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ABSTRACT

Large language models (LLMs) have revolutionized natural language processing.
Understanding their internal mechanisms is crucial for developing more inter-
pretable and optimized architectures. Mechanistic interpretability has led to the
development of various methods for assessing layer relevance, with cosine sim-
ilarity being a widely used tool in the field. In this work, we demonstrate that
cosine similarity is a poor proxy for the actual performance degradation caused
by layer removal. Our theoretical analysis shows that a layer can exhibit an arbi-
trarily low cosine similarity score while still being crucial to the model’s perfor-
mance. On the other hand, empirical evidence from a range of LLMs confirms
that the correlation between cosine similarity and actual performance degradation
is often weak or moderate, leading to misleading interpretations of a transformer’s
internal mechanisms. We propose a more robust metric for assessing layer rele-
vance: the actual drop in model accuracy resulting from the removal of a layer.
Even though it is a computationally costly metric, this approach offers a more ac-
curate picture of layer importance, allowing for more informed pruning strategies
and lightweight models. Our findings have significant implications for the de-
velopment of interpretable LLMs and highlight the need to move beyond cosine
similarity in assessing layer relevance.

1 INTRODUCTION

Transformers (Vaswani et al., 2017), initially designed for tasks related to large language models
(LLMs) (Chkirbene et al., 2024), have become the main architecture for modern AI. They now sup-
port applications in computer vision (Caron et al., 2021), reinforcement learning (Li et al., 2023a),
multimodal learning (Xu et al., 2023), recommender systems (Villa et al., 2020), and beyond. Since
these models play a central role in AI, uncovering which parts matter the most can guide us toward
more interpretable and optimized architectures.

Mechanistic interpretability aims to reverse-engineer pre-trained LLMs to better understand how
they work (Ferrando et al., 2024). In this context, cosine similarity has become a standard tool for
assessing semantic relationships between internal representations (Sanh et al., 2019; Li et al., 2023b;
Sun et al., 2024; Modell et al., 2025). Intuitively, when the angle between two token embeddings is
small, the tokens are assumed to encode similar information.

Recent studies have used cosine similarity to assess layer relevance in pre-trained LLMs (Sajjad
et al., 2023; Gromov et al., 2024; He et al., 2024; Men et al., 2024; Zhang et al., 2024b; Sun et al.,
2024; Yang et al., 2024b). The core idea is that layers making minimal changes to their input
vectors are considered less relevant, with relevance quantified as one minus the cosine similarity
between a layer’s input and output vectors. This score has been applied in various contexts: for
example, Gromov et al. (2024) used it to prune models and analyze performance across tasks, finding
that reasoning tasks require more layers than factual ones. Similarly, He et al. (2024) visualized
relevance scores across datasets (Figure 1B), showing that some layers consistently appear irrelevant
regardless of the task.

While these results offer valuable insights, they hinge on the assumption that cosine similarity is a re-
liable indicator of layer relevance—an assumption we challenge. In this paper, we demonstrate that
cosine similarity is a poor proxy for the actual performance degradation caused by layer removal.
For example, layer 16 in OLMo appears to be of low relevance according to cosine similarity, as
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Figure 1: Relevance of OLMo (Groeneveld et al., 2024)’s layers across ten datasets. A. Accuracy-
based relevance scores: We measure the drop in task accuracy to evaluate the relevance of each
layer. Layers that increase accuracy when removed are highlighted in green, layers that do not affect
accuracy appear in white, and layers that reduce the model’s accuracy when removed are indicated
in red/purple. B. Relevance scores computed using the cosine similarity score, which measures how
much each layer transforms its input. The least relevant layers appear in yellow.

illustrated in Figure 1B (where irrelevant layers are shown in yellow). However, removing this layer
results in an average accuracy drop of 66% across the ten datasets presented. In fact, eliminating
layer 16 alone reduces OLMo’s performance to chance level on ARC-C. These findings suggest
that relying on cosine similarity as a relevance metric can lead to misleading interpretations of a
transformer’s internal mechanisms.

In this paper, we provide a formal proof demonstrating that a layer can exhibit an arbitrarily low
cosine similarity score while still being crucial to the model’s performance. In particular, removing
such a layer can drastically alter the model’s output—potentially reducing its accuracy from perfect
to zero. This phenomenon arises when the layer introduces a subtle modification to its input vector
that is subsequently amplified by downstream layers, resulting in a snowball effect. Consequently,
despite its near-zero cosine similarity score, the removal of this layer can significantly disrupt the
model’s final predictions.

We then show that this theoretical worst-case scenario does occur, to some degree, in practice. Em-
pirically, we find that the correlation between cosine similarity and actual performance degradation
is often weak or moderate, depending on the model. As a result, cosine similarity either overesti-
mates or underestimates a layer’s true relevance in over 90% of cases we studied.

Having established that cosine similarity is an unreliable metric for assessing layer relevance, we
next investigate the implications of re-running previously proposed experiments using a more robust
alternative. Specifically, we argue that for the purposes of mechanistic interpretability, the most
appropriate metric is the actual drop in model accuracy resulting from the removal of a layer. While
this approach is computationally expensive—requiring layer-by-layer removal and performance re-
evaluation—it avoids the shortcomings inherent to cosine similarity. Crucially, this metric captures
the complex interdependencies among layers in Transformer architectures.

We begin by replicating the layer relevance visualization introduced by He et al. (2024). Figure 1A
displays the relevance of each layer in OLMo across ten datasets, measured by the change in model
accuracy after removing each layer individually. Red/purple indicates a drop in accuracy, green an
improvement, and white no change. This visualization offers a markedly different perspective from
cosine similarity, revealing that layer relevance varies by dataset and highlighting the critical role of
layers 8 and 16 in OLMo’s performance.

We then replicated the task analysis proposed by Gromov et al. (2024), which involved pruning
layers deemed irrelevant based on cosine similarity and observing the resulting performance drop.
Instead, we ranked layers by the actual decrease in accuracy on the task’s training set and pruned
accordingly. Results are shown in Figure 2. Because our metric better reflects layer relevance, the
performance drop in HellaSwag is less pronounced than in the original study. This challenges the
conclusion that all layers are essential for reasoning tasks: using a more informative metric, we find
that over 75% accuracy can be maintained even after removing 22% of the layers.

We conclude with a practical application in structured pruning (Anwar et al., 2017), which aims
to remove layers from trained models with minimal impact on performance. In the task-dependent
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Figure 2: We evaluate LLaMA-3-8B using the cosine-similarity pruning strategy proposed by Gro-
mov et al. (2024), and compare it with our method. In contrast to cosine similarity, our approach
mitigates immediate performance degradation in reasoning tasks, highlighting the critical role of
selecting an appropriate metric for interpreting model internals.

setting, we show that pruning layers based on our accuracy-based relevance score yields superior
results compared to existing methods, including Taylor approximations (Kim et al., 2024; Ma et al.,
2023), cosine similarity (He et al., 2024; Men et al., 2024; Gromov et al., 2024), and FinerCut (Zhang
et al., 2024b). In the task-independent setting, our method also achieves the best performance,
though it is sensitive to the choice of calibration dataset.

2 RELATED WORK

A central challenge in Transformer research is accurately measuring layer relevance. This question
is critical for two main applications: mechanistic interpretability, which seeks to understand how
pre-trained LLMs operate, and structured pruning, which aims to reduce model size by removing
irrelevant layers while preserving performance. Cosine similarity has become a popular metric for
both tasks due to its computational efficiency and intuitive appeal (e.g., Sajjad et al., 2023; Gromov
et al., 2024; He et al., 2024; Men et al., 2024; Yang et al., 2024b; Zhang et al., 2024b). It assumes
that layers making minimal changes to their input vectors are less relevant. Moreover, cosine-based
pruning has achieved strong results in task-independent settings.

However, cosine similarity is only a proxy for what truly matters: downstream performance. While
prior work has raised concerns about its use in comparing token embeddings (Timkey & Van Schi-
jndel, 2021), to our knowledge, this is the first study to rigorously evaluate—both theoretically and
empirically—its limitations in estimating layer relevance in Transformer models. We then propose
an alternative: an accuracy-based relevance score, which considers a layer relevant only if its re-
moval significantly degrades performance on a given task.

Beyond cosine similarity, which is typically used as a local metric (e.g., Sajjad et al., 2023; Gromov
et al., 2024; He et al., 2024; Men et al., 2024), several global metrics have been proposed. These
assess relevance by evaluating changes in the model’s output after removing a layer. Global met-
rics fall into two categories: consistency-based and performance-based. Consistency-based metrics
compare the model’s output distributions with and without a target layer (Sieberling et al., 2024;
Yang et al., 2024a; Zhang et al., 2024b), identifying layers whose removal leaves the output un-
changed. However, these metrics focus on output invariance rather than predictive accuracy, and
may overlook layers that subtly affect performance.

Performance-based metrics are more aligned with our approach (Kim et al., 2024; Ma et al., 2023;
Zhong et al., 2024; Song et al., 2024). These metrics rely on ground-truth information to assess the
relevance of a layer. For example, Ma et al. (2023) use Taylor expansions to estimate the change
in loss when a layer is removed. Other works rely on perplexity-based scores, deeming layers
irrelevant if their removal does not significantly increase perplexity (Kim et al., 2024; Zhong et al.,
2024; Song et al., 2024). Like our accuracy-based score, these methods aim to identify layers whose
exclusion yields minimal performance degradation. Nevertheless, as we show in Section 6, our
metric consistently outperforms these alternatives in structured pruning tasks.
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Finally, our work connects with a broader literature on understanding how Transformers represent
and process information (Brinkmann et al., 2024; Clark et al., 2019b; Devlin et al., 2019; Geva et al.,
2020; 2022; 2023; Gurnee & Tegmark, 2023; Jawahar et al., 2019; Lioubashevski et al., 2024; Meng
et al., 2022; Sun et al., 2024; Tigges et al., 2023). In particular, our relevance metric could be used
to revisit studies that identify functional behaviors in specific attention layers (Clark et al., 2019b;
Geva et al., 2023) or MLPs (Geva et al., 2020; Meng et al., 2022), offering new insights into their
contributions. It may also help bridge findings on global Transformer behavior (Gurnee & Tegmark,
2023; Brinkmann et al., 2024; Tigges et al., 2023) with specific layers or processing stages. We
expand on these connections and review additional pruning methods in Appendix A.

3 COSINE-SIMILARITY SCORE

Let us begin by formally defining the cosine-similarity score. The cosine-similarity score is a local
metric that examines the difference between the input and output vectors of a layer to assess its
relevance (Sajjad et al., 2023; Gromov et al., 2024; He et al., 2024; Men et al., 2024). Intuitively, if
the output of a layer is identical to its input, removing that layer would have no effect on the model’s
performance. Formally, given two vectors x and y, the cosine similarity is defined as follows:

CosineSim(x,y) =
x · y

||x|| · ||y||
(1)

To define a score where the least relevant layers receive a value of zero, we compute the cosine-
similarity score as one minus the cosine similarity between the input and output vectors of a layer.
Given a calibration dataset D = {s(i)}Ni=1, the relevance of a layer is then calculated as the average
cosine-similarity score across all tokens and instances:

CosSimScore(l;D) =
1

N

N∑
i=1

1

n(i)

n(i)∑
j=1

(
1− CosineSim

(
X

(l,i)
j,: ,X

(l+1,i)
j,:

))
, (2)

where each sequence s(i) has n(i) tokens, X(l,i) ∈ Rn(i)×d is the intermediate layer representation
of s(i) at layer l, and X

(l,i)
j,: ∈ Rd denotes the representation of the j-th token at layer l.

4 RETHINKING LAYER RELEVANCE: BEYOND COSINE SIMILARITY

This section highlights the limitations of cosine similarity as a layer relevance metric. We show,
both theoretically and empirically, that layers assessed as irrelevant by cosine similarity can still
cause significant drops in downstream performance when removed. To address this, we propose an
accuracy-based metric that directly evaluates relevance based on what truly matters: the model’s
predictive performance.

4.1 LIMITATIONS OF COSINE SIMILARITY FOR LAYER RELEVANCE

We begin by formally demonstrating that a layer can have an arbitrarily low cosine similarity score
while still having a significant impact on model performance. Specifically, the following theorem
shows that for any dataset D and any ϵ > 0, it is possible to construct a decoder-only Transformer
that achieves perfect accuracy on D, yet the removal of the layer with the lowest cosine similarity
reduces the model’s performance to zero. Moreover, the cosine similarity score of that layer is ϵ.

Theorem 1 Let fL denote a Transformer model with L layers, and fL
−l represent the same model

with layer l removed. Then, for any ϵ > 0 and any calibration dataset D = {(s(i), y(i))}Ni=1 such
that s(i) ̸= s(j) for all i ̸= j and y(i) ∈ {0, . . . , C − 1}, there exists a decoder-only Transformer fL

with L ≥ 3 satisfying the following conditions:

1. There exists an intermediate layer l ∈ {1, . . . , L − 2} such that CosSimScore(l;D) = ϵ,
and CosSimScore(i;D) > ϵ for all i ̸= l.

2. The full model achieves perfect accuracy: fL(s(i)) = y(i) for all s(i) ∈ D, but removing
layer l causes the model’s accuracy to drop to zero: fL

−l(s
(i)) ̸= y(i) for all s(i) ∈ D.
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Figure 3: A. Relationship between cosine similarity scores and performance variation after removing
a layer. Each point represents a specific layer–task pair from one of the 28 middle layers in Pythia,
Mistral, or OLMo, evaluated across ten tasks (same set as in Figure 1). B. Alignment between
cosine similarity rankings and performance rankings across three models, ten tasks, and 28 layers.
Cell (i, j) indicates the number of times cosine similarity assigned rank j while the ground-truth
rank was i (rank 1 = least relevant). The heatmap uses three distinct color scales: green for the
diagonal (perfect alignment), blue for low-cost misrankings, and red for all other cells.

To construct a Transformer in which a layer has an arbitrarily low cosine similarity yet significantly
impacts model performance, two key conditions must be met. First, a snowball effect must occur:
the target layer introduces a subtle change to its input vector, which is then amplified by subsequent
layers. This allows the layer to have minimal cosine similarity while still influencing the final output.
Second, some embedding dimensions must be irrelevant to the model’s prediction. This enables
other layers to make large changes in those irrelevant dimensions, inflating their cosine similarity
scores without contributing to performance. A complete proof is provided in Appendix B.

We believe both phenomena can naturally arise in pre-trained LLMs, particularly in task-dependent
settings. For a given task, many transformations applied by the model may be irrelevant to solving
it. Empirically, we observe a snowball effect in models like OLMo, where layer 16 exhibits a very
low cosine similarity score yet has a substantial impact on performance (see Figure 1).

We now present a more in-depth empirical evaluation of the cosine similarity score as a proxy for
layer relevance. Specifically, we aim to assess how well cosine similarity predicts the actual drop in
downstream performance when a layer is removed. Figure 3A compares the cosine similarity score
with the observed reduction in accuracy after removing individual layers from three pre-trained
LLMs—Mistral, Pythia, and OLMo—across ten datasets: C4, CodeAlpaca, LIMA, MathInstruct,
BoolQ, ARC-Challenge, ARC-Easy, HellaSwag, PIQA, and Winogrande. We exclude the first and
last two layers, as they are trivially identifiable as relevant and behave as clear outliers.

As shown in Figure 3A, there is some correlation between cosine similarity and performance degra-
dation. However, the strength of this correlation varies by model: moderate in Pythia (R = -0.46),
weak in Mistral (R = -0.23), and very weak in OLMo (R = -0.15).

To further evaluate the reliability of cosine similarity, we compare its layer relevance ranking against
a ground-truth ranking based on actual performance drop. Figure 3B presents a confusion matrix
summarizing the results across the same three models and ten datasets. In this matrix, cell (i, j)
indicates the number of times cosine similarity ranked a layer as the j-th least relevant, while its true
rank was i according to performance drop. Diagonal entries represent perfect agreement; entries
below the diagonal indicate underestimation of relevance, and those above indicate overestimation.
Overall, cosine similarity misestimated a layer’s relevance in 93.8% of cases. That said, not all
errors are equally severe: entries near the diagonal reflect small ranking deviations. But even when
considering only substantial errors (highlighted in red), cosine similarity still fails in 53.6% of cases.

Overall, these results demonstrate that cosine similarity is an unreliable and noisy metric for estimat-
ing layer relevance. In many cases, layers deemed irrelevant by cosine similarity lead to substantial
drops in performance when removed—and vice versa. This inconsistency highlights the need for
caution when using cosine similarity, particularly in the context of mechanistic interpretability. Re-
lying on such a flawed metric risks drawing incorrect conclusions about how Transformer models
function. We illustrate this issue with two concrete examples in Section 5.
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4.2 ACCURACY-BASED RELEVANCE SCORE

Rather than relying on a proxy, we propose directly visualizing the performance drop to assess how
each layer contributes to the model’s effectiveness. We do so by using an accuracy-based score.
Given a dataset D and a Transformer model with L layers fL, we assess the relevance of layer l as:

AccBasedRelevance(fL, l,D) = 1−
max(Accuracy(fL

−l,D)− r(D), 0)
max(Accuracy(fL,D)− r(D), 0)

, (3)

where Accuracy(fL,D) denotes the accuracy of the full model on dataset D, and r(D) represents
the expected performance of a random predictor in the dataset.

This score ranges from -∞ and +1: negative values indicate improved performance upon removal of
the layer, zero indicates no change, and positive values reflect a drop in performance. Thus, higher
scores correspond to greater relevance of the layer for the task. It is important to note that this range
is valid only when the full model performs better than a random predictor. If the model’s accuracy
falls below that of a random predictor, the relevance score becomes ill-defined, and the analysis
should not be applied in such cases.

The accuracy-based score can be applied to any component of a transformer-based model, including
a single weight, a multi-head attention layer, an MLP, a Transformer block, or multiple blocks. That
said, in the next section, we will focus on visualizing the importance of Transformer blocks.

5 CASE STUDIES

To assess the practical impact of our findings, we revisit two case studies that used cosine similarity
to evaluate layer relevance in pre-trained LLMs. Replacing cosine similarity with our accuracy-
based metric, we observed significantly different outcomes. These results highlight the limitations of
proxy metrics and reinforce the value of accuracy-based evaluation for mechanistic interpretability.

5.1 RELEVANCE CONSISTENCY ACROSS DATASETS

We begin by revisiting the study What Matters in Transformers by He et al. (2024), which proposes
a method to visualize layer relevance using cosine similarity. Figure 4B shows the relevance of
each layer in Mistral (Jiang et al., 2023) across multiple datasets, with yellow indicating low cosine
similarity score and purple indicating high. Based on these visualizations, the authors conclude that
layer relevance is largely task-independent—a pattern we also observed in OLMo (Figure 1B).

When applying our accuracy-based metric, we obtain a markedly different view of layer relevance,
as shown in Figure 1A for OLMo and Figure 4A for Mistral. These visualizations use a fixed
color scale: green for performance gains, white for no change, and red/purple for performance
drops. Unlike cosine similarity, our metric reveals that layer relevance is highly task-dependent.
For example, removing block 14 in OLMo reduces accuracy by ∼41% on MathInstruct but has
minimal impact (∼1%) on CodeAlpaca. Some layers even show negative relevance, improving
performance when removed—e.g., block 23 in Mistral increases accuracy by ∼25% on MathInstruct
but decreases it by ∼6% on CodeAlpaca. Finally, our metric also captures broader task sensitivity.

Figure 4: Relevance of Mistral’s Transformer blocks across datasets. A. Accuracy-based relevance
scores. B. Cosine similarity score.
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For instance, Mistral shows consistently lower relevance across blocks on MMLU compared to
BoolQ—a distinction not visible in cosine similarity plots.
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Figure 5: Relevances Across Datasets

To ensure these differences are not artifacts of visualiza-
tion, we conducted a statistical comparison between the
two metrics. Using z-score normalization, we computed
the average variance of each of OLMo’s 32 blocks across
ten datasets. As shown in Figure 5, our accuracy-based
score exhibits significantly greater variance than cosine
similarity. A Wilcoxon test (Appendix C.3) confirms
these differences are statistically significant, reinforcing
the visual evidence that layer relevance is task-dependent.

Beyond cross-task consistency, we also explored how rel-
evance evolves during training (Appendix C.4) and prun-

ing (Appendix C.5). In pruning, we found that a layer’s relevance depends on the presence of other
layers—removing one can increase or decrease the importance of another. In training, no clear
pattern emerged: some layers gained relevance over time, while others fluctuated.

5.2 DIFFERENCES BETWEEN TYPES OF TASKS

We now revisit The Unreasonable Ineffectiveness of the Deeper Layers by Gromov et al. (2024),
which argues that deeper layers in pre-trained LLMs are essential for reasoning tasks (e.g., GSM8K,
HellaSwag) but less relevant for factual retrieval tasks such as MMLU. Their hypothesis is based on
the idea that, when faced with a reasoning task, the model must compute intermediate steps to arrive
at the final answer—implying that all layers contribute meaningfully to such tasks. Their analysis
on LLaMA 2-70B showed that MMLU retained accuracy under early pruning, while GSM8K and
HellaSwag degraded instantly and continued to decline, supporting the hypothesis that deeper layers
play a critical role in reasoning.

Their pruning strategy, however, was based on cosine similarity rather than direct depth-based abla-
tion. To assess the robustness of their findings, we replicated the experiment on LLaMA 3-8B using
our accuracy-based relevance metric. As shown in Figure 2, we observed similar task-dependent
trends according to the cosine similarity score: MMLU remained stable under initial pruning, while
GSM8K and HellaSwag showed performance drops, particularly in GSM8K.

In contrast, when pruning is guided by our accuracy-based metric, a different pattern emerges:
the model maintains strong performance on HellaSwag even after several blocks are removed, and
GSM8K shows minimal degradation after pruning two blocks. This suggests that cosine similarity
may underestimate the importance of certain blocks for reasoning tasks—pruning them prematurely
and thereby reducing model performance. Moreover, cosine similarity appears unable to identify
blocks that are not relevant for reasoning, whereas our method successfully distinguishes between
essential and non-essential layers.

Finally, we note that, unlike Gromov et al. (2024), who pruned contiguous block groups based on
aggregate cosine similarity, our method prunes blocks iteratively, re-evaluating the model after each
step. In Appendix D, we compare both strategies—cosine similarity as used in their work and our
iterative method. While some trends are less pronounced, the core conclusion remains: different
metrics yield different insights into model behavior.

6 EMPIRICAL RESULTS IN STRUCTURED PRUNING

The primary goal of our accuracy-based relevance score was to support mechanistic interpretability
by providing a reliable measure of layer importance. However, this metric also proves effective
for structured pruning—i.e., reducing model size by removing layers with minimal impact on per-
formance (Anwar et al., 2017). Surprisingly, pruning layers deemed irrelevant by our score yields
state-of-the-art results, while remaining simple to implement.

Structured pruning methods typically rely on a calibration set to estimate layer relevance and prune
up to p% of the model’s weights. These methods differ in whether they apply one-shot or itera-
tive pruning, and in the criteria used to rank layers. To evaluate pruning effectiveness, we compare
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Table 1: Task-dependent results for LLaMA3-8B models across multiple tasks. All methods remove
25% of the model using each task’s training set. “Original” refers to the unpruned model.

Method Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Original 53.16 81.02 82.02 78.94 44.8 81.28 73.56 65.11 69.99

Taylor 31.48 67.97 61.31 62.73 38.4 76.55 55.64 25.03 52.39
Cosine Similarity 45.73 67.8 66.33 69.52 38.6 72.91 71.35 44.05 59.54
Out. Cosine-Sim 39.51 65.57 72.11 67.97 36.8 76.88 65.11 36.82 57.6
Out. Norm-Sim 40.19 66.08 72.08 64.96 39.6 75.46 68.27 49.03 59.46
Out. Divergence-Sim 41.13 65.87 72.14 67.20 34.0 74.43 69.46 35.12 57.42
Perplexity 38.14 53.11 62.14 58.92 38.4 67.19 62.12 59.04 54.88
Slice-GPT 41.64 73.27 75.75 67.35 39.6 77.15 70.56 48.74 61.76

Accuracy (Ours) 49.57 74.96 84.04 71.53 44 79.06 73.8 62.97 67.49

generalization performance across standard benchmarks. We applied our accuracy-based score iter-
atively to prune LLaMA3-8B (Grattafiori et al., 2024), selected for its use in prior state-of-the-art
pruning work (Zhang et al., 2024b). We also replicated the experiment on Mistral-7B (Jiang et al.,
2023) and evaluated one-shot pruning (see Appendix E.3).

Our method was benchmarked against leading pruning techniques, including: Taylor approxima-
tions (Kim et al., 2024; Ma et al., 2023), cosine similarity (He et al., 2024; Men et al., 2024; Gro-
mov et al., 2024), output-based metrics (e.g., output cosine similarity, norm similarity, divergence
similarity) (Zhang et al., 2024b; Yang et al., 2024a; Sieberling et al., 2024), and perplexity-based
relevance (Kim et al., 2024; Zhong et al., 2024; Song et al., 2024).

To ensure fair comparison, all methods pruned the same layer types using identical calibration data,
removing up to 25% of the model. Metrics were recomputed after each pruning step. We also
included SlideGPT (Ashkboos et al., 2024), which reduces layer size rather than removing entire
layers; we matched its pruning ratio to 25%. No healing or postprocessing was applied, as our focus
was on evaluating the effectiveness of the relevance metric itself.

We assessed performance across eight widely used benchmarks: ARC-Challenge (Clark et al.,
2018), ARC-Easy (Clark et al., 2018), BoolQ (Clark et al., 2019a), HellaSwag (Zellers et al., 2019),
PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al., 2018), Winogrande (Sakaguchi et al.,
2021), and MMLU (Hendrycks et al., 2020). These span a range of reasoning and knowledge tasks,
each with a train/test split. Implementation details are provided in Appendix E.1.

We first report task-dependent results, where the goal is to optimize performance for a specific task.
Each model was pruned using the corresponding training set as calibration data and evaluated on
the test set. Table 1 presents results for LLaMA3-8B. Our accuracy-based score consistently outper-
formed all baselines and, in some cases, even surpassed the unpruned model. Similar trends were
observed with Mistral-7B (see Appendix E.2). These findings indicate that our score can effectively
prune pre-trained LLMs when the deployment task is known. For example, if a lightweight model is
needed for math problem solving, our score identifies and removes layers unrelated to that domain.
While this may reduce performance on unrelated tasks (e.g., poetry generation), such trade-offs are
acceptable when the goal is task-specific efficiency.

We now turn to the task-independent setting, where the objective is to prune a pre-trained LLM
while preserving performance across a diverse set of tasks. In this context, we observed that the
effectiveness of our accuracy-based score is highly sensitive to the choice of calibration set.

Table 2 reports results for LLaMA3-8B using a calibration set composed of 10% of the training data
from each of the eight benchmarks. Under this configuration, our method outperforms all baselines,
yielding a pruned model that achieves the highest average performance across tasks. However, when
the calibration set is restricted to a single benchmark, performance varies significantly (as shown in
Appendix E.5) while cosine similarity remains stable at ≈ 60%, regardless of the calibration set.

To further examine our model’s sensitivity to the choice of calibration set, the last two rows of
Table 2 report its task-independent performance when pruned using two different calibration sets:
ARC-E and C4. First, pruning with ARC-E yields strong performance across most tasks, indicating

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Task-independent results for LLaMA3-8B across multiple tasks. Each pruning method uses
the same calibration dataset to prune 25% of the model once, which is then evaluated on all tasks.

Method Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Original 53.16 81.02 82.02 78.94 44.8 81.28 73.56 65.11 69.99

Taylor 45.39 67.97 61.31 62.73 41.4 76.55 68.11 25.03 56.06
Cosine Similarity 43.6 66.96 75.53 69.35 36.2 73.23 71.82 44.07 60.1
Out. Cosine-Sim 40.61 65.78 67.58 64.6 36.2 75.3 69.51 30.16 56.22
Out. Norm-Sim 37.88 65.32 57.77 61.73 39.6 74.86 65.43 26.5 53.64
Out. Divergence-Sim 39.51 64.39 64.8 64.37 34.2 73.83 68.59 33.5 55.4
Perplexity 31.83 48.95 59.27 48.01 30.5 66.76 61.88 29.31 47.06
Slice-GPT 41.16 70.28 77.49 61.19 36.8 73.66 62.66 45.03 58.53

Accuracy (Ours) 47.35 71.68 78.38 73.41 43.8 76.55 71.11 58.04 65.04

Accuracy (Arc-E) 51.37 74.96 66.94 73.62 43.6 78.51 71.59 44.82 63.18
Accuracy (C4) 36.69 56.52 53.36 60.16 33.8 72.63 60.14 28.5 50.23

that layer relevance derived from one task can generalize effectively to others. Second, pruning with
C4 demonstrates the opposite effect: task-specific relevance can severely degrade performance on
unrelated tasks. Finally, certain tasks remain difficult to generalize to. In particular, BoolQ and
MMLU exhibit relevance patterns that differ substantially from the rest, such that strong perfor-
mance was only achievable when incorporating part of their training data during pruning. Overall,
these findings reinforce a key observation of our work: layer relevance is inherently task-dependent.

An important direction for future work is to understand what properties a calibration set should
possess to enable strong task-independent performance. Our observations suggest that accuracy
improves when the calibration set includes a diverse mix of data—for example, sampling approx-
imately 10% from the training sets of multiple benchmarks. We also find that certain tasks, such
as ARC-E, exhibit layer relevance patterns that align well with many other tasks. However, the
underlying reasons for this consistency remain unclear and warrant further investigation.

6.1 COMPUTATIONAL COST COMPARISON

As discussed in Section 4, cosine similarity has clear limitations as a measure of layer relevance.
Its primary advantage, however, is speed. Computing layer relevance via cosine similarity is highly
efficient: let N denote the number of layers and T the number of instances in the calibration set.
Cosine similarity requires only T forward passes to compute relevance for all layers. In contrast, our
accuracy-based score requires N × T forward passes, output-based methods require (N + 1) × T
forward passes, and Taylor approximations require T forward and T backward passes.

Table 3 illustrates this trade-off by reporting the time required to prune 25% of LLaMA-3-8B. As
shown, cosine similarity is by far the fastest—requiring only a few minutes to prune 25% of the
model. Our accuracy-based method averages 4.6 hours, which is similar to other baselines. How-
ever, our method consistently produces pruned models with superior performance.

Reducing the computational cost of our metric is a key direction for future work, particularly for
larger models. Using our current (naı̈ve) implementation, we estimate that pruning 50% of LLaMA-
3-70B would take between 8.5 days with C4 and 1.1 days with CodeAlpaca—using two NVIDIA
H100 GPUs. These estimates represent worst-case scenarios, as we have not yet fully exploited
parallelization. Further details are provided in Appendix E.6.

Moreover, our iterative pruning strategy is inherently suboptimal. At present, we employ a greedy
approach: we compute each layer’s relevance, prune the least relevant layer, and then recompute
relevance scores before proceeding to the next pruning step. However, identifying the optimal com-
bination of n layers to remove would require a search-based method—such as A∗—capable of back-
tracking and considering cases where removing a seemingly suboptimal layer might lead to better
overall performance later. Unfortunately, even our current greedy procedure is computationally ex-
pensive, making exhaustive search for the optimal set of n layers infeasible. Nevertheless, if we
could accelerate the evaluation (or estimation) of accuracy-based relevance, it would open the door
to exploring how much performance could be gained by finding truly optimal pruning combinations.
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Table 3: End-to-end runtime for pruning 25% of LLaMA-3-8B on NVIDIA L40s GPU.

Accuracy Cos. Sim. Perplexity Out. Cos Out. Norm Out. Div Taylor

C4 7.70 hrs 9.54 min 7.71 hrs 8.08 hrs 7.98 hrs 8.08 hrs 11.30 hrs
LIMA 6.46 hrs 14.45 min 6.38 hrs 6.62 hrs 6.65 hrs 6.83 hrs 14.17 hrs
MathInstruct 3.16 hrs 7.01 min 3.30 hrs 3.22 hrs 3.29 hrs 3.31 hrs 8.45 hrs
CodeAlpaca 1.06 hrs 3.55 min 1.08 hrs 1.12 hrs 1.11 hrs 1.12 hrs 7.59 hrs

Mean 4.60 hrs 8.64 min 4.62 hrs 4.76 hrs 4.76 hrs 4.83 hrs 10.37 hrs
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Figure 6: Impact of healing (dark colors) after pruning (light colors) across varying pruning ratios.

6.2 RESULTS OF PRUNING WITH HEALING

Recent work has introduced a healing phase after pruning (e.g., Sun et al., 2023; Gromov et al.,
2024; Song et al., 2024; Kim et al., 2024). This phase fine-tunes the pruned model for a few steps,
aiming to mitigate distributional mismatches across layers caused by pruning. In this section, we
examine whether healing complements our accuracy-based pruning approach.

Figure 6 shows task-dependent pruning results with and without healing. Scores are normalized:
100 indicates perfect performance, 0 a random predictor. When pruning 25% of layers, performance
after healing is nearly invariant to the pruning strategy. In fact, a random baseline—removing 25% of
layers at random (averaged over five seeds)—performs competitively after healing. In other words,
for small pruning ratios, healing largely neutralizes differences between pruning methods. Still,
accuracy-based pruning combined with healing slightly outperforms cosine similarity (60.5% vs.
59.6% normalized average). At 50% pruning, the gap widens: accuracy-based + healing achieves
42.2% normalized performance, compared to 31.2% for cosine similarity and 20.5% for random.
At 75% pruning, all methods degrade severely, yet accuracy-based pruning remains superior (12.2%
vs. 9.3% for cosine similarity and 9.4% for random).

Implementation details are provided in Appendix E.7. In brief, we fine-tuned using LoRA for up to
10 epochs, reporting the best performance across epochs (full curves appear in Appendix E.7). Ten
epochs are sufficient for all methods to exhibit signs of overfitting. While early stopping relied on the
test set—ideally, a validation set should be used—this does not alter the main conclusion: healing
substantially reduces differences between pruning strategies at low pruning ratios, yet accuracy-
based pruning consistently achieves the best performance as pruning becomes more aggressive.

7 CONCLUSION

In this paper, we challenged the common use of cosine similarity as a proxy for layer relevance
in LLMs, showing through theory and experiments that it often misrepresents true importance. To
address this, we propose an accuracy-based relevance metric that directly measures performance
impact, offering a more faithful view of layer significance. Beyond interpretability, this metric
enables superior structured pruning, outperforming existing methods in both task-dependent and
task-independent settings. Our findings call for a shift toward performance-grounded evaluations to
better understand model internals and design more effective pruning strategies.
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A RELATED WORK (EXTENDED VERSION)

A.1 UNDERSTANDING TRANSFORMER INTERNALS

The question of how Transformer models represent and process information was first explored in
depth with BERT (Devlin et al., 2019). Early studies revealed that BERT captures structural prop-
erties of language across its layers. Lower layers focus on phrase-level and surface features, while
intermediate layers encode a rich hierarchy of linguistic information—starting with syntactic struc-
tures and transitioning to semantic representations at higher layers (Jawahar et al., 2019). Addi-
tionally, some attention heads within BERT specialize in specific linguistic tasks, such as syntactic
parsing and coreference resolution, aligning with traditional linguistic notions (Clark et al., 2019b).
These findings provided initial insights into how Transformer-based models organize knowledge,
setting the stage for broader investigations into their internal mechanisms.

Recent studies have further refined our understanding of how Transformers encode and manipulate
information. Feed-forward (FF) layers function as key-value memory systems, storing patterns from
training and influencing the model’s output distribution (Geva et al., 2020). This structured memory
is particularly important for factual recall, as knowledge is primarily stored in the FF layers of middle
blocks (Meng et al., 2022). Meanwhile, attention layers propagate and retrieve stored information,
dynamically integrating relevant associations for prediction (Geva et al., 2023).

Beyond factual recall, Transformers encode abstract and structured representations. They capture
spatiotemporal relationships in text (Gurnee & Tegmark, 2023) and implement a depth-bounded
recurrent mechanism that stores intermediate results at selected token positions (Brinkmann et al.,
2024). Additionally, high-level concepts such as sentiment are encoded in linear activation structures
(Tigges et al., 2023), highlighting the model’s ability to organize information hierarchically.

Another line of research suggests that certain Transformer layers contribute little to the model’s final
prediction. By analyzing how probability distributions evolve across blocks, researchers observed
that in many cases, a model’s prediction stabilizes early—once a token becomes the most probable,
it remains unchanged until the final layer. These stabilization points, known as saturation events,
suggest that the model’s later layers primarily refine rather than reshape its output (Geva et al.,
2022). Further studies confirmed that even lower-ranked tokens follow the same pattern once the
top-1 prediction stabilizes (Lioubashevski et al., 2024). Moreover, experimental evidence shows that
middle blocks can be removed or swapped with minimal impact on performance (Sun et al., 2024).

These findings have led to the prevailing belief that some Transformer blocks are inherently unim-
portant. In this work, we revisited this assumption by showing that a block’s relevance can vary
significantly depending on the task—suggesting that global conclusions about importance may over-
look task-specific dynamics.

A.2 MEASURING BLOCK RELEVANCE

Most research on measuring block relevance has been conducted in the context of structured pruning
(Men et al., 2024; Gromov et al., 2024; He et al., 2024; Kim et al., 2024; Ma et al., 2023; Zhang
et al., 2024b; Yang et al., 2024a; Sieberling et al., 2024). The goal is to remove the least relevant
blocks while preserving model performance, which has led to the development of several techniques
for estimating a block’s importance.

A foundational but now outdated approach is magnitude-based pruning, which removes blocks based
on their parameter magnitudes. While widely used for individual weight pruning (Li et al., 2016),
this method proved too simplistic at the block level. Still, it served as a useful baseline in the early
development of structured pruning techniques.

More recent work has focused on proxy-based relevance scores that analyze how much a block
transforms its input. One popular class of methods uses cosine similarity between a block’s input
and output, assuming that low transformation implies low relevance (Men et al., 2024; Gromov et al.,
2024; He et al., 2024). Other studies rely on Taylor expansion techniques to estimate the change in
loss when a weight or block is removed, providing a more gradient-informed view of importance
(Kim et al., 2024; Ma et al., 2023).
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Another set of methods evaluates relevance by comparing the pruned model’s output to the original
model’s, using metrics like cosine similarity, norm differences, and divergence-based measures.
Zhang et al. (2024b), for example, employ Jensen-Shannon divergence to guide pruning and achieve
state-of-the-art results. Follow-up work builds on this idea using KL divergence, a closely related
metric: Yang et al. (2024a) apply it as part of a multi-step strategy to create smaller models tailored
to code generation, while Sieberling et al. (2024) combine it with a novel selection algorithm that
prunes blocks jointly rather than iteratively.

Perplexity-based metrics are also used, especially in language modeling, where blocks are consid-
ered irrelevant if their removal does not significantly increase perplexity (Kim et al., 2024; Zhong
et al., 2024; Song et al., 2024). Beyond pruning-specific methods, some studies draw on game-
theoretic tools, such as approximations of Shapley values, to assess a block’s contribution to the
model’s output in a more theoretically grounded way (Zhang et al., 2024a; Siddiqui et al., 2024).

While most pruning research focuses on overall effectiveness, few works ask whether a block’s
relevance remains stable as the model is progressively pruned. He et al. (2024) and Lu et al. (2024),
for instance, compare one-shot pruning—where relevance scores are computed a single time and
used to select all blocks to prune—with iterative pruning, where relevance is recalculated and re-
ranked after each pruning step. Their findings suggest that one-shot pruning can match or even
outperform iterative pruning for structured sparsity. However, their analyses center on end-task
accuracy rather than how relevance itself shifts during the process. This leaves an important question
unanswered: Does pruning change block relevance? A question that we answered in Section C.5.

While most methods rely on a single calibration dataset to assess relevance, some recent studies have
started exploring the generalizability of relevance scores across datasets. He et al. (2024) found that
relevance maps computed via cosine similarity appear largely consistent across datasets, leading
them to conclude that certain layers may be universally important or unimportant. This perceived
dataset-agnostic behavior motivated their decision to use a single calibration dataset throughout
their experiments. Their findings also connect to saturation-based analyses (Geva et al., 2022; Li-
oubashevski et al., 2024), which similarly suggest that once a model’s prediction stabilizes, later
computations may be less critical.

We took He et al. (2024) as our primary baseline because they provide one of the few systematic
attempts to visualize and quantify block relevance across tasks. Their heatmaps offered a clear
point of comparison for our own cross-task analysis, which was built on their setup but replaces
similarity-based relevance with a task-grounded, accuracy-based metric.

B PROOF OF THEOREM 1

B.1 AUXILIARY RESULT

Before proving Theorem 1, let’s first prove the following theorem:

Theorem 2 For any ϵ > 0 and unlabeled calibration dataset D = {s(i)}Ni=1, there exists a decoder-
only Transformer fL with L ≥ 3 and a labeling function L : D → {0, 1} satisfying the following
conditions:

1. There exists an intermediate layer l ∈ {1, . . . , L − 2} such that CosSimScore(l;D) = ϵ,
and CosSimScore(i;D) > ϵ for all i ̸= l.

2. The full model achieves perfect accuracy: fL(s(i)) = L(s(i)) for all s(i) ∈ D, but removing
layer l causes the model’s accuracy to drop to zero: fL

−l(s
(i)) ̸= L(s(i)) for all s(i) ∈ D.

This result can be viewed as a simplified version of Theorem 1, where the labeling function is binary
and freely chosen, rather than being fixed by the dataset D.

Let E(s(i)) = X(0,i) denote the embedding of a sequence s(i), where X(l,i) ∈ Rn×d, with n the
number of tokens and d the hidden dimension. The transformation at block l is given by

X(l+1,i) = X(l,i) + f
(
X(l,i);θ(l)

)
.
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A decoder-only transformer with L blocks is then

fL(s(i)) = U

(
E(s(i)) +

L−1∑
l=0

f
(
X(l,i);θ(l)

))
,

where U(·) denotes the final transformation applied to the output of the last block (e.g., an unem-
bedding layer for next-token prediction or a classification head).

We also define the model obtained by removing block l, denoted fL
−l. In this case, the hidden state

X(l−1) is directly connected to block l + 1, bypassing block l. Formally,

fL
−l(s

(i)) = U

E(s(i)) +

L−1∑
k=0
k ̸=l

f
(
X(k,i);θ(k)

) ,

with the convention that

X(l+1,i) = X(l−1,i) + f
(
X(l−1,i);θ(l−1)

)
for the pruned model.

Let 1n denote the column vector of size n with all entries equal to one, and 0n the zero vector of the
same size.

Consider the embedding function

E(si) = [0n(i) δ · 1n(i) 0n(i) ] , ∀s(i) ∈ D,

with hidden dimension d = 3 and δ > 0. Thus, every token in the vocabulary has the same
embedding.

Define the labeling function L(s(i)) = 0 for all s(i) ∈ D, i.e., all sentences belong to the same class.
The final transformation is a standard classification head

U(X) = argmax
j∈{0,1}

softmax
[
Xn(i)WU

]
j
,

where Xn(i) is the representation of the last token, and

WU =

[
1 0
0 1
0 0

]
.

We now construct three blocks as follows (with M ≫ 1):

X(1,i) = X(0,i) + [0n(i) 0n(i) M · 1n(i) ] ,

X(2,i) = X(1,i) + [δ · 1n(i) 0n(i) 0n(i) ] ,

X(3,i) = X(2,i) + [δM · 1n(i) 0n(i) −M · 1n(i) ] .

Each Transformer block contains a feed-forward network of the form

FFN(X) = ReLU(XW1 + 1nb
⊤
1 )W2 + 1nb

⊤
2 ,

where W1,W2 ∈ Rd×d and b1, b2 ∈ Rd. Note that the bias vectors are written as 1nb
⊤ so that

dimensions match for sequence length n.

To enforce that the multi-head attention does not modify the representation, we set its output to zero,
so that the residual connection yields the identity mapping.

For the FFN, we choose W1 = I , W2 = I , and b1 = 0, so the residual effect comes only from b2.
Specifically:

• In Block 1, set b2 = (0, 0,M)⊤ to add M in the third coordinate.
• In Block 2, set b2 = (δ, 0, 0)⊤ to add δ in the first coordinate.
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• In Block 3, we instead choose

W2 =

[
M 0 0
0 0 0
0 0 0

]
, b2 = (0, 0,−M)⊤,

so that the FFN contributes the transformation

[δM · 1n(i) 0n(i) −M · 1n(i) ] .

With this construction, the model output is

f3(s(i)) = U([δ(M + 1) · 1n(i) δ · 1n(i) 0n(i) ]) = 0 = L(si),

while pruning the second block yields

f3
−1(s

(i)) = U([0n(i) δ · 1n(i) 0n(i) ]) = 1 ̸= L(si).

Finally, we compute the cosine-similarity scores:

CosSimScore(0;D) = 1− δ√
δ2 +M2

,

CosSimScore(1;D) = 1−
√
δ2 +M2

√
2δ2 +M2

,

CosSimScore(2;D) = 1− δ(M + 1)√
2δ2 +M2

√
1 +M2

.

As M → ∞, we obtain

CosSimScore(0;D) → 1, CosSimScore(1;D) → 0, CosSimScore(2;D) → 1.

Thus, by choosing appropriate values of M and δ, we can ensure

CosSimScore(1;D) = ϵ,

which completes the proof for Theorem 2.

It is also worth noting that this argument can be extended to multiple dimensions that do not affect
the task, rather than relying on a single one. In this way, instead of requiring a large value of M , we
can use several smaller dimensions M1, M2, ..., Md.

Finally, one might worry that this construction would fail in practice because each block also in-
cludes a LayerNorm operation applied after the residual aggregation. However, in our setup every
row of X(l) is identical, so each token representation has the same mean and variance at every step.
Consequently, the effect of LayerNorm is deterministic and can be exactly canceled out by choosing
the LayerNorm parameters (γ, β) appropriately. In particular, setting γ and β to rescale and shift
the normalized vectors recovers the pre-normalized representation, ensuring that LayerNorm does
not alter the intended behavior of the construction.

B.2 GENERAL CASE

We first show that a decoder-only Transformer can trivially overfit any labeled calibration dataset
D = {(s(i), y(i))}Ni=1, where s(i) ̸= s(j) for i ̸= j and y(i) ∈ {0, . . . , C − 1}.

Suppose that the tokenizer assigns one token to each sequence s(i). Define an embedding function
E(·) such that

E(s(i)) = X(i) ∈ R1×C .

If we let
E(s(i)) = (e(y

(i)+1))⊤,

where e(j) is the j-th standard basis vector in RC , then the classification head

U(X) = argmax
j∈{0,...,C−1}

softmax
[
XWU

]
j
,
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with

WU =

(e
(1))⊤

...
(e(C))⊤

 ,

perfectly classifies the dataset, i.e. f(s(i)) = y(i). Thus, the model can memorize the dataset without
any Transformer blocks, using only embeddings and the unembedding.

We now extend this idea to construct a model satisfying the conditions of Theorem 1. Let the hidden
dimension be d = 2C + 1. Define the embedding as

E(s(i)) = δ · (e(C+y(i)+2))⊤ ∈ Rd,

so that each input is mapped into a unique coordinate among the last C dimensions (beyond the first
C + 1).

We construct three Transformer blocks as follows (with M ≫ 1):

• Block 1. Adds M to coordinate C + 1:

X(1,i) = X(0,i) +M · e(C+1).

• Block 2. Adds δ · e(y(i)+1), i.e. a one-hot signal in the first C coordinates corresponding to
the correct class:

X(2,i) = X(1,i) + δ · e(y
(i)+1).

• Block 3. Amplifies the signal in the first C coordinates by (M − δ), subtracts M from
coordinate C + 1, and adds a misleading one-hot vector from the last C dimensions:

X(3,i) = X(2,i) + (M − δ) · e(y
(i)+1) −M · e(C+1) + δ · e(C−y(i)).

As in the proof of Theorem 2, we ensure that multi-head attention acts as the identity by setting its
output projection WO = 0, and we use the feed-forward networks with suitable (W1,W2, b1, b2)
to realize the desired additive transformations.

After the three blocks, the first C coordinates of X(3,i) are dominated by (M − δ+ δ) · e(y(i)+1) =

M ·e(y(i)+1), while the misleading additions are suppressed. Thus, the classifier U correctly outputs
y(i) for all i, and the model achieves perfect accuracy.

However, if Block 2 is removed, then the model never inserts the signal in the first C coordinates.
Block 3 then only contributes spurious information, and the classification head produces incorrect
labels for all samples. Therefore, the pruned model fails completely.

Finally, as in Theorem 2, we compute the cosine similarity scores for each block. By taking M → ∞
and choosing δ appropriately, we ensure that Block 2 attains CosSimScore(l;D) = ϵ, while the
others approach 1. Thus, the theorem follows.

Two final remarks are worth noting. First, if the number of classes C is odd, the pruned model may
not achieve zero accuracy. Specifically, instances assigned to class C−1

2 will be classified correctly,
as the misleading signal coincides with the correct label. This issue is trivial to resolve by adjusting
the label assignment or class structure.

Second, as in the proof of Theorem 2, the presence of normalization layers does not invalidate the
construction. This is because the mean and variance of each token representation within a block
remain constant across instances, ensuring that normalization does not interfere with the mechanism
underlying the proof.

C FURTHER ANALYSIS ABOUT RELEVANCE CONSISTENCY ACROSS
DATASETS

In this section we go deeper in the analysis done in Section 5.1, about the work from He et al. (2024).
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C.1 IMPLEMENTATION DETAILS

All experiments were conducted on pre-trained models, using code based on the EleutherAI LM
Evaluation Harness (Gao et al., 2024) for our accuracy-based scores. We used a batch size of 4 and
ran evaluations on NVIDIA RTX A6000 and RTX 4090 GPUs.

To compute cosine similarity relevance scores, we used the same hardware and followed the method-
ology introduced in Section 3, based on the implementation from He et al. (2024). Each sample in
this method is a full input sequence matching the model’s context length (e.g., 4096 tokens for
Mistral-7B), constructed by concatenating multiple dataset instances until the required token length
is reached. Because instance lengths vary across datasets, the number of instances per sample also
varies. Following He et al. (2024), we use 256 such samples per dataset for C4, LIMA, CodeAlpaca,
and MathInstruct.

For fairness, we used the same dataset instances to compute our accuracy-based relevance scores.
However, unlike cosine similarity, we did not concatenate instances into long sequences. Instead,
we evaluated next-token prediction at the instance level, computing accuracy on the last token of
each instance. Thus, while the underlying data is shared, the two metrics differ in their evaluation
granularity.

For the remaining datasets, we used the training split associated with each task and modified the
input format used during relevance scoring to compute cosine similarity scores. Specifically, instead
of generating full answer phrases, we presented all answer options explicitly (e.g., “A”, “B”, “C”,
“D”) within the prompt and computed the probability of generating only the correct option token.
This adjustment was necessary to ensure the model received all relevant information required for
task evaluation. In contrast, no such modification was needed for our accuracy-based metric, as we
followed standard LM evaluation protocols for multiple-choice tasks.

Following these protocols (Gao et al., 2024), we constructed input prompts by concatenating the
context, question, and each answer option individually. For each example, we computed the total
log-probability of the full prompt associated with each option and selected the one with the highest
value. We report normalized accuracy, which adjusts log-probabilities for option length to ensure
fairness between longer and shorter candidates. A prediction is counted as correct if the selected
option matches the gold label.

C.2 NORMALIZATION DETAILS

To complement our block relevance visualizations and quantify how our accuracy-based score cap-
tures more variation across datasets than cosine similarity, we compute the variance in relevance
across tasks for both methods. For each model and method, we first apply z-score normalization
to the block relevance scores, then calculate the variance across datasets for each of the 32 lay-
ers—yielding 32 variance values per model-method combination. In Figure 5, we report the mean
variance and standard deviation error bars for each model and method.

C.3 WILCOXON SIGNED-RANK TEST

When comparing our accuracy-based relevance to cosine similarity, we found significantly higher
variance using our metric. In fact, the Wilcoxon signed-rank test (Wilcoxon, 1992) resulted in the
following values: p-value = 1.7e-7, W-value = 20 for Mistral; p-value = 8.8e-9, W-value = 7 for
OLMo; and p-value = 4.6e-10, W-value = 0 for Pythia, respectively.

C.4 RELEVANCE DURING TRAINING

Block relevance patterns evolve during training, but in markedly different ways depending on the
metric. Our accuracy-based metric (Figures 7A and 7B) displays a chaotic behavior through train-
ing, with some blocks gaining or losing relevance between checkpoints without following smooth
trends. While certain blocks in OLMo tend to increase in relevance, these changes are rarely mono-
tonic. This fluctuation suggests that blocks may take on transient, adaptive roles throughout train-
ing—dynamics that cosine similarity tends to obscure.
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Cosine similarity (Figures 7C and 7D) reveals consistent patterns across models. For both models,
most blocks either maintain their relevance scores or gradually increase throughout training. This
suggests that some blocks increasingly modify their inputs as training progresses. However, it’s
important to note that this does not necessarily reflect how much each block contributes to the
model’s output.

Figures 8, 9 and 10 present the results on CodeAlpaca, C4 and LIMA, respectively, using OLMo. As
with MathInstruct, the cosine similarity-based relevance (bottom figures) produces nearly identical
heatmaps across datasets, reinforcing the metric’s stability and dataset-agnostic nature. Interestingly,
we also find a pattern not discussed in prior work—block 2 shows a non-monotonic trajectory where
its relevance increases at early stages and later decreases, a pattern that could be studied in future
works.

In contrast, the accuracy-based relevance (top figures) continues to show less consistent and less
interpretable patterns. While some blocks exhibit periods of increased or decreased relevance, there
are no clear, sustained trends comparable to those seen with cosine similarity.

Figures 11 to 13 show the results for the same experiment, but with Pythia on the same four datasets
used in previous sections. Unlike the OLMo figures, we apply a separate color scale for block 1
in the cosine similarity plots (bottom figures) for all Pythia figures. This is necessary because the
relevance values of the first block are significantly higher than the rest—using a single color scale
would make differences between blocks 2 to 31 nearly invisible.

As with OLMo, cosine similarity yields nearly identical relevance patterns across datasets, rein-
forcing the observation that this metric is largely insensitive to the specific task. However, a new
behavior emerges in Pythia: some blocks show an initial drop in relevance between the first and
second checkpoints, but then stabilize or fluctuate rather than continue decreasing. This, along with
the unusual pattern in block 2 in OLMo, suggests that certain relevance dynamics may be model-
specific. More precisely, we suspect they may be seed-specific: different initializations of the same
model trained on the same data could produce distinct relevance trajectories.

In contrast, our accuracy-based metric continues to show no clear, smooth patterns across training
steps, and exhibits noticeable differences between datasets. One particularly interesting finding is
that blocks 17 to 31 appear nearly irrelevant under cosine similarity for all datasets—yet our method
shows that pruning some of these blocks can significantly hurt performance. This further illustrates
that cosine similarity can miss important functional contributions of blocks, reinforcing the need for
task-aware relevance measures.

Finally, through our experiments, we do not observe a clear relationship between block relevance
patterns and the model’s accuracy gains throughout training for either metric. In other words,
changes in block relevance do not directly correlate with improvements in overall performance,
highlighting the complexity of the internal dynamics involved during model learning.

Figure 7: Block relevance during training in OLMo (left) and Pythia (right) on the MathInstruct
dataset. A, each row corresponds to a model checkpoint trained on a given number of tokens in
billions (OLMo) or train iterations in millions (Pythia on B), with accuracy reported on the y-axis.
A, B, Accuracy-based score. C, D, Cosine-similarity score.
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Figure 8: Block relevance during training in OLMo on the CodeAlpaca dataset. Each row corre-
sponds to a model checkpoint trained on a given number of tokens in billions (shown on the y-axis),
with accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity
score.

Figure 9: Block relevance during training in OLMo on the C4 dataset. Each row corresponds to
a model checkpoint trained on a given number of tokens in billions (shown on the y-axis), with
accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity score.
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Figure 10: Block relevance during training in OLMo on the LIMA dataset. Each row corresponds
to a model checkpoint trained on a given number of tokens in billions (shown on the y-axis), with
accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity score.

Figure 11: Block relevance during training in Pythia on the CodeAlpaca dataset. Each row cor-
responds to a model checkpoint trained with a given number of iterations in thousand (shown on
the y-axis), with accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-
similarity score.
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Figure 12: Block relevance during training in Pythia on the C4 dataset. Each row corresponds to a
model checkpoint trained with a given number of iterations in thousand (shown on the y-axis), with
accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity score.

Figure 13: Block relevance during training in Pythia on the LIMA dataset. Each row corresponds
to a model checkpoint trained with a given number of iterations in thousand (shown on the y-axis),
with accuracy reported in parentheses. (Top) Accuracy-based score. (Bottom) Cosine-similarity
score.
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Figure 14: Block relevance on Mistral in MathInstruct (left) and CodeAlpaca (right) as blocks are
iteratively pruned. A, at each row the least relevant block, according to the Accuracy-based score
of Mistral on MathInstruct, is removed and shown with a gray cross. The accuracy of the pruned
model is shown on the right. B, the same on CodeAlpaca. C, D, using cosine-similarity score.

C.5 RELEVANCE DURING PRUNING

Pruning significantly changes block relevance—especially under our accuracy-based metric. As
model blocks are pruned, we observe that certain blocks increase in importance while others be-
come less critical. These shifts reveal that accuracy-based relevance captures latent dependencies
and compensatory dynamics between layers. To better understand how these shifts in relevance
emerge, we performed iterative structured pruning on Mistral-7B. At each step, we (1) compute
block relevance using either our accuracy-based method or cosine similarity, (2) remove the least
relevant block, and (3) repeat steps one and two until 25% of blocks are pruned. Figure 14 shows
results for MathInstruct and CodeAlpaca, while Figure 15 and Figure 16 show results for C4 and
LIMA respectivelly. The figures also report the accuracy for the same dataset used for pruning.

Pruning using the accuracy-based score (Figures 14A and 14B) reveals complex dynamics. First,
after pruning a block, earlier (closer to the input) and/or later (closer to the output) blocks can
gain relevance. For example, in MathInstruct (Figure 14A), block 17—initially of moderate impor-
tance—becomes highly relevant once later blocks are removed, suggesting that pruning can reassign
or expose latent functional roles. Second, blocks with negative relevance (green blocks) become
neutral or positive after pruning. For example, in the first row of Figure 14A, several green blocks
change behavior after pruning block 23, implying that they were not inherently harmful but instead
interacted negatively with it. Third, blocks with high relevance decreased their value after pruning.
For example, we observe that block 31 becomes less relevant after block 23 is removed, which we
speculate reflects a compensatory role—block 31 may have been mitigating the detrimental effects
of block 23, a pattern aligning with prior findings on corrective behavior (Geva et al., 2022). These
examples suggest that our metric can be a tool to study the inner workings of transformers.

As expected, when pruning using our method, we observed differences in relevance at the dataset
level. In MathInstruct, pruning blocks triggers sharp shifts in relevance, while in CodeAlpaca, the
relevance landscape remains relatively stable in the early pruning steps. Notably, CodeAlpaca lacks
negatively relevant blocks at initialization, suggesting less redundancy or a more uniform functional
distribution, among other possible explanations. This phenomenon opens new avenues for research.

On the other hand, under cosine similarity (Figures 14C and 14D), we observe that relevance
changes after pruning are generally local and limited. Only the later blocks of the network, those po-
sitioned after the pruned block, display relevance changes according to this measure. For instance,
in MathInstruct, pruning block 27 results in slight increases of cosine-similarity score in later blocks,
while earlier blocks remain unaffected. Even though one might expect this behavior given the local
nature of the metric, this explanation is only partially correct. Since cosine similarity is computed
locally, only blocks following the pruned one can exhibit changes in relevance. Mathematically,
these changes could be either increases or decreases; however, in practice we observe only increases
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Figure 15: Block relevance in Mistral on the C4 dataset as layers are incrementally pruned. In each
row, the least relevant block (according to the corresponding metric) is removed and shown with a
gray cross. The accuracy of the pruned model is shown in parentheses. (Top) Accuracy-based score.
(Bottom) Cosine-similarity score.

When using accuracy-based relevance, iterative pruning produces a different model compared to
one-shot pruning, which removes all least-relevant blocks simultaneously based on initial relevance
scores. As shown in Figure 14, our metric reveals that block relevance changes significantly after
each pruning step, with new dependencies and compensatory patterns emerging across layers. For
example, under one-shot pruning, blocks 16, 19, 21, 23, 26, 27, 28, and 29 would be removed from
Mistral (Figure 14A first row); in this case, the pruned model would exhibit an accuracy of 0.22
(data not shown). In contrast, based on iterative pruning, we removed different blocks, resulting in a
pruned model accuracy of 0.44. Our results indicate that one-shot pruning may not be suitable when
employing accuracy-based relevance. In contrast, cosine similarity yields nearly identical results
for both one-shot and iterative pruning since relevance scores remain largely stable throughout the
pruning steps.

Regarding C4 and LIMA datasets. We observe similar patterns to those previously discussed: our
accuracy-based relevance scores reveal richer dynamics than cosine similarity.

With the accuracy-based metric, we see both increases and decreases in relevance as pruning pro-
gresses. In rare cases, such as block 1, relevance remains stable throughout. In contrast, cosine sim-
ilarity mostly shows increasing relevance in blocks that follow the pruned one, while other blocks
remain largely unaffected.

An interesting pattern emerges in both C4 and LIMA: block 20 consistently increases in relevance
under our metric. This may suggest a shared functional role between these two tasks, though it may
also be coincidental. A deeper investigation into this connection would be valuable.

Regarding the comparison between one-shot and iterative pruning, we noted that the two approaches
often select different sets of blocks for removal. However, the reasons for these divergences differ
depending on the relevance metric.

For cosine similarity (Figures 14C and 14D), the evolution is mostly predictable. As discussed
earlier, pruning a block tends to increase the similarity scores of subsequent blocks. As a result,
iterative pruning diverges from one-shot pruning primarily when the least relevant block is not one
of the later-positioned layers. For example, in MathInstruct, block 28 initially had low relevance,
but pruning earlier blocks (e.g., block 27) increased its relevance, causing it to be excluded from
later pruning steps. A similar shift happens with block 26. If the initial relevance ordering of blocks
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Figure 16: Block relevance in Mistral on the LIMA dataset as layers are incrementally pruned. In
each row, the least relevant block (according to the corresponding metric) is removed and shown
with a gray cross. The accuracy of the pruned model is shown in parentheses. (Top) Accuracy-
based score. (Bottom) Cosine-similarity score.

21–28 had been strictly decreasing, both pruning methods would have selected the same blocks. The
observed deviations result from small, local shifts in relevance caused by positional effects during
pruning.

C.6 SIZE OF THE CALIBRATION DATASET

To further analyze our metric, we applied it to LLaMA-3-8B using four different datasets: C4,
LIMA, MathInstruct, and CodeAlpaca, each with varying dataset sizes. Figure 17 presents the
results of this experiment. We observe that after using approximately 500 samples, the heatmaps
begin to converge toward the scores computed with 3,000 samples. While some differences remain
noticeable, they are not critical for the overall ranking; in other words, the sets of relevant and
irrelevant blocks remain consistent.

D FURTHER ANALYSIS ABOUT DIFFERENCES BETWEEN TYPE OF TASKS

Figure 18 shows the same results as Figure 2, with the addition of results obtained using cosine sim-
ilarity under an iterative pruning strategy. As discussed in the main paper, the original conclusions
still hold—although the performance drop in HellaSwag is now less abrupt.

It’s also worth noting that there are clear differences between the two ways of applying the cosine
similarity score, which supports our argument that this metric should be used with caution when
making assumptions about the internal mechanisms of Transformer models.

E STRUCTURED PRUNING

E.1 IMPLEMENTATION DETAILS

Since all benchmarks used in our structured pruning experiments are multiple-choice tasks, we fol-
lowed the same protocol and considerations as mentioned in Appendix C.1.
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Figure 17: Block relevance in LLaMA-3-8B across 4 datastes. In each row, we used a different size
of the dataset to compute the metric.
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Figure 18: Evaluation of LLaMA-3-8B under the cosine-similarity pruning strategy of Gromov et al.
(2024) compared with our proposed method and cosine-similarity score with an iterative pruning
strategy.

We evaluate models in a zero-shot setting on all tasks except for MMLU, where we use the five-shot
format commonly adopted in prior work (Zhang et al., 2024b; He et al., 2024).

For Taylor relevance, we implement the element-wise importance formulation from Ma et al. (2023),
using absolute weight–gradient products aggregated via sum—identified as the best-performing
setup in their study. For Cosine Similarity, we follow the approach of He et al. (2024), concate-
nating multiple examples to form long input sequences that align with the model’s context window.
Explained in Appendix C.1.

All models are evaluated using the LM Evaluation Harness (Gao et al., 2024), ensuring consistency
with prior structured pruning work. Experiments were run on NVIDIA RTX A6000 and RTX 4090
GPUs, using a batch size of 4.

E.2 MISTRAL

To assess the generality of our approach across architectures, we replicate the structured pruning
experiment described in the main paper (Section 6) using Mistral-7B. The pruning setup, datasets,
evaluation method, and relevance proxies are identical to those used in the LLaMA3 experiment.

As shown in Table 4, our accuracy-based relevance method consistently outperforms all base-
lines across tasks, confirming its robustness beyond a single model family. However, unlike with
LLaMA3, the task-specific pruned models do not surpass the performance of the unpruned model.
This aligns with observations in prior work (He et al., 2024; Zhang et al., 2024b), which also re-
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Table 4: Accuracy of pruned Mistral-7B models on eight downstream tasks. All methods remove
25% of the layers using task-specific relevance estimates computed from each task’s training set.
Our accuracy-based approach consistently outperforms baselines. Best results per task are in bold.
“Original” refers to the unpruned model.

Methods Arc-C Arc-E BoolQ OBQA HS PIQA WG MMLU

Original 53.67 79.55 83.73 44.4 81.03 82.26 74.27 62.48

Taylor 23.46 29.8 55.72 24.4 32.15 65.94 51.46 24.16
Cosine Similarity 42.41 60.23 66.73 37.4 70.43 73.72 70.48 42.29
Out. Cosine-Sim 38.41 68.39 64.62 37.8 70.82 78.56 61.8 26.69
Out. Norm-Sim 38.41 68.39 66.54 37.8 70.47 78.56 61.96 38.73
Out. Divergence-Sim 32.51 56.99 58.2 34.4 66.97 74.32 59.83 33.41
Perplexity 40.96 59.18 64.86 36.4 62.98 71.71 64.72 57.86

Acc (Ours) 46.42 74.83 82.29 42.4 75.77 80.52 72.46 61.18

Table 5: One-shot structured pruning results on LLaMA3-8B across eight downstream benchmarks.
In this setting, relevance scores are computed once and used to prune 25% of layers in a single
step. While our method occasionally underperforms others in this configuration, it remains highly
competitive overall. Notably, the iterative version of our method consistently outperforms all one-
shot baselines, highlighting the benefits of dynamic relevance estimation.

Method Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU

Original 53.16 81.02 82.02 78.94 44.8 81.28 73.56 65.11

Taylor 33.36 56.14 61.25 56.77 34.8 71.98 54.14 23.64
Cosine Similarity 47.61 68.86 70.4 71.09 39.4 76.39 70.39 35.12
Out. Cosine-Sim 44.8 68.01 56.33 51.19 38.2 73.29 59.19 23.72
Out. Norm-Sim 38.46 65.07 64.65 57.21 37.6 72.86 64.88 23.72
Out. Divergence-Sim 42.46 56.44 70.34 66.36 32.4 71.16 67.96 30.12
Perplexity 39.85 57.66 62.42 55.05 37.2 66.81 65.59 59.63

Acc 1-Shot (Ours) 42.24 72.09 52.2 74.49 44.4 79.54 66.93 53.21
Acc Iterative (Ours) 49.57 74.96 84.04 71.53 44 79.06 73.8 62.97

port significant differences between models in the percentage of original performance retained after
pruning.

E.3 ONE-SHOT

To assess how our method performs in a simpler pruning setup, we replicate the main structured
pruning experiment using a one-shot approach. Instead of iteratively updating relevance scores
during pruning, we compute each method’s scores only once, rank the layers accordingly, and prune
the bottom 25% in a single step.

Results are shown in Table 5. While our method occasionally underperforms others in the one-
shot setting (e.g., on BoolQ), the iterative version of our method still outperforms all base-
lines—including one-shot variants—highlighting the benefits of reevaluating relevance dynamically.
This is consistent with our earlier findings in Section C.5, where we showed that block relevance
evolves during pruning.

Interestingly, for a few datasets (e.g., HellaSwag and OpenBookQA), our one-shot variant
marginally outperforms its iterative counterpart. We hypothesize that this may result from domain
shifts between the training and test splits, which can affect our accuracy-based signal. Addition-
ally, selecting the optimal pruning set is ultimately a challenging search problem—one that has been
tackled explicitly in recent works (Sieberling et al., 2024).
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Table 6: Task-independent structured pruning results for LLaMA3-8B across eight downstream
benchmarks. Each pruning method uses the same 1,500-instance calibration dataset to prune the
model once, which is then evaluated on all tasks. Cosine similarity performs best in this setup, while
our accuracy-based method underperforms, likely due to its strong dependency on the calibration
dataset.

Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Original 53.15 81.02 82.02 78.94 44.8 81.28 73.56 65.11 69.99

Taylor 45.39 67.97 61.31 63.73 41.4 76.55 68.11 25.03 56.19
Cosine Similarity 43.34 65.32 76.7 70.24 36.8 73.39 70.96 40.78 59.69
Out. Cosine-Sim 44.2 72.05 71.99 66.57 40.2 77.37 66.93 34.56 59.23
Out. Norm-Sim 42.66 70.12 66.94 67 41.4 78.73 67.72 34.1 58.58
Out. Divergence-Sim 43.54 71.25 68.62 65.09 39.6 76.01 65.94 30.57 57.58
Perplexity 40.19 63.47 44.43 65.96 39.2 74.48 64.4 29.4 52.69

Acc (Ours) 36.69 56.52 53.36 60.16 33.8 72.63 60.14 28.5 50.23

E.4 TASK-INDEPENDENT PRUNING

The task-independent structured pruning setup consists of using a single dataset—commonly re-
ferred to as a calibration dataset—to compute relevance scores and prune the model accordingly.
This results in one pruned model per pruning method, which is then evaluated across multiple down-
stream tasks. The tasks used for evaluation typically mirror those presented in the main paper.

It is worth noting that there is no standardized protocol regarding which dataset to use as calibration
data or how many samples to include. For example, Zhang et al. (2024b) use WikiText-2 with
10 randomly selected instances, while He et al. (2024) use C4, selecting 256 samples where each
sample may span multiple instances (due to concatenation to match the model’s input length, see
Appendix C.1).

In our experiments, we adopt the setup of He et al. (2024) for consistency. However, to ensure a
fair comparison—especially against pruning methods like cosine similarity that operate on instance-
level granularity—we avoid concatenation and instead use the same 1,500 instances employed in
the cosine similarity baseline. These instances were selected to construct 256 full-context-length
samples in a consistent and comparable manner.

Table 6 presents results for the LLaMA3-8B model under this classic pruning setup. As shown, the
cosine similarity method outperforms all others, including our accuracy-based metric. This outcome
contrasts with the results reported by Zhang et al. (2024b), likely due to differences in calibration
dataset choice and sample size.

These results are consistent with our expectations. Our method is tightly coupled to the calibration
dataset, and—as demonstrated throughout this paper—relevance is highly task- and data-dependent.
Therefore, when the calibration dataset is misaligned with the evaluation tasks, performance is likely
to degrade. As a direction for future work, we aim to evaluate our method under alternative cali-
bration datasets, particularly mixtures that combine training data from the target evaluation tasks.
We hypothesize that a more representative calibration set would yield stronger results in the task-
agnostic setting.

E.5 TASK RELATIONS

Given the task-independent results presented in Table 2, a natural question arises: can the training
set of one task serve as a suitable calibration set for pruning models used in other tasks? Table 7
explores this by showing the performance of different training sets used as calibration data. We
observe that most tasks achieve good average performance; notably, some tasks serve as particularly
effective calibration sets for others.

Building on Table 7, Figure 19 presents a graph illustrating the relationships between tasks. Each
node corresponds to a task, and a directed edge from task 1 to task 2 indicates that the training set
of task 1 serves as either a good (blue) or poor (red) calibration set for task 2. We define “good” as
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Table 7: Calibration dataset analysis. Each row shows the performance of a LLaMA3-8B model
pruned at 25% with our method using a different train set as a calibration dataset.

Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU Mean

Arc-C 49.57 74.45 69.08 72.91 42.2 77.8 67.56 40.2 61.72
Arc-E 51.37 74.96 66.94 73.62 43.6 78.51 71.59 44.82 63.18
BoolQ 40.7 66.96 84.1 67.97 38.6 73.23 71.82 35.09 59.81
HS 44.45 62.5 65.84 71.53 44.2 73.5 64.72 42.83 58.7
OBQA 45.82 66.5 75.38 66.88 44 75.24 65.9 50.45 61.27
PIQA 44.62 70.2 48.62 68.45 44.2 79.05 67.8 27.8 56.34
WG 44.71 68.73 78.13 69.85 39.2 75.03 73.8 42.4 61.48
MMLU 40.61 62.46 75.32 63.11 35 71.49 69.3 62.97 60.03

Arc-C

Arc-E

BoolQ

HS

OBQA

PIQA

WG

MMLU

Figure 19: Relation between tasks. Computed from data in Table 7

achieving at least 90% of the performance obtained when pruning with task 2’s own training set (see
Table 1), and “poor” as 10% or lower. To further indicate the strength of the effect, edge transparency
varies: lighter blue denotes values closer to the 90% threshold, while lighter red denotes values
closer to 10%.

Several observations emerge from this analysis:

• ARC-E and ARC-C serve as good proxies for almost all tasks, with the exception of BoolQ
and MMLU. Interestingly, ARC-E is a better proxy than ARC-C, despite being an easier
version of the same benchmark.

• Nearly all tasks act as good proxies for HellaSwag, except for MMLU. This finding is
noteworthy because HellaSwag is generally considered a commonsense reasoning task,
whereas MMLU requires broader world knowledge.

• No task provides a good proxy for MMLU or BoolQ. For MMLU, this is expected: as a
world-knowledge benchmark, it likely requires calibration sets with overlapping domain
coverage, which the other tasks lack. For BoolQ, however, the absence of good proxies is
less straightforward. One possible explanation is that its yes/no format introduces unique
structural properties that are particularly sensitive to pruning.

E.6 COMPUTATIONAL COST

To assess how long our method would take to achieve higher pruning ratios, quantify the benefits
of using more compute, and evaluate larger models, we estimate the time required to prune 50% of
LLaMA-3-8B using an NVIDIA L40S and a pair of NVIDIA H100s, as well as the time required
to prune 50% of LLaMA-3-70B using two NVIDIA H100s. These estimates are derived from the
timings reported in Table 3, along with additional inference runs performed on both models using
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Table 8: Estimated time (hours or days) required for pruning 50% of the model using our method
using 1,000 instances per dataset.

Model Batch Size Hardware C4 LIMA MathInstruct CodeAlpaca

Llama 3-8B 8 1 × L40s 11.56 hrs 10.02 hrs 4.72 hrs 1.60 hrs
Llama 3-8B 64 2 × H100 7.46 hrs 4.68 hrs 3.23 hrs 0.83 hrs
Llama 3-70B 8 2 × H100 8.49 days 6.85 days 3.39 days 1.12 days
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Figure 20: Time per sample versus the number of calibration samples for our method. Results are
shown across multiple datasets using an L40S GPU while pruning 25% of LLaMA-3-8B.

the dual-H100 setup. For each dataset, we measured the runtime using the maximum feasible batch
size and recorded the reduction in runtime obtained after removing a block. The resulting estimates,
summarized in Table 8, show that additional compute substantially benefits our method and that
pruning to higher ratios—even for larger models—is feasible.

Additionally, we analyze how runtime scales with the size of the calibration dataset. Figure 20
shows the time per sample for different calibration-set sizes when pruning 25% of LLaMA-3-8B on
an NVIDIA L40S. The results indicate that, beyond approximately 250 samples, the time per sample
becomes stable and even slightly decreases across all datasets. This suggests that, in the worst case,
our method scales linearly with the number of calibration samples.

Reducing the computational cost of our approach remains an important direction for future work.
Parallelizing relevance computation across multiple GPUs—for example, assigning different sub-
sets of layers to each device—could substantially reduce runtime. Additional gains may come from
inference-optimized frameworks or quantization, though the latter may affect pruning behavior and
requires further study. Moreover, many optimized frameworks do not yet support model modifica-
tion, limiting their applicability to our method.

E.7 HEALING

Given that our results so far have not used healing as a post-processing step, a natural question arises:
Could healing allow less computationally expensive methods, such as Cosine Similarity, to achieve
comparable performance? Moreover, are the blocks selected by our method truly less important for
the task than those selected by other methods?

To address these questions, we applied a healing process to our task-dependent setup using the
training split of each benchmark (the same data used for calibration during pruning). Tables 9, 10,
and 11 show a comparison of our method, Cosine Similarity, and the selection of random blocks
to prune the same 8 benchmarks used in previous sections. After pruning at a 25% ratio and then
healing (Table 9), our method performs similarly to Cosine Similarity. However, we do not interpret
this as evidence that our method is selecting worse—or even equally important—blocks compared to

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Table 9: Results on the 8 tasks after pruning 25% of the model LlaMa-3-8B using our method,
cosine similarity, or random block pruning, we show the results with and without healing stage.

Method Healing Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU

Accuracy (Ours) No 49.57 74.96 84.04 71.53 44.00 79.06 73.80 62.97
Yes 57.42 83.84 89.30 75.71 51.20 84.22 82.08 61.64

Cosine Similarity No 45.73 67.80 66.33 69.52 38.60 72.91 71.35 44.05
Yes 56.48 82.07 88.99 76.08 53.80 81.66 83.03 58.76

Random No 24.08 36.80 46.03 45.74 25.48 51.73 44.73 25.47
Yes 43.86 73.68 82.16 67.06 46.84 78.68 74.65 34.63

Cosine Similarity. Instead, we believe this behavior reflects the fact that a LLaMA-3-8B pruned by
25% remains expressive enough to perform well on these tasks. Supporting this interpretation, we
observe that even randomly selecting blocks to prune, followed by healing, can sometimes achieve
competitive results.

We repeated the same experiment at pruning ratios of 50% (Table 10) and 75% (Table 11). At 50%
pruning, our method consistently outperforms Cosine Similarity even after healing. At 75%, it still
outperforms the baselines in several cases. The cases where our method no longer leads, however,
coincide with performance levels close to random selection, suggesting that the model simply lacks
sufficient parameters to solve the task at such extreme sparsity.

A similar trend—where healing provides clear benefits over other pruning methods only around the
50% pruning regime—was also reported by (Gromov et al., 2024), who compared Cosine Similarity
with an even simpler pruning method across multiple pruning ratios and tasks.

To implement the healing stage, we fine-tuned each pruned model for 10 epochs using the corre-
sponding training set for each task (see Figure 21 for per-epoch performance). For each method–task
pair, the tables report the best-performing epoch within this window. Across all experiments, model
performance consistently peaked during the 10-epoch schedule and then began to decline, indicating
the onset of overfitting to the training set.

Following prior work (Gromov et al., 2024), we employed the Hugging Face Trainer API (Wolf
et al., 2020), QLoRA quantization using the bitsandbytes library (Dettmers et al., 2023), and
LoRA adapters (Hu et al., 2022) implemented with the peft library (Mangrulkar et al., 2022). The
fine-tuning configuration was as follows:

• Applied modules: [gate proj, down proj, up proj]

• Batch size: 16
• LoRA α: 2
• LoRA rank: 2
• Peak learning rate: 3e-4
• LoRA dropout: 0.05
• LR scheduler: cosine
• Warmup steps: 100
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Table 10: Results on the 8 tasks after pruning 50% of the model LlaMa-3-8B using our method,
cosine similarity, or random block pruning, we show the results with and without healing stage.

Method Healing Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU

Accuracy (Ours) No 28.67 40.95 79.57 48.69 32.40 63.28 54.46 55.64
Yes 38.65 62.96 86.33 57.39 40.60 75.24 70.48 55.53

Cosine Similarity No 25.34 27.78 42.72 26.64 29.40 52.77 50.51 22.95
Yes 33.96 59.68 78.38 51.31 40.40 73.01 66.14 26.11

Random No 20.87 19.72 42.24 26.52 22.36 41.14 39.43 24.85
Yes 26.96 52.00 67.06 41.55 34.12 68.78 59.16 25.67

Table 11: Results on the 8 tasks after pruning 75% of the model LlaMa-3-8B using our method,
cosine similarity, or random block pruning, we show the results with and without healing stage.

Method Healing Arc-C Arc-E BoolQ HS OBQA PIQA WG MMLU

Accuracy (Ours) No 26.11 28.66 62.17 27.56 26.80 55.66 50.51 25.46
Yes 25.09 40.91 63.06 30.43 31.00 65.02 51.70 25.83

Cosine Similarity No 27.30 26.56 57.13 26.05 28.00 51.80 50.12 24.32
Yes 26.19 34.60 63.00 27.48 29.40 61.59 50.83 24.28

Random No 20.90 20.39 37.99 26.50 22.80 40.97 40.68 24.32
Yes 24.78 38.57 61.11 28.50 28.00 61.10 51.74 25.22
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Figure 21: Impact of healing after pruning across varying pruning ratios and train epochs.

34


	Introduction
	Related Work
	Cosine-Similarity Score
	Rethinking Layer Relevance: Beyond Cosine Similarity
	Limitations of Cosine Similarity for Layer Relevance
	Accuracy-Based Relevance Score

	Case Studies
	Relevance Consistency Across Datasets
	Differences Between Types of Tasks

	Empirical Results in Structured Pruning
	Computational Cost Comparison
	Results of Pruning with Healing

	Conclusion
	Related Work (Extended Version)
	Understanding Transformer Internals
	Measuring Block Relevance

	Proof of Theorem 1
	Auxiliary Result
	General Case

	Further Analysis about Relevance Consistency Across Datasets
	Implementation Details
	Normalization Details
	Wilcoxon signed-rank test
	Relevance During Training
	Relevance During Pruning
	Size of the calibration dataset

	Further Analysis about Differences Between Type of Tasks
	Structured Pruning
	Implementation details
	Mistral
	One-shot
	Task-Independent Pruning
	Task Relations
	Computational Cost
	Healing


