
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RETHINKING LAYER RELEVANCE IN LARGE LAN-
GUAGE MODELS BEYOND COSINE SIMILARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have revolutionized natural language processing.
Understanding their internal mechanisms is crucial for developing more inter-
pretable and optimized architectures. Mechanistic interpretability has led to the
development of various methods for assessing layer relevance, with cosine sim-
ilarity being a widely used tool in the field. On this work, we demonstrate that
cosine similarity is a poor proxy for the actual performance degradation caused
by layer removal. Our theoretical analysis shows that a layer can exhibit an arbi-
trarily low cosine similarity score while still being crucial to the model’s perfor-
mance. On the other hand, empirical evidence from a range of LLMs confirms
that the correlation between cosine similarity and actual performance degradation
is often weak or moderate, leading to misleading interpretations of a transformer’s
internal mechanisms. We propose a more robust metric for assessing layer rele-
vance: the actual drop in model accuracy resulting from the removal of a layer.
Even though it is a computationally costly metric, this approach offers a more ac-
curate picture of layer importance, allowing for more informed pruning strategies
and lightweight models. Our findings have significant implications for the de-
velopment of interpretable LLMs and highlight the need to move beyond cosine
similarity in assessing layer relevance.

1 INTRODUCTION

Transformers (Vaswani et al., 2017), initially designed for tasks related to large language models
(LLMs) (Chkirbene et al., 2024), have become the main architecture for modern AI. They now sup-
port applications in computer vision (Caron et al., 2021), reinforcement learning (Li et al., 2023a),
multimodal learning (Xu et al., 2023), recommender systems (Villa et al., 2020), and beyond. Since
these models play a central role in AI, uncovering which parts matter the most can guide us toward
more interpretable and optimized architectures.

Mechanistic interpretability aims to reverse-engineer pre-trained LLMs to better understand how
they work (Ferrando et al., 2024). In this context, cosine similarity has become a standard tool for
assessing semantic relationships between internal representations (Sanh et al., 2019; Li et al., 2023b;
Sun et al., 2024; Modell et al., 2025). Intuitively, when the angle between two token embeddings is
small, the tokens are assumed to encode similar information.

Recent studies have used cosine similarity to assess layer relevance in pre-trained LLMs (Sajjad
et al., 2023; Gromov et al., 2024; He et al., 2024; Men et al., 2024; Zhang et al., 2024b; Sun et al.,
2024; Yang et al., 2024b). The core idea is that layers making minimal changes to their input
vectors are considered less relevant, with relevance quantified as one minus the cosine similarity
between a layer’s input and output vectors. This score has been applied in various contexts: for
example, Gromov et al. (2024) used it to prune models and analyze performance across tasks, finding
that reasoning tasks require more layers than factual ones. Similarly, He et al. (2024) visualized
relevance scores across datasets (Figure 1B), showing that some layers consistently appear irrelevant
regardless of the task.

While these results offer valuable insights, they hinge on the assumption that cosine similarity is a re-
liable indicator of layer relevance—an assumption we challenge. In this paper, we demonstrate that
cosine similarity is a poor proxy for the actual performance degradation caused by layer removal.
For example, layer 16 in OLMo appears to be of low relevance according to cosine similarity, as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Relevance of OLMo (Groeneveld et al., 2024)’s layers across ten datasets. A. Accuracy-
based relevance scores: We measure the drop in task accuracy to evaluate the relevance of each
layer. Layers that increase accuracy when removed are highlighted in green, layers that do not affect
accuracy appear in white, and layers that reduce the model’s accuracy when removed are indicated
in red/purple. B. Relevance scores computed using the cosine similarity score, which measures how
much each layer transforms its input. The least relevant layers appear in yellow.

illustrated in Figure 1B (where irrelevant layers are shown in yellow). However, removing this layer
results in an average accuracy drop of 66% across the ten datasets presented. In fact, eliminating
layer 16 alone reduces OLMo’s performance to chance level on ARC-C. These findings suggest
that relying on cosine similarity as a relevance metric can lead to misleading interpretations of a
transformer’s internal mechanisms.

In this paper, we provide a formal proof demonstrating that a layer can exhibit an arbitrarily low
cosine similarity score while still being crucial to the model’s performance. In particular, removing
such a layer can drastically alter the model’s output—potentially reducing its accuracy from perfect
to zero. This phenomenon arises when the layer introduces a subtle modification to its input vector
that is subsequently amplified by downstream layers, resulting in a snowball effect. Consequently,
despite its near-zero cosine similarity score, the removal of this layer can significantly disrupt the
model’s final predictions.

We then show that this theoretical worst-case scenario does occur, to some degree, in practice. Em-
pirically, we find that the correlation between cosine similarity and actual performance degradation
is often weak or moderate, depending on the model. As a result, cosine similarity either overesti-
mates or underestimates a layer’s true relevance in over 90% of cases we studied.

Having established that cosine similarity is an unreliable metric for assessing layer relevance, we
next investigate the implications of re-running previously proposed experiments using a more robust
alternative. Specifically, we argue that for the purposes of mechanistic interpretability, the most
appropriate metric is the actual drop in model accuracy resulting from the removal of a layer. While
this approach is computationally expensive—requiring layer-by-layer removal and performance re-
evaluation—it avoids the shortcomings inherent to cosine similarity. Crucially, this metric captures
the complex interdependencies among layers in Transformer architectures.

We begin by replicating the layer relevance visualization introduced by He et al. (2024). Figure 1A
displays the relevance of each layer in OLMo across ten datasets, measured by the change in model
accuracy after removing each layer individually. Red/purple indicates a drop in accuracy, green an
improvement, and white no change. This visualization offers a markedly different perspective from
cosine similarity, revealing that layer relevance varies by dataset and highlighting the critical role of
layers 8 and 16 in OLMo’s performance.

We then replicated the task analysis proposed by Gromov et al. (2024), which involved pruning
layers deemed irrelevant based on cosine similarity and observing the resulting performance drop.
Instead, we ranked layers by the actual decrease in accuracy on the task’s training set and pruned
accordingly. Results are shown in Figure 2. Because our metric better reflects layer relevance, the
performance drop in HellaSwag is less pronounced than in the original study. This challenges the
conclusion that all layers are essential for reasoning tasks: using a more informative metric, we find
that over 75% accuracy can be maintained even after removing 22% of the layers.

We conclude with a practical application in structured pruning (Anwar et al., 2017), which aims
to remove layers from trained models with minimal impact on performance. In the task-dependent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning Ratio

30

40

50

60
Pe

rfo
rm

an
ce

MMLU (World Knowledge)
Acc-based
Cos-Sim-based

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning Ratio

0

10

20

30

40

50

Pe
rfo

rm
an

ce

GSM8K (Math Reasoning)
Acc-based
Cos-Sim-based

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning Ratio

30

40

50

60

70

80

Pe
rfo

rm
an

ce

HellaSwag (Common Sense Reasoning)
Acc-based
Cos-Sim-based

Figure 2: We evaluate LLaMA-3-8B using the cosine-similarity pruning strategy proposed by Gro-
mov et al. (2024), and compare it with our method. In contrast to cosine similarity, our approach
mitigates immediate performance degradation in reasoning tasks, highlighting the critical role of
selecting an appropriate metric for interpreting model internals.

setting, we show that pruning layers based on our accuracy-based relevance score yields superior
results compared to existing methods, including Taylor approximations (Kim et al., 2024; Ma et al.,
2023), cosine similarity (He et al., 2024; Men et al., 2024; Gromov et al., 2024), and FinerCut (Zhang
et al., 2024b). In the task-independent setting, our method also achieves the best performance,
though it is sensitive to the choice of calibration dataset.

2 RELATED WORK

A central challenge in Transformer research is accurately measuring layer relevance. This question
is critical for two main applications: mechanistic interpretability, which seeks to understand how
pre-trained LLMs operate, and structured pruning, which aims to reduce model size by removing
irrelevant layers while preserving performance. Cosine similarity has become a popular metric for
both tasks due to its computational efficiency and intuitive appeal (e.g., Sajjad et al., 2023; Gromov
et al., 2024; He et al., 2024; Men et al., 2024; Yang et al., 2024b; Zhang et al., 2024b). It assumes
that layers making minimal changes to their input vectors are less relevant. Moreover, cosine-based
pruning has achieved strong results in task-independent settings.

However, cosine similarity is only a proxy for what truly matters: downstream performance. While
prior work has raised concerns about its use in comparing token embeddings (Timkey & Van Schi-
jndel, 2021), to our knowledge, this is the first study to rigorously evaluate—both theoretically and
empirically—its limitations in estimating layer relevance in Transformer models. We then propose
an alternative: an accuracy-based relevance score, which considers a layer relevant only if its re-
moval significantly degrades performance on a given task.

Beyond cosine similarity, which is typically used as a local metric (e.g., Sajjad et al., 2023; Gromov
et al., 2024; He et al., 2024; Men et al., 2024), several global metrics have been proposed. These
assess relevance by evaluating changes in the model’s output after removing a layer. Global met-
rics fall into two categories: consistency-based and performance-based. Consistency-based metrics
compare the model’s output distributions with and without a target layer (Sieberling et al., 2024;
Yang et al., 2024a; Zhang et al., 2024b), identifying layers whose removal leaves the output un-
changed. However, these metrics focus on output invariance rather than predictive accuracy, and
may overlook layers that subtly affect performance.

Performance-based metrics are more aligned with our approach (Kim et al., 2024; Ma et al., 2023;
Zhong et al., 2024; Song et al., 2024). These metrics rely on ground-truth information to assess the
relevance of a layer. For example, Ma et al. (2023) use Taylor expansions to estimate the change
in loss when a layer is removed. Other works rely on perplexity-based scores, deeming layers
irrelevant if their removal does not significantly increase perplexity (Kim et al., 2024; Zhong et al.,
2024; Song et al., 2024). Like our accuracy-based score, these methods aim to identify layers whose
exclusion yields minimal performance degradation. Nevertheless, as we show in Section 6, our
metric consistently outperforms these alternatives in structured pruning tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Finally, our work connects with a broader literature on understanding how Transformers represent
and process information (Brinkmann et al., 2024; Clark et al., 2019b; Devlin et al., 2019; Geva et al.,
2020; 2022; 2023; Gurnee & Tegmark, 2023; Jawahar et al., 2019; Lioubashevski et al., 2024; Meng
et al., 2022; Sun et al., 2024; Tigges et al., 2023). In particular, our relevance metric could be used
to revisit studies that identify functional behaviors in specific attention layers (Clark et al., 2019b;
Geva et al., 2023) or MLPs (Geva et al., 2020; Meng et al., 2022), offering new insights into their
contributions. It may also help bridge findings on global Transformer behavior (Gurnee & Tegmark,
2023; Brinkmann et al., 2024; Tigges et al., 2023) with specific layers or processing stages. We
expand on these connections and review additional pruning methods in Appendix A.

3 COSINE-SIMILARITY SCORE

Let us begin by formally defining the cosine-similarity score. The cosine-similarity score is a local
metric that examines the difference between the input and output vectors of a layer to assess its
relevance (Sajjad et al., 2023; Gromov et al., 2024; He et al., 2024; Men et al., 2024). Intuitively, if
the output of a layer is identical to its input, removing that layer would have no effect on the model’s
performance. Formally, given two vectors x and y, the cosine similarity is defined as follows:

CosineSim(x,y) =
x · y

||x|| · ||y||
(1)

To define a score where the least relevant layers receive a value of zero, we compute the cosine-
similarity score as one minus the cosine similarity between the input and output vectors of a layer.
Given a calibration dataset D = {s(i)}Ni=1, the relevance of a layer is then calculated as the average
cosine-similarity score across all tokens and instances:

CosSimScore(l;D) =
1

N

N∑
i=1

1

n(i)

n(i)∑
j=1

(
1− CosineSim

(
X

(l,i)
j,: ,X

(l+1,i)
j,:

))
, (2)

where each sequence s(i) has n(i) tokens, X(l,i) ∈ Rn(i)×d is the intermediate layer representation
of s(i) at layer l, and X

(l,i)
j,: ∈ Rd denotes the representation of the j-th token at layer l.

4 RETHINKING LAYER RELEVANCE: BEYOND COSINE SIMILARITY

This section highlights the limitations of cosine similarity as a layer relevance metric. We show,
both theoretically and empirically, that layers assessed as irrelevant by cosine similarity can still
cause significant drops in downstream performance when removed. To address this, we propose an
accuracy-based metric that directly evaluates relevance based on what truly matters: the model’s
predictive performance.

4.1 LIMITATIONS OF COSINE SIMILARITY FOR LAYER RELEVANCE

We begin by formally demonstrating that a layer can have an arbitrarily low cosine similarity score
while still having a significant impact on model performance. Specifically, the following theorem
shows that for any dataset D and any ϵ > 0, it is possible to construct a decoder-only Transformer
that achieves perfect accuracy on D, yet the removal of the layer with the lowest cosine similarity
reduces the model’s performance to zero. Moreover, the cosine similarity score of that layer is ϵ.

Theorem 1 Let fL denote a Transformer model with L layers, and fL
−l represent the same model

with layer l removed. Then, for any ϵ > 0 and any calibration dataset D = {(s(i), y(i))}Ni=1 such
that s(i) ̸= s(j) for all i ̸= j and y(i) ∈ {0, . . . , C − 1}, there exists a decoder-only Transformer fL

with L ≥ 3 satisfying the following conditions:

1. There exists an intermediate layer l ∈ {1, . . . , L − 2} such that CosSimScore(l;D) = ϵ,
and CosSimScore(i;D) > ϵ for all i ̸= l.

2. The full model achieves perfect accuracy: fL(s(i)) = y(i) for all s(i) ∈ D, but removing
layer l causes the model’s accuracy to drop to zero: fL

−l(s
(i)) ̸= y(i) for all s(i) ∈ D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: A. Relationship between cosine similarity scores and performance variation after removing
a layer. Each point represents a specific layer–task pair from one of the 28 middle layers in Pythia,
Mistral, or OLMo, evaluated across ten tasks (same set as in Figure 1). B. Alignment between
cosine similarity rankings and performance rankings across three models, ten tasks, and 28 layers.
Cell (i, j) indicates the number of times cosine similarity assigned rank j while the ground-truth
rank was i (rank 1 = least relevant). The heatmap uses three distinct color scales: green for the
diagonal (perfect alignment), blue for low-cost misrankings, and red for all other cells.

To construct a Transformer in which a layer has an arbitrarily low cosine similarity yet significantly
impacts model performance, two key conditions must be met. First, a snowball effect must occur:
the target layer introduces a subtle change to its input vector, which is then amplified by subsequent
layers. This allows the layer to have minimal cosine similarity while still influencing the final output.
Second, certain dimensions of the embedding space must be irrelevant to the model’s prediction.
This enables other layers to make large changes in those irrelevant dimensions, artificially inflating
their cosine similarity scores without contributing meaningfully to performance. A complete proof
is provided in Appendix B.

We believe both phenomena can naturally arise in pre-trained LLMs, particularly in task-dependent
settings. For a given task, many transformations applied by the model may be irrelevant to solving
it. Empirically, we observe a snowball effect in models like OLMo, where layer 16 exhibits a very
low cosine similarity score yet has a substantial impact on performance (see Figure 1).

We now present a more in-depth empirical evaluation of the cosine similarity score as a proxy for
layer relevance. Specifically, we aim to assess how well cosine similarity predicts the actual drop in
downstream performance when a layer is removed. Figure 3A compares the cosine similarity score
with the observed reduction in accuracy after removing individual layers from three pre-trained
LLMs—Mistral, Pythia, and OLMo—across ten datasets: C4, CodeAlpaca, LIMA, MathInstruct,
BoolQ, ARC-Challenge, ARC-Easy, HellaSwag, PIQA, and Winogrande. We exclude the first and
last two layers, as they are trivially identifiable as relevant and behave as clear outliers.

As shown in Figure 3A, there is some correlation between cosine similarity and performance degra-
dation. However, the strength of this correlation varies by model: moderate in Pythia (R = -0.46),
weak in Mistral (R = -0.23), and very weak in OLMo (R = -0.15).

To further evaluate the reliability of cosine similarity, we compare its layer relevance ranking against
a ground-truth ranking based on actual performance drop. Figure 3B presents a confusion matrix
summarizing the results across the same three models and ten datasets.

In this matrix, cell (i, j) indicates the number of times cosine similarity ranked a layer as the j-th
least relevant, while its true rank was i according to performance drop. Diagonal entries represent
perfect agreement; entries below the diagonal indicate underestimation of relevance, and those above
indicate overestimation. Overall, cosine similarity misestimated a layer’s relevance in 93.8% of
cases. That said, not all errors are equally severe: entries near the diagonal reflect small ranking
deviations. But even when considering only the more substantial errors (highlighted in red), cosine
similarity still fails in 53.6% of cases.

Overall, these results demonstrate that cosine similarity is an unreliable and noisy metric for estimat-
ing layer relevance. In many cases, layers deemed irrelevant by cosine similarity lead to substantial
drops in performance when removed—and vice versa. This inconsistency highlights the need for
caution when using cosine similarity, particularly in the context of mechanistic interpretability. Re-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 4: Relevance of Mistral’s Transformer blocks across datasets. A. Accuracy-based relevance
scores. B. Cosine similarity score.

lying on such a flawed metric risks drawing incorrect conclusions about how Transformer models
function. We illustrate this issue with two concrete examples in Section 5.

4.2 ACCURACY-BASED RELEVANCE SCORE

Rather than relying on a proxy, we propose directly visualizing the performance drop to assess how
each layer contributes to the model’s effectiveness. We do so by using an accuracy-based score.
Given a dataset D and a Transformer model with L layers fL, we assess the relevance of layer l as:

AccBasedRelevance(fL, l,D) = 1−
max(Accuracy(fL

−l,D)− r(D), 0)
max(Accuracy(fL,D)− r(D), 0)

, (3)

where Accuracy(fL,D) denotes the accuracy of the full model on dataset D, and r(D) represents
the expected performance of a random baseline in the dataset.

This score ranges from -∞ and +1: negative values indicate improved performance upon removal of
the layer, zero indicates no change, and positive values reflect a drop in performance. Thus, higher
scores correspond to greater relevance of the layer for the task.

It is important to note that this range is valid only when the full model performs better than a random
baseline. If the model’s accuracy falls below that of a random predictor, the relevance score becomes
ill-defined, and the analysis should not be applied in such cases.

The accuracy-based score can be applied to any component of a transformer-based model, including
a single weight, a multi-head attention layer, an MLP, a Transformer block, or multiple blocks. That
said, in the next section, we will focus on visualizing the importance of Transformer blocks.

5 CASE STUDIES

To assess the practical impact of our findings, we revisit two case studies that used cosine similarity
to evaluate layer relevance in pre-trained LLMs. Replacing cosine similarity with our accuracy-
based metric, we observed significantly different outcomes. These results highlight the limitations of
proxy metrics and reinforce the value of accuracy-based evaluation for mechanistic interpretability.

5.1 RELEVANCE CONSISTENCY ACROSS DATASETS

We begin by revisiting the study What Matters in Transformers by He et al. (2024), which proposes
a method to visualize layer relevance using cosine similarity. Figure 4B shows the relevance of
each layer in Mistral (Jiang et al., 2023) across multiple datasets, with yellow indicating low cosine
similarity score and purple indicating high. Based on these visualizations, the authors conclude that
layer relevance is largely task-independent—a pattern we also observed in OLMo (Figure 1B).

When applying our accuracy-based metric, we obtain a markedly different view of layer relevance,
as shown in Figure 1A for OLMo and Figure 4A for Mistral. These visualizations use a fixed
color scale: green for performance gains, white for no change, and red/purple for performance
drops. Unlike cosine similarity, our metric reveals that layer relevance is highly task-dependent.
For example, removing block 14 in OLMo reduces accuracy by ∼41% on MathInstruct but has

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

minimal impact (∼1%) on CodeAlpaca. Some layers even show negative relevance, improving
performance when removed—e.g., block 23 in Mistral increases accuracy by ∼25% on MathInstruct
but decreases it by ∼6% on CodeAlpaca. Finally, our metric also captures broader task sensitivity.
For instance, Mistral shows consistently lower relevance across blocks on MMLU compared to
BoolQ—a distinction not visible in cosine similarity plots.

Mistral
Acc

Mistral
Cos-Sim

OLMo
Acc

OLMo
Cos-Sim

Pythia
Acc

Pythia
Cos-Sim

0.0

0.1

0.2

0.3

No
rm

al
ize

d
Sc

or
e

Figure 5: Relevances Across Datasets

To ensure these differences are not artifacts of visualiza-
tion, we conducted a statistical comparison between the
two metrics. Using z-score normalization, we computed
the average variance of each of OLMo’s 32 blocks across
ten datasets. As shown in Figure 5, our accuracy-based
score exhibits significantly greater variance than cosine
similarity. A Wilcoxon test (Appendix C.3) confirms
these differences are statistically significant, reinforcing
the visual evidence that layer relevance is task-dependent.

Beyond cross-task consistency, we also explored how rel-
evance evolves during training (Appendix C.4) and prun-

ing (Appendix C.5). In pruning, we found that a layer’s relevance depends on the presence of other
layers—removing one can increase or decrease the importance of another. In training, no clear
pattern emerged: some layers gained relevance over time, while others fluctuated.

5.2 DIFFERENCES BETWEEN TYPES OF TASKS

We now revisit The Unreasonable Ineffectiveness of the Deeper Layers by Gromov et al. (2024),
which argues that deeper layers in pre-trained LLMs are essential for reasoning tasks (e.g., GSM8K,
HellaSwag) but less relevant for factual retrieval tasks such as MMLU. Their hypothesis is based on
the idea that, when faced with a reasoning task, the model must compute intermediate steps to arrive
at the final answer—implying that all layers contribute meaningfully to such tasks. Their analysis
on LLaMA 2-70B showed that MMLU retained accuracy under early pruning, while GSM8K and
HellaSwag degraded instantly and continued to decline, supporting the hypothesis that deeper layers
play a critical role in reasoning.

Their pruning strategy, however, was based on cosine similarity rather than direct depth-based abla-
tion. To assess the robustness of their findings, we replicated the experiment on LLaMA 3-8B using
our accuracy-based relevance metric. As shown in Figure 2, we observed similar task-dependent
trends according to the cosine similarity score: MMLU remained stable under initial pruning, while
GSM8K and HellaSwag showed performance drops, particularly in GSM8K.

In contrast, when pruning is guided by our accuracy-based metric, a different pattern emerges:
the model maintains strong performance on HellaSwag even after several blocks are removed, and
GSM8K shows minimal degradation after pruning two blocks. This suggests that cosine similarity
may underestimate the importance of certain blocks for reasoning tasks—pruning them prematurely
and thereby reducing model performance. Moreover, cosine similarity appears unable to identify
blocks that are not relevant for reasoning, whereas our method successfully distinguishes between
essential and non-essential layers.

Finally, we note that, unlike Gromov et al. (2024), who pruned contiguous block groups based on
aggregate cosine similarity, our method prunes blocks iteratively, re-evaluating the model after each
step. In Appendix D, we compare both strategies—cosine similarity as used in their work and our
iterative method. While some trends are less pronounced, the core conclusion remains: different
metrics yield different insights into model behavior.

6 EMPIRICAL RESULTS IN STRUCTURED PRUNING

The primary goal of our accuracy-based relevance score was to support mechanistic interpretability
by providing a reliable measure of layer importance. However, this metric also proves effective
for structured pruning—i.e., reducing model size by removing layers with minimal impact on per-
formance (Anwar et al., 2017). Surprisingly, pruning layers deemed irrelevant by our score yields
state-of-the-art results, while remaining simple to implement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Task-dependent results for LLaMA3-8B models across multiple tasks. All methods remove
25% of the model using each task’s training set. “Original” refers to the unpruned model.

Method Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Original 53.16 81.02 82.02 78.94 44.8 81.28 73.56 65.11 69.99

Taylor 31.48 67.97 61.31 62.73 38.4 76.55 55.64 25.03 52.39
Cosine Similarity 45.73 67.8 66.33 69.52 38.6 72.91 71.35 44.05 59.54
Out. Cosine-Sim 39.51 65.57 72.11 67.97 36.8 76.88 65.11 36.82 57.6
Out. Norm-Sim 40.19 66.08 72.08 64.96 39.6 75.46 68.27 49.03 59.46
Out. Divergence-Sim 41.13 65.87 72.14 67.20 34.0 74.43 69.46 35.12 57.42
Perplexity 38.14 53.11 62.14 58.92 38.4 67.19 62.12 59.04 54.88
Slice-GPT 41.64 73.27 75.75 67.35 39.6 77.15 70.56 48.74 61.76

Accuracy (Ours) 49.57 74.96 84.04 71.53 44 79.06 73.8 62.97 67.49

Structured pruning methods typically rely on a calibration set to estimate layer relevance and prune
up to p% of the model’s weights. These methods differ in whether they apply one-shot or iterative
pruning, and in the criteria used to rank layers. To evaluate pruning effectiveness, we compare
generalization performance across standard benchmarks.

We applied our accuracy-based score iteratively to prune LLaMA3-8B (Grattafiori et al., 2024),
selected for its use in prior state-of-the-art pruning work (Zhang et al., 2024b). We also replicated the
experiment on Mistral-7B (Jiang et al., 2023) and evaluated one-shot pruning (see Appendix E.3).

Our method was benchmarked against leading pruning techniques, including: Taylor approxima-
tions (Kim et al., 2024; Ma et al., 2023), cosine similarity (He et al., 2024; Men et al., 2024; Gro-
mov et al., 2024), output-based metrics (e.g., output cosine similarity, norm similarity, divergence
similarity) (Zhang et al., 2024b; Yang et al., 2024a; Sieberling et al., 2024), and perplexity-based
relevance (Kim et al., 2024; Zhong et al., 2024; Song et al., 2024).

To ensure fair comparison, all methods pruned the same layer types using identical calibration data,
removing up to 25% of the model. Metrics were recomputed after each pruning step. We also
included SlideGPT (Ashkboos et al., 2024), which reduces layer size rather than removing entire
layers; we matched its pruning ratio to 25%. No healing or postprocessing was applied, as our focus
was on evaluating the effectiveness of the relevance metric itself.

We assessed performance across eight widely used benchmarks: ARC-Challenge (Clark et al.,
2018), ARC-Easy (Clark et al., 2018), BoolQ (Clark et al., 2019a), HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al., 2018), Winogrande (Sakaguchi et al.,
2021), and MMLU (Hendrycks et al., 2020). These span a range of reasoning and knowledge tasks,
each with a train/test split. Implementation details are provided in Appendix E.1.

We first report task-dependent results, where the goal is to optimize performance for a specific task.
Each model was pruned using the corresponding training set as calibration data and evaluated on
the test set. Table 1 presents results for LLaMA3-8B. Our accuracy-based score consistently outper-
formed all baselines and, in some cases, even surpassed the unpruned model. Similar trends were
observed with Mistral-7B (see Appendix E.2). These findings indicate that our score can effectively
prune pre-trained LLMs when the deployment task is known. For example, if a lightweight model is
needed for math problem solving, our score identifies and removes layers unrelated to that domain.
While this may reduce performance on unrelated tasks (e.g., poetry generation), such trade-offs are
acceptable when the goal is task-specific efficiency.

We now turn to the task-independent setting, where the objective is to prune a pre-trained LLM
while preserving performance across a diverse set of tasks. In this context, we observed that the
effectiveness of our accuracy-based score is highly sensitive to the choice of calibration set.

Table 2 reports results for LLaMA3-8B using a calibration set composed of 10% of the training data
from each of the eight benchmarks. Under this configuration, our method outperforms all baselines,
yielding a pruned model that achieves the highest average performance across tasks. However, when
the calibration set is restricted to a single benchmark, performance varies significantly. As shown
in Appendix E.5, the average accuracy of the pruned model ranges from 63.18% (using ARC-E) to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Task-independent structured results for LLaMA3-8B across multiple tasks. Each pruning
method uses the same calibration dataset to prune the model once, which is then evaluated on all
tasks. The calibration dataset consists of 10% of the training split from each task.

Method Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Original 53.16 81.02 82.02 78.94 44.8 81.28 73.56 65.11 69.99

Taylor 45.39 67.97 61.31 62.73 41.4 76.55 68.11 25.03 56.06
Cosine Similarity 43.6 66.96 75.53 69.35 36.2 73.23 71.82 44.07 60.1
Out. Cosine-Sim 40.61 65.78 67.58 64.6 36.2 75.3 69.51 30.16 56.22
Out. Norm-Sim 37.88 65.32 57.77 61.73 39.6 74.86 65.43 26.5 53.64
Out. Divergence-Sim 39.51 64.39 64.8 64.37 34.2 73.83 68.59 33.5 55.4
Perplexity 31.83 48.95 59.27 48.01 30.5 66.76 61.88 29.31 47.06
Slice-GPT 41.16 70.28 77.49 61.19 36.8 73.66 62.66 45.03 58.53

Accuracy (Ours) 47.35 71.68 78.38 73.41 43.80 76.55 71.11 58.04 65.04

56.34% (using PIQA). In contrast, cosine similarity remains stable at approximately 60%, regardless
of the calibration set.

A particularly poor outcome for our method arises when using C4 as the calibration set, where the
average performance drops to 50.23% (Appendix E.4). These results highlight a key limitation of
our approach in task-independent pruning: while it can outperform existing methods with a well-
chosen calibration set, its performance is less robust to calibration variability.

6.1 COMPUTATIONAL COST COMPARISON

We conclude with a discussion about the computational cost across pruning methods. The primary
factor influencing cost is the number of forward and backward passes required to compute layer
relevance. Let N denote the number of layers and T the number of instances in the calibration set.

Our accuracy-based score requires N × T forward passes. Output-based methods—Output Cosine
Similarity, Norm Similarity, Divergence Similarity—and Perplexity require (N + 1) × T forward
passes. The most efficient methods are Taylor approximations, requiring T forward and T backward
passes, and Cosine Similarity, which only requires T forward passes.

Some methods recompute relevance scores after each pruning step (iterative), while others compute
them once (one-shot). We report results for both: Table 1 shows the iterative setting; Table 4 shows
the one-shot setting. In the iterative case, total cost increases with the number of layers removed.

Our method supports parallel computation of relevance scores, which can significantly reduce run-
time. Nonetheless, exploring strategies to further reduce the computational cost of our accuracy-
based score—without sacrificing performance—remains an important direction for future work.

7 CONCLUSION

This work challenges the widespread use of cosine similarity as a proxy for layer relevance in large
language models. Through theoretical analysis and extensive empirical evaluation, we demonstrate
that cosine similarity often fails to capture the true impact of layer removal on model performance. In
response, we introduce an accuracy-based relevance metric that directly quantifies the performance
degradation caused by ablating individual layers.

Our metric not only provides a more faithful representation of layer importance for mechanistic
interpretability but also proves highly effective in structured pruning. Across both task-dependent
and task-independent settings, our approach consistently outperforms existing methods.

These findings underscore the need to rethink how layer relevance is assessed in transformer ar-
chitectures. By moving beyond proxy metrics and embracing performance-grounded evaluations,
we can gain deeper insights into model internals and develop more efficient, task-aware pruning
strategies. Future work will explore extending this metric to other model components, improving its
scalability, and enhancing its robustness in task-agnostic scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):1–18,
2017.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A mech-
anistic analysis of a transformer trained on a symbolic multi-step reasoning task. arXiv preprint
arXiv:2402.11917, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Zina Chkirbene, Ridha Hamila, Ala Gouissem, and Unal Devrim. Large language models (llm) in
industry: A survey of applications, challenges, and trends. In 2024 IEEE 21st International Con-
ference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET),
pp. 229–234. IEEE, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019a.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-Jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. arXiv preprint arXiv:2304.14767, 2023.

10

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
is needed. arXiv preprint arXiv:2406.15786, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics,
2019.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, and
et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11, 2024.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A survey on
transformers in reinforcement learning. Transactions on Machine Learning Research, 2023a.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689–19729.
PMLR, 2023b.

Daria Lioubashevski, Tomer Schlank, Gabriel Stanovsky, and Ariel Goldstein. Looking beyond the
top-1: Transformers determine top tokens in order. arXiv preprint arXiv:2410.20210, 2024.

Yao Lu, Hao Cheng, Yujie Fang, Zeyu Wang, Jiaheng Wei, Dongwei Xu, Qi Xuan, Xiaoniu Yang,
and Zhaowei Zhu. Reassessing layer pruning in llms: New insights and methods. arXiv preprint
arXiv:2411.15558, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alexander Modell, Patrick Rubin-Delanchy, and Nick Whiteley. The origins of representation man-
ifolds in large language models. arXiv preprint arXiv:2505.18235, 2025.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and
Pavlo Molchanov. A deeper look at depth pruning of llms. arXiv preprint arXiv:2407.16286,
2024.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal
dynamic model compression via evolutionary search. arXiv preprint arXiv:2410.14649, 2024.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. arXiv
preprint arXiv:2407.09298, 2024.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models. arXiv preprint arXiv:2310.15154, 2023.

William Timkey and Marten Van Schijndel. All bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. arXiv preprint arXiv:2109.04404, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andrés Villa, Vladimir Araujo, Francisca Cattan, and Denis Parra. Interpretable contextual team-
aware item recommendation: application in multiplayer online battle arena games. In Proceedings
of the 14th ACM Conference on Recommender Systems, pp. 503–508, 2020.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics:
Methodology and distribution, pp. 196–202. Springer, 1992.

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113–12132, 2023.

Guang Yang, Yu Zhou, Xiangyu Zhang, Wei Cheng, Ke Liu, Xiang Chen, Terry Yue Zhuo, and
Taolue Chen. Less is more: Towards green code large language models via unified structural
pruning. arXiv preprint arXiv:2412.15921, 2024a.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. Investigating layer importance in large language
models. arXiv preprint arXiv:2409.14381, 2024a.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024b.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A RELATED WORK (EXTENDED VERSION)

A.1 UNDERSTANDING TRANSFORMER INTERNALS

The question of how Transformer models represent and process information was first explored in
depth with BERT Devlin et al. (2019). Early studies revealed that BERT captures structural prop-
erties of language across its layers. Lower layers focus on phrase-level and surface features, while
intermediate layers encode a rich hierarchy of linguistic information—starting with syntactic struc-
tures and transitioning to semantic representations at higher layers Jawahar et al. (2019). Addi-
tionally, some attention heads within BERT specialize in specific linguistic tasks, such as syntactic
parsing and coreference resolution, aligning with traditional linguistic notions Clark et al. (2019b).
These findings provided initial insights into how Transformer-based models organize knowledge,
setting the stage for broader investigations into their internal mechanisms.

Recent studies have further refined our understanding of how Transformers encode and manipulate
information. Feed-forward (FF) layers function as key-value memory systems, storing patterns from
training and influencing the model’s output distribution Geva et al. (2020). This structured memory
is particularly important for factual recall, as knowledge is primarily stored in the FF layers of middle
blocks Meng et al. (2022). Meanwhile, attention layers propagate and retrieve stored information,
dynamically integrating relevant associations for prediction Geva et al. (2023).

Beyond factual recall, Transformers encode abstract and structured representations. They capture
spatiotemporal relationships in text Gurnee & Tegmark (2023) and implement a depth-bounded
recurrent mechanism that stores intermediate results at selected token positions Brinkmann et al.
(2024). Additionally, high-level concepts such as sentiment are encoded in linear activation struc-
tures Tigges et al. (2023), highlighting the model’s ability to organize information hierarchically.

Another line of research suggests that certain Transformer layers contribute little to the model’s final
prediction. By analyzing how probability distributions evolve across blocks, researchers observed
that in many cases, a model’s prediction stabilizes early—once a token becomes the most probable,
it remains unchanged until the final layer. These stabilization points, known as saturation events,
suggest that the model’s later layers primarily refine rather than reshape its output Geva et al. (2022).
Further studies confirmed that even lower-ranked tokens follow the same pattern once the top-1 pre-
diction stabilizes Lioubashevski et al. (2024). Moreover, experimental evidence shows that middle
blocks can be removed or swapped with minimal impact on performance Sun et al. (2024).

These findings have led to the prevailing belief that some Transformer blocks are inherently unim-
portant. In this work, we revisited this assumption by showing that a block’s relevance can vary
significantly depending on the task—suggesting that global conclusions about importance may over-
look task-specific dynamics.

A.2 MEASURING BLOCK RELEVANCE

Most research on measuring block relevance has been conducted in the context of structured pruning
Men et al. (2024); Gromov et al. (2024); He et al. (2024); Kim et al. (2024); Ma et al. (2023); Zhang
et al. (2024b); Yang et al. (2024a); Sieberling et al. (2024). The goal is to remove the least relevant
blocks while preserving model performance, which has led to the development of several techniques
for estimating a block’s importance.

A foundational but now outdated approach is magnitude-based pruning, which removes blocks based
on their parameter magnitudes. While widely used for individual weight pruning Li et al. (2016),
this method proved too simplistic at the block level. Still, it served as a useful baseline in the early
development of structured pruning techniques.

More recent work has focused on proxy-based relevance scores that analyze how much a block
transforms its input. One popular class of methods uses cosine similarity between a block’s input
and output, assuming that low transformation implies low relevance Men et al. (2024); Gromov et al.
(2024); He et al. (2024). Other studies rely on Taylor expansion techniques to estimate the change
in loss when a weight or block is removed, providing a more gradient-informed view of importance
Kim et al. (2024); Ma et al. (2023).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Another set of methods evaluates relevance by comparing the pruned model’s output to the original
model’s, using metrics like cosine similarity, norm differences, and divergence-based measures.
Zhang et al. (2024b), for example, employ Jensen-Shannon divergence to guide pruning and achieve
state-of-the-art results. Follow-up work builds on this idea using KL divergence, a closely related
metric: Yang et al. (2024a) apply it as part of a multi-step strategy to create smaller models tailored
to code generation, while Sieberling et al. (2024) combine it with a novel selection algorithm that
prunes blocks jointly rather than iteratively.

Perplexity-based metrics are also used, especially in language modeling, where blocks are consid-
ered irrelevant if their removal does not significantly increase perplexity Kim et al. (2024); Zhong
et al. (2024); Song et al. (2024). Beyond pruning-specific methods, some studies draw on game-
theoretic tools, such as approximations of Shapley values, to assess a block’s contribution to the
model’s output in a more theoretically grounded way Zhang et al. (2024a); Siddiqui et al. (2024).

While most pruning research focuses on overall effectiveness, few works ask whether a block’s
relevance remains stable as the model is progressively pruned. He et al. (2024) and Lu et al. (2024),
for instance, compare one-shot pruning—where relevance scores are computed a single time and
used to select all blocks to prune—with iterative pruning, where relevance is recalculated and re-
ranked after each pruning step. Their findings suggest that one-shot pruning can match or even
outperform iterative pruning for structured sparsity. However, their analyses center on end-task
accuracy rather than how relevance itself shifts during the process. This leaves an important question
unanswered: Does pruning change block relevance? A question that we answered in Section C.5.

While most methods rely on a single calibration dataset to assess relevance, some recent studies have
started exploring the generalizability of relevance scores across datasets. He et al. (2024) found that
relevance maps computed via cosine similarity appear largely consistent across datasets, leading
them to conclude that certain layers may be universally important or unimportant. This perceived
dataset-agnostic behavior motivated their decision to use a single calibration dataset throughout
their experiments. Their findings also connect to saturation-based analyses Geva et al. (2022); Li-
oubashevski et al. (2024), which similarly suggest that once a model’s prediction stabilizes, later
computations may be less critical.

We took He et al. (2024) as our primary baseline because they provide one of the few systematic
attempts to visualize and quantify block relevance across tasks. Their heatmaps offered a clear
point of comparison for our own cross-task analysis, which was built on their setup but replaces
similarity-based relevance with a task-grounded, accuracy-based metric.

B PROOF OF THEOREM 1

B.1 AUXILIARY RESULT

Before proving Theorem 1, let’s first prove the following theorem:

Theorem 2 For any ϵ > 0 and unlabeled calibration dataset D = {s(i)}Ni=1, there exists a decoder-
only Transformer fL with L ≥ 3 and a labeling function L : D → {0, 1} satisfying the following
conditions:

1. There exists an intermediate layer l ∈ {1, . . . , L − 2} such that CosSimScore(l;D) = ϵ,
and CosSimScore(i;D) > ϵ for all i ̸= l.

2. The full model achieves perfect accuracy: fL(s(i)) = L(s(i)) for all s(i) ∈ D, but removing
layer l causes the model’s accuracy to drop to zero: fL

−l(s
(i)) ̸= L(s(i)) for all s(i) ∈ D.

This result can be viewed as a simplified version of Theorem 1, where the labeling function is binary
and freely chosen, rather than being fixed by the dataset D.

Let E(s(i)) = X(0,i) denote the embedding of a sequence s(i), where X(l,i) ∈ Rn×d, with n the
number of tokens and d the hidden dimension. The transformation at block l is given by

X(l+1,i) = X(l,i) + f
(
X(l,i);θ(l)

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A decoder-only transformer with L blocks is then

fL(s(i)) = U

(
E(s(i)) +

L−1∑
l=0

f
(
X(l,i);θ(l)

))
,

where U(·) denotes the final transformation applied to the output of the last block (e.g., an unem-
bedding layer for next-token prediction or a classification head).

We also define the model obtained by removing block l, denoted fL
−l. In this case, the hidden state

X(l−1) is directly connected to block l + 1, bypassing block l. Formally,

fL
−l(s

(i)) = U

E(s(i)) +

L−1∑
k=0
k ̸=l

f
(
X(k,i);θ(k)

) ,

with the convention that

X(l+1,i) = X(l−1,i) + f
(
X(l−1,i);θ(l−1)

)
for the pruned model.

Let 1n denote the column vector of size n with all entries equal to one, and 0n the zero vector of the
same size.

Consider the embedding function

E(si) = [0n(i) δ · 1n(i) 0n(i)] , ∀s(i) ∈ D,

with hidden dimension d = 3 and δ > 0. Thus, every token in the vocabulary has the same
embedding.

Define the labeling function L(s(i)) = 0 for all s(i) ∈ D, i.e., all sentences belong to the same class.
The final transformation is a standard classification head

U(X) = argmax
j∈{0,1}

softmax
[
Xn(i)WU

]
j
,

where Xn(i) is the representation of the last token, and

WU =

[
1 0
0 1
0 0

]
.

We now construct three blocks as follows (with M ≫ 1):

X(1,i) = X(0,i) + [0n(i) 0n(i) M · 1n(i)] ,

X(2,i) = X(1,i) + [δ · 1n(i) 0n(i) 0n(i)] ,

X(3,i) = X(2,i) + [δM · 1n(i) 0n(i) −M · 1n(i)] .

Each Transformer block contains a feed-forward network of the form

FFN(X) = ReLU(XW1 + 1nb
⊤
1)W2 + 1nb

⊤
2 ,

where W1,W2 ∈ Rd×d and b1, b2 ∈ Rd. Note that the bias vectors are written as 1nb
⊤ so that

dimensions match for sequence length n.

To enforce that the multi-head attention does not modify the representation, we set its output to zero,
so that the residual connection yields the identity mapping.

For the FFN, we choose W1 = I , W2 = I , and b1 = 0, so the residual effect comes only from b2.
Specifically:

• In Block 1, set b2 = (0, 0,M)⊤ to add M in the third coordinate.
• In Block 2, set b2 = (δ, 0, 0)⊤ to add δ in the first coordinate.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

• In Block 3, we instead choose

W2 =

[
M 0 0
0 0 0
0 0 0

]
, b2 = (0, 0,−M)⊤,

so that the FFN contributes the transformation

[δM · 1n(i) 0n(i) −M · 1n(i)] .

With this construction, the model output is

f3(s(i)) = U([δ(M + 1) · 1n(i) δ · 1n(i) 0n(i)]) = 0 = L(si),

while pruning the second block yields

f3
−1(s

(i)) = U([0n(i) δ · 1n(i) 0n(i)]) = 1 ̸= L(si).

Finally, we compute the cosine-similarity scores:

CosSimScore(0;D) = 1− δ√
δ2 +M2

,

CosSimScore(1;D) = 1−
√
δ2 +M2

√
2δ2 +M2

,

CosSimScore(2;D) = 1− δ(M + 1)√
2δ2 +M2

√
1 +M2

.

As M → ∞, we obtain

CosSimScore(0;D) → 1, CosSimScore(1;D) → 0, CosSimScore(2;D) → 1.

Thus, by choosing appropriate values of M and δ, we can ensure

CosSimScore(1;D) = ϵ,

which completes the proof for Theorem 2.

It is also worth noting that this argument can be extended to multiple dimensions that do not affect
the task, rather than relying on a single one. In this way, instead of requiring a large value of M , we
can use several smaller dimensions M1, M2, ..., Md.

Finally, one might worry that this construction would fail in practice because each block also in-
cludes a LayerNorm operation applied after the residual aggregation. However, in our setup every
row of X(l) is identical, so each token representation has the same mean and variance at every step.
Consequently, the effect of LayerNorm is deterministic and can be exactly canceled out by choosing
the LayerNorm parameters (γ, β) appropriately. In particular, setting γ and β to rescale and shift
the normalized vectors recovers the pre-normalized representation, ensuring that LayerNorm does
not alter the intended behavior of the construction.

B.2 GENERAL CASE

We first show that a decoder-only Transformer can trivially overfit any labeled calibration dataset
D = {(s(i), y(i))}Ni=1, where s(i) ̸= s(j) for i ̸= j and y(i) ∈ {0, . . . , C − 1}.

Suppose that the tokenizer assigns one token to each sequence s(i). Define an embedding function
E(·) such that

E(s(i)) = X(i) ∈ R1×C .

If we let
E(s(i)) = (e(y

(i)+1))⊤,

where e(j) is the j-th standard basis vector in RC , then the classification head

U(X) = argmax
j∈{0,...,C−1}

softmax
[
XWU

]
j
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

with

WU =

(e
(1))⊤

...
(e(C))⊤

 ,

perfectly classifies the dataset, i.e. f(s(i)) = y(i). Thus, the model can memorize the dataset without
any Transformer blocks, using only embeddings and the unembedding.

We now extend this idea to construct a model satisfying the conditions of Theorem 1. Let the hidden
dimension be d = 2C + 1. Define the embedding as

E(s(i)) = δ · (e(C+y(i)+2))⊤ ∈ Rd,

so that each input is mapped into a unique coordinate among the last C dimensions (beyond the first
C + 1).

We construct three Transformer blocks as follows (with M ≫ 1):

• Block 1. Adds M to coordinate C + 1:

X(1,i) = X(0,i) +M · e(C+1).

• Block 2. Adds δ · e(y(i)+1), i.e. a one-hot signal in the first C coordinates corresponding to
the correct class:

X(2,i) = X(1,i) + δ · e(y
(i)+1).

• Block 3. Amplifies the signal in the first C coordinates by (M − δ), subtracts M from
coordinate C + 1, and adds a misleading one-hot vector from the last C dimensions:

X(3,i) = X(2,i) + (M − δ) · e(y
(i)+1) −M · e(C+1) + δ · e(C−y(i)).

As in the proof of Theorem 2, we ensure that multi-head attention acts as the identity by setting its
output projection WO = 0, and we use the feed-forward networks with suitable (W1,W2, b1, b2)
to realize the desired additive transformations.

After the three blocks, the first C coordinates of X(3,i) are dominated by (M − δ+ δ) · e(y(i)+1) =

M ·e(y(i)+1), while the misleading additions are suppressed. Thus, the classifier U correctly outputs
y(i) for all i, and the model achieves perfect accuracy.

However, if Block 2 is removed, then the model never inserts the signal in the first C coordinates.
Block 3 then only contributes spurious information, and the classification head produces incorrect
labels for all samples. Therefore, the pruned model fails completely.

Finally, as in Theorem 2, we compute the cosine similarity scores for each block. By taking M → ∞
and choosing δ appropriately, we ensure that Block 2 attains CosSimScore(l;D) = ϵ, while the
others approach 1. Thus, the theorem follows.

Two final remarks are worth noting. First, if the number of classes C is odd, the pruned model may
not achieve zero accuracy. Specifically, instances assigned to class C−1

2 will be classified correctly,
as the misleading signal coincides with the correct label. This issue is trivial to resolve by adjusting
the label assignment or class structure.

Second, as in the proof of Theorem 2, the presence of normalization layers does not invalidate the
construction. This is because the mean and variance of each token representation within a block
remain constant across instances, ensuring that normalization does not interfere with the mechanism
underlying the proof.

C FURTHER ANALYSIS ABOUT RELEVANCE CONSISTENCY ACROSS
DATASETS

In this section we go deeper in the analysis done in Section 5.1, about the work from He et al. (2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C.1 IMPLEMENTATION DETAILS

All experiments were conducted on pre-trained models, using code based on the EleutherAI LM
Evaluation Harness (Gao et al., 2024) for our accuracy-based scores. We used a batch size of 4 and
ran evaluations on NVIDIA RTX A6000 and RTX 4090 GPUs.

To compute cosine similarity relevance scores, we used the same hardware and followed the method-
ology introduced in Section 3, based on the implementation from He et al. (2024). Each sample in
this method is a full input sequence matching the model’s context length (e.g., 4096 tokens for
Mistral-7B), constructed by concatenating multiple dataset instances until the required token length
is reached. Because instance lengths vary across datasets, the number of instances per sample also
varies. Following He et al. (2024), we use 256 such samples per dataset for C4, LIMA, CodeAlpaca,
and MathInstruct.

For fairness, we used the same dataset instances to compute our accuracy-based relevance scores.
However, unlike cosine similarity, we did not concatenate instances into long sequences. Instead,
we evaluated next-token prediction at the instance level, computing accuracy on the last token of
each instance. Thus, while the underlying data is shared, the two metrics differ in their evaluation
granularity.

For the remaining datasets, we used the training split associated with each task and modified the
input format used during relevance scoring to compute cosine similarity scores. Specifically, instead
of generating full answer phrases, we presented all answer options explicitly (e.g., “A”, “B”, “C”,
“D”) within the prompt and computed the probability of generating only the correct option token.
This adjustment was necessary to ensure the model received all relevant information required for
task evaluation. In contrast, no such modification was needed for our accuracy-based metric, as we
followed standard LM evaluation protocols for multiple-choice tasks.

Following these protocols (Gao et al., 2024), we constructed input prompts by concatenating the
context, question, and each answer option individually. For each example, we computed the total
log-probability of the full prompt associated with each option and selected the one with the highest
value. We report normalized accuracy, which adjusts log-probabilities for option length to ensure
fairness between longer and shorter candidates. A prediction is counted as correct if the selected
option matches the gold label.

C.2 NORMALIZATION DETAILS

To complement our block relevance visualizations and quantify how our accuracy-based score cap-
tures more variation across datasets than cosine similarity, we compute the variance in relevance
across tasks for both methods. For each model and method, we first apply z-score normalization
to the block relevance scores, then calculate the variance across datasets for each of the 32 lay-
ers—yielding 32 variance values per model-method combination. In Figure 5, we report the mean
variance and standard deviation error bars for each model and method.

C.3 WILCOXON SIGNED-RANK TEST

When comparing our accuracy-based relevance to cosine similarity, we found significantly higher
variance using our metric. In fact, the Wilcoxon signed-rank test (Wilcoxon, 1992) resulted in the
following values: p-value = 1.7e-7, W-value = 20 for Mistral; p-value = 8.8e-9, W-value = 7 for
OLMo; and p-value = 4.6e-10, W-value = 0 for Pythia, respectively.

C.4 RELEVANCE DURING TRAINING

Block relevance patterns evolve during training, but in markedly different ways depending on the
metric. Our accuracy-based metric (Figures 6A and 6B) displays a chaotic behavior through train-
ing, with some blocks gaining or losing relevance between checkpoints without following smooth
trends. While certain blocks in OLMo tend to increase in relevance, these changes are rarely mono-
tonic. This fluctuation suggests that blocks may take on transient, adaptive roles throughout train-
ing—dynamics that cosine similarity tends to obscure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Cosine similarity (Figures 6C and 6D) reveals consistent patterns across models. For both models,
most blocks either maintain their relevance scores or gradually increase throughout training. This
suggests that some blocks increasingly modify their inputs as training progresses. However, it’s
important to note that this does not necessarily reflect how much each block contributes to the
model’s output.

Figures 7, 8 and 9 present the results on CodeAlpaca, C4 and LIMA, respectively, using OLMo. As
with MathInstruct, the cosine similarity-based relevance (bottom figures) produces nearly identical
heatmaps across datasets, reinforcing the metric’s stability and dataset-agnostic nature. Interestingly,
we also find a pattern not discussed in prior work—block 2 shows a non-monotonic trajectory where
its relevance increases at early stages and later decreases, a pattern that could be studied in future
works.

In contrast, the accuracy-based relevance (top figures) continues to show less consistent and less
interpretable patterns. While some blocks exhibit periods of increased or decreased relevance, there
are no clear, sustained trends comparable to those seen with cosine similarity.

Figures 10 to 12 show the results for the same experiment, but with Pythia on the same four datasets
used in previous sections. Unlike the OLMo figures, we apply a separate color scale for block 1
in the cosine similarity plots (bottom figures) for all Pythia figures. This is necessary because the
relevance values of the first block are significantly higher than the rest—using a single color scale
would make differences between blocks 2 to 31 nearly invisible.

As with OLMo, cosine similarity yields nearly identical relevance patterns across datasets, rein-
forcing the observation that this metric is largely insensitive to the specific task. However, a new
behavior emerges in Pythia: some blocks show an initial drop in relevance between the first and
second checkpoints, but then stabilize or fluctuate rather than continue decreasing. This, along with
the unusual pattern in block 2 in OLMo, suggests that certain relevance dynamics may be model-
specific. More precisely, we suspect they may be seed-specific: different initializations of the same
model trained on the same data could produce distinct relevance trajectories.

In contrast, our accuracy-based metric continues to show no clear, smooth patterns across training
steps, and exhibits noticeable differences between datasets. One particularly interesting finding is
that blocks 17 to 31 appear nearly irrelevant under cosine similarity for all datasets—yet our method
shows that pruning some of these blocks can significantly hurt performance. This further illustrates
that cosine similarity can miss important functional contributions of blocks, reinforcing the need for
task-aware relevance measures.

Finally, through our experiments, we do not observe a clear relationship between block relevance
patterns and the model’s accuracy gains throughout training for either metric. In other words,
changes in block relevance do not directly correlate with improvements in overall performance,
highlighting the complexity of the internal dynamics involved during model learning.

C.5 RELEVANCE DURING PRUNING

Pruning significantly changes block relevance—especially under our accuracy-based metric. As
model blocks are pruned, we observe that certain blocks increase in importance while others be-
come less critical. These shifts reveal that accuracy-based relevance captures latent dependencies
and compensatory dynamics between layers. To better understand how these shifts in relevance
emerge, we performed iterative structured pruning on Mistral-7B. At each step, we (1) compute
block relevance using either our accuracy-based method or cosine similarity, (2) remove the least
relevant block, and (3) repeat steps one and two until 25% of blocks are pruned. Figure 13 shows
results for MathInstruct and CodeAlpaca, while Figure 14 and Figure 15 show results for C4 and
LIMA respectivelly. The figures also report the accuracy for the same dataset used for pruning.

Pruning using the accuracy-based score (Figures 13A and 13B) reveals complex dynamics. First,
after pruning a block, earlier (closer to the input) and/or later (closer to the output) blocks can
gain relevance. For example, in MathInstruct (Figure 13A), block 17—initially of moderate impor-
tance—becomes highly relevant once later blocks are removed, suggesting that pruning can reassign
or expose latent functional roles. Second, blocks with negative relevance (green blocks) become
neutral or positive after pruning. For example, in the first row of Figure 13A, several green blocks
change behavior after pruning block 23, implying that they were not inherently harmful but instead

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

interacted negatively with it. Third, blocks with high relevance decreased their value after pruning.
For example, we observe that block 31 becomes less relevant after block 23 is removed, which we
speculate reflects a compensatory role—block 31 may have been mitigating the detrimental effects
of block 23, a pattern aligning with prior findings on corrective behavior (Geva et al., 2022). These
examples suggest that our metric can be a tool to study the inner workings of transformers.

As expected, when pruning using our method, we observed differences in relevance at the dataset
level. In MathInstruct, pruning blocks triggers sharp shifts in relevance, while in CodeAlpaca, the
relevance landscape remains relatively stable in the early pruning steps. Notably, CodeAlpaca lacks
negatively relevant blocks at initialization, suggesting less redundancy or a more uniform functional
distribution, among other possible explanations. This phenomenon opens new avenues for research.

On the other hand, under cosine similarity (Figures 13C and 13D), we observe that relevance
changes after pruning are generally local and limited. Only the later blocks of the network, those po-
sitioned after the pruned block, display relevance changes according to this measure. For instance,
in MathInstruct, pruning block 27 results in slight increases of cosine-similarity score in later blocks,
while earlier blocks remain unaffected. Even though one might expect this behavior given the local
nature of the metric, this explanation is only partially correct. Since cosine similarity is computed
locally, only blocks following the pruned one can exhibit changes in relevance. Mathematically,
these changes could be either increases or decreases; however, in practice we observe only increases

When using accuracy-based relevance, iterative pruning produces a different model compared to
one-shot pruning, which removes all least-relevant blocks simultaneously based on initial relevance
scores. As shown in Figure 13, our metric reveals that block relevance changes significantly after
each pruning step, with new dependencies and compensatory patterns emerging across layers. For
example, under one-shot pruning, blocks 16, 19, 21, 23, 26, 27, 28, and 29 would be removed from
Mistral (Figure 13A first row); in this case, the pruned model would exhibit an accuracy of 0.22
(data not shown). In contrast, based on iterative pruning, we removed different blocks, resulting in a
pruned model accuracy of 0.44. Our results indicate that one-shot pruning may not be suitable when
employing accuracy-based relevance. In contrast, cosine similarity yields nearly identical results
for both one-shot and iterative pruning since relevance scores remain largely stable throughout the
pruning steps.

Regarding C4 and LIMA datasets. We observe similar patterns to those previously discussed: our
accuracy-based relevance scores reveal richer dynamics than cosine similarity.

With the accuracy-based metric, we see both increases and decreases in relevance as pruning pro-
gresses. In rare cases, such as block 1, relevance remains stable throughout. In contrast, cosine sim-
ilarity mostly shows increasing relevance in blocks that follow the pruned one, while other blocks
remain largely unaffected.

An interesting pattern emerges in both C4 and LIMA: block 20 consistently increases in relevance
under our metric. This may suggest a shared functional role between these two tasks, though it may
also be coincidental. A deeper investigation into this connection would be valuable.

Regarding the comparison between one-shot and iterative pruning, we noted that the two approaches
often select different sets of blocks for removal. However, the reasons for these divergences differ
depending on the relevance metric.

For cosine similarity (Figures 13C and 13D), the evolution is mostly predictable. As discussed
earlier, pruning a block tends to increase the similarity scores of subsequent blocks. As a result,
iterative pruning diverges from one-shot pruning primarily when the least relevant block is not one
of the later-positioned layers. For example, in MathInstruct, block 28 initially had low relevance,
but pruning earlier blocks (e.g., block 27) increased its relevance, causing it to be excluded from
later pruning steps. A similar shift happens with block 26. If the initial relevance ordering of blocks
21–28 had been strictly decreasing, both pruning methods would have selected the same blocks. The
observed deviations result from small, local shifts in relevance caused by positional effects during
pruning.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 3: Accuracy of pruned Mistral-7B models on eight downstream tasks. All methods remove
25% of the layers using task-specific relevance estimates computed from each task’s training set.
Our accuracy-based approach consistently outperforms baselines. Best results per task are in bold.
“Original” refers to the unpruned model.

Methods Arc-C Arc-E BoolQ OBQA HS PIQA WG MMLU

Original 53.67 79.55 83.73 44.4 81.03 82.26 74.27 62.48

Taylor 23.46 29.8 55.72 24.4 32.15 65.94 51.46 24.16
Cosine Similarity 42.41 60.23 66.73 37.4 70.43 73.72 70.48 42.29
Out. Cosine-Sim 38.41 68.39 64.62 37.8 70.82 78.56 61.8 26.69
Out. Norm-Sim 38.41 68.39 66.54 37.8 70.47 78.56 61.96 38.73
Out. Divergence-Sim 32.51 56.99 58.2 34.4 66.97 74.32 59.83 33.41
Perplexity 40.96 59.18 64.86 36.4 62.98 71.71 64.72 57.86

Acc (Ours) 46.42 74.83 82.29 42.4 75.77 80.52 72.46 61.18

D FURTHER ANALYSIS ABOUT DIFFERENCES BETWEEN TYPE OF TASKS

Figure 16 shows the same results as Figure 2, with the addition of results obtained using cosine sim-
ilarity under an iterative pruning strategy. As discussed in the main paper, the original conclusions
still hold—although the performance drop in HellaSwag is now less abrupt.

It’s also worth noting that there are clear differences between the two ways of applying the cosine
similarity score, which supports our argument that this metric should be used with caution when
making assumptions about the internal mechanisms of Transformer models.

E STRUCTURED PRUNING

E.1 IMPLEMENTATION DETAILS

Since all benchmarks used in our structured pruning experiments are multiple-choice tasks, we fol-
lowed the same protocol and considerations as mentioned in Appendix C.1.

We evaluate models in a zero-shot setting on all tasks except for MMLU, where we use the five-shot
format commonly adopted in prior work Zhang et al. (2024b); He et al. (2024).

For Taylor relevance, we implement the element-wise importance formulation from Ma et al. (2023),
using absolute weight–gradient products aggregated via sum—identified as the best-performing
setup in their study. For Cosine Similarity, we follow the approach of He et al. (2024), concate-
nating multiple examples to form long input sequences that align with the model’s context window.
Explained in Appendix C.1.

All models are evaluated using the LM Evaluation Harness Gao et al. (2024), ensuring consistency
with prior structured pruning work. Experiments were run on NVIDIA RTX A6000 and RTX 4090
GPUs, using a batch size of 4.

E.2 MISTRAL

To assess the generality of our approach across architectures, we replicate the structured pruning
experiment described in the main paper (Section 6) using Mistral-7B. The pruning setup, datasets,
evaluation method, and relevance proxies are identical to those used in the LLaMA3 experiment.

As shown in Table 3, our accuracy-based relevance method consistently outperforms all base-
lines across tasks, confirming its robustness beyond a single model family. However, unlike with
LLaMA3, the task-specific pruned models do not surpass the performance of the unpruned model.
This aligns with observations in prior work He et al. (2024); Zhang et al. (2024b), which also re-
port significant differences between models in the percentage of original performance retained after
pruning.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 4: One-shot structured pruning results on LLaMA3-8B across eight downstream benchmarks.
In this setting, relevance scores are computed once and used to prune 25% of layers in a single
step. While our method occasionally underperforms others in this configuration, it remains highly
competitive overall. Notably, the iterative version of our method consistently outperforms all one-
shot baselines, highlighting the benefits of dynamic relevance estimation.

Method Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU

Original 53.16 81.02 82.02 78.94 44.8 81.28 73.56 65.11

Taylor 33.36 56.14 61.25 56.77 34.8 71.98 54.14 23.64
Cosine Similarity 47.61 68.86 70.4 71.09 39.4 76.39 70.39 35.12
Out. Cosine-Sim 44.8 68.01 56.33 51.19 38.2 73.29 59.19 23.72
Out. Norm-Sim 38.46 65.07 64.65 57.21 37.6 72.86 64.88 23.72
Out. Divergence-Sim 42.46 56.44 70.34 66.36 32.4 71.16 67.96 30.12
Perplexity 39.85 57.66 62.42 55.05 37.2 66.81 65.59 59.63

Acc 1-Shot (Ours) 42.24 72.09 52.2 74.49 44.4 79.54 66.93 53.21
Acc Iterative (Ours) 49.57 74.96 84.04 71.53 44 79.06 73.8 62.97

E.3 ONE-SHOT

To assess how our method performs in a simpler pruning setup, we replicate the main structured
pruning experiment using a one-shot approach. Instead of iteratively updating relevance scores
during pruning, we compute each method’s scores only once, rank the layers accordingly, and prune
the bottom 25% in a single step.

Results are shown in Table 4. While our method occasionally underperforms others in the one-
shot setting (e.g., on BoolQ), the iterative version of our method still outperforms all base-
lines—including one-shot variants—highlighting the benefits of reevaluating relevance dynamically.
This is consistent with our earlier findings in Section C.5, where we showed that block relevance
evolves during pruning.

Interestingly, for a few datasets (e.g., HellaSwag and OpenBookQA), our one-shot variant
marginally outperforms its iterative counterpart. We hypothesize that this may result from domain
shifts between the training and test splits, which can affect our accuracy-based signal. Addition-
ally, selecting the optimal pruning set is ultimately a challenging search problem—one that has been
tackled explicitly in recent works Sieberling et al. (2024).

E.4 TASK-INDEPENDENT PRUNING

The task-independent structured pruning setup consists of using a single dataset—commonly re-
ferred to as a calibration dataset—to compute relevance scores and prune the model accordingly.
This results in one pruned model per pruning method, which is then evaluated across multiple down-
stream tasks. The tasks used for evaluation typically mirror those presented in the main paper.

It is worth noting that there is no standardized protocol regarding which dataset to use as calibration
data or how many samples to include. For example, Zhang et al. (2024b) use WikiText-2 with
10 randomly selected instances, while He et al. (2024) use C4, selecting 256 samples where each
sample may span multiple instances (due to concatenation to match the model’s input length, see
Appendix C.1).

In our experiments, we adopt the setup of He et al. (2024) for consistency. However, to ensure a
fair comparison—especially against pruning methods like cosine similarity that operate on instance-
level granularity—we avoid concatenation and instead use the same 1,500 instances employed in
the cosine similarity baseline. These instances were selected to construct 256 full-context-length
samples in a consistent and comparable manner.

Table 5 presents results for the LLaMA3-8B model under this classic pruning setup. As shown, the
cosine similarity method outperforms all others, including our accuracy-based metric. This outcome
contrasts with the results reported by Zhang et al. (2024b), likely due to differences in calibration
dataset choice and sample size.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 5: Task-independent structured pruning results for LLaMA3-8B across eight downstream
benchmarks. Each pruning method uses the same 1,500-instance calibration dataset to prune the
model once, which is then evaluated on all tasks. Cosine similarity performs best in this setup, while
our accuracy-based method underperforms, likely due to its strong dependency on the calibration
dataset.

Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Original 53.15 81.02 82.02 78.94 44.8 81.28 73.56 65.11 69.99

Taylor 45.39 67.97 61.31 63.73 41.4 76.55 68.11 25.03 56.19
Cosine Similarity 43.34 65.32 76.7 70.24 36.8 73.39 70.96 40.78 59.69
Out. Cosine-Sim 44.2 72.05 71.99 66.57 40.2 77.37 66.93 34.56 59.23
Out. Norm-Sim 42.66 70.12 66.94 67 41.4 78.73 67.72 34.1 58.58
Out. Divergence-Sim 43.54 71.25 68.62 65.09 39.6 76.01 65.94 30.57 57.58
Perplexity 40.19 63.47 44.43 65.96 39.2 74.48 64.4 29.4 52.69

Acc (Ours) 36.69 56.52 53.36 60.16 33.8 72.63 60.14 28.5 50.23

Table 6: Calibration dataset analysis. Each row shows the performance of a LLaMA3-8B model
pruned at 25% with our method using a different train set as a calibration dataset.

Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Arc-C 49.57 74.45 69.08 72.91 42.2 77.8 67.56 40.2 61.72
Arc-E 51.37 74.96 66.94 73.62 43.6 78.51 71.59 44.82 63.18
BoolQ 40.7 66.96 84.1 67.97 38.6 73.23 71.82 35.09 59.81
HS 44.45 62.5 65.84 71.53 44.2 73.5 64.72 42.83 58.7
OBQA 45.82 66.5 75.38 66.88 44 75.24 65.9 50.45 61.27
PIQA 44.62 70.2 48.62 68.45 44.2 79.05 67.8 27.8 56.34
WG 44.71 68.73 78.13 69.85 39.2 75.03 73.8 42.4 61.48
MMLU 40.61 62.46 75.32 63.11 35 71.49 69.3 62.97 60.03

These results are consistent with our expectations. Our method is tightly coupled to the calibration
dataset, and—as demonstrated throughout this paper—relevance is highly task- and data-dependent.
Therefore, when the calibration dataset is misaligned with the evaluation tasks, performance is likely
to degrade. As a direction for future work, we aim to evaluate our method under alternative cali-
bration datasets, particularly mixtures that combine training data from the target evaluation tasks.
We hypothesize that a more representative calibration set would yield stronger results in the task-
agnostic setting.

E.5 TASK RELATIONS

Given the task-independent results presented in Table 2, a natural question arises: can the training set
of one task serve as a suitable calibration set for pruning models used in other tasks? Table 6 explores
this by showing the performance of different training sets used as calibration data. We observe that
most tasks achieve good average performance, and notably, some tasks serve as particularly effective
calibration sets for others. Building on Table 6, Figure 17 presents a graph illustrating relationships
between tasks. Each node corresponds to a task, and a directed edge from task 1 to task 2 indicates
that the training set of task 1 serves as either a good (blue) or poor (red) calibration set for task 2. We
define “good” as achieving at least 90% of the performance obtained when pruning with task 2’s own
training set (see Table 1), and “poor” as 10% or lower. To further indicate the strength of the effect,
edge transparency varies: lighter blue denotes values closer to the 90% threshold, while lighter red
denotes values closer to 10%.

Several observations emerge from this analysis:

• ARC-E and ARC-C serve as good proxies for almost all tasks, with the exception of BoolQ
and MMLU. Interestingly, ARC-E is a better proxy than ARC-C, despite being an easier
version of the same benchmark.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

• Nearly all tasks act as good proxies for HellaSwag, except for MMLU. This finding is
noteworthy because HellaSwag is generally considered a commonsense reasoning task,
whereas MMLU requires broader world knowledge.

• No task provides a good proxy for MMLU or BoolQ. For MMLU, this is expected: as a
world-knowledge benchmark, it likely requires calibration sets with overlapping domain
coverage, which the other tasks lack. For BoolQ, however, the absence of good proxies is
less straightforward. One possible explanation is that its yes/no format introduces unique
structural properties that are particularly sensitive to pruning.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 6: Block relevance during training in OLMo (left) and Pythia (right) on the MathInstruct
dataset. A, each row corresponds to a model checkpoint trained on a given number of tokens in
billions (OLMo) or train iterations in millions (Pythia on B), with accuracy reported on the y-axis.
A, B, Accuracy-based score. C, D, Cosine-similarity score.

Figure 7: Block relevance during training in OLMo on the CodeAlpaca dataset. Each row corre-
sponds to a model checkpoint trained on a given number of tokens in billions (shown on the y-axis),
with accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity
score.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 8: Block relevance during training in OLMo on the C4 dataset. Each row corresponds to
a model checkpoint trained on a given number of tokens in billions (shown on the y-axis), with
accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity score.

Figure 9: Block relevance during training in OLMo on the LIMA dataset. Each row corresponds
to a model checkpoint trained on a given number of tokens in billions (shown on the y-axis), with
accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity score.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 10: Block relevance during training in Pythia on the CodeAlpaca dataset. Each row cor-
responds to a model checkpoint trained with a given number of iterations in thousand (shown on
the y-axis), with accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-
similarity score.

Figure 11: Block relevance during training in Pythia on the C4 dataset. Each row corresponds to a
model checkpoint trained with a given number of iterations in thousand (shown on the y-axis), with
accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity score.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 12: Block relevance during training in Pythia on the LIMA dataset. Each row corresponds
to a model checkpoint trained with a given number of iterations in thousand (shown on the y-axis),
with accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity
score.

Figure 13: Block relevance on Mistral in MathInstruct (left) and CodeAlpaca (right) as blocks are
iteratively pruned. A, at each row the least relevant block, according to the Accuracy-based score
of Mistral on MathInstruct, is removed and shown with a gray cross. The accuracy of the pruned
model is shown on the right. B, the same on CodeAlpaca. C, D, using cosine-similarity score.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 14: Block relevance in Mistral on the C4 dataset as layers are incrementally pruned. In each
row, the least relevant block (according to the corresponding metric) is removed and shown with a
gray cross. The accuracy of the pruned model is shown in parentheses. (Top) Accuracy-based score.
(Bottom) Cosine-similarity score.

Figure 15: Block relevance in Mistral on the LIMA dataset as layers are incrementally pruned. In
each row, the least relevant block (according to the corresponding metric) is removed and shown
with a gray cross. The accuracy of the pruned model is shown in parentheses. (Top) Accuracy-
based score. (Bottom) Cosine-similarity score.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning Ratio

30

40

50

60

Pe
rfo

rm
an

ce

MMLU (World Knowledge)
Acc-based
Cos-Sim-based
Cos-Sim-based
Iterative

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning Ratio

0

10

20

30

40

50

Pe
rfo

rm
an

ce

GSM8K (Math Reasoning)
Acc-based
Cos-Sim-based
Cos-Sim-based
Iterative

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruning Ratio

30

40

50

60

70

80

Pe
rfo

rm
an

ce

HellaSwag (Common Sense Reasoning)
Acc-based
Cos-Sim-based
Cos-Sim-based
Iterative

Figure 16: Evaluation of LLaMA-3-8B under the cosine-similarity pruning strategy of Gromov et al.
(2024) compared with our proposed method and cosine-similarity score with an iterative pruning
strategy.

Arc-C

Arc-E

BoolQ

HS

OBQA

PIQA

WG

MMLU

Figure 17: Relation between tasks. Computed from data in Table 6

30

	Introduction
	Related Work
	Cosine-Similarity Score
	Rethinking Layer Relevance: Beyond Cosine Similarity
	Limitations of Cosine Similarity for Layer Relevance
	Accuracy-Based Relevance Score

	Case Studies
	Relevance Consistency Across Datasets
	Differences Between Types of Tasks

	Empirical Results in Structured Pruning
	Computational Cost Comparison

	Conclusion
	Related Work (Extended Version)
	Understanding Transformer Internals
	Measuring Block Relevance

	Proof of Theorem 1
	Auxiliary Result
	General Case

	Further Analysis about Relevance Consistency Across Datasets
	Implementation Details
	Normalization Details
	Wilcoxon signed-rank test
	Relevance During Training
	Relevance During Pruning

	Further Analysis about Differences Between Type of Tasks
	Structured Pruning
	Implementation details
	Mistral
	One-shot
	Task-Independent Pruning
	Task Relations

