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ABSTRACT

Recognition of features in satellite imagery (forests, swimming pools, etc.) de-
pends strongly on the spatial scale of the concept and therefore the resolution of
the images. This poses two challenges: Which resolution is best suited for recog-
nizing a given concept, and where and when should the costlier higher-resolution
(HR) imagery be acquired? We present a novel scheme to address these challenges
by introducing three components: (1) A technique to distill knowledge from mod-
els trained on HR imagery to recognition models that operate on imagery of lower
resolution (LR), (2) a sampling strategy for HR imagery based on model disagree-
ment, and (3) an LLM-based approach for inferring concept “scale”. With these
components we present a system to efficiently perform scale-aware recognition in
satellite imagery, improving accuracy over single-scale inference while following
budget constraints. Our novel approach offers up to a 26.3% improvement
over entirely HR baselines, using 76.3 % fewer HR images.

Figure 1: With these images we can see how concept scale is linked to spatial resolution. If we
are seeking out a spatially large concept like forest, lower resolutions are favored (b), as higher
resolutions may lack the needed context to discern between a forest (a) and a park (c). At the same
time while seeking out finer concepts such as sports track, certain details can only be discerned well
at higher resolutions (d) and are obscured at lower resolutions (e).

1 INTRODUCTION

The ever-increasing number of earth observation satellites (now more than 1500) offer us a unique
opportunity to understand changes at the planetary scale, be it tracking the ecological degradation
of forests and coral reefs (Wicaksono et al., 2021; Gao et al., 2020), the destruction of cultural
heritage (Tapete et al., 2021), or economic development and well-being (Engstrom et al., 2022). A
key to all these downstream applications is the ability to recognize accurately a broad vocabulary of
concepts: a major computer vision challenge.

An important aspect of recognition in satellite imagery is the notion of scale: Satellite image res-
olution is dependent on the particular satellite/sensor and is characterized by the GSD, or ground
sampling distance: the distance corresponding to a single pixel. For example, Sentinel-2 images are
fairly low resolution (1 pixel = 100 m2) (ESA, 2024), while images captured by the NAIP program
are fairly high resolution (1 pixel = 1 m2) (U.S. Geological Survey, 2024). The image scale matters
because many concepts of interest also have a characteristic physical size/scale. An olympic-sized
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Figure 2: System overview. First, we determine which resolution is best suited for the search con-
cept based on its scale (sec. 3.3). Then, we analyze the search area to find which regions would
benefit the most from higher resolution inference (sec. 3.5). We sample the best suited regions while
staying within a user specified budget. Based on this guidance we perform inference using one of
three models, a high resolution satellite model, a low resolution satellite model, and a low resolution
satellite model with knowledge distilled from its high resolution counterpart (sec. 3.4). This knowl-
edge distilled model allows us to infer finer details using low resolution satellite imagery alone.

swimming pool, typically about 50 m long, would be barely a speck in Sentinel-2 images. In con-
trast, a lake may be hundreds of square kilometers, necessitating an exceptionally large image to
capture its extent in terms of NAIP imagery, which current models would not be equipped to do.

The right resolution may also depend on the underlying geography. Dense urban areas with many
geographical features may require high resolution data to analyze. In contrast, large swathes of
uninhabited deserts can probably be analyzed accurately even with low-resolution imagery.

Accuracy notwithstanding, we must also consider cost and availability. Low-resolution (LR) im-
agery is free, abundant, and covers the planet densely over space and time (ESA, 2024; USGS Earth
Resources Observation and Science, 2024). In contrast, high resolution (HR) imagery typically
comes from drones or low flying satellites that are commissioned as needed, and therefore come
with a high cost and inconsistent temporal and spatial coverage (Planet Labs PBC, 2018–; U.S.
Geological Survey, 2024).

Scientists in many application domains, be it ecology, archaeology, and urban planning (Wicaksono
et al., 2021; Gao et al., 2020; Tapete et al., 2021; Engstrom et al., 2022), today manually reason about
these different aspects, namely, the scale of the concept, the nature of the underlying geography, and
the cost of acquired imagery, to achieve the best recognition that they can afford with their budget.
We need an approach that can automate this tradeoff and automatically identify when to acquire
more expensive high resolution imagery, taking into account the cost, the scale of the concept and
the geography. While there is past work on the impact of scale on satellite image recognition, much
of it is focused on accuracy and disregards costs (Reed et al., 2023; Mall et al., 2024; Bastani et al.,
2023). Prior work that has looked at costs focuses on the geography but ignores the scale of the
concept itself Uzkent & Ermon (2020). A holistic treatment of scale to achieve accurate recognition
under a budget is missing.

In this paper, we address this gap by proposing:

• A knowledge distillation technique which allows LR models to improve significantly in
recognizing finer concepts by learning from HR.

• A novel approach that leverages the semantic understanding of LLMs to determine the
scale of each concept.

• A new approach for determining which geographical regions require higher resolution anal-
ysis by predicting when low and high resolution models might disagree, and

• A unified framework that combines these ideas to yield the most accurate retrieval results
for a range of concepts while adhering to a strict budget constraint.
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Finally, we note that while our experiments are on LR and HR satellite imagery, these techniques
are more general and can generalize to any problem where there are two or more modalities with
different costs and accuracy tradeoffs.

We evaluate our approach with multiple recognition models (supervised and open-vocabulary) and
multiple satellite modalities. We find that compared to simply using high resolution images always,
our framework improves accuracy up to 13 points while reducing the number of HR images used
by 5×. Our approach also significantly outperforms (by more than 25 points) other prior work that
trades off between accuracy and cost. In sum, our results demonstrate that our holistic reasoning of
scale leads to significantly higher accuracy with large reductions in cost.

2 RELATED WORKS

2.1 MULTI-SCALE RECOGNITION IN SATELLITE IMAGERY

Remotely sensed images or satellite images are inherently multi-scale. Depending on the sensor
heights and properties, the physical distance between two adjacent pixels in remotely sensed images
(known as Ground Sample Distance/GSD) could vary from 0.3m to 1km. These multi-scale images
provide complementary information for various applications (Wicaksono et al., 2021; Gao et al.,
2020; Tapete et al., 2021; Engstrom et al., 2022).

Few prior works have explicitly investigated the effect of different scales in visual recognition in
satellite imagery. For instance, Reed et al. (2023) shows that it is crucial to build scale-specific
representations for images with different GSD. However, they do not explicitly address the high
acquisition cost of high-resolution satellite imagery. Works on image super-resolution (Shermeyer
& Van Etten, 2019; Kowaleczko et al., 2022; Wolters et al., 2023) seek to sidestep the problem of
acquisition cost by upsampling low-resolution to their high-resolution counterparts. But as shown
in Wolters et al. (2023), these models are prone to hallucination and would produce high-resolution
imagery with limited fidelity. In this work, we consider a more realistic setup where we allow a
small budget for acquiring high-resolution images during inference. This allows us to tap into the
stronger performance of scale-aware models such as Reed et al. (2023); Mall et al. (2024); Bastani
et al. (2023) while avoiding the hallucination problem in image super-resolution.

2.2 RESOURCE CONSTRAINTS IN VISUAL RECOGNITION

Various resource constraints could be considered during the development or deployment of visual
recognition models. Active learning approaches (Tuia et al., 2011) consider a budget for acquiring
annotations during development and seek to develop the best-performing models by selecting the
most informative set of training examples to annotate. This could be done by selecting examples
that the model is most uncertain about (Houlsby et al., 2011; Shannon, 2001; Yoo & Kweon, 2019),
examples that are most representative of the unlabeled data (Ash et al., 2019; Sener & Savarese,
2017), or a combination of both (Yin et al., 2017). Prior works have also considered compute con-
straints for developing and deploying visual recognition models. These works satisfy the compute
constraints either through developing specialized model architectures (Tan & Le, 2019) or com-
pressing/pruning existing models (Hinton et al., 2015; Blalock et al., 2020). Our work considers a
different type of constraint inherent to remote sensing, i.e., the acquisition cost for high-resolution
images. While others have looked into optimizing high-resolution image acquisition (Uzkent & Er-
mon, 2020; Meng et al., 2022), we provide a solution to produce the performant visual recognition
models under a fixed acquisition budget with a semantic understanding of the concept. To the best
of our knowledge, this is an uncharted problem domain.

2.3 KNOWLEDGE DISTILLATION/LEARNING WITH PRIVILEGED INFORMATION

To recognize fine-grained concepts in LR images, we construct a query model by distilling the log-
its generated by another model that is trained on HR imagery. This approach bears a resemblance
to knowledge distillation (Hinton et al., 2015; Borup & Andersen, 2021; Cho & Hariharan, 2019;
Park et al., 2019; Fukuda et al., 2017; Borup et al., 2023), which seeks to compress a large-scale
teacher model by training a compute-efficient student model to mimic the output of the teacher
model. Different from conventional knowledge distillation, our query student model and teacher
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model operate on different inputs. Specifically, our query model operates on LR imagery, whereas
our teacher model operates on HR imagery. Our approach can also be viewed as an instance of
learning with privileged information (Vapnik & Vashist, 2009; Pechyony & Vapnik, 2010; Vapnik
et al., 2015), in which additional information that is available during test time (e.g., high-resolution
satellite imagery) is used for training a model. This paradigm has enabled the development of better-
performing models in various applications, such as autonomous driving (Chen et al., 2019), image
super-resolution (Lee et al., 2020), and so on. In remote sensing, prior works (Kumar et al., 2021;
Li et al., 2022) have attempted to use additional sensor data as privileged information for improv-
ing land-cover classification. Our work leverages high-resolution satellite image data as privileged
information for improving recognition in low-resolution imagery: a different scenario.

3 METHODOLOGY

3.1 PROBLEM SETUP

We are interested in defining a framework for optimizing accuracy/cost tradeoffs when performing
recognition in satellite imagery. This framework should reason about not only the scale of the
concept being recognized but also the underlying geography of each location.

We concretize the problem as follows.

Setup. We frame our problem as a retrieval task: given a concept c (e.g., “tennis courts”) and a
large set of locations I (e.g., the state of New York), we wish to identify which of these locations
have the concept.

For each location, we have one LR image and a set of HR images that tile the same area. The size
of this set, K, depends on the difference in GSD between the two modalities. For example, if LR
images come from Sentinel-2 (GSD=10m) and HR images come from NAIP (GSD=1m), K would
be 100.

We assume that we have special purpose multi-label classification models for each resolution, de-
noted by MHR and MLR respectively. Given any concept c and any location i, we can use these
models to score the presence of this concept at that location. For LR imagery, this is straightforward:

sLR
c (i) = [MLR(ILR

i )]c (1)

For HR imagery, we simply take the maximum over model scores for all the images at that location:

sHR
c (i) =

K
max
j=1

[MHR(IHR
ij )]c (2)

The max here is used because we want sHR
c (i) to be high (denoting the presence of the concept) if

any of the K HR images indicate the presence of the concept. We call these scores LR scores and
HR scores respectively.

As discussed in the introduction, HR imagery is expensive. We assume a budget in terms of the
maximum number of HR images we can acquire, B. Our goal is, given a concept c and a set of
locations I, retrieve all locations i ∈ I that have concept c while staying within the HR budget.

Training / hyperparameter validation. To allow for algorithms to train any models or validate
hyperparameters, we assume access to a fixed set of locations Itrain where we have already acquired
(a) images from both resolutions, and (b) annotations for the presence/absence of a set of “seen”
concepts Cseen. For fairness, these locations are distinct from the locations used for evaluation.
Our set of evaluation concepts are also kept distinct (“unseen” classes); however, we also report
performance on the seen classes. A full list of the concepts, seen and unseen, is in Appendix A.1.

3.2 SYSTEM OVERVIEW

Our overall system to tackle this problem is shown in Figure 2 and has three steps: Given a search
concept, our system uses an LLM-based approach to predict which resolution it is best suited towards
(Section 3.4). If the search concept was found to be better suited to HR imagery, we would ask the
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user for a budget and utilize our Model Disagreement based sampling technique to optimize the
budget in selecting locations for HR imagery (Section 3.5). We describe how this technique can
be performed using LR imagery alone via a Knowledge-Distilled LR model and how such a model
allows us to perform improved inference with LR imagery alone as well (Section 3.4).

3.3 INFERRING CONCEPT “SCALE” USING LLMS

The question of whether HR imagery is needed or not depends on the concept. For some concepts,
the low-resolution scores sLR are better, while for others, the HR scores sHR are more accurate.
This is, unfortunately, difficult to predict without some background knowledge about the concept.
To capture this background knowledge, we propose to leverage large language models (LLMs).

Unfortunately, while LLMs have generally learned various kinds of background knowledge, it is
unlikely that they have seen or reasoned about the different modalities of satellite imagery. As such,
while the LLM might know that a lake is bigger than a swimming pool, this may not be enough to
figure out which of the two modalities is better.

We address this knowledge gap with in-context learning (Dong et al., 2022). Concretely, we first
use the available training locations Itrain and the annotations therein to evaluate both the HR scores
and the LR scores for each concept in Cseen. Thus, for each of these seen concepts, we know which
modality yields higher accuracy. We then give these seen concepts, as well as the corresponding
modality, as in-context examples to the LLM and ask the LLM to infer the right modality for all
other (unseen) concepts. The prompts to the LLM can be found in sec. A.2 in the appendix.

3.4 KNOWLEDGE DISTILLATION FROM HR TO LR

Suppose we know apriori that a concept is better detected in HR imagery. Given the limited ac-
quisition budget of B, we do not have full coverage of the locations in I. Thus we need a model
that consumes LR images and approximates the predictions made by MHR. To build such a model
MLR

KD, we minimize the MSE between the model’s prediction and the corresponding HR scores:

∑
i

∑
c∈Cseen

||[MLR
KD(ILR

i )]c − sHR
c (i)||22 (3)

By minimizing the loss, we essentially distill the HR knowledge (Hinton et al., 2015) in the MHR

into a model that consumes LR images MLR
KD. This formulation also bears a resemblance to learning

with privileged information (Vapnik et al., 2015). In this case, when training the model MLR
KD, we

use privileged HR information to guide the MLR
KD to detect smaller concepts at LR imagery.

3.5 ACQUIRING HR IMAGERY BASED ON MODEL DISAGREEMENT

When detecting a small concept, MLR
KD might not be perfect since an LR image at the test location l,

Il might not have enough visual signatures. In this case, we would have to leverage our budget of B
to acquire HR imagery and run predictions using MHR. A simple criterion to select a location l to
acquire HR imagery is by looking at the disagreement between the LR scores and HR scores. The
disagreement at l can thus be defined as:

δ(l) =
∑

c∈Cseen

|sHR
c (l)− sLR

c (l)| (4)

A location l with higher δ(l) is more likely to have concepts that MHR could detect where MLR

could not (or vice versa). However, to compute δ we would have to already possess HR imagery
over the whole region, which is exactly what we want to avoid acquiring. Instead to approximate
δ, we leverage MLR

KD as a stand in for MHR and compute the following disagreement criterion for
ranking various locations:

δ′(k) =
∑

c∈Cseen

|[MLR
KD(ILR

k )]c − sLR
c (k)| (5)
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3.6 SCALE-AWARE RECOGNITION UNDER RESOURCE CONSTRAINTS

Given a concept our LLM determines which resolution is best suited (Section 3.3). If the best suited
resolution is LR, we perform inference using the LR model and all LR imagery only. If the best
suited resolution is HR, we ask the user for their HR budget. Then we perform model disagreement
using LR imagery alone and the LR and KD models using eq. 5. With these disagreement scores and
the user budget, we then sample the top locations, obtain HR images and perform inference using
the HR model for these locations. The retrieval results for the remaining area, that it is preferable to
use HR for, but cannot be fit in the budget, is scored using the KD model on LR imagery. The end
result is accurate retrieval where HR imagery is used sparingly, only when it is really needed.

4 EXPERIMENTS AND RESULTS

We evaluate the effectiveness of our scale-aware concept recognition approach by assessing the
impact of knowledge distillation, model-disagreement-based acquisition, and LLM-based scale in-
ference. We first evaluate our whole system then the three components individually.

4.1 EXPERIMENTAL SETUP

4.1.1 PRE-TRAINED MODELS

We perform our experiments with two sets of low-resolution and high-resolution models.

• GRAFT is a zero-shot vision-language model that can be used for performing open-
vocabulary recognition on satellite imagery (Mall et al., 2024), similar to CLIP (Radford
et al., 2021). We use the released model for Sentinel-2 and NAIP and train our own model
for the NICFI basemaps. The model architecture is ViT-B-16.

• We finetune a fully-supervised ResNet-50 pre-trained on ImageNet on both LR (Sentinel-2)
and HR (NAIP) data with Open Street Maps annotations on our training set.

4.1.2 BENCHMARK

For our experiments, we require aligned LR and HR imagery to fairly compare the performance of
LR and HR models. However, this is not required in our problem setup or approach. We curate
the following two benchmarks. Both benchmarks use Sentinel-2 as the low-resolution modality, but
differ in the high-resolution modality:

Sentinel-2/NAIP. In this benchmark, we use HR imagery (GSD=1m) captured by the National
Agriculture Imagery Program (U.S. Geological Survey, 2024). This program only captures data for
the US, so this benchmark is restricted to the US. Here, one Sentinel-2 image corresponds to 100
NAIP images. The cost of acquiring similar resolution imagery ranges from $1.00–$6.00 per square
km (Geocento, 2023).

We created a training dataset and validation dataset using images from the following states and
regions: Arkansas, Delaware, Idaho, Maine, Rhode Island, Wyoming, and US Virgin Islands. These
datasets are comprised of 45,885 Sentinel-2 images for LR, and 4,588,500 NAIP images for HR
in the training dataset, and 4,938 and 493,800 images respectively for the validation dataset. Our
testing imagery is comprised of images from D.C., Puerto Rico, and Hawaii. The test dataset is
comprised of 5,015 Sentinel-2 and 505,100 NAIP images. We chose these locations as they represent
a diverse set of demographic and climatic regions within the US.

Sentinel-2/NICFI. Our second benchmark leverages the NICFI Satellite Data Program Basemaps
for Tropical Forest Monitoring (Planet Team, 2024) which provides HR imagery (GSD=5m) for
regions of Central/South America, Africa, and Asia. Similar imagery has prices ranging from $0.60–
$2.0 per square km (Geocento, 2023). Here one Sentinel-2 image corresponds to 4 NICFI images.

All our data was downloaded via Google Earth Engine (Gorelick et al., 2017). To handle time
discrepancies we retrieved the LR image for a set of HR within the same month that the HR image
was collected to avoid major disagreements between the two sets of images. This data will be
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released publicly along with the download scripts so that others may download data for additional
locations. For both benchmarks, we follow Mall et al. (2024), and use OpenStreetMap contributors
(2024) to obtain ground truth annotations for 40 concepts (listed in Appendix A.1).

All classes are seen for supervised techniques, while all classes are unseen for zero-shot baselines.
We reserve 30 of these classes as seen classes and the other 10 are unseen classes when evaluating
the knowledge-distilled zero-shot techniques.

4.1.3 METRICS

Since the scope of this method is retrieval, we evaluate our results with mAP@k averaged over all
classes. We also look at the amount of HR imagery utilized, as well as runtime in seconds to perform
inference on the imagery. The runtime is calculated on the images determined by each technique;
for LR models our test set has 5,015 images, and for our HR models the test set has 501,500 images.
Techniques utilizing HR sampling methods, such as our own or Patchdrop (Uzkent & Ermon, 2020)
use a combination of these two datasets. All inference is performed using a batch size of 32 on a
single Nvidia RTX A6000 GPU. For our experiments we set a budget of 1000 locations to acquire
HR imagery, with each location covering roughly 5 sq. km. We report our results in sq. km., so we
can compare to other techniques that do not sample by location.

4.2 RESULTS

We examine our method by testing individual components. We first evaluate the entire system
(sec 4.2.1). We then evaluate our LR Knowledge Distillation Models in sec. 4.2.2. After that, we
examine our model disagreement scheme for selecting modalities in sec. 4.2.3). Finally, we assess
the usage of LLMs for search concept scale determination (sec 4.2.4).

4.2.1 OVERALL SYSTEM PERFORMANCE

We assess the performance of our entire system (Table 2) by comparing the following baselines:

• HR: Simply using the HR data and HR models for all locations.
• LR: Only using LR data and LR model.
• KD: Only using LR data, but with our KD model.
• model dis.: Using our model disagreement approach to sample locations for HR imagery,

but without any LLM-based inference of whether the concept needs HR data.
• LR + LLM: Using an LLM to decide which concepts need HR data, but then acquiring HR

images for all locations and using the LR model for other concepts.
• KD + LLM: Using an LLM to decide which concepts need HR data, but then acquiring

HR images for all locations and using the KD model for other concepts.
• Patchdrop: Using Patchdrop (Uzkent & Ermon, 2020) to determine HR sample locations.
• Ours full: Using our full system, from LLM to determine the best suited resolution, with

our model disagreement technique to sample HR imagery with a constrained budget, and
using our KD model to perform inference for HR-suited concepts in out-of-budget area.
Which would be the same as KD + LLM + model dis.

• nl. sampling: Using sampling strategies put forth in IS-count (Meng et al., 2022) (via-night
lights) and compare it to our own model disagreement technique.

We find that our overall system performs the best on both classes of pre-trained models, even outper-
forming the baseline of using all HR data for all locations. With 26.3% and 24.6% improvement on
zero-shot technique GRAFT, and 6% and 8.3% improvement on supervised techniques in mAP100

and mAP20 respectively using only 23.6% of the HR images.

We see our system perform more efficiently with regard to runtime as our system can handle re-
trievals for multiple concepts at once. If all of the concepts are best suited for LR, inference using
the LR model occurs at most once. If some concepts are better suited for HR imagery then inference
happens at most twice using LR imagery and at most once using HR imagery. So irrespective of the
number of concepts, we can retrieve multiple concepts in about the same time.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Seen Classes* Unseen Classes # HR images Inf. Time
Model Data mAP100 mAP20 mAP100 mAP20 sq. km. s
GRAFT HR HR 0.501 0.513 0.541 0.574 25,163 1539
GRAFT LR + LLM† LR,HR 0.530 0.561 0.549 0.573 25,163 1575
GRAFT KD + LLM† LR,HR 0.557 0.576 0.541 0.574 25,163 1570
GRAFT LR LR 0.482 0.507 0.379 0.471 0 17
GRAFT KD† LR 0.534 0.559 0.490 0.503 0 17
RemoteCLIP Liu et al. (2024) LR 0.461 0.493 0.413 0.440 0 17
CLIP-RSICD Arutiunian et al. (2021) LR 0.393 0.441 0.311 0.303 0 17
OpenCLIP Cherti et al. (2023) LR 0.481 0.505 0.392 0.447 0 16
GRAFT LR + nl. sampling Meng et al. (2022) LR,HR 0.379 0.354 0.440 0.492 5,954 323
GRAFT KD + model dis.† LR,HR 0.621 0.628 0.461 0.494 5,954 340
Graft (Ours full)† LR,HR 0.633 0.639 0.502 0.564 5,954 372

Table 1: Full system performance under various settings for retrieval under budget for zero-shot
techniques.†:Techniques utilizing our contributions. *: Classes seen during knowledge distillation,
for all other zero-shot baselines all classes are unseen. For models using both HR and LR data, we
assign a budget of 1000 locations (∼ 5 sq. kms each). Our full system performs much better than
the baselines with improved HR data constraints.

Model Data mAP100 mAP20 # HR images in sq. km. Inf. Time in s
Supervised HR HR 0.695 0.735 25,163 1585
Supervised LR + LLM† LR,HR 0.689 0.731 25,163 1610
Supervised KD + LLM† LR,HR 0.696 0.735 25,163 1609
Supervised LR LR 0.451 0.473 0 14
Supervised KD† LR 0.570 0.606 0 14
Resnet 50 (Multi-Res) LR 0.421 0.447 0 21
SatMAE Cong et al. (2022) LR 0.351 0.388 0 67
Cross-Scale MAE Tang et al. (2023) LR 0.412 0.422 0 91
Supervised LR + nl. sampling Meng et al. (2022) LR,HR 0.463 0.480 5,954 319
Supervised + Patchdrop Uzkent & Ermon (2020) LR,HR 0.445 0.470 6,776 360
Supervised KD + model dis.† LR,HR 0.733 0.791 5,954 328
Supervised (Ours full)† LR,HR 0.736 0.796 5,954 338

Table 2: Full system performance of various fully-supervised techniques for retrieval under
budget.†:Techniques utilizing our contributions. For models using both HR and LR data, we as-
sign a budget of 1000 locations (∼ 5 sq. kms each). Our full system performs much better than the
baselines with improved HR data budget constraints.

4.2.2 RECOGNITION IN LOW RESOLUTION

We compare the performance of several models for multi-label classification in Tables 3 and 4 on
40 classes (as listed in the appendix A.1) using LR imagery alone. We see improvements in per-
formance through our knowledge distillation process for both zero-shot and fully-supervised tech-
niques. For each corresponding training data type and model architecture, we also show the perfor-
mance of the HR model (in gray).

We also compare our zero-shot KD Model with other zero-shot baselines CLIP-RSICD (Arutiunian
et al., 2021) and RemoteCLIP (Liu et al., 2024) in Table 3. We compare our fully supervised KD
Models with other fully supervised baselines ScaleMAE (Reed et al., 2023), SatMAE (Cong et al.,
2022), and Cross-Scale MAE (Tang et al., 2023) as well as a Resnet-50 fine-tuned on imagery of
multiple resolutions (Multi-Res) in Table 4.

While the performance of our KD models reaches closer to that of HR models there still is a gap
(e.g., more than 5 percentage points in mAP). This suggests that knowledge distillation from HR
data alone is not enough to build better recognition systems. Therefore, a framework like ours that
works on multiple resolutions is needed, since not all concepts are favored by HR imagery.

4.2.3 MODEL DISAGREEMENT FOR MODALITY SELECTION

Following the methodology in sec. 3.5, we describe how the disagreement between HR and LR
models can act as a good indicator for which locations would benefit from HR imagery. We found
that correlation coefficient between the disagreement scores of the HR (NAIP) vs KD with the LR
model is 0.9322, which signifies a strong positive correlation. Similarly, the correlation coefficient
between the disagreement scores of the HR (NICFI) vs KD with the LR model is 0.998, which also
signifies a strong positive correlation.
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Figure 3: Images ranked according to disagreement between the LR and HR model (top) and the LR
and KD model (bottom). Both rankings are similar, with a correlation coefficient of 0.9322, even
though the latter only uses LR images.

Figure 4: Performance when using our model disagreement-based sampling strategy. Our approach
consistently yields higher precision across all budgets and across all values of K.

Figure 3 visualizes images ranked by degree of disagreement between the LR and HR model (top)
and between the LR and KD model (bottom). We see that both approaches yield similar rankings
demonstrating that the KD model can act a stand in for the HR model, so that we may calculate the
disagreement without requiring HR imagery.

We use this model disagreement along with the KD and HR model to show how well we perform
retrieval under an HR-data budget. Figures 4 illustrate the improvement in retrieval with our HR
data sampling technique. The figure on the left shows precision@K at a fixed HR data budget (1000
locations) and the figure on the right shows precision@1000 when varying the data budget for the
GRAFT model on unseen categories. Our HR data sampling strategy is significantly better than
randomly sampling locations or model uncertainty-based methods. This also shows that sampling
HR images leads to improvement over just using LR-data with KD models.

We compare the performance of our sampling technique against the sampling technique presented
in (Meng et al., 2022), in which night lights are used as an indicator to sample more densely. The
results of this sampling technique are included in Table 2.

4.2.4 CONCEPT SCALE INFERENCE

We compare our LLM-based approach for inferring the best modality per concept with other base-
line approaches. For each approach, we evaluate its accuracy in terms of determining the correct
modality. These baselines include either always choosing the HR modality and always choosing LR
modality, or selecting between the two based on the average area of each concept, as provided via
OpenStreetMaps (OSM). Our LLM approach (tested using several off-the-shelf models) achieves
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Seen Classes* Unseen Classes
Model mAP100 mAP20 mAP100 mAP20

Sentinel-2/NAIP

GRAFT HR 0.501 0.513 0.541 0.574
GRAFT LR 0.482 0.507 0.379 0.471
RemoteCLIP 0.461 0.493 0.413 0.440
CLIP-RSICD 0.393 0.441 0.311 0.303
OpenCLIP 0.481 0.505 0.392 0.447
GRAFT KD 0.534 0.559 0.490 0.503

Sentinel-2/NICFI

GRAFT HR 0.338 0.412 0.424 0.473
GRAFT LR 0.202 0.204 0.311 0.339
GRAFT KD 0.300 0.369 0.414 0.425

Table 3: Performance of the unsupervised models
for recognition at low resolution. Our knowledge-
distilled models perform better on both seen and
unseen concepts (corresponding HR models in
grey; references included in Tab. 1).

Model mAP100 mAP20

Sentinel-2/NAIP

Supervised HR 0.695 0.735
Supervised (Multi-Res) 0.421 0.447
Scale-MAE 0.472 0.493
SatMAE 0.351 0.388
Cross-Scale MAE 0.412 0.422
Supervised LR 0.451 0.473
Supervised KD 0.570 0.606

Sentinel-2/NICFI

Supervised HR 0.699 0.850
Supervised LR 0.659 0.801
Supervised KD 0.681 0.837

Table 4: Performance of the supervised mod-
els for concept recognition at low resolu-
tion. Our knowledge-distilled models per-
form better over all classes of concepts (cor-
responding HR models in grey; references
included in Tab. 2).

100% accuracy when determining the correct modality our set of concepts. We test on both seen
and unseen, demonstrating the ability of easily being extended to far more concepts.

Both the OSM average area approach and choosing only HR imagery were correct 90% of the time
whereas selecting solely LR imagery was correct only 10% of the time. This result is interesting as
the LLM outperformed using the average area of the concepts (OSM), suggesting that it is not just
the size of the concept that is an important consideration, but also a semantic understanding of the
concept and its features. We include a tabulated version of these results in the appendix A.3.

Additional Experiments. We include the following additional experiments in the Appendices to
further exhibit the effectiveness of our approach. We demonstrate the impact of different budgets,
ranging from 100 locations to 1000 in A.4. Additionally, we compare our KD model with the HR
model on Super-Resolution images to calculate model disagreement scores in A.5.

Limitations. While our technique works well to cover all concepts regardless of scale, it performs
in a setting in which satellite imagery is split into two groups, low and high resolution. However, in
reality, resolution is not discrete; recognizing exactly which resolution is best suited to a concept is
something we have not yet determined.

We also utilize OSM data to train and evaluate our models. We acknowledge that this data contains
noise, due to its crowd-sourced nature. Unfortunately, there are not many sources for fine-grained
labeling of satellite imagery. Therefore, we follow past work in using OSM for training and evalu-
ation (Mall et al., 2024; Bastani et al., 2023). Moreover other standard sources of labeled satellite
imagery such as Microsoft’s building footprint dataset work with similar noise levels (Bing Maps,
2018). Additionally, to show robustness to this noise, we performed an experiment using the GRAFT
LR model, wherein we constructed bootstrap samples by sub-sampling within our original test set
1000 times. The results show that the 90% confidence interval is within 2.43% of the reported mAP.

Our technique also does not allow for the segmentation of concepts, i.e., segmenting specific regions
within lower-resolution images that are worth looking into at a higher resolution. We leave the
exploration of this direction to future work.

5 CONCLUSION

Conclusions. We introduce a new approach to scale-aware recognition in satellite imagery under
resource constraints. Our approach allows one to accurately detect various concepts using a fixed
budget of HR imagery, outperforming entirely HR baselines by more than 26% mAP in zero-shot
techniques, and more than 8% mAP in supervised techniques using 5× fewer HR images.

Broader Impacts. Our system offers a cost-efficient way to perform recognition in satellite imagery
by maximizing the use of HR satellite imagery while simultaneously cutting the costs. This can have
a significant positive impact on a wide range of scientists, anthropologists, archaeologists, NGOs,
and human rights organizations, who operate on limited budgets, but who greatly benefit by the use
of satellite imagery in their work.
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