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ABSTRACT

Recent advances on adversarial defense mainly focus on improving the classifier’s
robustness against adversarially perturbed inputs. In this paper, we turn our atten-
tion from classifiers to inputs and explore if there exist safe spots in the vicinity of
natural images that are robust to adversarial attacks. In this regard, we introduce a
novel bi-level optimization algorithm that can find safe spots on over 90% of the
correctly classified images for adversarially trained classifiers on CIFAR-10 and
ImageNet datasets. Our experiments also show that they can be used to improve
both the empirical and certified robustness on smoothed classifiers. Furthermore,
by exploiting a novel safe spot inducing model training scheme and our safe spot
generation method, we propose a new out-of-distribution detection algorithm which
achieves the state of the art results on near-distribution outliers.

1 INTRODUCTION

Deep neural networks have achieved significant performance on various artificial intelligence tasks
such as image classification, speech recognition, and reinforcement learning. Despite the results,
Szegedy et al. (2013) demonstrated that deep neural networks are vulnerable to adversarial examples,
minute input perturbations designed to mislead networks to yield incorrect predictions. There have
been a large number of studies to improve the robustness of networks against adversarial perturbations
(Song et al., 2017; Guo et al., 2018), while many of the proposed methods have been shown to fail
against stronger adversaries (Athalye et al., 2018; Tramer et al., 2020). Adversarial training (Madry
et al., 2017) and randomized smoothing (Cohen et al., 2019) are some of the few methods that
survived the harsh verifications, each focusing on empirical and certified robustness, respectively.

To summarize, the study of adversarial examples has been an arms race between adversaries, who
manipulate inputs to raise network malfunction, and defenders, who aim to preserve the network
performance against the corrupted inputs. In this paper, we approach the adversarial robustness
problem from a different perspective. Instead of defending networks from already perturbed examples,
we assume the situation where the defenders can also influence inputs slightly for their interest before
the adversaries’ incursion. The defenders’ goal for this manipulation will be to improve robustness
by searching for spots in the input space that are resistant to adversarial attacks, given a pre-trained
classifier. We explore methods for finding those safe spots from natural images under a given input
modification budget and the degree of robustness achievable by utilizing these spots, which we denote
as preemptive robustness. Ultimately, we tackle the following question:

• Do safe spots always exist in the vicinity of natural images?

One practical example of the proposed framework is the case where a user uploads his or her photo
from local storage (e.g., mobile device) to social media (e.g., Instagram), as illustrated in Figure 1.
Suppose there is an uploader (A) who posts a photo on social media, a web user (B) who queries
a search engine (e.g., Google) for an image, and a search engine that crawls images from social
media, indexes them with a neural network, and retrieves the relevant images to B. Our threat model
considers an adversary (M) that can download A’s image from social media, perturb it maliciously,
and re-upload the perturbed image on the web, where the search engine may crawl and index images
from. The classifier on the search engine will wrongly index the perturbed image, causing the search
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Figure 1: Overview of our proposed framework. The left side shows the web users retrieving wrong
results due to the adversarial example. The right side adopts a safe spot filter on the image uploading
process and succeeds in defending the query system from the attacker.

engine to malfunction. Suppose an African-American uploader (A) posts a photo of him or herself
on social media, and a racist adversary (M) perturbs it to be misclassified as “gorilla” by the search
engine. When another person (B) searches “gorilla” on Google, the perturbed image would appear,
though the image content shows a photo of A. This attack fools both A and B since the perturbed
image is used contrary to A’s purpose and is not the image B wanted. To prevent this, the social media
company, cooperating with the search engine company, could ask if A agrees that the images are
slightly changed when uploaded to make them robust to such attacks. The purpose of the modification
process, corresponding to the “safe spot filter” in Figure 1, will be to ensure that the uploaded images
are used under A’s intention and provide more accurate search results to B.

We develop a novel optimization problem for searching safe spots in the vicinity of natural images
and observe that over 90% of the correctly classified images have safe spots nearby for adversarially
trained models on both CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet (Russakovsky et al.,
2015). We also find that safe spots can enhance both empirical and certified robustness when applied
on smoothed classifiers. Furthermore, we propose a novel safe spot inducing model training scheme
to improve the preemptive robustness. By exploiting these safe spot-aware classifiers along with our
safe spot search method, we also propose a new algorithm for out-of-distribution detection, which is
often addressed together with robustness (Hendrycks et al., 2019a;c). Our algorithm outperforms
other baselines on near-distribution outlier datasets such as CIFAR-100 (Krizhevsky & Hinton, 2009).

2 RELATED WORKS

Adversarial training Goodfellow et al. (2015) first show that the robustness of a neural network can
be enhanced by generating adversarial examples and including them in training set. PGD adversarial
training improves the robustness against stronger adversarial attacks by augmenting training data with
multi-step PGD adversarial examples (Madry et al., 2017). Some recent works report performance
gains over PGD adversarial training by modifying the adversarial example generation procedure (Qin
et al., 2019; Zhang & Wang, 2019; Zhang et al., 2020). However, most of the recent algorithmic
improvements can be matched by simply using early stopping with PGD adversarial training (Rice
et al., 2020; Croce & Hein, 2020). Other line of works achieve performance gains by utilizing
additional datasets (Carmon et al., 2019; Wang et al., 2020; Hendrycks et al., 2019a).

Randomized smoothing Injecting random noise during the forward pass can smooth the classifier’s
decision boundary and improve empirical robustness (Liu et al., 2018). Using differential privacy,
Lecuyer et al. (2019) give theoretical guarantees for `1 and `2 robustness of classifiers smoothed with
Gaussian and Laplacian noise. Cohen et al. (2019) provide a tight bound of `2 robustness of networks
smoothed with Gaussian noise via the Neyman-Pearson lemma. Another proof of the robustness
bound was given in Salman et al. (2019) using Lipschitz property of smoothed classifiers, where they
also propose a new adversarial training scheme for building robust smoothed classifiers.

Out-of-Distribution detection with deep networks Although deep networks achieve high perfor-
mance on various classification tasks, they also tend to yield high confidence in out-of-distribution
samples (Nguyen et al., 2015). To filter out the anomalous examples, Hendrycks & Gimpel (2017) use
the maximum value of a classifier’s softmax distribution as a score function, while Lee et al. (2018)
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propose Mahalanobis distance-based metric which spots out-of-distribution samples using hidden
features. Hendrycks et al. (2019b) show that leveraging auxiliary datasets disjoint from test-time data
can improve the detection performance. Recently, Sastry & Oore (2020) characterize activity patterns
of hidden features by Gram matrices and use the matrix values to identify anomalies.

3 METHODS

3.1 GENERAL DEFINITION OF SAFE SPOT AND PREEMPTIVE ROBUSTNESS

We first establish a formal definition of safe spot and preemptive robustness. Let c : X → Y be a
classifier which maps images to class labels. We define the safe region of the classifier c as the set of
images that c can output robust predictions in the presence of slight adversarial perturbations.
Definition 1 (ε-safe region). Let c : X → Y be a classifier and ε ∈ R+ be the perturbation budget
of an adversary. The ε-safe region of the classifier c is defined by Sε(c) := {x ∈ X | c(x′) =
c(x), ∀x′ ∈ Bε(x)}.
Here, Bε(x) = {x′ ∈ X | d(x, x′) ≤ ε} is the x-centered ε-ball. In this paper, we assume `p threat
model, i.e., d(x, x′) = ‖x − x′‖p, which is the most common setting on adversarial robustness
literature, and consider p ∈ {2,∞}.
Now, suppose a defender can preemptively manipulate a natural image xo under a small modification
budget, knowing its ground-truth label yo. We denote the modified output image as xs. Then, the
defender’s objective is to make xs be correctly classified as yo and locate in the safe region Sε(c) to
improve the robustness against adversarial attacks. If xs satisfies these two conditions, then we say
xo is preemptively robust and xs is a safe spot of xo.
Definition 2 (Preemptive robustness). Let c : X → Y be a classifier and δ, ε ∈ R+ be the modifica-
tion budgets of the defender and the adversary, respectively. A natural image xo with its ground-truth
label yo is called (δ, ε)-preemptively robust on the classifier c if there exists a safe spot xs ∈ Bδ(xo)
such that (i) c(xs) = yo and (ii) xs ∈ Sε(c).

3.2 SAFE SPOT SEARCH ALGORITHM

In this subsection, we develop an algorithm for searching a safe spot with a natural image. Given
a classifier c, finding a safe spot xs from a natural image xo can be formulated as the following
problem, which is directly from the definition of safe spot:

minimize
xs

1c(xs)6=yo + 1xs /∈Sε(c)

subject to ‖xs − xo‖p ≤ δ,

where 1 is the 0-1 loss function.

Note in this formulation the defender requires the ground-truth label yo for the safe spot search.
However, images in the real-world (e.g., social media) are usually unlabeled, unless uploaders
annotate labels to their images by hand. So, it is natural to assume that the defender cannot access the
ground-truth label yo. In this case, we utilize the classifier’s prediction c(xo) instead of yo:

minimize
xs

1c(xs)6=c(xo) + 1xs /∈Sε(c)

subject to ‖xs − xo‖p ≤ δ.

As xs /∈ Sε(c) implies there exists an adversarial example xa ∈ Bε(xs) such that c(xa) 6= c(xs), we
can reformulate the optimization problem as

minimize
xs

1c(xs)6=c(xo) + sup
xa

1c(xa)6=c(xs)

subject to ‖xs − xo‖p ≤ δ and ‖xa − xs‖p ≤ ε.

Since the 0-1 loss is not differentiable, we employ the cross-entropy loss ` : X × Y → R+ of the
classifier c as the convex surrogate loss function:

minimize
xs

`(xs, c(xo)) + sup
xa

`(xa, c(xs)) (1)

subject to ‖xs − xo‖p ≤ δ and ‖xa − xs‖p ≤ ε.

Let h(xs) denote the objective in Equation (1). Instead of minimizing h(xs), we minimize h̃(xs) =
supxa `(xa, c(xo)), since it upper bounds h(xs) when sufficiently minimized by Lemma 1.
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Algorithm 1 Finding a safe spot
input An image and its prediction (xo, c(xo)), the cross-entropy

function `
xs = xo
for i = 1, . . . ,MAXITER do

Generate N adversarial examples
for n = 1, . . . , N do
x
(0)
a,n = xs + ηn where ηn ∼ U(Bε(0))

for t = 1, . . . , T do
x
(t)
a,n = Πxs,ε

(
f(x

(t−1)
a,n ; c(xo), `)

)
end for

end for

xs ← Πxo,δ

(
xs − β ·

1

N

N∑
n=1

∂`(x
(T )
a,n, c(xo))

∂xs

)
end for

output xs

Figure 2: Illustration of the safe
spot search process. The shaded
region represents the set of points
that are misclassified.

Lemma 1. If h̃(xs) ≤ − log(0.5) ' 0.6931, then h(xs) ≤ 2h̃(xs).

Proof. See Supplementary A.1.

Finally, we have the following optimization problem:

minimize
xs

sup
xa

`(xa, c(xo)) (2)

subject to ‖xs − xo‖p ≤ δ and ‖xa − xs‖p ≤ ε.

To solve Equation (2), we first approximate the inner maximization problem by running T -step PGD
(Madry et al., 2017) whose dynamics is given by

x(0)a = xs + η (random start)

x̃(t)a = f
(
x(t−1)
a ; c(xo), `

)
(adversarial update)

x(t)a = Πxs,ε

(
x̃(t)a

)
, (projection)

where η is a random noise uniformly sampled from the `p zero-centered ε-ball, f is FGSM (Goodfel-
low et al., 2015) defined by

f(x; y, `) =


x+ α · sgn (∇x`(x, y)) if p =∞

x+ α · ∇x`(x, y)

‖∇x`(x, y)‖2
if p = 2,

and Πxs,ε is a projection operation to Bε(xs). Then, we iteratively solve the approximate problem
given by replacing xa to x(T )

a in Equation (2). To update xs, we need to compute the gradient of
`(x

(T )
a , c(xo)) with respect to xs expressed as

∂`
(
x
(T )
a , c(xo)

)
∂xs

=
∂f̃
(
x
(0)
a

)
∂x

ᵀ

· · ·
∂f̃
(
x
(T−1)
a

)
∂x

ᵀ

· ∇x`
(
x(T )
a , c(xo)

)
,

where ∂f̃/∂x is the Jacobian matrix of f̃ = Πxs,ε ◦ f which is easily computed via back-propagation.
After computing the gradient, we update xs by projected gradient descent method:

x(i+1)
s = Πxo,δ

(
x(i)s − β ·

∂`(x
(T )
a , c(xo))

∂xs

)
.

Note that the loss `(x(T )
a , c(xo)) is now a random variable dependent on η. Therefore, we generate

N adversarial examples {x(T )
a,n}Nn=1 with different noises and optimize the sample mean of the losses

instead. Algorithm 1 shows the overall safe spot search algorithm and Figure 2 illustrates our
optimization process.
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3.3 COMPUTING UPDATE GRADIENT WITHOUT SECOND-ORDER DERIVATIVES

Computing the update gradient with respect to xs involves the use of second-order derivatives
of the loss function ` since the dynamics f contains the loss gradient ∇x`(x, y). Standard deep
learning libraries, such as PyTorch (Paszke et al., 2019), support the computation of higher-order
derivatives. However, it imposes a huge memory burden as the size of the computational graph
increases. Furthermore, for the case of p = 2, computing the update gradient with the second-order
derivatives might cause exploding gradient problem if the loss gradient vanishes by Proposition 1.
Lemma 2. Suppose ` is twice-differentiable and its second partial derivatives are continuous. If
p = 2, the Jacobian of the dynamics f is

∂f

∂x
= I + α ·

(
I −

(
g

‖g‖2

)(
g

‖g‖2

)ᵀ)
H

‖g‖2
,

where g = ∇x`(x, y) and H = ∇2
x`(x, y).

Proof. See Supplementary B.1.

Proposition 1. If the maximum eigenvalue of H in absolute value is σ, then∥∥∥∥∂f∂x ᵀ

· a
∥∥∥∥
2

≤
(

1 + α · σ

‖g‖2

)
‖a‖2.

Proof. See Supplementary B.2.

As we update xs, the loss gradients of xs and its adversarial examples xa get reduced to zero, which
might cause the update gradient to explode and destabilize the update process. To address this
problem, we approximate the update gradient by excluding the second-order derivatives, following
the practice in Finn et al. (2017). We also include an experiment in comparison to using the exact
update gradient in supplementary B.3. For the case of p =∞, the second-order derivatives naturally
vanish since we take the sign on the loss gradient ∇x`(x, y). Therefore, the approximate gradient is
equal to the exact update gradient.

3.4 FINDING A SAFE SPOT FOR CLASSIFIERS WITH RANDOMIZED SMOOTHING

To further enhance the robustness of our safe spot framework, we can leverage the randomized
smoothing technique along with our algorithm. Given a base classifier c : X → Y , the smoothed
classifier g : X → Y is defined by

g(x) = argmax
y∈Y

P (c(x+ η) = y) ,

where η ∼ N (0, σ2I). To find a safe spot xs of a natural image xo, we have to find an adversarial
example xa of xs that maximizes the cross-entropy loss `(xa, c(xo)) for solving the inner maximiza-
tion problem in Equation (2). However, crafting adversarial examples for the smoothed classifier is
ill-behaved since the argmax is non-differentiable. To address the problem, we follow the approach
in Salman et al. (2019) and approximate the smoothed classifier g with the smoothed soft classifier
G : X → P (Y) defined as

G(x) = E
η∼N (0,σ2I)

[C(x+ η)] ,

where P (Y) is the set of probability distribution over Y and C : X → P (Y) is the soft version of the
base classifier c such that argmaxy∈Y C(x)y = c(x). Finally, the adversarial example xa is found
by maximizing the cross-entropy loss of G instead:

maximize
xa

− log
(
G(xa)c(xo)

)
(3)

subject to ‖xa − xs‖p ≤ ε,

which can be approximated by T -step randomized PGD with M restarts, where random noises are
sampled from Gaussian distribution to compute the sample mean of the objective at each step. By
replacing the inner maximization problem in Equation (2) by the randomized PGD, we can update xs
similarly.

5



Under review as a conference paper at ICLR 2021

                 
                 

10010−110−210−310−4

200

400

600

800

1000

1200
CIFAR-10

LSUN
FPR95:
50.32%

                 
                 

10010−110−210−310−4

200

400

600

800

1000

1200
CIFAR-10

LSUN
FPR95:
32.16%

Figure 3: Histograms for the loss values of images `(xo, c(xo)) (left) and the loss values of the
perturbed safe spot solution supx∗

a∈Bε(x∗
s)
`(x∗a, c(xo)) (right). A safe spot-aware adversarially

trained model without fine-tuning is used as the classifier. The dotted lines are where the false positive
rate is 95%. Detailed settings in Supplementary C.3.

3.5 SAFE SPOT-AWARE ADVERSARIAL TRAINING

In Section 3.2, we investigated how the defender can find a safe spot from a natural image, given a
pre-trained classifier. In this subsection, we explore the defender’s training scheme for a classifier on
which data points are preemptively robust. Suppose the defender has a labeled training set, which is
drawn from a true data distribution D. To induce a classifier to have safe spots in the vicinity of data
points, the defender’s optimal training objective should have the following form:

minimize
θ

E
(xo,yo)∼D

[`(x∗a, yo; θ)]

subject to x∗a = argmax
xa∈Bε(x∗s)

`(xa, yo) and x∗s = argmin
xs∈Bδ(xo)

sup
xa∈Bε(xs)

`(xa, yo),

where θ is the set of trainable parameters. Concretely, the defender finds a safe spot candidate x∗s
of a datapoint xo and generates an adversarial example x∗a from x∗s . Then, the defender minimizes
the cross-entropy loss `(x∗a, yo; θ) so that x∗s becomes an actual safe spot. Note that the ground-truth
label yo is used instead of the prediction c(xo), since we assume that the defender can access the
ground-truth label during training.

The most direct way to optimize the objective would be to find x∗s from xo using our safe spot search
algorithm and perform k-step PGD adversarial training (Madry et al., 2017) with x∗s . However, since
the safe spot search algorithm requires running T -step PGD dynamics per each update, the proposed
training procedure would be more computationally demanding than PGD adversarial training. To
ease this problem, we consider replacing the inner maximization supxa `(xa, yo) in the safe spot
search by `(xs, yo):

x∗s = argmin
xs∈Bδ(xo)

sup
xa∈Bε(xs)

`(xa, yo) =⇒ x∗s = argmin
xs∈Bδ(xo)

`(xs, yo).

Then, x∗s can be easily computed by running targeted FGSM or k-step PGD on xo towards the
ground-truth label yo. We denote this training scheme as safe spot-aware adversarial training.

3.6 OUT-OF-DISTRIBUTION DETECTION

The safe spot-aware adversarial training method induces the learned data distribution to have safe spots
near its data points. Thus, we can naturally conjecture that the samples from the learned distribution
will have a higher probability of having safe spots compared to the out-of-distribution (OOD) samples,
as shown in Figure 3. We leverage this conjecture to propose a new out-of-distribution detection
algorithm that jointly utilizes our safe spot generation method and safe spot-aware adversarial training.

Following the framework of Hendrycks et al. (2019b), which use auxiliary outlier data to tune
anomaly detectors, we consider there are three types of data distributions, Din, Dtrain

out , and Dtest
out . Din

refers to the learned distribution, also called the in-distribution. Dtrain
out is the given distribution of

outliers used to tune the detection algorithm, which is orthogonal to Dtest
out . Dtest

out is the distribution we
want to detect as OOD during inference, which is unknown. We include the auxiliary outlier data to
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our safe spot-ware training procedure and adapt the training objective as below:

minimize
θ

E
(xo,yo)∼Din

[`(x∗a, yo; θ)] + E
x̂o∼Dtrain

out

[γ ·DKL(ȳ ‖ C(x̂o; θ))− λ · `(x̂∗a, c(x̂o); θ)] (4)

subject to x∗a = argmax
xa∈Bε(x∗s)

`(xa, yo) and x∗s = argmin
xs∈Bδ(xo)

sup
xa∈Bε(xs)

`(xa, yo)

x̂∗a = argmax
x̂a∈Bε(x̂∗s)

`(x̂a, c(x̂o)) and x̂∗s = argmin
x̂s∈Bδ(x̂o)

sup
x̂a∈Bε(x̂s)

`(x̂a, c(x̂o)),

where ȳ is the uniform distribution and C(x̂o; θ) is the softmax probability of x̂o. Since x̂o is
unlabeled, we use the prediction c(x̂o) instead for safe spot searching. Note that if ε ≥ δ, the first
term in Equation (4) also maximizes the confidence of the original in-distribution samples, since
xo ∈ Bδ(x∗s) ⊆ Bε(x∗s) and therefore `(xo, y; θ) ≤ `(x∗a, y; θ). Similarly, the second and third terms
minimize the prediction confidence and the probability of safe spot existence of the outlier samples,
respectively.

With the trained classifier, we measure the safe spot objective value from Equation (2) along with
the maximum softmax probability (MSP) and use the values as indicators to detect OOD samples.
Concretely, we define the score function as a linear combination of the two indicators. Considering
they have a different range of possible values, we replace the safe spot objective value with the MSP
of the adversarial example for the safe spot solution. Finally, the score function is formulated as

D(xo) := µ ·max
y∈Y

C(xo)y + (1− µ) ·max
y∈Y

C(x∗a)y,

where x∗s ∈ Bδ(xo) is the optimal solution of the safe spot algorithm for xo and x∗a ∈ Bε(x∗s) is the
adversarial example of x∗s . We filter inputs with low scores as OOD.

4 EXPERIMENTS

As it is natural to assume that the defender and the adversary have the same modification budget,
we set δ = ε for all experiments. We evaluate our methods by measuring clean and adversarial
accuracies, where adversarial accuracy refers to the prediction score under 20-step untargeted PGD
attack with a step size of ε/4. In the experiment tables, None column indicates using original images
as inputs, and S-Full uses safe spot images from Algorithm 1. We also evaluate safe spot search
via targeted FGSM and 20-step PGD towards the class inferred from the classifier, each denoted as
S-FGSM and S-PGD. Detailed settings are listed on supplementary C.

4.1 CIFAR-10

We use Wide-ResNet-34-10 (Zagoruyko & Komodakis, 2016) and consider two threat models, `∞
with ε = 8/255 and `2 with ε = 0.5. We run our experiments on four differently trained models.
The natural model is trained in a standard manner without considering adversaries. ADV is a PGD
adversarially trained model. S-FGSM+ADV and S-PGD+ADV are safe spot-aware adversarially
trained models, with safe spot search approximated by FGSM or 10-step PGD with a step size of δ/4.

The `∞ threat model result in Table 1 (left) shows our methods can find safe spots on over 85% of the
test set images, except for the natural model. This performance is near the upper bound, which is the
classifier’s clean accuracy since we use predicted labels for safe spot search. We also observe that safe
spot search via targeted FGSM or PGD is also feasible for ADV, S-FGSM+ADV, and S-PGD+ADV
models, but they still miss on about 10% of correctly classified images. When jointly used with our
safe spot search method, the safe spot-aware training achieves the highest adversarial accuracy, along
with a clean accuracy much higher than PGD adversarial training.

The `2 threat model result in Table 1 (right) shows similar results as the `∞ experiment, except
that the adversarial accuracy of safe spots generated by S-Full on the natural model is much higher.
However, we note that the adversarial accuracy of safe spots on the natural model may go down to
about 20% when the attack gets stronger, for example, by increasing PGD iterations. The results on
stronger PGD attacks and other types of attacks are considered in supplementary D.3 and D.4.
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Model Method
None S-FGSM S-PGD S-Full

Natural 95.97/00.00 82.40/00.00 95.97/00.00 95.48/09.67
ADV 86.51/47.21 86.51/77.08 86.51/71.22 86.51/85.06

S-FGSM+ADV 86.83/42.50 86.83/78.23 86.83/69.25 86.83/85.35
S-PGD+ADV 91.32/39.33 91.32/77.01 91.32/63.94 91.32/89.84

Model Method
None S-FGSM S-PGD S-Full

Natural 95.97/00.53 94.61/00.79 95.97/00.38 95.94/59.00
ADV 90.26/68.16 90.26/88.82 90.26/86.28 90.26/89.99

S-FGSM+ADV 90.92/63.27 90.92/88.82 90.92/84.92 90.92/90.60
S-PGD+ADV 94.10/57.70 94.10/88.03 94.10/80.94 94.10/93.54

Table 1: Classification accuracy under `∞ threat with ε = 8/255 (left), `2 threat with ε = 0.5 (right),
on CIFAR-10. (clean acc./adv acc.)

4.2 IMAGENET

We use ResNet-50 and consider three threat models: `∞ with ε ∈ {4/255, 8/255} and `2 with
ε = 3.0. For safe spot-aware adversarial training experiments, we utilize “fast” adversarial training
(Wong et al., 2020) and train the safe spot-aware model S-FGSM+Fast to reduce the training cost.

Table 2 (left) shows results on `∞ attack under ε = 4/255. Similar to results on CIFAR-10, our
methods are capable of finding safe spots near to original images that are correctly classified on
the robust classifiers. Also, our proposed safe spot-aware classifier outperforms the original robust
classifier by a large margin in both clean and adversarial accuracies. Table 2 (right) shows results
on `∞ on ε = 8/255. In this setting, we also apply our algorithm to the ADV model trained with
εtrain = 4/255. Note that by changing only the εtrain value on adversarial training, we get a 10% gain
on our safe spot’s adversarial accuracy. Surprisingly, classifiers adversarially trained with smaller
εtrain performs substantially better in terms of preemptive robustness compared to using more robust
classifiers. This implies that the conventional notion of robustness does not necessarily translate
to preemptive robustness. Experiments on `2 attacks show similar results and can be found in
Supplementary D.1.

Model Method
None S-FGSM S-PGD S-Full

Natural 75.63/00.03 74.87/00.47 75.52/00.27 75.63/08.22
ADV 61.35/32.57 61.35/56.50 61.35/53.13 61.35/60.06

Natural 70.81/00.01 70.33/00.21 70.79/00.18 70.82/07.41
Fast 57.05/29.97 57.07/50.97 57.05/50.20 57.04/56.26

S-FGSM+Fast 64.67/14.51 64.73/42.47 64.67/34.53 64.67/61.97

Model Method
None S-FGSM S-PGD S-Full

Natural 75.63/00.01 73.05/00.09 75.04/00.18 75.54/02.40
ADV (εtrain = 8/255) 47.11/18.35 47.05/39.04 47.11/37.83 47.08/45.42
ADV (εtrain = 4/255) 61.35/11.64 61.36/32.44 61.35/28.58 61.35/55.85

Table 2: Classification accuracy under `∞ threat with ε = 4/255 (left) and ε = 8/255 (right) on
ImageNet. The lower three models on ε = 4/255 are trained in Fast style. (clean acc./adv acc.)

4.3 RANDOMIZED SMOOTHING

We also evaluate our algorithm for classifiers with randomized smoothing. Here, we consider the
`2 threat model, where ε = 0.5 for CIFAR-10 and ε = 3.0 for ImageNet. We run experiments on
the smoothed classifiers based on the natural and the Gaussian-noise augmented model, which are
considered certifiably robust (Lecuyer et al., 2019; Cohen et al., 2019). We measure empirical robust-
ness against the randomized PGD on both models and measure certified robustness on the Gaussian
model. Detailed settings such as noise level σ and randomized PGD are listed in supplementary C.2.

Table 3 shows our results on the empirical robustness against the randomized PGD. We observe
that our algorithm can find safe spots for the natural model with randomized smoothing on 57%
and 37% of correctly classified images of CIFAR-10 and ImageNet, respectively. Furthermore, as
shown in supplementary D.3, the adversarial accuracy of the smoothed natural model does not suffer
from accuracy drop when the attack becomes stronger, in contrast to the natural model. Also, the
smoothed Gaussian model, whose training cost is comparable to standard training much less than
PGD adversarial training, achieves higher clean and adversarial accuracy compared to the ADV
model. Certified robustness results of smoothed classifiers can be found in Supplementary D.2, where
our safe spot algorithm also improves the certified robustness on both the datasets.
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Model Method
None S-Full

Natural 95.97 / 00.53 95.94 / 59.00

Natural+Smoothing 72.39 / 03.31 94.92 / 55.02
Gaussian+Smoothing 92.35 / 56.03 92.30 / 91.35

Model Method
None S-Full

Natural 75.63 / 00.01 75.63 / 10.14

Natural+Smoothing 48.93 / 00.50 74.76 / 27.84
Gaussian+Smoothing 69.90 / 10.03 70.03 / 62.78

Table 3: Empirical robustness of randomized smoothed networks under `2 threat with ε = 0.5 on
CIFAR-10 (left) and with ε = 3.0 on ImageNet (right). (clean acc./adv acc.)

4.4 OUT-OF-DISTRIBUTION DETECTION

We evaluate the performance of our proposed detection algorithm on models trained with CIFAR-10.
We consider various OOD datasets including CIFAR-100, SVHN (Netzer et al., 2011), TinyImageNet
(Johnson et al.), LSUN (Yu et al., 2015), and synthetic noise. Following the experimental protocol
of Hendrycks et al. (2019b), we evaluate the OOD detection methods on three metrics: area under
the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPR),
and the false positive rate at 95% true positive rate (FPR95). We compare our method’s performance
to Mahalanobis (Lee et al., 2018), OE (Hendrycks et al., 2019b), and Gram (Sastry & Oore, 2020).
Since Lee et al. (2018) utilizes a subset of the Dtest

out data for tuning the detection procedure while our
method and OE do not, we modify Mahalanobis to tune with Dtrain

out for fair comparison. For detailed
descriptions of the datasets and the experiments, refer to Supplementary E.1 and E.2.

Din Dtest
out

FPR95 ↓ AUROC ↑ AUPR ↑
Mahalanobis OE Gram Ours Mahalanobis OE Gram Ours Mahalanobis OE Gram Ours

CIFAR-10

Gaussian 0.00 0.52 0.02 0.38 100.00 99.78 99.99 99.91 100.00 99.39 99.98 99.88
SVHN 15.38 2.26 0.74 2.84 97.06 99.25 99.77 99.28 97.06 98.96 99.88 99.12

CIFAR-100 78.20 24.65 28.47 21.27 72.43 94.34 93.73 95.06 71.66 94.06 93.77 94.74
TinyImageNet 76.11 31.28 33.71 27.22 74.26 94.04 93.56 94.55 72.21 94.33 94.02 94.75

LSUN 59.61 9.46 10.15 7.05 81.40 97.99 97.56 98.33 77.08 97.70 96.81 98.06

Average 27.35 13.63 14.62 11.75 91.28 97.08 96.92 97.43 90.47 96.87 96.92 97.31

Table 4: Out-of-distribution detection results. All results are percentages and averaged over 10 runs.

Table 4 shows the evaluation results. While Mahalanobis and Gram works slightly better on synthetic
datasets such as Gaussian noise, on more near-distribution outliers such as CIFAR-100, TinyImageNet,
and LSUN, our method outperforms these baselines by a large margin, which leads to a gain in overall
performance. Our method also outperforms OE on most metrics including the Gaussian noise.

5 CONCLUSION

Parting from recent studies on adversarial examples, we present a new adversarial framework where
the defender preemptively modifies classifier inputs. We introduce a novel optimization algorithm for
finding safe spots in the vicinity of original inputs as well as a new network training method suited
for enhancing preemptive robustness. The experiments show that our algorithm can find safe spots
for robust classifiers on most of the correctly classified images. Further results show that they can be
used to improve empirical and certified robustness on smooth classifiers. Finally, we combine the
new network training scheme and the safe spot generation method to devise a new out-of-distribution
detection algorithm that achieves the state of the art performance on near-distribution outliers.
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