebayo et al., 2018).

Differences with Other Methods Using Shapley Values: Shapley values are commonly used in
explaining machine learning methods. In particular, a recent study proposes a surrogate method,
known as GraphSVX (Duval & Malliaros, 2021), to explain GNNs with both node and feature masks.
Another recent study proposes SubgraphX (Yuan et al., 2021), which employs a search algorithm
to explore and identify subgraphs with high Shapley scores. While these methods use Shapley
values, there are several fundamental differences. First, our proposed method focuses on explaining
message flows, which are the most basic and natural units for explanations as GNNs are based on
message passing schemes. Second, we only use Shapley-like values as initial approximations to
facilitating further training. Experiments show that the learning step is very important. Furthermore,
the fundamental difference with GraphSVX is reflected in the fact that, while our method is a
perturbation-based method, GraphSVX is a surrogate method (Yuan et al., 2020c). Due to these
differences, we show in experiments that our FlowX achieves more natural and improved performance
as compared with other methods.

3 THE PROPOSED FLOWX

While existing methods mainly focus on explaining GNNs with graph nodes, edges, or subgraphs, we
propose to study the explainability of GNNs from the view of message flows. We argue that message
flows are the fundamental building blocks of GNNs and it is natural to study their contributions
towards GNN predictions. With our message flow framework, we propose a novel method, known
as FlowX, to investigate the importance of different message flows. Specifically, we follow the
phylosophy of Shapley values (Kuhn & Tucker, 1953) from game theory and propose an marginal
contribution approximation scheme for them. In addition, a learning-based algorithm is proposed to
improve the explainability of message flows.

3.1 A MESSAGE FLOW VIEW OF GNNS

We consider a deep graph model with T GNN layers. Each GNN layer aggregates 1-hop neighboring
information to learn new node embeddings. Hence, for any node, the outgoing messages are
transmitted within its T -hop neighbors. Then the outputs of GNNs can be regarded as a function of
such transmitted T -step messages, which are named as message flows in this work. Formally, we
introduce the concept of message flows and message carriers as follow:

3

Under review as a conference paper at ICLR 2022

Definition 1: Message Carrier. We use the connectivity matrix to represent the carriers for message
flows. Given the connectivity matrix Ât at layer t, the layer edge âtij represents the message carrier
with which the message passes from node vi to vj at layer t.

Note that we use the superscript t to distinguish the message carriers in different layers since their
corresponding message flows are different. Then the set of all message carriers, i.e., all layer edges,
is defined as A = {· · · , â1uv, · · · , âtuv, · · · , âTuv, · · · } and |A| = |E| × T .

Definition 2: Message Flow. In a T -layer GNN model, we use Fijk...`m to denote the message flow
that starts from node vi in the input layer, and sequentially passes the message to node vj , vk, . . . , v`
until to node vm in the final layer T . The corresponding message carriers can be represented as
{â1ij , â2jk, . . . , âT`m}.

In a T -layer GNN model, all message flows start from the input layer and end with the final layer so
that their lengths equal to T . For the ease of notations, we introduce the wildcard ∗ to represent any
valid node sequence and F to denote the message flow set. For example, we can use Fij∗, F∗`m,
and Fij∗`m to denote the message flow sets that share the same message carrier â1ij , â

T
`m, or both of

them, respectively. In addition, we employ another wildcard ? to denote any single node and ?{t} to
represent any valid node sequence with t nodes. For example, F?{3} means the set of valid 2-step
message flow with 3 nodes. Note that the following property of message flow sets also holds:

Fij∗`m = Fij∗ ∩F∗`m. (3)

The final embeddings of node vm are determined by all incoming message flows to node vm, which
can be denoted as F∗m. Since the output of the GNN model is obtained based on the final node
embeddings, then it is reasonable to treat the GNN output as the combinations of different message
flows. Hence, it is natural to demystify GNN models by studying the importance of different message
flows towards GNN predictions.

3.2 SAMPLING MARGINAL CONTRIBUTIONS AS INITIAL ASSESSMENTS

While explaining GNNs with message flows seems to be promising, it is still crucial to properly
measure the importance of those message flows. Hence, in this work, our FlowX proposes to follow
the philosophy of Shapley value (Kuhn & Tucker, 1953) to use the marginal contributions in different
flow sets as the initial assessments of flow importance. It is noteworthy that our initial assessments are
not computing real Shapley values. Shapley value is a solution concept in cooperative game theory
and used to fairly assign the game gain to different players. When considering marginal contributions
in GNN explanation tasks, we treat the message flows as different players and the GNN prediction
score as the total game gain. Formally, given the trained GNN model f(·) and the input graph G, we
use F∗ to denote the set of all valid flows, i.e., all players in the game. Then given any flow Fk, we
mathematically define the contribution of it as

φ(Fk) =
∑

P⊆F∗\{Fk}

W (|P |)(f
(
P ∪ {Fk}

)
− f(P)), (4)

where W (|P |) is a weight function assigned to each term in the summation; P denotes the possible
coalition group of players, and φ(·) denotes the flow score. Here f

(
P ∪ {Fk}

)
− f(P) is the

marginal contribution of flow Fk for a particular coalition group, which can be computed by the
prediction difference between combining Fk with the coalition group P and only using P . Note that
Eq. 4 is equivalent to the classic Shapley value when W (|P |) = |P |!(|F∗|−|P |−1)!

|F∗|! where | · | is the
set size. To compute the flow score φ(Fk), we need to enumerate all possible coalition groups and
considers different interactions among players. However, it is time-consuming to consider all possible
coalition; thus, we sample several marginal contributions to approximate the final flow score. Note
that it is not possible to compute importance score with Eq. (4) for message flows since we cannot
remove individual message flows from the GNN model and the finest component we can directly
remove is the layer edge. For example, when removing the layer edge â1ij , the whole flow set Fij∗ is
removed from the model. In addition, enumerating all possible coalition groups is time-consuming
when the input graph is large-scale and the GNN model is deep. Hence, in our FlowX, we propose
an approximation scheme to compute Eq. 4 based on Monte Carlo (MC) sampling (Štrumbelj &
Kononenko, 2014).

4

Under review as a conference paper at ICLR 2022

Iterations

1v

2v

3v

4v

1v

2v

3v 4v

1st iteration 2nd iteration

Flows

Figure 1: An illustration of our initial assessments via sampling marginal contributions. For each MC
sampling step, we iteratively remove one layer edge until all layer edges are removed. In this example,
the removed layer edges are shown in bold and purple lines while the corresponding message flows
are shown in arrow lines. For example, in the first iteration, we remove the layer edge between v1
and v2 from the first GNN layer and compute the marginal contribution. Then three message flows
are removed and the contribution scores are averaged and assigned to these three message flows.

Algorithm 1 INITIAL APPROXIMATIONS OF FLOW IMPORTANCE SCORES.
1: Given a trained GNN model f(·) and an input graph, the set of all layer edges is represented

as A. For each message flow Fk, two |A|-dimensional vectors S(Fk) and C(Fk) denote its
importance scores and removing index counts respectively. In addition, Â denotes the set of
removed layer edges and F̂ is the set of removed message flows.

2: Initialize S(·) and C(·) as zeros for all message flows.
3: for step i from 1 to Monte Carlo sampling step M do
4: Initialize the removed sets as empty that Â = ∅ and F̂ = ∅.
5: Randomly shuffle and permute the layer edge set A, denoted as Aπ(i).
6: for j from 1 to |A| do
7: Select the j-th layer edge in Aπ(i), denoted as ât`m.
8: Block the layer edge ât`m in GNN model f(·), then the removed flows are F̂ j =

F?{t−1}`m?{T−t} \ (F̂ ∩F?{t−1}`m?{T−t}).
9: Compute the prediction difference that sj = f(A \ Â)− f(A \ (Â ∪ ât`m)).

10: Update Â = Â ∪ ât`m and F̂ = F̂ ∪F?{t−1}`m?{T−t}.
11: Compute averaged score that s̄j = sj/|F̂ j |.
12: for each flow Fk in F̂ j do
13: Update S(Fk)[j] = S(Fk)[j] + s̄j .
14: Update C(Fk) = C(Fk) + 1
15: end for
16: end for
17: end for
18: For each message flow Fk, compute our marginal contribution vector S(Fk) = S(Fk)/C(Fk)

Formally, let M denote the total number of MC sampling steps. For the i-th sampling step, we use
π(i) to represent a random permutation of |A| = |E| × T elements. Then the set of all layer edge A
is permuted based on π(i), denoted as Aπ(i) that Aπ(i)[j] = A[π(i)[j]]. In each step i, we iteratively
remove one layer edge from Aπ(i) following the order, and compute the marginal contribution. An
illustration of our proposed sampling algorithm is shown in Figure 1. We use Â to denote the set
of removed layer edges and F̂ to denote the set of removed message flows, which are initialized as
Â = ∅ and F̂ = ∅ in the beginning of each MC sampling step. For the iteration j in sampling step
i, the j-th element of Aπ(i) is removed and we assume the removed layer edge is ât`m. Then the
computation operations can be mathematically written as

sj = f(A \ Â)− f(A \ (Â ∪ ât`m)), (5)

Â = Â ∪ {ât`m}, (6)

F̂ j = F?{t−1}`m?{T−t} \ (F̂ ∩F?{t−1}`m?{T−t}), (7)

F̂ = F̂ ∪F?{t−1}`m?{T−t}, (8)

5

Under review as a conference paper at ICLR 2022

where F̂ j denotes the removed message flows in iteration j by removing ât`m. Note that it is not
equivalent to F?{t−1}`m?{T−t} since the flows in F?{t−1}`m?{T−t} may be already removed in the
previous iterations. Then the score is averaged that s̄j = sj/|F̂ j | and we assign s̄j to each flow in
F̂ j . By repeating such operations until all layer edges are removed, we can obtain |A| marginal
scores and assign them to the corresponding flows. Note that the order information in Aπ(i) is
important since in the earlier iterations, the removed flows F̂ j are interacting with a larger coalition
group A \ (Â ∪ ât`m) and in the later iterations the coalition groups are small. Altogether, the steps
of our marginal contribution sampling are shown in Algorithm 1.

After M MC sampling steps, our method explores M permutations of layer edge set and each
flow is sampled to obtain M marginal contributions. For each flow Fk, we use a |A|-dimensional
vector to store its marginal contributions, denoted as S(Fk), where S(Fk)[j] is the importance score
obtained when Fk is removed in the iteration j. If the flow is removed mutiple times in the iteration
j for different MC sampling steps, the scores are averaged, which also means scores obtained from
coalitions with same sizes are weighed equally. Then it raises the question that how to convert
S(Fk) to the final importance score of Fk. The final importance score will be a Shapley value
approximation if we simply compute the summation of the elements in S(Fk). While Shapley values
are promising, the approximations may not be accurate since M is always set as M << |A|! for the
sake of computation efficiency. Moreover, the importance of the early iterations when more layer
edges exist in the model should be different to the importance of later iterations when only few layer
edges exist in diverse situations. Hence, directly computing the summation of the scores in S(Fk)
may not be suitable.

3.3 LEARNING IMPORTANCE SCORES

With our obtained score vectors S(Fk), we propose to regard these values as initial assessments of
flow importance and learn an associated importance scores with designed redistribution trick. We
target to learn weights for combining the elements in S(Fk) to obtain the final importance score for
each flow, which means to learn W (P) in Eq. 4.

Formally, given the input graph G and GNN model f(·), we obtain marginal contribution vector
S(Fk) for each message flow. Then the only trainable weight vector w is initialized to all equal to
0.5 with random noise, which shares the same dimension of |S(Fk)|. Note that the weights w are
shared among all message flows in the same graph. Then S(Fk) can be combined via a dot product
with w. Next, the flow importance is converted to layer edge importance by simply summing up the
scores of all flows sharing a particular layer edge as the message carrier. Mathematically, it can be
written as

s(Fk) = S(Fk) · w ∀Fk ∈ F∗, (9)

s(âtuv) =
∑
Fj∈F̃

s(F j) (10)

where s(·) denotes the importance score for layer edges and flows; F̃ = F?{t−1}uv?{T−t}. Then
based on s(âtuv), we can obtain a mask indicating the importance of different layer edges, denoted as
M:

M = g(ŝ), (11)

where ŝ denotes all layer edges’ importance scores. g(·) is defined as an exponential redistribution
operation that including an input normalization, an element-wise exponential scaling ge(x) = xr (r
is a hyper-parameter), and an output normalization. We provide more intuitions in Appendix A.3.
Note that the mask is normalized so that each element is in the range [0, 1]. By applying the mask to
layer edges, important layer edges are restricted and the model prediction becomes

ŷ = f(Combine(G, 1−M)), (12)

where ŷ is the prediction vector and Combine(G, 1−M) means layer edges are masked out based on
the values ofM. Intuitively, if important layer edges are restricted, then the prediction should change
significantly. Hence, ŷ is encouraged to be different from the original prediction by learning proper

6

Under review as a conference paper at ICLR 2022

weights w. Specifically, we employ the negative cross-entropy loss that can be formally expressed as

L(ŷ, y) =

m∑
c=1

1{y = c} log ŷc, (13)

where y is a scalar representing the predicted class of the original graph G, m is the number of classes,
1{·} denotes the indicator function, and ŷc is the new predicted probability for class c. After training,
the final importance scores for different flows can be obtained via Eq. (9).

4 EXPERIMENTAL STUDIES

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Datasets. We employ seven different datasets to demonstrate the effectiveness of our proposed
FlowX with both quantitative studies and qualitative visualization results. These datasets are BA-
Shapes (Ying et al., 2019), BA-LRP (Schnake et al., 2020), ClinTox (Wu et al., 2018), Tox21 (Wu et al.,
2018), BBBP (Wu et al., 2018), BACE (Wu et al., 2018), BA-INFE, and Graph-SST2 (Yuan et al.,
2020c), which include both synthetic and real-world data. First, BA-Shapes is a node-classification
synthetic dataset that is built by attaching house-like motifs to the base Barabási-Albert graph where
the node labels are determined by their own identifies and localizations in motifs. Then, BA-LRP
is a graph-classification synthetic dataset that includes Barabási-Albert graphs and the two classes
are node-degree concentrated graph and evenly graph. Next, ClinTox, Tox21, BBBP, and BACE are
real-world molecule datasets for graph classification. The chemical molecule graphs in these datasets
are labeled according to their chemical properties, such as whether the molecule can penetrate a
blood-brain barrier. Finally, Graph-SST2 is a natural language sentimental analysis dataset that
converts text data to graphs. These graphs are labeled by their sentiment meanings. Note that the
BA-INFE dataset is a synthetic dataset for Accuracy comparisons and the results are reported in the
appendix. We also report the properties and statistics of these datasets in Appendix B Table 2.

GNN Models. In our experiments, we consider GCNs (Kipf & Welling, 2017) and GINs (Xu et al.,
2019) as our graph models for all datasets. We adopt 2-layer GNNs for node classification and 3-layer
GNNs for graph classification. The graph models are trained to achieve competitive performance and
the details are reported in Table 2.

Baselines. With the trained graph models, we quantitatively and qualitatively compare our FlowX
with eight baselines, including GradCAM (Pope et al., 2019), DeepLIFT (Shrikumar et al., 2017),
GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), PGMExplainer (Vu & Thai, 2020),
SubgraphX (Yuan et al., 2021), GNN-GI (Schnake et al., 2020), GNN-LRP (Schnake et al., 2020).
Note that since these methods cannot be directly compared, we set the explanation target to graph
edges for fair comparisons that the explanations are converted to edge importance scores if needed.
More implementation details about explanation methods setting and GNN models can be found in
the supplementary material. We used the datasets and implementations of the comparing algorithms
in the DIG library (Liu et al., 2021). We will release our code after the anonymous review period.

4.2 QUANTITATIVE STUDIES

We first quantitatively compare different explanation methods. We follow the existing studies (Yuan
et al., 2020c; Pope et al., 2019) and employ two metrics to evaluate the explanations: Fidelity and
Sparsity. Good explanations should be faithful to the model and capture the discriminative features
for the predictions. When such input features are removed, the original predictions should change
significantly. The Fidelity score measures the change of predicted probabilities when removing
important input features identified by different explanation methods. Higher Fidelity scores indicate
the removed features are more important to the predictions and hence the explanations are more
faithful to the model. In addition, the other desired property of explanations is sparsity. To encourage
the explanations to be more human-intelligible, they should contain fewer but more important features.
Hence, we also employ the Sparsity metric which measures the percentage of input features that are
identified as important. Higher Sparsity scores indicate that fewer features are identified as important
in the explanations. The formulations and details of these metrics are discussed in the appendix C.

7

Under review as a conference paper at ICLR 2022

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
el

ity

BA-Shapes (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

0.40

0.50

Fid
el

ity

BA-LRP (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.05

0.10

0.15

0.20

0.25

Fid
el

ity

Tox21 (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
el

ity

ClinTox (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

0.40

0.50

Fid
el

ity

BBBP (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
el

ity

BACE (GIN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

0.40

Fid
el

ity

Graph-SST2 (GIN)
GradCAM
DeepLIFT
GNNExplainer
PGExplainer
PGMExplainer
SubgraphX
GNN-GI
GNN-LRP
FlowX

Figure 2: Comparison of Fidelity values by nine methods on seven datasets with GINs under different
Sparsity levels.

Table 1: Results of ablation studies of our method on GCNs. FlowX† denotes our FlowX without
Shapley initial assessments and FlowX∗ denotes our FlowX without learning refinement.

BA-Shapes BA-LRP ClinTox Tox21 BBBP BACE Graph-SST2

FlowX† 0.40±0.03 0.17±0.10 0.34±0.08 0.17±0.05 0.39±0.17 0.32±0.06 0.22±0.09
FlowX* 0.41±0.00 0.52±0.00 0.32±0.07 0.19±0.04 0.49±0.11 0.50±0.06 0.26±0.11
FlowX 0.42±0.01 0.51±0.01 0.38±0.06 0.22±0.04 0.57±0.11 0.51±0.03 0.32±0.13

It is noteworthy that these two metrics are highly correlated since the predictions tend to change
more when more input features are removed. Then explanations with higher Sparsity scores tend
to have lower Fidelity scores. Hence, we argue that the Fidelity scores need to be compared under
a similar Sparsity level. Specifically, we control the Sparsity scores of explanations and compare
the corresponding Fidelity scores. For each dataset, we randomly select 100 samples and conduct
such quantitative evaluations. The results are reported in Figure 2 where we show the plots of
Fidelity scores with respect to different Sparsity levels. Obviously, FlowX performs better on all of
the real-world datasets that FlowX consistently achieves higher Fidelity across all Sparsity levels.
Meanwhile, the results on synthetic datasets are competitive when the Sparsity is low and our FlowX
still performs significantly better with high Sparsity levels. Note that our method is shown to achieve
stable performance on different datasets and GNN models, which is promising for the applications
and generalizations of our FlowX. Meanwhile, our proposed method, GNN-LRP, and GNN-GI
perform better than the other methods, which indicates the superiority of the methods based on flows
and walks. Note that GNN-LRP achieves good results on synthetic datasets but surprisingly, it is
not better than GNN-GI on real-world datasets. In addition, PGExplainer only obtains competitive
results on simple synthetic datasets but not on complex real-world datasets. Note that, for SubgraphX,
its subgraph explanations are not directly comparable so we convert its subgraph explanations to
edge explanations. It performs well on the BA-LRP and BBBP datasets but not as expected on
the other datasets. We believe the reason may be that such converting destroys the continuousness
and completeness of its subgraph explanations. Last but not least, we wish to mention that the
comparisons using edge actually limit the performance of the flow-based methods due to explanation
granularity changes. More results and time comparisons are also reported in the appendix.

4.3 ABLATION STUDIES

To demonstrate the effectiveness of our proposed learning-based algorithm in Section 3.3, we study the
performance when only using the average of our Shapley initial assessments as the importance scores
without further learning, denoted as FlowX∗. In addition, to show the Shapley initial assessments are

8

Under review as a conference paper at ICLR 2022

DeepLIFT

Fidelity: 0.2550

DeepLIFT

Fidelity: 0.2550

GNN-GI

Fidelity: 0.1970

GNN-GI

Fidelity: 0.1970

GNNExplainer

Fidelity: 0.2957

GNNExplainer

Fidelity: 0.2957

GradCAM

Fidelity: 0.1427

GradCAM

Fidelity: 0.1427

GNN-LRP

Fidelity: 0.2216

GNN-LRP

Fidelity: 0.2216

FlowX

Fidelity: 0.5416

FlowX

Fidelity: 0.5416

1

2

3

4

5

Figure 3: Sample explanation results of different methods. Note that explanations are shown as
directed edges (highlighted red arrow lines) and self-loops (red circles around atoms). In addition,
motifs are emphasized by dashed circles and numbered from 1 to 5.

necessary, we study the method only using the learning algorithm with randomly initialized scores
for different flows, denoted as FlowX†. We compare our FlowX with these two baselines on GCN
models, and the results are reported in Table 1. Obviously, for all datasets, the FlowX and FlowX∗
outperform FlowX† significantly, showing that the Shapley initial assessments are appropriate and
necessary. In addition, for synthetic datasets, the FlowX and FlowX∗ show competitive performance,
which indicates our initial assessments can obtain reasonable results for simple models and datasets.
However, FlowX obtains significantly better performance on complex real-world datasets than
FlowX∗, showing the effectiveness of our proposed learning-based algorithm. More experimental
details will be attached in the supplementary material.

4.4 VISUALIZATION OF EXPLANATION RESULTS

Finally, we report the visualization results of different explanation methods in Figure 3. Specifically,
we show the explanations of a molecule graph from ClinTox dataset. The smiles string of this input
graph is C(CC(C(F)F)(C(=O)[O-])[NH3+])C[NH3+] and the model to be explained is a 3-layer GCN
model. In this input graph, motifs 1 and 2 form a Carboxylate Anion; motif 4 and 5 both contain
an Ammoniumyl while motif 3 corresponds to a CF2 group. It is clear that our FlowX finds all
motifs in the explanation and obtains the highest Fidelity score. It indicates that those motifs are
indeed important for the model to make predictions. In addition, we can conclude that the model
combines these motifs for the predictions since we generally observe that explanations with more
motifs chosen tend to have higher Fidelity scores. Furthermore, we find that DeepLIFT identifies
all motifs but focuses more on the self-loops of atoms. However, its Fidelity score is much lower
than GNNExplainer who only identifies four motifs but focuses on the information transmissions
between atoms. Hence, we believe the interactions among different atoms contribute more to the
model predictions, which further indicates the Shapley value is a promising solution for studying the
explainability of GNN models. More visualization results are reported in the supplementary material.

5 CONCLUSIONS

We study the explainability of deep graph models, which are generally treated as black-boxes. From
the inherent functional mechanism of GNNs, we propose FlowX to explain GNNs by studying
message flows. Our FlowX first computes Shapley values approximations as initial assessment and
then incorporates a learning refinement. Extensive experiments demonstrate our FlowX achieves
significantly improved explanations.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

Several efforts are made to ensure the reproducibility of our work. To demonstrate the details of
proposed algorithm, we provide the rigorous description of our approach’s first stage in Algorithm 1,
the second stage learning process in Subsection 3.3 and the concrete setting in appendix B.4. For
experiments, besides the detailed description of datasets and evaluation metrics in Section 4, we
provide model configurations, training details, target mapping, and metrics details in appendix B and
appendix C. Our implementations will be publicly available once the paper is published.

REFERENCES

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity
checks for saliency maps. Advances in Neural Information Processing Systems, 31:9505–9515,
2018.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks. arXiv preprint arXiv:1905.13686, 2019.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An information-
theoretic perspective on model interpretation. In International Conference on Machine Learning,
pp. 883–892. PMLR, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Advances in
Neural Information Processing Systems, pp. 6967–6976, 2017.

Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. Towards explanation of dnn-based
prediction with guided feature inversion. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1358–1367, 2018.

Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
neural networks. arXiv preprint arXiv:2104.10482, 2021.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. In Proceedings of the 36th International Conference
on Machine Learning, pp. 2083–2092, 2019.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang. Graphlime: Lo-
cal interpretable model explanations for graph neural networks. arXiv preprint arXiv:2001.06216,
2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020.

Harold William Kuhn and Albert William Tucker. Contributions to the Theory of Games, volume 2.
Princeton University Press, 1953.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9267–9276, 2019.

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu,
Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora Oztekin, Xuan Zhang, and
Shuiwang Ji. DIG: A turnkey library for diving into graph deep learning research. arXiv preprint
arXiv:2103.12608, 2021.

10

Under review as a conference paper at ICLR 2022

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in Neural Information Processing
Systems, 33, 2020.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A discrete flow model for molecular graph
generation. In Proceedings of The 38th International Conference on Machine Learning, 2021.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: undefined.
https://distill.pub/2018/building-blocks.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 10772–10781, 2019.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for
nlp with differentiable edge masking. 2021.

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert
Müller, and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant
walks, 2020.

Kristof T Schütt, Pieter-Jan Kindermans, Huziel E Sauceda, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling
quantum interactions. arXiv preprint arXiv:1706.08566, 2017.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626. IEEE,
2017.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems, 41(3):647–665, 2014.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Minh N Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Fan Yang, Shiva K Pentyala, Sina Mohseni, Mengnan Du, Hao Yuan, Rhema Linder, Eric D Ragan,
Shuiwang Ji, and Xia Hu. Xfake: explainable fake news detector with visualizations. In The World
Wide Web Conference, pp. 3600–3604, 2019.

11

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2022

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, pp. 4800–4810, 2018.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In Advances in neural information processing
systems, pp. 9244–9255, 2019.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 6412–6422, 2018.

Hao Yuan and Shuiwang Ji. StructPool: Structured graph pooling via conditional random fields. In
Proceedings of the 8th International Conference on Learning Representations, 2020.

Hao Yuan, Yongjun Chen, Xia Hu, and Shuiwang Ji. Interpreting deep models for text analysis via
optimization and regularization methods. In AAAI-19: Thirty-Third AAAI Conference on Artificial
Intelligence. Association for the Advancement of Artificial Intelligence, 2019.

Hao Yuan, Lei Cai, Xia Hu, Jie Wang, and Shuiwang Ji. Interpreting image classifiers by generating
discrete masks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020a.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 430–438, 2020b.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. arXiv preprint arXiv:2012.15445, 2020c.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. arXiv preprint arXiv:2102.05152, 2021.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, volume 18, pp. 4438–4445, 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921–2929, 2016.

12

Under review as a conference paper at ICLR 2022

A ALGORITHM ANALYSIS & INTUITIONS

A.1 MESSAGE FLOW INTUITION

Message flows can provide multi-hop dependence association, i.e., the reason of a given node why it
is labeled as susceptible will be explained by a message flow beginning from an affected node to the
given node in a virus infection dataset. Therefore, the explanation is that the message flow transmits
the affection information from the affected node to the given node making it a susceptible one. The
upper figures of Figure. 4 show that how a node’s message can be transmitted from the node to which
node across which path.

A.2 COMPLEXITY ANALYSIS

Message flows. Considering the total number of message flows |F |, its loose upper bound is
|F | = O(|E|T). With the consideration of connectivity, given the largest outgoing degree of nodes
in the graph d+, the tighter upper bound of the number of message flows is |F | = O(|E|(d+)T−1).

Marginal contribution sampling. It is noticeable that the deep model’s forward operations are
the most time-consuming operations, denoted as O(Tf). Without any parallel consideration, the
time complexity of marginal contribution sampling is Tmcs = O(M |A|Tf). When we consider
parallel implementations, the most simple improvement is to use the GPUs acceleration to move line
9-15 out of the two loops and to make line 8 executed in O(1), which leads to the time complexity
Tmcs = O(M |A|+Tf). The space complexity should be considered because there is a big flow score
matrix Scpu = O(M |A||F |). As for the graphic memory requirement, this parallel implementation
consumes Sgpu = O(M |A|Sf), where O(Sf) = O((|V |+ |E|)dT +Sp) is the deep model memory
complexity; here, |V | = n denotes the number of nodes; Sp is the model’s parameter memory
complexity. In our implementation, there is a trade-off that we only parallelly calculate the model
outside the innermost loop, so that our time complexity is Tmcs = O(M(|A|+ Tf)) and the space
complexity of GPUs is Sgpu = O(|A|Sf).

A.3 TRAINING DILEMMA & EXPONENTIAL REDISTRIBUTION

We observe that the training is challenging as it often even leads to a worse result after training.
The difficulty comes from that the training target is unusual. We not only require the important
layer edges’ scores to be trained to be their high-value local optimums with correct rankings but
also require that all of the unimportant ones, not including those negative contribution elements,
are trained to be low values because of the ranking requirement. The problem is that because the
unimportant layer edges exert nearly no impact on the model results, their scores are trained to be
the values that are largely random, which causes an unimportant layer edge’s score may be larger
than an important one because it is random (it may be arbitrary high or low). This is not what we
expected. In brief, these random scores severely interfere with the ranking of scores of the important.
Therefore, exponential redistribution is designed to solve this problem as shown in Eq. 11, where
the gradients of the exponential scaling ge(x) = xr decide that the high scores can be sensitively
trained while the low scores are likely to be trapped in a low-value zone with gradients closed to zeros.
Intuitively, considering the simplest 2-order exponential scaling ge(x) = x2 = x · x, this function
can be regarded as using x as an attention map to mask itself so that high scores become easier to
train while it is contrary to the low scores. It is noticeable that the use of exponential redistribution
requires a relatively reasonable initialization, in order to give important elements a lower possibility
to be initialized into the low-value zone, which leads to a longer training time. Hence, we initialize
scores according to the marginal contribution results we obtain from the last stage so that unimportant
factors are set into the low-value zone and will be likely to be trapped there having no interference to
the high score ranking, while important layer edges are normally trained. Note that the final scores
are not refined Shapley values, because the Shapley-like initialization only serves as heuristic values
for the starting of exponential redistribution. Worth mentioning that the use of regularization terms
like the size of masks and the information entropy does not work, and the use of Gumbel softmax for
encouraging discreteness is useless either because both of them cannot solve the real problem.

13

Under review as a conference paper at ICLR 2022

Table 2: Statistics and properties of seven datasets. Note that “NC”denotes node classification, and
“GC” denotes graph classification. # nodes (largest) denotes the number of nodes of the largest graph
in the dataset for the split of explanations.

Datasets Task # graph # nodes (largest) GCN Accuracy GIN Accuracy

BA-Shapes Synthetic/NC 1 700 90.29% 89.57%
BA-LRP Synthetic/GC 20000 20 97.95% 100%
BA-INFE Synthetic/GC 2000 39 99.00% 99.50%
Clintox Real/GC 1478 136 93.96% 93.96%
Tox21 Real/GC 7831 58 88.66% 91.02%
BBBP Real/GC 2039 100 87.80% 86.34%
BACE Real/GC 1513 73 78.29% 80.26%
Graph-SST2 Real/GC 70042 36 90.84% 90.91%

B EXPERIMENTAL SETTINGS

B.1 DEEP GRAPH MODELS

We first introduce the details of the GNN models we try to explain. For all GNN models, we employ
two message passing layers for node classification (BA-Shapes (Ying et al., 2019)) and three for
graph classification tasks (ClinTox, Tox21, BBBP, BACE (Wu et al., 2018), BA-LRP (Schnake
et al., 2020), Graph-SST2 (Yuan et al., 2020c)). In addition, the final classifier consists of two
fully-connected layers. For graph classification tasks, the average pooling is used to convert node
embeddings to graph embeddings. In addition, the feature dimensions of message passing layers and
fully-connected layers are set to 300. We apply the ReLU function as the activation function after
each message passing layer and fully-connected layer. In addition, the dropout is applied between
two fully-connected layers. Note that we consider both GCNs and GINs for all datasets. For the GCN
layer, we employ the original normalized Laplacian matrix Ât = D−

1
2 (A+ I)D−

1
2 . For the GIN

layer, two fully-connected layers with the ReLU function are employed as the multilayer perceptron
(MLP).

B.2 TRAINING SETTINGS

The models on different datasets use different learning rates and decay settings. Generally, we set
the learning rate to 1× 10−3 and the learning rate decay equal to 0.5 after 500 epochs. For datasets
BA-LRP and Graph-SST2, the total number of epochs is 100 while we train models for 1000 epochs
on the other datasets. All datasets are split into the training set (80%), validation set (10%), and
testing set (10%). All experiments are conducted using one NVIDIA 2080Ti GPU.

B.3 TARGETS OF EXPLANATIONS

Since different techniques focus on different explainable targets, such as nodes, edges, walks, flows,
etc., these methods cannot be directly compared. For fair comparisons, we convert all explainable
targets to graph edges. First, GNNExplainer and PGExplainer provide edge-level explanations so
their results are directly used. Second, for flow-based methods and walk-based methods, including
GNN-GI, GNN-LRP, and our FlowX, we convert the flow (walk) importance to edge importance by
summing the total contribution of message flows (walks) that go through a particular edge. In addition,
for node-based methods such as GradCAM (Pope et al., 2019) and DeepLIFT (Shrikumar et al., 2017),
the node importance is mapped to edge importance that the contribution of an edge is the averaged
contribution of its connected nodes. Specially, for subgraph-based method SubgraphX (Yuan et al.,
2021), we pick the explainable subgraph out, then assign the edges in this subgraph instead of nodes
as the explanation. Note that the absolute values of contribution are not important since the metrics
focus on their relative rankings. The Figure. 4 shows how to map from message flows to edges.

B.4 FLOWX SETTINGS

At the first stage, the MC sampling time M is set as 30. At the second stage, we randomly initialize
the weight vector of our learning refinement from the uniform distribution [0, 0.1]. During the training,

14

Under review as a conference paper at ICLR 2022

BA-LRP ClinTox Tox21 BA-Shapes

Figure 4: An illustration showing how to convert message flow contribution to edge contribution.
The top row shows the the flow view of explanations while bottom row shows the corresponding
edge view. In the top row, we use red and blue flows to denote the positive and negative contribution
respectively. In the bottom row, bold red arrow lines denote important edges.

we apply a learning rate equal to 0.3 without learning rate decay and train the weight vector for 500
iterations. Meanwhile, we adopt r = 8 for exponential redistribution.

FlowX∗ & FlowX†. FlowX∗ can be implemented by replacing the weight vector w in section 3.3
with a constant vector w′ that w′ = 1/|w| where |w| is the length of w. FlowX† is implemented with
a similar pipeline as GNNExplainer (Ying et al., 2019). Instead of training the weights to obtain
the edge mask, we use a flow mask to indicate the flow importance scores. The flow mask can be
considered as the weighted flow scores in our FlowX. In addition, we do not apply exponential scaling
to FlowX†. The rest of FlowX† is the same as the learning refinement part in our FlowX.

C EVALUATION METRICS

Mathematically, a K-class classification dataset with N samples can be represented as
{((Xi,Λi), yi) | i = 1, 2, . . . , N}, where (Xi,Λi) is the input graph and yi is the ground-truth
label of the i-th sample. The predicted class of a GNN model is ŷi = argmaxf(Xi,Λi). Here
the output of f(Xi,Λi) is a K-length vector, in which each element denote the probability of the
corresponding class. Formally, we define the algorithm’s explanation as a column vector ṁi that
represents a mask on explainable targets where the number of targets is |ṁi|. In this mask, the
explanation method marks each selected target as a value 1, otherwise a 0. The source of the mask is a
vector ċi with the same shape that stores the contribution score of each explainable target. Intuitively,
we prefer to assign targets with 1s in the ṁi if the corresponding scores in ċi are relatively high. With
these notations, we introduce the metrics employed for quantitative comparison.

Fidelity. Following the metrics mentioned in the graph explainability survey (Yuan et al., 2020c),
we choose the metric Fidelity to measure the faithfulness of the explainability methods to the model.
Mathematically, Fidelity is defined as:

Fidelity =
1

N

N∑
i=1

(f(Xi,Λi)ŷi − f ṁi(Xi,Λi)ŷi), (14)

where f ṁi(Xi,Λi)ŷi denotes the output class ŷi’s probability when masking out the edges based on
ṁi. Specifically, we keep the value unchanged for the explainable targets that are marked as 1 in ṁ,
while setting the other explainable targets as 0. Note that ṁi = 1− ṁ is complementary mask where
1 is an all-one vector that has the same shape as ṁ. In the evaluation period, the higher Fidelity
indicates the better performance of the explainability algorithm. Intuitively, Fidelity represents the
predicted probability dropping after occluding the important features. Therefore, Fidelity can measure
whether the chosen features are important to the predictions from the model’s perspective.

15

Under review as a conference paper at ICLR 2022

Table 3: The averaged time cost of eight algorithms.
GradCAM DeepLIFT GNNExplainer PGExplainer GNN-GI GNN-LRP SubgraphX FlowX

Time (ms) 14 15 353 N/A 704 5993 407784 4501

Table 4: Comparisons between FlowX and other methods in terms of average Fidelity over different
Sparsity levels on GCNs. Bold and underline scores respectively denote the best and the second best
results. In addition, because SubgraphX cannot control and reach all the Sparsity levels as we need,
we cannot compare it with others in this table.

BA-Shapes BA-LRP ClinTox Tox21 BBBP BACE Graph-SST2

GradCAM 0.39±0.09 0.50±0.03 0.23±0.07 0.10±0.02 0.30±0.12 0.29±0.06 0.18±0.08
DeepLIFT 0.42±0.04 0.42±0.13 0.31±0.08 0.14±0.03 0.37±0.12 0.42±0.08 0.22±0.11
GNNExplainer 0.41±0.01 0.45±0.11 0.23±0.09 0.09±0.03 0.32±0.14 0.24±0.08 0.17±0.09
PGExplainer 0.38±0.07 0.43±0.12 0.20±0.10 0.02±0.00 0.14±0.07 0.10±0.05 0.07±0.04
PGMExplainer 0.38±0.06 0.35±0.16 0.25±0.06 0.08±0.01 0.25±0.06 0.17±0.01 0.16±0.06
GNN-GI 0.40±0.02 0.45±0.10 0.31±0.07 0.16±0.03 0.43±0.08 0.29±0.02 0.31±0.14
GNN-LRP 0.41±0.00 0.52±0.01 0.32±0.08 0.14±0.03 0.35±0.10 0.25±0.05 0.21±0.11
FlowX 0.42±0.01 0.51±0.01 0.38±0.06 0.22±0.04 0.57±0.11 0.51±0.03 0.32±0.13

Sparsity. In order to fairly compare different techniques, we argue that controlling the Sparsity (Pope
et al., 2019; Yuan et al., 2020c) of explanations is necessary. Mathematically, Sparsity is defined as:

Sparsity =
1

N

N∑
i=1

(
1−

∑|ṁi|
k=1 ṁki

|ṁi|

)
. (15)

A higher Sparsity score means fewer explainable targets are selected. Note that the selections of
targets are determined by the ranking of the contribution score in ċi. It is noteworthy that these two
metrics are highly correlated since the predictions tend to change more when more input features are
removed. Then explanations with higher Sparsity scores tend to have lower Fidelity scores. For fair
comparisons, we compare different methods with similar sparsity levels.

D EXPERIMENTAL RESULTS

In this section, we provide additional quantitative comparisons and visualization results.

D.1 QUANTITATIVE RESULTS

We report the quantitative results of GCN and GIN models in Table 4 and Table 5. Obviously,
our method obtains the best averaged Fidelity score for 5 out of 7 GCN models. Note that the
performance is competitive for synthetic dataset BA-Shapes and BA-LRP and our method performs
significantly better on the complex real-world datasets. In addition, we show the plots of Fidelity
scores with respect to different Sparsity levels for all datasets and GCN models in Figure 5. Clearly,
the performance of our method is stable and better.

Accuracy comparisons: To further demonstrate the effectiveness of our proposed method, we
conduct experiments to compare the explanatory accuracy of three methods that usually evaluated in
terms of accuracy. The results are reported in Table 6. These results are obtained from a synthetic
graph classification dataset BA-INFE. Each graph includes a base BA-graph and four types of motifs.
Two classes of motifs are attached (2 motifs denote the one property, 2 for another; let’s denote them
as class/property A and B). We first connect the same number (1 3) of each class’s motifs to the
base graph. Then we attach 1 to 3 extra motifs from one of the classes (for example, class A) to the
base graph; thus, the number motifs in class A is more than class B, representing the graph tends
to have the specific property (property A). The ground-truths of a graph are the elements in those
motifs including edges (undirected) and self-loop connections. The number of ground-truth elements
that are covered by explanation edges is denoted as the hit number. The accuracy is defined as (hit
number) / (total number of ground-truth elements).

16

Under review as a conference paper at ICLR 2022

Table 5: Comparisons between FlowX and other methods in terms of average Fidelity over different
Sparsity levels on GINs. Bold and underline scores respectively denote the best and the second best
results. In addition, because SubgraphX cannot control and reach all the Sparsity levels as we need,
we cannot compare it with others in this table.

BA-Shapes BA-LRP ClinTox Tox21 BBBP BACE Graph-SST2

GradCAM 0.22±0.06 0.38±0.15 0.34±0.12 0.13±0.04 0.24±0.06 0.47±0.03 0.15±0.08
DeepLIFT 0.56±0.07 0.38±0.16 0.44±0.14 0.12±0.04 0.21±0.06 0.48±0.03 0.20±0.10
GNNExplainer 0.53±0.17 0.38±0.16 0.35±0.15 0.01±0.01 0.22±0.07 0.41±0.06 0.12±0.06
PGExplainer 0.31±0.13 0.32±0.19 0.17±0.10 0.01±0.01 0.07±0.06 0.17±0.08 0.05±0.04
PGMExplainer 0.64±0.09 0.22±0.15 0.31±0.10 0.07±0.01 0.18±0.03 0.38±0.02 0.14±0.05
GNN-GI 0.63±0.09 0.19±0.12 0.51±0.11 0.16±0.02 0.28±0.06 0.50±0.02 0.27±0.12
GNN-LRP 0.67±0.01 0.38±0.14 0.49±0.13 0.15±0.03 0.24±0.05 0.41±0.02 0.26±0.12
FlowX 0.69±0.01 0.46±0.03 0.55±0.08 0.23±0.03 0.47±0.06 0.67±0.04 0.29±0.11

Table 6: Comparisons between FlowX and three methods in terms of average Accuracy with 0.9
Sparsity on GCNs.

GNNExplainer PGExplainer PGMExplainer FlowX

GCN 0.2528 0.2199 0.3612 0.5266
GIN 0.2917 0.2143 0.3748 0.4265

We also show the time cost of different methods in Table 3. Specifically, we report the averaged
computation time for 40 graphs in the ClinTox (Wu et al., 2018) dataset. It shows that our FlowX
performs the best with a reasonable time cost.

D.2 EXPLANATION VISUALIZATIONS

We provide additional examples to visually compare the explanations by six methods. The results are
reported in Figure. 6, and 7. We can conclude that the message interactions between nodes are more
important than self-loops. For example, in Figure. 6, all of DeepLIFT, GNNExplainer, and FlowX
can identify the motifs; however, FlowX attributes more on the node interactions and obtain a higher
Fidelity score.

17

Under review as a conference paper at ICLR 2022

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.25

0.30

0.35

0.40

0.45

Fid
el

ity

BA-Shapes (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

0.50

Fid
el

ity

BA-LRP (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.05

0.10

0.15

0.20

0.25

Fid
el

ity

Tox21 (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

Fid
el

ity

ClinTox (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.20

0.40

0.60

Fid
el

ity

BBBP (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.10

0.20

0.30

0.40

0.50

Fid
el

ity

BACE (GCN)

0.5 0.6 0.7 0.8 0.9
Sparsity

0.00

0.10

0.20

0.30

0.40

0.50

Fid
el

ity

Graph-SST2 (GCN)
GradCAM
DeepLIFT
GNNExplainer
PGExplainer
PGMExplainer
SubgraphX
GNN-GI
GNN-LRP
FlowX

Figure 5: Comparison of Fidelity values by nine methods on seven datasets with GCNs under different
Sparsity levels.

Figure 6: Sample explanation results of different methods on Tox21.

18

Under review as a conference paper at ICLR 2022

Figure 7: Sample explanation results of different methods on ClinTox.

19

	Introduction
	Related Work
	Graph Neural Networks
	Explainability of Graph Neural Networks

	The Proposed FlowX
	A Message Flow View of GNNs
	Sampling marginal contributions as Initial Assessments
	Learning Importance Scores

	Experimental Studies
	Datasets and Experimental Settings
	Quantitative Studies
	Ablation Studies
	Visualization of Explanation Results

	Conclusions
	Algorithm analysis & intuitions
	Message Flow Intuition
	Complexity Analysis
	Training dilemma & Exponential redistribution

	Experimental Settings
	Deep Graph Models
	Training Settings
	Targets of Explanations
	FlowX Settings

	Evaluation Metrics
	Experimental Results
	Quantitative Results
	Explanation Visualizations

