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Abstract

The integration of retrieved passages and large001
language models (LLMs), such as ChatGPTs,002
has significantly contributed to improving open-003
domain question answering. However, there is004
still a lack of exploration regarding the optimal005
approach for incorporating retrieved passages006
into the answer generation process. This paper007
aims to fill this gap by investigating different008
methods of combining retrieved passages with009
LLMs to enhance answer generation. We begin010
by examining the limitations of a commonly-011
used concatenation approach. Surprisingly, this012
approach often results in generating “unknown”013
outputs, even when the correct document is014
among the top-k retrieved passages. To address015
this issue, we explore four alternative strate-016
gies for integrating the retrieved passages with017
the LLMs. These strategies include two single-018
round methods that utilize chain-of-thought019
reasoning and two multi-round strategies that020
incorporate feedback loops. Through compre-021
hensive analyses and experiments, we provide022
insightful observations on how to effectively023
leverage retrieved passages to enhance the an-024
swer generation capability of LLMs. On three025
open-domain question answering datesets, NQ,026
TriviaQA and SQuAD, our multi-round ap-027
proaches outperform traditional concatenation028
approach, achieving over a 10% improvement029
in answer EM.030

1 Introduction031

Large Language Models (LLMs), such as032

GPTs (Brown et al., 2020; Bubeck et al., 2023),033

have found extensive applications, but often strug-034

gle with limited knowledge representation, result-035

ing in inaccuracies and insufficient specificity in036

open-domain question answering. To overcome037

these limitations, the integration of retrieval-based038

techniques (Izacard et al., 2022; Borgeaud et al.,039

2022) has emerged as a promising solution. By in-040

corporating relevant passages during the answer041

generation, LLMs can leverage external informa-042
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Figure 1: Top: Illustration of Concatenation v.s. Post-
Fusion strategies. Bottom-a: percentage of unknown
responses using the Concatenation strategy. Bottom-b:
by varying the number of retrieved passages, (green)
percentage of unknown responses, and (red) error rate
by majority voting (when the correct answer is in the
answer pool, the majority selects a wrong answer).

tion to provide more accurate and detailed re- 043

sponses. Nevertheless, effective strategies for incor- 044

porating retrieved passages into the LLMs remains 045

a challenging and relatively understudied area. 046

Our analysis (Fig. 1), conducted under the oracle 047

setting where one of the top-k retrieved passages 048

contains the answer, reveals that a simple concate- 049

nation of the passages into LLMs often leads to 050

“unknown” responses — instances where the pro- 051

vided context fails to answer the question — ac- 052

counting for about 20% of all responses. An alter- 053

native method, where the passages are individually 054

provided as input to LLMs and the majority vote 055

determines the final answer, reduces the rate of 056

“unknown” generation to 2-7% depending on the 057

number of passages. However, this method intro- 058

duces a new challenge: the correct answer does 059

not align with the majority vote in the answer pool. 060

Particularly, when more passages are incorporated 061
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from 5 to 50, the error rate of the majority vote in-062

creases from 12% to 22%. Thus, both of the meth-063

ods have their own weaknesses and more suitable064

approaches for the integration of retrieved passages065

and LLMs remain to be investigated.066

Transformer-based LLMs have shown the ca-067

pability to utilize attention mechanisms (Vaswani068

et al., 2017) for discovering token-level relevance.069

However, they may not always attend to the rele-070

vant parts within the context, leading to a poten-071

tial oversight of important information present in072

the retrieved passages (Clark et al., 2019; Zhao073

et al., 2019). This challenge becomes more pro-074

nounced when dealing with extensive corpora like075

Wikipedia, which contains over 21 million pas-076

sages, making it a formidable task to identify the077

most relevant passages for a question. Furthermore,078

retrieved passages that are closely related to the079

question’s topic can act as distractors, potentially080

misleading the model (Asai et al., 2019). If the081

model mistakenly directs its attention towards these082

distractor passages, it can introduce noise that neg-083

atively impacts the answer prediction process.084

In this paper, we explore the integration of re-085

trieved passages with LLMs like ChatGPTs to en-086

hance their ability to generate correct answers. In087

particular, we examine situations where the re-088

trieved passages contain the correct answer, yet089

the model fails to generate the correct response, in-090

dicating areas for improvement. Initially, we focus091

on two chain-of-thought (CoT) (Wei et al., 2022;092

Wang et al., 2022; Trivedi et al., 2022a) strategies093

that incorporate in-context learning. We introduce094

a pruning strategy and a summarization strategy for095

the retrieved passages to guide the answer genera-096

tion process of the LLMs.097

Subsequently, we investigate two multi-round098

methods with feedback: Post-Fusion as the Fall-099

back: In the initial round, this method employs the100

Concatenation approach to generate an answer. If101

the LLM generates “unknown” responses with the102

inputs, it proceeds to use Post-Fusion in the second103

round, generating candidate answers. The final an-104

swer is chosen via majority vote. Concatenation105

as the Distiller: This approach starts by leveraging106

Post-Fusion to produce a pool of potential answers107

and to identify relevant passages. In the subsequent108

round, only the unfiltered passage is concatenated109

with the question and answer candidates from the110

first round. This consolidated input is then fed into111

the LLM to derive the final answer.112

Through extensive experiments on three single- 113

hop open-domain question-answering datasets, we 114

showcase the enhanced performance of our pro- 115

posed methods, achieved with a minimal additional 116

resource cost. Our findings provide a foundation 117

for the development of more advanced retrieval- 118

integration methods aimed at further enhancing the 119

capabilities of these models. 120

2 Problem Setup 121

This study focuses on the question answering task 122

under the open-domain setting. It remains a open 123

problem to retrieve the most relevant context for 124

question answering. Therefore, a common practice 125

is to include multiple top ranked passages, which 126

serves as the supplementary context for the LLMs. 127

The number of supplementary passages, denoted 128

as k, can vary based on the desired input length M 129

of the LLM. Typically, k can be set to 5, 10, or 20, 130

ensuring that the total length of k passages, each 131

having a maximum length of L, remains within 132

the maximum input length M of the LLM (i.e., 133

k ∗ L < M ). By incorporating these supplemen- 134

tary passages, the LLM is provided with a more 135

comprehensive and informative context, which has 136

the potential to enhance its accuracy. 137

3 Methods 138

We adopt a two-stage pipeline for open-domain QA. 139

It consists of two black-box components, a retriever 140

and a LLM such as ChatGPT and LLama2 (Tou- 141

vron et al., 2023). We aim to methodically investi- 142

gate the optimal methods for transferring the top-k 143

retrieval results to the LLMs for generating fac- 144

toid answers. Our investigation begins with a focus 145

on various single-round strategies, wherein the re- 146

trieved passages are directly fed into the LLMs. 147

Subsequently, we delve into several multi-round 148

approaches, involving the initial supply of retrieved 149

passages to the LLMs, gathering feedback, and then 150

modifying the interaction process with the LLMs 151

based on that feedback. 152

3.1 Definition of Unknown Output 153

LLMs are not universally capable. Their effective- 154

ness relies on being trained on relevant data, storing 155

essential knowledge within their weights. When an 156

LLM cannot provide an answer directly, a common 157

strategy is to use retrieval to fetch pertinent context. 158

However, there may be instances where the model 159

discerns that the retrieved context is insufficient for 160
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a response. In such cases, the LLM might produce161

outputs like “The provided input does not contain162

the context to answer the question.” We interpret163

this behavior as the LLM’s self-awareness of its164

inability to confidently produce an answer based165

on the top-k retrieved passages. To standardize the166

model’s response in these situations and prevent167

varied output formats, we prompt the model to gen-168

erate “unknown” when it believes the given context169

is inadequate for an answer. To be specific, we170

add the following sentence in the prompt: “If don’t171

know the answer, just say Unknown.”172

3.2 Single-Round Approaches173

In this section, we explore single-round strategies174

where retrieved passages are directly sent to the175

LLM. We first examine a zero-shot approach, pro-176

viding only the task definition and desired output177

format, without demo examples. Then, we study a178

one-shot strategy, utilizing a single demo example179

to guide the LLM’s answer generation.180

3.2.1 Zero-shot Prompt181

Our first line of investigation pertains to a zero-182

shot setting. In this setting, we only provide the183

task definition and the desired answer format as184

the prompt, excluding any demonstration examples185

that elucidate how to generate an answer from the186

question and the Top-k passages.187

Concatenation Prompt. We begin our explo-188

ration with a straightforward and commonly used189

method that involves concatenating the question190

and the retrieved passages. These passages are ar-191

ranged in the order they were retrieved and com-192

bined into a single text string. This composite text193

is then fed into the language model to generate194

the final answer, which can be represented by the195

below equation:196

a = LLM(q, p1, p2, ..., pk) (1)197

From our experimental results, we observe that198

this approach can potentially lead to “unknown”199

output, even when one of the retrieved passages200

contains the ideal context necessary to answer the201

question. This stems from the LLM possibly be-202

coming confused due to the complexity or abun-203

dance of input, subsequently generating an unsatis-204

factory response.205

Post-Fusion Prompt. We also explored an alter-206

native approach where each of the Top-k retrieved207

passages is independently fed to the LLM. After208

generating an answer for every passage, the col- 209

lective responses form an answer pool. A majority 210

voting mechanism is then applied to this pool to 211

determine the final answer, which can be denoted 212

by the following equation: 213

a1 =LLM(q, p1), · · · , ak = LLM(q, pk)

majority = argmax
i

ai
(2) 214

Our experimental findings suggest that while this 215

approach can decrease the likelihood of indetermi- 216

nate output, it presents a distinct challenge. Specif- 217

ically, the correct or “gold” answer may indeed be 218

presented within the generated answer pool, but it 219

might not be the majority answer, thus resulting in 220

an incorrect final response. 221

3.2.2 Few-shot Prompt 222

We introduce two distinct prompts, with one-shot 223

example, to guide the LLMs in fusing answers from 224

potentially relevant passages. Examples of these 225

two prompt types are provided in Fig. 8 and 9 in 226

the Appendix A, respectively. 227

Given the significant enhancements chain-of- 228

thought brings to multi-hop question answering, we 229

aim to adapt this approach for single-hop retrieval- 230

augmented generation. Our method uses demon- 231

strative examples to guide answer generation strate- 232

gies. We employ two techniques for this: One ap- 233

proach involves pruning irrelevant passages and 234

using the few remaining relevant ones for answer 235

generation. The other one is to initially identify the 236

relevant information and then summarize the rele- 237

vant information like chain of thought and generate 238

the final answer. 239

Pruning Prompt. This prompt requires the LLM 240

to effectively identify answerable passages through 241

a process of selective elimination. As a result, The 242

demonstration involves differentiating irrelevant 243

passages from the ones that can provide an answer, 244

and subsequently generating the final response 245

based on the few relevant passages. 246

Summary Prompt. Summarization represents a 247

strategy that extracts the central information from 248

the Top-k passages. Based on this synthesized sum- 249

mary, the LLM can produce the final answer. We 250

posit that summarization could serve as a guid- 251

ing mechanism for the LLM to more effectively 252

respond to the question. To illustrate this, we pro- 253

vide a demonstration example that exhibits how the 254

model selects useful information from the passage 255

before delivering the final response. 256
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Unknown?

Stage 1: Concatenation

Stage 2: Post-Fusion

Post-Fusion as the Fallback (Concat+PF)

Concatenation as the Distiller (PF+Concat)

Figure 2: Diagram of Post-Fusion as the Fallback on top
and Concatenation as the Distiller at bottom.

3.3 Multi-Round Approaches257

In our exploration of multi-round strategies, we258

first provide the retrieved passages to the LLM.259

Based on the initial feedback received either “un-260

known” or a list of candidate answers, we adjust261

our interaction process with the LLM accordingly.262

Post-Fusion as the Fallback (Concat+PF). Ini-263

tially, we employ the concatenation method as il-264

lustrated in upper box of Fig. 2 to obtain an answer265

predicted by the LLM. If the LLM determines that266

the input passages are unable to provide an answer267

to the question (i.e., “unknown” responses), we268

then proceed to the second round where we utilize269

the Post-Fusion approach to produce an answer270

pool. Finally, we employ a majority vote to select271

the final answer.272

Concatenation as the Distiller (PF+Concat).273

To begin with, we leverage the Post-Fusion strat-274

egy to curate a pool of potential answers shown in275

lower box of Fig. 2. Instead of performing a major-276

ity vote, a passage selection process (Lewis et al.,277

2020) is adopted to discard passages that yield an278

“unknown” output by the LLM. In the second round,279

the LLM is prompted with the concatenation of the280

unfiltered passages, along with the question and an-281

swer candidates generated from the first round. The282

purpose is to guide the LLM in effectively extract-283

ing (distilling) the correct answer from the pool of 284

candidates. 285

4 Experiments 286

Evaluation Benchmarks. We conduct evaluations 287

on multiple datasets of open-domain question an- 288

swering to assess the performance of the proposed 289

integration approaches. 290

The datasets used include Natural Ques- 291

tions (NQ) (Kwiatkowski et al., 2019), Trivi- 292

aQA (Trivedi et al., 2022b), and SQuAD-Open (Ho 293

et al., 2020) are all datasets designed for training 294

and evaluating single-hop question answering mod- 295

els. NQ is sourced from Google Search queries 296

and their corresponding Wikipedia answers. Trivi- 297

aQA offers a broader domain with trivia questions 298

and their answers derived from web and Wikipedia 299

sources. Conversely, SQuAD-Open is a variant of 300

the original SQuAD dataset that requires the model 301

to extract answers from open-domain Wikipedia 302

content, without any pre-specified passage. 303

Evaluation Metrics We adhere to traditional 304

QA dataset evaluation methods (Yang et al., 2018; 305

Ho et al., 2020), contrasting with the recent LLM 306

evaluations on QA tasks detailed in (Liu et al., 307

2023), which assess whether the generated answer 308

includes the ground truth. Importantly, our evalu- 309

ation criteria are more rigorous than these recent 310

LLM evaluations (Liu et al., 2023), given that we 311

mandate the LLM to adhere strictly to the given 312

prompt in generating an entity-specific answer. In 313

detail, predicted answers are evaluated with the 314

standard answer exact match (EM) and F1 met- 315

ric (Rajpurkar et al., 2016; Liu et al., 2022). A 316

generated response is considered correct if, after 317

normalization, it matches any candidate in a list of 318

acceptable answers. The normalization process en- 319

tails converting the text to lowercase and omitting 320

articles, punctuation, and redundant whitespaces. 321

We also evaluate the percentage of “unknown” 322

responses (%Unk) which gauges the proportion of 323

times the LLM indicates it cannot answer based on 324

the given input. Additionally, we measure the error 325

rate through majority vote (%NM), representing 326

instances where the correct answer is within the 327

generated answer list but isn’t the majority selec- 328

tion. 329

Dataset Filter To mitigate the influence of spe- 330

cific training datasets on the LLM (Aiyappa et al., 331

2023), we initially prompt the LLM to answer ques- 332

tions without any provided context. This process 333
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NQ TriviaQA SQuAD
EM F1 %Unk %NM EM F1 %Unk %NM EM F1 %Unk %NM

With gold passage
LLama2
Concatenation 26.9 36.9 12.9% - 38.5 44.9 8.3% - 37.0 39.3 10.8% -
Post-Fusion 27.5 38.6 2.8% 27.8% 38.8 45.2 4.4% 19.2% 38.3 42.3 6.8% 8.9%
Pruning Prompt 27.8 37.8 10.9% - 39.3 45.9 7.8% - 35.3 41.7 8.4% -
Summary Prompt 28.1 37.9 9.8% - 39.2 45.2 7.5% - 38.5 42.6 7.9% -
Concat + PF 30.3 40.5 1.7% 3.8% 40.4 46.0 0.8% 2.6% 41.5 45.1 3.6% 6.3%
PF + Concat 29.6 39.8 2.7% 2.3% 40.7 46.6 3.9% 1.5% 40.2 44.3 4.8% 5.6%
ChatGPT
Concatenation 38.1 45.4 19.9% - 51.6 57.9 18.1% - 53.1 64.9 13.6% -
Post-Fusion 40.1 50.4 7.4% 12.0% 51.4 57.3 9.1% 10.2% 57.1 71.2 2.1% 4.3%
Pruning Prompt 39.0 50.5 6.9% - 52.7 59.5 8.1% - 47.7 62.6 6.7% -
Summary Prompt 40.5 53.3 5.1% - 51.6 60.1 6.4% - 50.4 67.0 4.7% -
Concat + PF 42.9 53.9 6.5% 3.8% 55.9 62.8 7.5% 4.3% 60.6 74.0 1.7% 2.2%
PF + Concat 43.2 54.5 5.4% 3.6% 54.0 61.7 6.2% 3.1% 63.9 76.9 2.1% 2.0%
GPT4
Concatenation 41.9 52.9 14.9% - 54.1 61.8 12.7% - 57.0 63.9 9.8% -
Post-Fusion 39.7 51.7 5.5% 13.4% 55.0 63.2 8.9% 11.8% 58.2 64.5 3.5% 6.7%
Pruning Prompt 41.2 52.3 6.2% - 55.2 62.8 4.5% - 57.2 63.1 7.5% -
Summary Prompt 40.6 52.6 7.4% - 54.8 62.5 5.9% - 57.8 62.7 6.5% -
Concat + PF 44.3 55.1 6.4% 2.1% 58.3 67.4 7.1% 3.2% 66.2 78.4 3.8% 1.1%
PF + Concat 43.8 54.6 7.3% 4.2% 57.8 66.2 9.5% 7.3% 65.3 77.9 4.2% 3.6%

Table 1: Exact match (EM) and F1 scores on filtered DEV split of the NQ, TriviaQA and SQuAD using Top-5
passages under with gold passage setting. %Unk denotes the percentage of Unknown responses. %NM denotes the
error rate by majority vote. Concat refers to the Concatenation strategy and PF refers to Post-Fusion strategy.

enables us to filter out questions that the LLM can334

accurately answer independently, thereby eliminat-335

ing the need for additional external contextual infor-336

mation. The remaining questions, which the LLM337

couldn’t answer independently, are the focus of our338

study. This filtering ensures our evaluation strin-339

gently reflects the LLM’s ability to utilize external340

context from retrieved passages.341

We use the development set of NQ, TriviaQA,342

and SQuAD, initially containing 5,892, 6,760,343

5,928 questions, respectively. After removing ques-344

tions that can be answered without context, we are345

left with 3,459 questions in NQ, 1,259 in TriviaQA,346

and 3,448 in SQuAD.347

Retriever and LLM model. We use the348

Wikipedia dump from Dec. 20, 2018 for NQ and349

TriviaQA and the dump from Dec. 21, 2016 for350

SQuAD. We apply preprocessing steps follow-351

ing Chen et al. (2017); Karpukhin et al. (2020);352

Liu et al. (2021), which involve generating non-353

overlapping passages of 100 words each. Similar to354

(Izacard and Grave, 2021), passages are retrieved355

with DPR (Karpukhin et al., 2020) for NQ and Triv-356

iaQA and with BM25 (Robertson et al., 1995) for357

SQuAD. We consider two different settings for this358

study. The first utilizes the top-k retrieved passages359

directly (gold passage is not necessarily included).360

In contrast, the second setting concerns the situa- 361

tion that the gold-standard passage is included in 362

the context. If the gold passage is not within the 363

top-k passages, we randomly insert it into the top-k 364

list. 365

We use both open and close LLMs. 366

For Llama2 (Touvron et al., 2023), 367

we use the instruction-tuned version 368

Llama-2-7b-chat-hf model and apply 369

greedy decoding with the temperature pa- 370

rameter set to 0. For ChatGPT, we use the 371

gpt-3.5-turbo-16k model. For GPT4 (Ope- 372

nAI, 2023), our choice is gpt-4-0613. 373

4.1 Results 374

The results using the gold passages setting are pre- 375

sented in Table 1, while those without incorporating 376

gold passages are in Table 2. Initially, we obtain 377

the Top-5 retrieved passages, representing the set- 378

ting without added gold passages. If these passages 379

don’t contain the answer, we randomly integrate the 380

gold passage among the Top-5 candidate passages, 381

corresponding to the setting with gold passages. 382

Table 1 reveals that among the single-round 383

zero-shot methods, Post-Fusion consistently sur- 384

passes the traditional concatenation approach in 385

both EM and F1 metrics across all three bench- 386
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NQ TriviaQA SQuAD
EM F1 %Unk %NM EM F1 %Unk %NM EM F1 %Unk %NM

Supervised 40.9 - - - 55.2 - - - 35.8 - - -
Without gold passage
LLama2
Concatenation 24.6 34.6 18.2% - 35.8 40.9 14.6% - 20.1 28.9 21.8% -
Post-Fusion 24.9 36.3 13.8% 15.3% 35.9 43.8 10.5% 14.5% 21.5 29.5 16.2% 18.3%
Pruning Prompt 25.7 35.4 12.7% - 36.2 43.9 9.8% - 23.5 30.4 10.4% -
Summary Prompt 26.3 35.7 10.3% - 36.2 42.0 8.5% - 23.8 30.2 10.9% -
Concat + PF 28.0 38.9 3.2% 3.6% 37.7 43.2 4.2% 3.5% 26.5 34.9 3.2% 2.6%
PF + Concat 27.9 38.5 8.7% 4.8% 38.2 43.6 8.9% 2.8% 24.2 35.8 12.8% 2.3%
ChatGPT
Concatenation 34.5 43.8 23.1% - 49.3 55.5 19.9% - 28.1 34.8 28.5% -
Post-Fusion 38.3 48.3 10.1% 9.0% 49.7 55.7 10.7% 7.4% 32.1 40.3 13.9% 12.3%
Pruning Prompt 36.2 46.3 9.1% - 49.3 56.5 9.5% - 36.1 40.6 12.7% -
Summary Prompt 36.3 48.4 8.6% - 48.3 56.5 7.7% - 34.1 40.0 13.7% -
Concat + PF 39.9 49.7 9.3% 5.3% 52.7 59.5 9.1% 2.8% 40.1 43.8 5.7% 2.3%
PF + Concat 38.9 50.1 9.1% 4.3% 50.5 57.7 6.7% 3.2% 38.5 41.2 9.9% 5.4%
GPT4
Concatenation 36.9 50.6 18.9% - 51.3 60.7 16.7% - 29.7 30.9 25.8% -
Post-Fusion 37.7 49.7 6.5% 9.9% 51.5 59.0 13.2% 8.9% 33.1 37.8 12.8% 12.5%
Pruning Prompt 38.3 48.4 9.2% - 51.2 58.2 12.5% - 32.7 39.8 13.6% -
Summary Prompt 38.5 49.6 8.3% - 50.8 58.5 13.9% - 35.9 39.2 12.5% -
Concat + PF 41.5 52.1 5.4% 3.1% 55.7 63.7 8.1% 3.8% 41.8 44.7 5.6% 3.2%
PF + Concat 40.6 51.6 6.9% 9.2% 54.3 62.8 12.5% 6.4% 42.1 44.9 9.7% 8.4%

Table 2: Exact match (EM) and F1 scores on filtered DEV split of the NQ, TriviaQA and SQuAD using Top-5
passages on without adding gold passage setting. %Unk denotes the percentage of Unknown responses. %NM
denotes the error rate by majority vote. Concat refers to the Concatenation strategy and PF refers to Post-Fusion
strategy.

marks. This indicates that the model may become387

distracted when faced with a combination of rel-388

evant passages. Compared to zero-shot and few-389

shot approaches, both Pruning Prompt and Sum-390

mary Prompt show a marked enhancement over391

the concatenation method, though the margin of392

improvement is modest. The use of the CoT, which393

elicits a potential reasoning process, can guide the394

model in attending to relevant passages. However,395

this approach does not greatly enhance single-hop396

question answering as compared to prior multi-hop397

reasoning studies (Wei et al., 2022; Trivedi et al.,398

2022a).399

Compared to single-round methods, multi-round400

strategies consistently deliver superior perfor-401

mance, showcasing significant improvements. For402

instance, on the NQ dataset, Concat + PF exceeds403

the Concatenation method by over 10% on average404

across three distinct LLMs. It suggests the effi-405

cacy of integrating model uncertainty as feedback.406

Among the multi-round approaches, Concat + PF407

demonstrates better performance compared to PF +408

Concat on most of cases. Comparing PF + Concat409

with Post-Fusion, it is evident that PF + Concat,410

leveraging LLM to select the best answer from a411

candidate pool, outperforms the majority vote ap-412
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Concat+PF

PF+Concat

Method Name
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Figure 3: The token usage of different approaches using
top-5 passages.

proach. 413

In the realm of open-domain question-answering, 414

as evidenced by Table 2, the performance metrics 415

(EM and F1) under settings without the addition of 416

a gold passage are comparatively lower. This is pri- 417

marily attributed to the reduced recall of Top-k re- 418

trieval, resulting in a higher propensity to generate 419

“unknown” responses. Notably, our proposed multi- 420

round methodologies, when leveraging GPT4 as 421

the LLM, deliver performance figures that are on 422

par with supervised outcomes. 423
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Figure 4: The impact on the position of gold passage on
Combination method.

4.2 Usage Analysis424

Striking a balance between enhancing the quality425

of generated answers and optimizing resource uti-426

lization is essential. As depicted in Figure 3, differ-427

ent methodologies vary in their token usage. The428

Concatenate method is the most resource-efficient,429

whereas the Concat + PF method, albeit being the430

second most efficient, has an additional 90.5 tokens431

on average when compared to Concatenate. Given432

the significant performance boost of Concat + PF433

over Concatenate (a 15.6% increase in EM as pre-434

sented in Table 2), we advocate for the adoption of435

Concat + PF. This offers a more efficient means of436

integrating retrieved passages with LLMs.437

4.3 Effect of different Top-k passages from438

the retriever439

Figure 4 showcases open-domain QA results using440

the Top-k retrieved passages on NQ dataset. As k441

increases, we observe a corresponding increase in442

retrieval recall. Our multi-stage methods, Concat443

+ PF and PF + Concat, both benefit from increas-444

ing k values, showing enhancements of 1.5 and445

0.7 points, respectively, when moving from Top 5446

to 20. In contrast, the conventional concatenation447

method experiences a 0.8 EM performance decline448

from Top 5 to 20. This suggests that the concate-449

nation prompt can become counterproductive with450

the inclusion of more passages, potentially because451

it struggles to identify the correct passage and gets452

distraction by incorrect ones. However, our multi-453

stage approaches remain undeterred with the addi-454

tion of passages, demonstrating greater robustness.455

4.4 Effect of different Decoding Strategies456

Instead of the traditional greedy decoding strategy,457

a newer method known as self-consistency (Wang458

et al., 2022) has been introduced and employed in459

0 10 20 30 40 50
Decode p output

34

35

36

37

38

39

40

41

EM

Concatenation
PF + Concate
Concate + PF

Figure 5: The impact on the position of gold passage on
Combination method.

the chain-of-thought prompting (Wei et al., 2022). 460

This method begins by sampling from the language 461

model’s decoder to produce a diverse set of answers. 462

The optimal answer is then obtained by marginaliz- 463

ing the samples’ reasoning paths. 464

For the concatenation prompt, we opt for tem- 465

perature sampling (Ackley et al., 1985; Ficler and 466

Goldberg, 2017) as our decoding strategy, yielding 467

p outputs, rather than generating a singular answer 468

via greedy decoding as detailed in section 4.1. In 469

the case of the post-fusion prompt, each passage 470

employs a sampling decoding strategy, generating 471

p outputs for every k passages. This results in a 472

total of p× k outputs. It’s important to distinguish 473

between post-fusion prompts and self-consistency. 474

The former pertains to using different inputs, while 475

the latter is about the decoding sampling strategy. 476

Figure 5 presents an ablation of results with a 477

temperature of 0.7 and varying values of p in Top-p 478

sampling on ChatGPT, using the Top-5 retrieved 479

passages from the NQ dataset. The data suggests 480

that small sampling outputs, ranging from 1 to 10, 481

significantly enhance performance. However, as p 482

increases from 10 to 50, the degree of improvement 483

diminishes. And Concate + PF approach could ben- 484

efit more from the increase of p. 485

4.5 Effect of the order of the gold passage 486

In this section, we aim to assess how the placement 487

of the gold passage within the Top-k passages influ- 488

ences the ability of the LLM to generate accurate 489

answers. We examine three different placements: 490

(1) consistently positioning the gold passage at the 491

start of the Top-k passage list; (2) consistently plac- 492

ing the gold passage at the end of the Top-k passage 493

list; (3) maintaining the original sequence produced 494

by the retrieval model. 495

As the results depicted in Fig. 6, it is evident 496

that the placement of the gold passage significantly 497
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affects the quality of the generated answers. Consis-498

tently placing the gold passage in the same position499

tends to improve performance compared to using500

the retrieval order. Among the constant placement501

options, positioning the gold passage at the bottom502

tends to yield better results than placing it at the503

top. This outcome might be tied to our prompt de-504

sign, where we present the Top-k passages first,505

followed by the question. Consequently, keeping506

the gold passage closer to the question seems to507

enhance performance to the greatest extent. More-508

over, this observation is aligned with the (Liu et al.,509

2023), where they find that a distinctive U-shaped510

performance, as performance peaks when key in-511

formation is at the start or end of the input, but512

drops significantly for mid-context information.513

5 Related Work514

The recent proliferation of LLM-powered appli-515

cations, such as ChatGPT/GPT4 (OpenAI, 2023),516

Bing Chat, and CoPilot, has highlighted both the517

impressive performance and certain limitations of518

LLMs. These limitations include a high compute519

and data demand, making it a challenge to con-520

tinually update LLMs both efficiently and effec-521

tively (Scialom et al., 2022). LLMs also tend to gen-522

erate plausible yet non-factual texts, a phenomenon523

known as “hallucination” (OpenAI, 2023). In re-524

sponse to these issues, the field is witnessing a525

trend towards augmenting LLMs with special-526

ized tools (Schick et al., 2023; Paranjape et al.,527

2023), such as code interpreters (Zhang et al., 2021;528

Gao et al., 2023; Shao et al., 2023) or search en-529

gines (Park and Ryu, 2023). The goal is to delegate530

specific tasks to more proficient systems or to en-531

rich the LLMs’ input context with more pertinent532

information.533

Augmentation of language models with pertinent 534

data retrieved from diverse knowledge bases has 535

demonstrated its effectiveness in enhancing open- 536

domain question answering performance (Lazari- 537

dou et al., 2022; Izacard et al., 2022; Chen et al., 538

2023). The process typically involves using the in- 539

put query to (1) command a retriever to fetch a 540

document set (essentially, token sequences) from 541

a corpus, after which (2) the language model inte- 542

grates these retrieved documents as supplemental 543

information, guiding the final prediction. 544

The interleaving between the retriever and LLM 545

could be considered a reciprocal process. Vari- 546

ous studies have been conducted on generation- 547

augmented retrieval (GAR), which involves re- 548

vising or supplementing queries with generated 549

background information to enhance the retrieval 550

of relevant content. Well-known examples of this 551

approach include GAR (Mao et al., 2021) and 552

HyDE (Gao et al., 2022). With regard to com- 553

plex multi-step reasoning questions, work involv- 554

ing LLMs often necessitates the retrieval of seg- 555

mented knowledge (Trivedi et al., 2022a; Khattab 556

et al., 2022). This chain-of-thought reasoning pro- 557

cess (Wei et al., 2022; Jiang et al., 2023) is followed 558

by conducting partial reasoning to generate the next 559

question, then retrieving further information based 560

on the outcome of that partially formed next ques- 561

tion, and repeating this cycle as needed (Yao et al., 562

2022; Press et al., 2022). 563

Our work primarily focuses on a specific scope: 564

once the output from the retriever is determined, 565

we aim to identify the most effective method of in- 566

putting this data into LLMs for answer generation. 567

6 Conclusion 568

In this study, we identified two key challenges 569

associated with integrating LLMs and retrieved 570

passages: the occurrence of “unknown” responses 571

when feeding LLMs with concatenated passages 572

and the erroneous majority when using the Post- 573

Fusion approach. To overcome these challenges, 574

we proposed four improved approaches, including 575

two CoT-related strategies and two multi-round 576

methods incorporating LLM’s feedback. Through 577

our experimental results and token usage analysis, 578

we observed that it is advantageous to first employ 579

a concatenation strategy to generate an answer. In 580

the case of an “unknown” response, we recommend 581

transitioning to the Post-Fusion approach to obtain 582

the final answer through a majority vote. 583
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Limitations584

Our evaluation is primarily constrained to three585

open-domain QA datasets to align better with the586

supervised state-of-the-art approach cited in (Izac-587

ard and Grave, 2021). To ensure the broader appli-588

cability and robustness of our findings, it’s essential589

to evaluate the proposed methods on other bench-590

marks, including MS MARCO and WebQuestions591

datasets (Nguyen et al., 2016; Berant et al., 2013).592

Currently, our evaluation focuses predominantly593

on textual QA. While the proposed approach seems594

generalizable to other modalities like tables (Pasu-595

pat and Liang, 2015; Zhu et al., 2021) and knowl-596

edge bases (Berant et al., 2013; Bao et al., 2016),597

we have yet to empirically test and validate this598

claim. Future studies could delve into exploring599

its effectiveness on diverse modalities like UniK600

QA (Oguz et al., 2022).601

We haven’t thoroughly evaluated how our ap-602

proach scales with larger datasets or more complex603

queries (Trivedi et al., 2022b). This could be an604

avenue of exploration, as scalability is vital for605

real-world applications.606
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Given the relevant background contexts, answer the current question using one of the context 
in short factoid phrase manner.
---
Question: Who produced the album that included a re-recording of \"Lithium\"?
Answer: Butch Vig
Question: What city was the victim of Joseph Druces working in?
Answer: Boston, Massachusetts
Question: In what year was the star of To Hell and Back born?
Answer: 1925
---
Try your best to guess an extractive answer. If don't know the answer, just say unknown.
Context:
{retrieved_topk_context}
Question:
{question}
Answer:

Concatenation

Answer Format Example

Task Description

Uniform the response
like “no context
provide to answer the
question”

Figure 7: The Prompt used in Concatenation and Post-Fusion.

A Prompt used in Different Approaches870

The prompts used in the Concatenation871

and Post-Fusion approaches are illustrated872

in Fig. 7. In the Concatenation approach,873

retrieved_topk_context represents the874

concatenation of the top-k retrieved passages.875

Conversely, in the Post-Fusion approach, it876

represents a single passage at a time.877

The Pruning Prompt’s specific prompt is pre-878

sented in Fig. 8, while the Summary Prompt’s879

prompt is depicted in Fig. 9.880
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Answer questions with short factoid answers.
---
Question: Who produced the album that included a re-recording of \"Lithium\"?
Answer: Butch Vig
Question: What city was the victim of Joseph Druces working in?
Answer: Boston, Massachusetts
Question: In what year was the star of To Hell and Back born?
Answer: 1925
---
Follow the following format.
Context:
sources that may contain relevant content
Question:
the question to be answered
Rationale: Let's think step by step. a step-by-step deduction that identifies the correct response, which will be provided below
Answer: a short factoid answer, often between 1 and 5 words. Make sure generate  \"Answer\": in the end!
If don't know the answer, just say unknown as answer.
---
Context:
[1] Peter Outerbridge | Peter Outerbridge Peter Outerbridge (born June 30, 1966) is a Canadian actor…..
[2] Except the Dying | 2008. On March 3, 2015, Acorn Media announced a re-release for all three movies, set for May 26, 2015…..
[3] «Saw VI | Saw VI Saw VI is a 2009 American horror film directed by Kevin Greutert from a screenplay written by Patrick Melton 
and Marcus Dunstan. It is the sixth installment in the \"Saw\" franchise and stars Tobin Bell……
Question: Which 2009 movie does Peter Outerbridge feature as William Easton?
Rationale: Let's think step by step.
The question is asking for the 2009 movie that Peter Outerbridge was in as William Easton. We can use process of pruning to 
figure this out. Source 1 doesn’t contain the information. In source 2, it talks about a made-for-TV movie in 2004. In source 3, it 
talks about the sixth installment in the \"Saw\" franchise. This must be the movie we are looking for.
Answer:
Saw VI
---
Context: 
{retrieved_topk_context}
Question:
{question}
Rationale: Let’s think step by step. 

Elimination Reasoning Demo

Answer Format Example

Reasoning and Output 
Format

Figure 8: The Pruning Prompt.
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Answer questions with short factoid answers.
---
Question: Who produced the album that included a re-recording of \"Lithium\"?
Answer: Butch Vig
Question: What city was the victim of Joseph Druces working in?
Answer: Boston, Massachusetts
Question: In what year was the star of To Hell and Back born?
Answer: 1925
---
Follow the following format.
Context:
sources that may contain relevant content
Question:
the question to be answered
Rationale: Let's think step by step. a step-by-step summary that identifies the correct response, which will be provided below
Answer: a short factoid answer, often between 1 and 5 words. Make sure generate  \"Answer\": in the end!
If don't know the answer, just say unknown as answer.
---
Context:
[1] Peter Outerbridge | Peter Outerbridge Peter Outerbridge (born June 30, 1966) is a Canadian actor…..
[2] Except the Dying | 2008. On March 3, 2015, Acorn Media announced a re-release for all three movies, set for May 26, 2015…..
[3] «Saw VI | Saw VI Saw VI is a 2009 American horror film directed by Kevin Greutert from a screenplay written by Patrick Melton 
and Marcus Dunstan. It is the sixth installment in the \"Saw\" franchise and stars Tobin Bell……
Question: Which 2009 movie does Peter Outerbridge feature as William Easton?
Rationale: Let's think step by step.
The question requires information on the 2009 movie that Peter Outerbridge was in as William Easton. Going through the provided 
sources, we can narrow down our focus to Source 3 and Source 4 that mention \"Saw VI\", a movie released in 2009, in which 
Peter Outerbridge starred. By summarizing these details, the movie from 2009 featuring Peter Outerbridge is \"Saw VI\”.
Answer:
Saw VI
---
Context: 
{retrieved_topk_context}
Question:
{question}
Rationale: Let’s think step by step. 
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Figure 9: The Summary Prompt.
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