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Abstract

Knowledge Graph Completion (KGC), which001
aims to infer missing or incomplete facts, is a002
crucial task for KGs. However, integrating the003
vital structural information of KGs into Large004
Language Models (LLMs) and outputting pre-005
dictions deterministically remains challenging.006
To address this, we propose a new method007
called GLTW, which encodes the structural in-008
formation of KGs and merges it with LLMs to009
enhance KGC performance. Specifically, we in-010
troduce an improved Graph Transformer (iGT)011
that effectively encodes subgraphs with both012
local and global structural information and in-013
herits the characteristics of language model, by-014
passing training from scratch. Also, we develop015
a subgraph-based multi-classification training016
objective, using all entities within KG as clas-017
sification objects, to boost learning efficiency.018
Importantly, we combine iGT with an LLM019
that takes KG language prompts as input. Our020
extensive experiments on various KG datasets021
show that GLTW achieves significant perfor-022
mance gains compared to SOTA baselines.023

1 Introduction024

Knowledge Graphs (KGs) are pivotal resource for a025

multitude of knowledge-intensive intelligent tasks026

(e.g., question answering (Zhai et al., 2024), rec-027

ommendation systems (Zhao et al., 2024), plan-028

ning (Wang et al., 2024), and reasoning (Chen et al.,029

2024b), among others). They are composed of a030

vast number of triplets in the format of (h, r, t),031

where h and t represent the head and tail entities,032

respectively, and r denotes the relationship connect-033

ing these two entities. However, popular existing034

KGs, such as Freebase (Bollacker et al., 2008),035

WordNet (Miller, 1995), and WikiData (Vrandečić036

and Krötzsch, 2014), suffer from a significant draw-037

back: the presence of numerous incomplete or miss-038

ing triplets, thereby giving rise to the task of KG039

Completion (KGC). KGC aims to accurately pre-040

dict the missing triplets by leveraging known enti- 041

ties and relations for effectively enhancing KGs. 042

In recent years, with super-sized training cor- 043

pora and computational cluster resources, Large 044

Language Models (LLMs) have developed rapidly 045

and enabled state-of-the-art performance in a wide 046

range of natural language tasks (Touvron et al., 047

2023; Qin et al., 2023; Liu et al., 2024a). Conse- 048

quently, certain studies have applied LLMs to KGC 049

tasks. For instance, (Yao et al., 2023; Zhu et al., 050

2024; Wei et al., 2024) utilize zero/few-shot In- 051

Context Learning (ICL) to accomplish KGC, while 052

(Li et al., 2024a; Xu et al., 2024) leverage LLMs 053

to enhance the descriptions of entities and relations 054

in KGs, thereby improving text-based KGC meth- 055

ods (Yao et al., 2019; Zhang et al., 2020b; Wang 056

et al., 2022b; Liu et al., 2022; Wang et al., 2022c; 057

Yang et al., 2024a). Intuitively, integrating non- 058

textual structured information appropriately can 059

augment LLMs’ understanding and representation 060

of KGs. For example, (Zhang et al., 2024; Liu et al., 061

2024b; Guo et al., 2024) combine graph-structured 062

information with LLMs to boost KGC tasks. 063

Yet, they either use traditional embedding-based 064

KGC methods (Bordes et al., 2013; Lin et al., 2015; 065

Sun et al., 2019; Balažević et al., 2019) that only 066

consider internal links of triplets or rely on Graph 067

Neural Networks (GNNs) (Bronstein et al., 2021; 068

Corso et al., 2020) that merely encode local sub- 069

graphs, thus both missing out on global structural 070

knowledge. Also, LLMs, typically used for gener- 071

ative tasks, have long been troubled by hallucina- 072

tion (Ji et al., 2023; Rawte et al., 2023). In contrast, 073

the prediction targets of KGC are generally con- 074

fined to the given KG, making it unwise to directly 075

integrate LLMs into KGC tasks1. In short, how 076

to encode both local and global structural informa- 077

tion of KGs and combine it with knowledge-rich 078

LLMs to achieve deterministic KGC remains un- 079

1Notably, see Appendix A for more related works.
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derexplored.080

To this end, we propose a novel method (named081

GLTW), which effectively encodes KG subgraphs082

with both local and global structural information083

and integrates LLMs in a deterministic fashion to084

improve the performance of KGC. Concretely, we085

first treat entities and relations within KG as insep-086

arable units, adding them as tokens to the original087

Tokenizer, while referring to triplets as three-word088

sentences (Guo et al., 2024). Subsequently, for089

each target triple, we extract a subgraph that encom-090

passes both local and global structural information091

from the given training KG data (Section 3.1). To092

effectively process the subgraph, we introduce an093

improved Graph Transformer (iGT), which takes094

the entity and relation embeddings (initialized by a095

pooling operation), the relative distance matrix, and096

the relative distinction matrix of the subgraph as097

inputs, and encodes them using the enhanced graph098

attention mechanism (Section 3.2). Furthermore,099

we construct multiple positive and negative triplet100

samples from the subgraph, which are used to build101

the subgraph-based multi-classification training ob-102

jective with all entities within the KG as classifica-103

tion objects (Section 3.3). Finally, we merge iGT104

with an LLM that takes KG language prompt as105

input (Section 3.4). To sum up, we highlight our106

contributions as follows:107

• We formulate a novel method, GLTW, which108

aims to encode both local and global structural109

information of KG and amalgamate it with110

LLMs to enhance KGC performance. Note111

that we consider KGC as a subgraph-based112

multi-classification task, outputting prediction113

probabilities for all entities from KG at once.114

• We introduce iGT, which simplifies the com-115

plexity of positional encoding for subgraphs,116

enlarges the size of subgraphs, and treats en-117

tities and relations in a differentiated yet fair118

manner. Importantly, it inherits the charac-119

teristics of language model, thereby avoiding120

training from scratch.121

• We conduct extensive experiments on three122

commonly used KG datasets (i.e., WN18RR,123

FB15k-237, and Wikidata5M) to show that124

GLTW is highly competitive compared with125

other state-of-the-art baselines. Meanwhile,126

ablation studies demonstrate the efficacy and127

indispensability for core modules and key pa-128

rameters.129

2 Preliminaries 130

2.1 Task Definition 131

Knowledge graphs (KGs) are directed graphs that 132

can be formally represented as G = {E ,R, T }, 133

where E andR denote respectively the sets of enti- 134

ties and relations, and T = {(h, r, t)} ∈ E×R×E 135

defines a collection of triples. The goal of KGC is 136

to accurately predict the incomplete triples that ex- 137

ist within G. In this paper, we focus on the link pre- 138

diction task, a key component of KGC. This task is 139

designed to predict the missing entity ? in a given 140

triple (h, r, ?) or (?, r, t). We unify the link predic- 141

tion task into tail entity prediction by constructing 142

inverse relation r−1 ∈ R−1, i.e., (t, r−1, ?). 143

2.2 Graph Transformer 144

The attention mechanism (Shehzad et al., 2024) in 145

a graph transformer can be expressed as follows: 146

softmax

(
QK⊤
√
d

+BP +M

)
V, (1) 147

where Q, K, and V denote the query, key and 148

value matrices, and d represents the query and key 149

dimension. The matrices BP and M serve the pur- 150

poses of Positional Encoding (PE) and masking. 151

In GLM (Plenz and Frank, 2024), BP = f(P ), 152

where P is the relative distance matrix based on 153

Levi graph of subgraph (as shown in Fig. 5(a)-(b) 154

in Appendix C), and f is an element-wise function; 155

M is a zero matrix2. This non-invasive modifica- 156

tion avoids pre-training from scratch and preserves 157

compatibility with the language model parameters. 158

2.3 Three-word Language 159

The concept of the three-word language originates 160

from the MKGL method proposed by (Guo et al., 161

2024), which considers individual entities and re- 162

lations as indivisible tokens and incorporates them 163

into the LLM tokenizer (i.e., expanded tokenizer). 164

For example, entity black poodle and relation is a 165

are encoded as tokens <kgl: black poodle> and 166

<kgl: is a>, respectively, and are employed to con- 167

struct corresponding KG language prompt (see Ap- 168

pendix D). To prevent training these new tokens 169

from scratch, MKGL utilizes a GNN encoder to 170

derive their embeddings from the original tokenizer 171

based on the textual and structural information of 172

the entities/relations. This enables LLMs to effec- 173

tively navigate and master the three-word language. 174

2In this paper, we focus on the global GLM (gGLM),
which invokes an additional G2G relative position to access
distant triplets and sets M is a zero matrix.
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Figure 1: The pipeline of GLTW. Lce, Lpos, and Lneg are loss objectives for Target Triplet (TT), Positive Triplets
(PT) and Negative Triplets (NT), respectively. Notably, the r, r1, r2, and r3 highlighted in black pertain to the same
relation but exist in different triplets. For simplicity, h and h can be either head or tail entities, as they are shared by
multiple triplets.

3 Method175

In this section, we elaborate on our proposed176

method, GLTW, in four parts: Subgraph Extraction,177

Improved Graph Transformer, Subgraph-based178

Training Objective, and Joint iGT and LLM. Fig-179

ure 1 illustrates the pipeline of GLTW. Notably, the180

KG language prompt in this paper directly follows181

that of MKGL (Guo et al., 2024).182

3.1 Subgraph Extraction183

Before training or prediction, we extract a subgraph184

Gsub(h, r, t) for each target triplet (h, r, t) from G.185

For consistent training and prediction, we require186

that the subgraph only comprises triplets sampled187

from given h and r, represented as Gsub(h, r, ?).188

Gsub(h, r, ?) contains three types of triplet subsets:189

Thr, Th and Tr, where Thr and Th hold neighbor-190

ing triplets around (h, r, ?), and Tr samples distant191

(global) triplets with r. For Thr and Th, we set192

the sampling radius as l, then Thr/h = ∪li=1T
i
hr/h.193

Specifically, when l = 1, T 1
hr = {(h, r, t1)|t1 ∈194

E −{t}} and T 1
h = {(h, r1, t1)/(t1, r1, h)|r1 ∈ R195

−{r}, t1 ∈ E}; when l > 1, T i
hr/h = {(hi−1, ri, ti196

)/(ti, ri, hi−1)|hi−1 ∈ New(T i−1
hr/h), r

i ∈ R, ti ∈197

E}, where "/" denotes "or", and New(T i−1
hr/h) is198

the latest sampled entity set in T i−1
hr/h. For Tr, we199

solely consider distant triplets with r, i.e., Tr = 200

{(h′, r, t′)|h′, t′ ∈ E − {h, t}}. 201

In the sampling process (e.g., T i
hr/h and Tr), we 202

leverage Random Walk (Ko et al., 2024) to select 203

triplets based on the degree distribution of candi- 204

date entities, considering both out-degree and in- 205

degree. Additionally, to control the size of the sub- 206

graph, we set the total number of sampled triplets 207

to m = mhr + mh + mr, where mhr/h and mr 208

represent the sampling numbers of Thr/h and Tr, 209

respectively. Note that if |Thr/h| < mhr/h, we 210

select more distant triplets to ensure m. 211

3.2 Improved Graph Transformer 212

In order to effectively encode Gsub(h, r, ?), we pro- 213

pose an improved Graph Transformer (iGT). Con- 214

cretely, we first introduce the three-word language 215

and pre-compress the textual information of enti- 216

ties and relations. Given an entity e and a rela- 217

tion r from Gsub(h, r, ?), their token embedding 218

sequences of textual information take the following 219

forms: 220

Ee = [t1e, · · · , tne
e ],Er = [t1r , · · · , tnr

r ], (2) 221

where ne and nr represent the lengths of the token 222

sequences for textual information. Then, follow- 223

ing (Guo et al., 2024), we draw on the pooling 224
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Figure 2: Example of subgraph preprocessing in iGT. We follow the construction strategy of the relative position
matrix P in gGLM (Plenz and Frank, 2024). The relative distinction matrix D differentiates entities and relations
in iGT. Notably, it can be extended to gGLM, providing clear textual boundaries for entities and relations (see
Appendix C). Also, entries with G2G are initialized to +∞.

operator Poolop() from PNA (Corso et al., 2020)225

to compress Ee and Er, i.e.,226

te = Poolop(Ee), tr = Poolop(Er), (3)227

where te and tr denote the textual token embedding228

of e and r, respectively. By utilizing the pooling229

operator, we furnish embeddings for every entity230

and relation within Gsub(h, r, ?).231

Next, we construct a relative distance matrix P232

with a global perspective for Gsub(h, r, ?), follow-233

ing GLM, as shown in Fig. 2 (a) and (b). We regard234

triplets as three-word sentences, where each token235

represents an entity or a relation, and calculate their236

relative distances. Moreover, the graph-to-graph237

(G2G) relative position (initialized as the parameter238

of the relative position for +∞) can connect any239

token to other tokens, thereby enabling access to240

and learning of distant entities or relations.241

Although P achieves graph manipulation in a242

non-intrusive way, it fails to distinguish between243

entities and relations in Gsub(h, r, ?), which may244

introduce confounding bias. This is because in KG,245

entities represent real-world objects or concepts,246

while relations describe the interactions between247

entities (Pan et al., 2024). To rectify this, we in-248

troduce a new relative distinction matrix D, which249

has the same shape as P and shares G2G, as shown250

in Fig. 2(c). Unlike P , D aims to distinguish be-251

tween entities and relations in the subgraph. To be252

specific, the relative positions between entities (i.e.,253

entity-entity) are set to 0 and populated into the cor-254

responding ones in D. Similarly, the positions for255

entity-relation, relation-entity, and relation-relation256

pairs are assigned the values of 1, 2, and 3, respec-257

tively. Furthermore, we rewrite the Eq. (1) of the 258

attention mechanism as: 259

softmax

(
QK⊤
√
d

+BPD

)
V, (4) 260

where BPD = 1
2 (f1(P ) + f2(D)). Here, f1 and 261

f2 are two different element-wise functions. Com- 262

pared with GLM, iGT focuses on the structural 263

information of Gsub(h, r, ?), bringing several ben- 264

efits: it simplifies the complexity of positional en- 265

coding; handles larger subgraphs; and differenti- 266

ates between entities and relations while treating 267

them equitably. Importantly, iGT inherits GLM’s 268

non-invasive properties, circumventing the need to 269

train the model from scratch, although the pooling 270

operator may lose some textual information. 271

With iGT, we can encode the subgraph 272

Gsub(h, r, ?), and the overall process is as follows: 273

[h, r, ?, · · · ] = ExTok (Gsub(h, r, ?)) , 274

[th, tr, t?, · · · ] = Poolop (Emb([h, r, ?, · · · ])) , 275

[t̃h, t̃r, t̃?, · · · ] = iGT([th, tr, t?, · · · ], P,D), 276

where ExTok is the Expanded Tokenizer, which 277

integrates entities and relations as new tokens into 278

the existing vocabulary. Emb denotes Embedding 279

layer. Of note, during training and prediction, we 280

replace ? (to be predicted) with mask token from 281

the original Tokenizer. 282

3.3 Subgraph-based Training Objective 283

In this paper, we frame the (h, r, ?) prediction task 284

as a multi-classification problem. To elaborate, we 285

implement an MLP-based classification layer that 286
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takes [t̃h, t̃r, t̃?] from iGT’s final hidden layer as287

input, with its output dimension corresponding to288

the KG’s total entity count N . Then, we compute289

classification probabilities through softmax activa-290

tion and optimize using cross-entropy loss. Of note,291

prior to classification, we perform the pooling oper-292

ation on [t̃h, t̃r, t̃?]. The process can be formulated293

as:294

t̃(h,r,?) = Poolop([t̃h, t̃r, t̃?]), (5)295

t̂(h,r,?) = softmax(MLP(t̃(h,r,?))), (6)296

Lce = − log(t̂(h,r,?),lt), (7)297

where t̂(h,r,?),lt denotes the likelihood of entity t298

being selected.299

We don’t use t̃? alone as the classification input;300

instead, we opt for [t̃h, t̃r, t̃?]. This is because iGT301

encodes Gsub(h, r, ?), in which h may be shared by302

multiple triplets, and r can also appear in several303

triplets (see Fig. 1). Thus, the optimization objec-304

tive based solely on t̃? may not effectively address305

the prediction task (h, r, ?). Also, according to Sec-306

tion 3.1, triplets in T 1
hr feature the same head en-307

tity and relation as (h, r, ?), such as (h, r1, h) and308

(h, r2, h) (see Fig. 1). Hence, during prediction, h309

and h can emerge as potential optimization targets310

requiring positive attention, whereas other entities,311

including h, warrant negative attention. To this end,312

we partition all entities in Gsub(h, r, ?) (excluding313

?) into two sets: Pos and Neg. Pos includes tail en-314

tities from all triplets in T 1
hr, while Neg comprises315

the remaining entities. The optimization objectives316

for Pos and Neg take the following forms:317

Lpos = −
1

|Pos|
∑

t′∈Pos
log(t̂(h,r,t′),lt′ ), (8)318

Lneg = − 1

|Neg|
∑

t′∈Neg

log(t̂(h,r,t′),lt′ ), (9)319

where |Pos| and |Neg| denote the number of enti-320

ties in Pos and Neg.321

Combining Lce, Lpos, and Lneg, the subgraph-322

based overall objective can be formalized as fol-323

lows:324

L = Lce + β1(Lpos − β2Lneg), (10)325

where β1 > 0 and β2 > 0 are tunable hyperpa-326

rameters. During training, to prevent Lneg from327

dominating excessively, we employ the following328

strategy to adjust β2 adaptively:329

β2 =

{
1,Lpos > Lneg,
0.5 ∗ Lpos

Lneg
,Lpos ≤ Lneg.

(11)330

3.4 Joint iGT and LLM 331

We now combine iGT and LLM by fusing entity 332

and relation embeddings. To be specific, we inte- 333

grate the pooled embeddings of entity h (tllmh ) and 334

relation r (tllmr ) from the LLM-based KG language 335

prompt for (h, r, ?) with iGT’s output embeddings 336

[t̃h, t̃r, t̃r1 , · · · ], excluding t̃?. The process (i.e., 337

the Embedding Fusion Module) is defined as: 338

tr = Poolop([t̃r, t̃r1 , · · · ]), (12) 339

tllmh ← (1− λ) · tllmh + λ ·Adapter(t̃h), (13) 340

tllmr ← (1− λ) · tllmr + λ ·Adapter(tr), (14) 341

where λ ∈ [0, 1], and Adapter aims to align em- 342

bedding dimensions. The selection of Adapter is 343

flexible. In practice, following (Zhu et al., 2023), 344

we implement Adapter as a simple projection 345

layer. Notably, we pass the pooled relation embed- 346

dings [t̃r, t̃r1 , · · · ] from Gsub(h, r, ?) to the LLM, 347

enabling it to capture global KG structural informa- 348

tion. 349

Then, we incorporate the embedding vector tllmhr 350

from the last token of the LLM’s final hidden layer 351

into the classification layer as follows: 352

t̃(h,r,?) ← Concat(tllmhr , t̃(h,r,?)), (15) 353

where t̃(h,r,?) is derived from Eq. (5). Similarly, all 354

positive and negative triplets constructed in Sec- 355

tion 3.3 are combined with tllmhr in the same man- 356

ner (see Fig. 1). Of note, the input dimension of 357

the MLP classification layer changes accordingly 358

through Eq. (15). 359

4 Experiments 360

4.1 Experimental Settings 361

Datasets. We evaluate different methods on 362

three widely used KG datasets, including FB15k- 363

237 (Toutanova et al., 2015), WN18RR (Dettmers 364

et al., 2018), and Wikidata5M (Vrandečić and 365

Krötzsch, 2014), for the link prediction task. We 366

detail these datasets in Table 4 from Appendix B. 367

Baselines. To assess the effectiveness of our 368

methods, we follow (Plenz and Frank, 2024) by 369

adopting the bidirectional encoder of T5-base 370

as the base Pre-trained Language Model (PLM) 371

for iGT. Meanwhile, we choose three LLMs 372

with varying sizes for GLTW: Llama-3.2-1B/3B- 373

Instruct (Dubey et al., 2024) and Llama-2-7b- 374

chat (Touvron et al., 2023). For clarity, we de- 375

note GLTW with different LLMs as GLTW1b/3b/7b. 376
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Methods
FB15k-237 WN18RR Wikidata5M

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.279 0.198 0.376 0.441 0.243 0.043 0.441 0.532 0.392 0.323 0.432 0.509
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571 0.403 0.334 0.441 0.523
HAKE 0.346 0.250 0.381 0.542 0.497 0.452 0.516 0.582 0.394 0.322 0.435 0.521

CompoundE 0.350 0.262 0.390 0.547 0.492 0.452 0.510 0.570 - - - -

KG-BERT - - - 0.420 0.216 0.041 0.302 0.524 - - - -
KG-S2S 0.336 0.257 0.373 0.498 0.574 0.531 0.595 0.661 - - - -

CSProm-KG 0.358 0.269 0.393 0.538 0.575 0.522 0.596 0.678 0.380 0.343 0.399 0.446
PEMLM-F 0.355 0.264 0.389 0.538 0.556 0.509 0.573 0.648 - - - -

CompGCN 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546 - - - -
REP-OTE 0.354 0.262 0.388 0.540 0.488 0.439 0.505 0.588 - - - -
KRACL 0.360 0.266 0.395 0.548 0.527 0.482 0.547 0.613 - - - -
gGLM 0.321 0.241 0.342 0.486 0.290 0.304 0.395 0.487 - - - -

iGT (ours) 0.364 0.283 0.411 0.566 0.534 0.496 0.536 0.617 0.397 0.342 0.428 0.526

GPT-3.5 - 0.267 - - - 0.212 - - - - - -
Llama-2-13B - - - - - 0.315 - - - - - -

KICGPT 0.412 0.327 0.448 0.554 0.549 0.474 0.585 0.641 - - - -
MPIKGC-S 0.359 0.267 0.395 0.543 0.549 0.497 0.568 0.652 - - - -

KG-FIT 0.362 0.275 - 0.572 - - - - - - - -
MKGL 0.415 0.325 0.454 0.591 0.552 0.500 0.577 0.656 - - - -

GLTW1b 0.385 0.312 0.427 0.578 0.549 0.514 0.558 0.645 0.405 0.356 0.452 0.531
GLTW3b 0.427 0.338 0.462 0.599 0.578 0.538 0.593 0.676 0.429 0.376 0.476 0.553
GLTW7b 0.469 0.351 0.481 0.614 0.593 0.556 0.649 0.690 0.457 0.414 0.506 0.587

Table 1: Performance comparison of various methods across different datasets. Note that bold indicates the overall
best performance, while underline marks the second-best one.

Also, we compare GLTW and iGT against numer-377

ous embedding-based, text-based, GNN/GT-based378

and LLM-based baselines. The embedding-based379

baselines include TransE (Bordes et al., 2013),380

RotatE (Sun et al., 2019), HAKE (Zhang et al.,381

2020a), and CompoundE (Ge et al., 2023). The382

text-based baselines encompass KG-BERT (Yao383

et al., 2019), KG-S2S (Chen et al., 2022), CSProm-384

KG (Chen et al., 2023), and PEMLM-F (Qiu385

et al., 2024). The GNN/GT-based baselines386

cover CompGCN (Vashishth et al., 2019), REP-387

OTE (Wang et al., 2022a), and KRACL (Tan et al.,388

2023) (based on GNN), as well as gGLM (Plenz389

and Frank, 2024) (based on GT). Note that gGLM390

and iGT are trained on identical subgraphs. The391

LLM-based baselines comprise GPT-3.5-Turbo392

with one-shot ICL (marked as GPT-3.5) (Zhu et al.,393

2024), Llama-2-13B+Struct (marked as Llama-2-394

13B) (Yao et al., 2023), KICGPT (Wei et al., 2024),395

MPIKGC-S (Xu et al., 2024), KG-FIT (Jiang et al.,396

2024), and MKGL (Guo et al., 2024).397

Configurations. In all experiments, unless oth-398

erwise specified, we default to setting l = 2 and399

m = mhr = mh = mr = m/3 = 5 for sub-400

graph sampling. Meanwhile, we set λ = 0.5 and401

β1 = 0.5. Of note, β2 is adaptively calculated402

based on Eq. (11). Also, we assess performance by403

leveraging the Mean Reciprocal Rank (MRR) of404

target entities and the percentage of target entities 405

ranked in the top k (k = 1, 3, 10), referred to as 406

Hits@k. Due to space limitations, the complete 407

experimental settings are provided in Appendix B. 408

4.2 Results Comparison 409

We compare the proposed methods with various 410

KGC baselines on FB15k-237, WN18RR, and 411

Wikidata5M, with the results shown in Table 1. The 412

results indicate that: 1) GLTW7b consistently out- 413

performs all competitors across all metrics, achiev- 414

ing overall gains of 8.5% in MRR, 6.9% in Hits@1, 415

10.2% in Hits@3, and 6.1% in Hits@10 compared 416

to the second-best results (mostly from GLTW3b). 417

Meanwhile, GLTW’s performance improves as the 418

LLM size increases. These results demonstrate that 419

GLTW effectively captures the characteristics of 420

entities and relations in KGs and leverages the rich 421

knowledge in LLMs to enhance prediction accu- 422

racy. 2) GLTW3b beats Llama-2-7b-based baseline 423

MKGL (the most comparable method) on all met- 424

rics for FB15k-237 and WN18RR, with further 425

improvements achieved by GLTW7b. We attribute 426

GLTW’s advantage to its effective encoding of both 427

local and global structural information of KGs, tai- 428

loring a suitable objective function for training sub- 429

graphs, and enabling LLMs to perceive structural 430

information and effectively participate in entity pre- 431

diction. 3) The proposed iGT consistently outstrips 432
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other GT/GNN-based baselines on FB15k-237 and433

WN18RR, while gGLM uniformly lags behind oth-434

ers. A detailed analysis is provided in the Ablation435

Study (see Section 4.3).436

4.3 Ablation Study437

In this section, we carefully demonstrate the effi-438

cacy and indispensability of the core modules and439

key parameters in our methods on FB15k-237 and440

WN18RR.

Method
FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

GLTW1b 0.385 0.312 0.427 0.578 0.549 0.514 0.558 0.645
-w/o. iGT 0.108 0.082 0.177 0.303 0.205 0.157 0.261 0.413
-w/o. FT for LLM 0.379 0.291 0.397 0.572 0.539 0.509 0.545 0.629

GLTW3b 0.427 0.338 0.462 0.599 0.578 0.538 0.593 0.676
-w/o. iGT 0.171 0.145 0.191 0.325 0.287 0.222 0.309 0.439
-w/o. FT for LLM 0.411 0.323 0.445 0.587 0.552 0.529 0.567 0.663

GLTW7b 0.469 0.351 0.481 0.614 0.593 0.556 0.649 0.690
-w/o. iGT 0.207 0.184 0.236 0.366 0.394 0.309 0.357 0.462
-w/o. FT for LLM 0.438 0.343 0.465 0.607 0.568 0.538 0.612 0.677

-w/o LLM (i.e., iGT) 0.364 0.283 0.411 0.566 0.534 0.496 0.536 0.617

Table 2: Impact of each component for GLTW.

441

Necessity of each component for GLTW. To442

investigate the impact of iGT and LLMs on the443

performance for GLTW, we establish three control444

baselines: training iGT alone (w/o. LLM), fine-445

tuning LLMs alone (w/o. iGT), and using GLTW446

without fine-tuning LLMs (w/o. FT for LLM). For447

LLM fine-tuning alone, we input the KG language448

prompt and use the embedding vector of the last449

token from the final hidden layer as input to the450

classification layer. We report the results in Ta-451

ble 2. One can observe that iGT and LLMs exhibit452

significant performance drops compared to GLTW453

with different-sized LLMs. Specifically, iGT sees454

average declines of 5.1%, 4.5%, 5.5%, and 4.2%455

in MRR, Hits@1, Hits@3, and Hits@10, respec-456

tively, while LLMs experience average drops of457

27.2%, 25.2%, 27.3%, and 24.9% in these metrics.458

Notably, GLTW without fine-tuning LLMs still sur-459

passes both iGT and LLMs. This confirms that460

combining iGT and LLMs enhances entity predic-461

tion, consistent with prior works (Qiu et al., 2024;462

Zhang et al., 2024). Meanwhile, our proposed joint463

strategy effectively unlocks the LLM’s potential464

for the link prediction task. Additionally, iGT con-465

sistently trumps all LLMs, underscoring the criti-466

cal importance of relevant KG information and a467

well-designed training objective for performance468

improvements.469

Utility of L and D. We delve into the subgraph-470

based training objective L and the relative discrimi-471

nation matrix D by leveraging iGT. Thereafter, due472

to space limitations, we only report the values of473

Method
FB15k-237 WN18RR

Hits@1 A.IT(↓) A.IL(↓) A.BBR(↓) Hits@1 A.IT(↓) A.IL(↓) A.BBR(↓)

iGT 0.283 16 38.43 0.00 0.496 16 44.16 0.00
-w/o. Lpos 0.263 - - - 0.471 - - -
-w/o. Lneg 0.274 - - - 0.484 - - -
-w/o. Lpos & Lneg 0.243 - - - 0.430 - - -
-w/o. D 0.254 - - - 0.453 - - -

gGLM 0.241 14.9 313.57 0.01 0.304 9.45 448.21 0.34
-w. D 0.267 - - - 0.346 - - -

Table 3: Utility of D and various parts in Eq. (10) for
iGT, as well as iGT vs. gGLM

Hits@1. For the former, we perform the leave- 474

one-out test to explore the individual contributions 475

of Lpos and Lneg to iGT, and further display the 476

test results by simultaneously discarding them. As 477

shown in Table 3, removing either Lpos or Lneg 478

adversely affects the performance of iGT. In addi- 479

tion, the absence of both losses further worsens the 480

decline of Hits@1, demonstrating that Lpos and 481

Lneg are vital for training subgraphs. Interestingly, 482

we observe that removing Lpos has a more pro- 483

nounced negative impact than removing Lneg. The 484

empirical results indicate that in subgraph-based 485

training, the construction of positive and negative 486

triplets (i.e., PT and NT) is crucial for capturing 487

structural information in KGs. For the latter, Ta- 488

ble 3 reveals that removing D from iGT decreases 489

the Hits@1 value by 2.9% and 4.3% on FB15k-237 490

and WN18RR, respectively. Importantly, extending 491

D to gGLM improves Hits@1 value by 2.6% and 492

4.2% on these datasets. This suggests that BDP en- 493

hances the relative positional encoding of entities 494

and relations for subgraphs compared to BP . 495

Notably, we illustrate the encoding strategy of 496

D in gGLM, as shown in Fig. 5(c) of Appendix C. 497

Essentially, D introduces boundaries to the tex- 498

tual descriptions of entities and relations in sub- 499

graphs, thereby augmenting the PLM’s percep- 500

tion of triples within KG. Additionally, Table 3 501

records the three metrics during training for iGT 502

and gGLM: average input triplets (A.IT), average 503

input length (A.IL), and average tokens beyond the 504

bucket range (A.BBR). The results show that iGT 505

retains more input KG information than gGLM 506

in terms of A.IT and A.BBR, especially on the 507

WN18RR dataset. In contrast, the A.IL of gGLM 508

is significantly higher than that of iGT, implying 509

a higher computational cost for gGLM. Therefore, 510

we speculate that gGLM’s underperformance in the 511

link prediction task may be due to: 1) the lack of 512

clear boundaries for entities and relations; 2) sig- 513

nificant information loss when handling KGs with 514

lengthy textual descriptions; and 3) potential bias 515

introduced by focusing more on entities or relations 516
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with longer textual descriptions in each triplet.517

(a) FB15k-237

(b) WN18RR

Figure 3: Hits@1 with varying λ over FB15k-237 and
WN18RR.

Varying λ. We explore the impacts of518

λ based on GLTW1b and select it from519

{0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Additionally, we520

compare the performance of various relation em-521

beddings: those appearing in triplets from Thr522

and Th (i.e., tr = Poolop([t̃r, t̃r1 , · · · ]), marked523

as mrl), those present in ones from Thr, Th and524

Tr (i.e., tr = Poolop([t̃r, · · · , t̃r3 , · · · ]), marked525

as mrg), and the single relation in the target triplet526

(i.e., tr = t̃r, marked as r), as shown in Eq. (12).527

Fig. 3 shows that GLTW with λ /∈ {0.0, 1.0} con-528

sistently dominates that with λ ∈ {0.0, 1.0} in529

terms of Hits@1. Moreover, the performance with530

λ = 0 is superior to that with λ = 1. Notably,531

the Hits@1 values for mrl/g and r are identical532

when λ = 0, as the LLM only takes the KG lan-533

guage prompt as input, independent of them. These534

results indicate that our proposed combination of535

iGT and LLM effectively improves link prediction.536

Furthermore, we find that both mrg and mrl con-537

sistently outperform r w.r.t. Hits@1, with mrg538

uniformly surpassing mrl. This demonstrates that539

incorporating local structural information (i.e., Thr540

and Th) from KG into the training process improves541

the prediction accuracy for target entities, while542

adding global structural information (i.e., Tr) fur-543

ther boosts performance significantly.544

Varying (r,m) and β1. We look into the effects545

of the parameters(r,m), which control subgraph546

shape, and the constraint parameter β1 for L us-547

ing GLTW1b. First, we set (r,m) to values in548

{(0, 0), (1, 5), (2, 5), (3, 5), (2, 3), (2, 4)} and re-549

port the results in Fig. 4(a). Here, (0, 0) means550

that the subgraph contains only the target triplet551

(a)

(b)

Figure 4: Hits@1 with varying (r,m) and β1 over
FB15k-237 and WN18RR.

(h, r, ?). One can see that GLTW1b with (r,m) = 552

(0, 0) underperforms other cases w.r.t. Hits@1, in- 553

dicating that incorporating graph structure informa- 554

tion significantly enhances entity prediction. Fur- 555

thermore, when r = 2, GLTW1b’s Hits@1 value 556

improves as m increases, suggesting that moder- 557

ately enlarging the subgraph scale intensifies per- 558

formance. However, when m = 5, GLTW1b’s 559

performance does not monotonically improve with 560

increasing r, highlighting the significantly impact 561

of the subgraph sampling strategy on GLTW1b’s 562

performance for a given m. For β1, we select val- 563

ues from {0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5}, as 564

shown in Fig. 4(b). We observe that the Hits@1 565

score of GLTW1b initially rises and then declines 566

as β1 increases. This indicates that the optimal β1 567

depends on the scenario and requires case-specific 568

tuning. 569

5 Conclusion 570

In this paper, we propose a novel method, GLTW, 571

which aims to encode the structural information 572

of KGs and integrate it with LLMs to enhance 573

KGC performance. Specifically, we formulate an 574

improved graph transformer (iGT) that effectively 575

encodes subgraphs with both local and global struc- 576

tural information and inherits the characteristics of 577

language models, thus circumventing the need for 578

training from scratch. Also, we develop a subgraph- 579

based multi-classification training objective that 580

treats all entities within KG as classification ob- 581

jects to improve learning efficiency. Importantly, 582

we combine iGT with an LLM that takes KG lan- 583

guage prompt as input. Finally, we conduct exten- 584

sive experiments to verify the superiority of GLTW. 585
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Limitations586

Although empirical experiments have confirmed587

the effectiveness of the proposed GLTW, it still588

has two main limitations. First, training GLTW589

involves distinct original vocabularies for the T5590

and Llama series, resulting in separate vocabularies591

for iGT and LLM. We speculate that well-trained592

GLTW on a unified vocabulary could further en-593

hance its performance, but this would require train-594

ing the models from scratch. Second, our proposed595

method uses pooling operations from PNA to com-596

press textual information, which inevitably leads to597

some information loss. However, a key advantage598

of pooling operations is that they do not introduce599

new parameters requiring optimization. Even when600

training resources are limited and LoRA technol-601

ogy (Hu et al., 2021) is drawn to reduce memory602

consumption, the additional trainable parameters603

are negligible. Therefore, it is crucial to develop604

pooling operations that minimize such information605

loss, which we leave to future work.606

Ethical Considerations607

In this paper, all research and experiments utilize608

publicly available open-source datasets and models.609

We will release our code to support open research.610

Therefore, there is no ethical consideration in this611

paper.612
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Appendix920

A Related Work921

Knowledge Graph Completion (KGC) has922

evolved over the past decade and is a key task in the923

field of KGs. Mainstream KGC methods roughly924

fall into two groups: embedding-based and text-925

based methods. Embedding-based methods (Bor-926

des et al., 2013; Lin et al., 2015; Sun et al., 2019;927

Balažević et al., 2019) generate low-dimensional928

vectors for entities and relations and optimize vari-929

ous loss functions with the goal of h+ r ∼ t to pre-930

dict missing triplets. Although simple and effective,931

these methods neglect the extensive textual infor-932

mation in KGs and struggle to handle entities and933

relations not encountered during training. On the934

other hand, text-based methods (Yao et al., 2019;935

Zhang et al., 2020b; Wang et al., 2022b; Liu et al.,936

2022; Wang et al., 2022c; Yang et al., 2024a) uti-937

lize the textual descriptions of entities and relations938

as input to pre-trained language models (PLMs)939

and introduce contrastive learning to enhance dis-940

criminative ability. However, these methods lack941

the inherent structural knowledge of KGs. Con-942

sequently, some efforts (Wang et al., 2021; Chen943

et al., 2023; He et al., 2024; Yang et al., 2024a; Qiu944

et al., 2024) combine embedding- and text-based945

KGC methods, achieving improved performance.946

Graph Transformers (GTs) are essentially a947

special type of GNN (Bronstein et al., 2021) and948

are gaining increasing attention in multiple appli-949

cation fields (Chen et al., 2024a). In KGC, some950

studies (Schlichtkrull et al., 2018; Vashishth et al.,951

2019; Nathani et al., 2019; Chen et al., 2020; Wang952

et al., 2022a; Tan et al., 2023; Galkin et al., 2023)953

leverage GNNs to encode structural information954

in KGs to train embeddings for entities and rela-955

tions, while initializing them with semantic em-956

beddings via PLMs. Recently, some efforts have957

explored applying GTs to KG-related tasks, e.g.,958

graph-to-text generation (Schmitt et al., 2020; Li959

et al., 2024c) and relation classification (Plenz and960

Frank, 2024). However, they either train their mod-961

els from scratch or split entities and relations into962

multiple tokens to construct complex positional en-963

coding matrices. For example, GLM (Plenz and964

Frank, 2024) is a graph transformer that fuses tex-965

tual and structural information, enabling sequence966

PLMs to perform graph inference while maintain-967

ing their original ability.968

However, GLM restricts the relative distance969

of individual triplets to between 0 and 32, which970

limits the processing of entities or relations with 971

longer textual information. For instance, only 972

12.5% of triplets in WN18RR (using the T5 to- 973

kenizer) fall within this distance range. Intuitively, 974

the constraints of integrating textual and structural 975

information also limit the size of processable sub- 976

graphs. In addition, the attention mechanism may 977

exhibit bias towards entities or relations with longer 978

texts in each triplet. In this paper, we borrow the 979

positional encoding strategy from GLM but shift 980

our focus towards subgraph structural information 981

while preserving GLM’s strengths. We introduce a 982

novel relative distinction matrix to achieve differen- 983

tiated yet equal treatment of entities and relations 984

in triplets. Our work is also the first to apply GT to 985

the link prediction task. 986

KGC with LLMs. LLMs are deemed highly 987

promising in the realm of KGC and have garnered 988

extensive attention (Ren et al., 2024; Pan et al., 989

2024). For instance, (Yao et al., 2023; Zhu et al., 990

2024; Wei et al., 2024; Li et al., 2024a; Xu et al., 991

2024) directly perform KGC via ICL or enhance 992

textual information in KGs to improve text-based 993

methods. However, these methods overlook the 994

inherent structural information of KGs, leaving 995

LLMs unable to perceive structural knowledge. To 996

tackle this, (Zhang et al., 2024; Liu et al., 2024b; 997

Yang et al., 2024b) integrate structural informa- 998

tion with LLMs to boost KGC performance. Re- 999

cently, MKGL (Guo et al., 2024) enables LLMs 1000

to proficiently grasp entities and relations of KGs 1001

through three-word language, but how to make 1002

LLMs perceive graph information and improve the 1003

link prediction task remains an open problem. Go- 1004

ing beyond the aforementioned methods, there are 1005

a handful of recent studies (Li et al., 2024b; Xue 1006

et al., 2024; Jiang et al., 2024) on leveraging LLMs 1007

for KGC. 1008

B Complete Experimental Settings 1009

Datasets. We evaluate different methods with 1010

three widely used KG datasets, namely FB15k- 1011

237 (Toutanova et al., 2015), WN18RR (Dettmers 1012

et al., 2018), Wikidata5M (Vrandečić and Krötzsch, 1013

2014), for link prediction. We detail the said 1014

datasets in Table 4. Specifically, FB15k-237 is 1015

a curated dataset extracted from the Freebase (Bol- 1016

lacker et al., 2008) knowledge graph, covering 1017

knowledge across various domains, including 1018

movies, sports events, awards, and tourist attrac- 1019

tions. WN18RR is a well-known dataset built from 1020
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WordNet (Miller, 1995), designed for knowledge1021

graph research. It extracts a selection of lexical1022

items and semantic relationships, covering a rich1023

array of English words and their connections, such1024

as synonyms, antonyms, and hierarchical relation-1025

ships. Wikidata5M (Vrandečić and Krötzsch, 2014)1026

is a large-scale KG dataset that integrates Wikidata1027

and Wikipedia pages. Each entity in the dataset1028

corresponds to a Wikipedia page, enabling it to1029

support link prediction task for unseen entities. It1030

follows the Wikidata identifier system, with entities1031

prefixed by “Q” and relations by “P.” Additionally,1032

the dataset provides a text corpus aligned with the1033

KG structure.1034

Baselines. To assess the effectiveness of our1035

methods, we follow (Plenz and Frank, 2024) by1036

using the bidirectional encoder of T5-base as the1037

base PLM for iGT. Here, P and D are buck-1038

eted and mapped to BPD respectively, with shar-1039

ing across layers. Meanwhile, we choose three1040

LLMs with different sizes for GLTW: Llama-3.2-1041

1B/3B-Instruct (Dubey et al., 2024), and Llama-1042

2-7b-chat (Touvron et al., 2023). For differenti-1043

ation, we denote GLTW with different LLMs as1044

GLTW1b/3b/7b.1045

Also, we compare proposed GLTW and iGT1046

against numerous embedding-based, text-based,1047

GNN/GT-based and LLM-based baselines, which1048

are the most relevant methods to our work. The1049

embedding-based baselines include TransE (Bor-1050

des et al., 2013), RotatE (Sun et al., 2019),1051

HAKE (Zhang et al., 2020a), and CompoundE (Ge1052

et al., 2023). The text-bsed baselines encom-1053

pass KG-BERT (Yao et al., 2019), KG-S2S (Chen1054

et al., 2022), CSProm-KG (Chen et al., 2023),1055

and PEMLM-F (Qiu et al., 2024). The GNN/GT-1056

based baselines cover CompGCN (Vashishth et al.,1057

2019), REP-OTE (Wang et al., 2022a), and KR-1058

ACL (Tan et al., 2023) (based on GNN), as well1059

as gGLM (Plenz and Frank, 2024) (based on1060

GT). Note that gGLM and iGT are trained on the1061

same sampled subgraphs. The LLM-based base-1062

lines feature GPT-3.5-Turbo with one-shot ICL1063

(marked as GPT-3.5) (Zhu et al., 2024), KG-Llama-1064

2-13B+Struct (marked as Llama-2-13B) (Yao et al.,1065

2023), KICGPT (Wei et al., 2024), MPIKGC-S (Xu1066

et al., 2024), KG-FIT (Jiang et al., 2024), and1067

MKGL (Guo et al., 2024).1068

Configurations. In all experiments, unless oth-1069

erwise specified, we default to setting l = 2 and1070

m = mhr = mh = mr = m/3 = 5 for sub-1071

graph sampling. Meanwhile, we set λ = 0.5 and1072

Dataset #Ent #Rel #Train #Valid #Test

WN18RR 40943 11 86835 3034 3134
FB15k-237 14541 237 272115 17535 20466
Wikidata5M 4594485 822 20614279 5133 5163

Table 4: Statistics of the Datasets. Columns 2-6 rep-
resent the number of entities, relations, triples in the
training set, triples in the validation set, and triples in
the test set, respectively.

β1 = 0.5 by default. Note that β2 is adaptively 1073

calculated based on Eq. (11). Also, we assess per- 1074

formance by leveraging the Mean Reciprocal Rank 1075

(MRR) of target entities and the percentage of tar- 1076

get entities ranked in the top k (k = 1, 3, 10), re- 1077

ferred to as Hits@k. 1078

During training, we assign distinct training 1079

schedules to different modules to fully capture the 1080

knowledge in the KG datasets. These modules in- 1081

clude iGT Encoder, LLM, Adapter and Classifica- 1082

tion Layer. Notably, we may also train the pooling 1083

operators. When training resources are limited, we 1084

follow (Guo et al., 2024) by drawing on LoRA 1085

technology (Hu et al., 2021) to mitigate memory 1086

consumption. For ease of description, we divide 1087

the training modules of GLTW into three parts: 1088

iGT Encoder, LLM, and the remaining modules 1089

(referred to as "Other Modules"). Specifically, for 1090

FB15k-237 and WN18RR, we set the number of 1091

training epochs to 10 and the gradient accumula- 1092

tion steps to 4. For Wikidata5M, we set the number 1093

of training epochs to 2 and the gradient accumu- 1094

lation steps to 10. In all experiments, we used a 1095

linear learning rate schedule and the AdamW opti- 1096

mizer. For iGT Encoder, LLM, and Other Modules, 1097

we set the learning rates to 0.0001, 0.00001, and 1098

0.001, respectively, with warm-up rates (i.e., the 1099

proportion of warm-up steps to total training steps) 1100

of 0.02, 0.04, and 0.01. Given that we used three 1101

different-sized LLMs, during training, we set the 1102

batch size per device to 16 for GLTW7b, 32 for 1103

GLTW3b, and 64 for GLTW1b over WN18RR and 1104

Wikidata5M. For FB15k-237, the batch sizes are 1105

set to 32 for GLTW7b, 64 for GLTW3b, and 128 1106

for GLTW1b. Note that for all LLMs, we fine- 1107

tuned them using LoRA technology, with parame- 1108

ters set as follows: r = 32, dropout = 0.05, and 1109

target modules = (query, value). We conduct 1110

our experiments on NVIDIA A800 40G GPUs with 1111

DeepSpeed+ZeRO3 and BF16. We will make the 1112

code and data publicly available upon acceptance. 1113

To ensure reliability, we report the average for each 1114
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experiment over 3 random seeds.1115

C The construction strategy of P and D1116

in gGLM1117

In this section, we introduce the positional encod-1118

ing strategy of the existing method gGLM (Plenz1119

and Frank, 2024), as shown in Fig. 5(a)–(b). Impor-1120

tantly, we integrate the proposed relative distinction1121

matrix D into gGLM and illustrate an example of1122

encoding for D in Fig. 5(c).1123

D KG Language Prompt1124

We present the KG language prompt in Table 5.1125

Note that the prompt in Table 5 directly stems from1126

MKGL, as our work is orthogonal to the design of1127

the KG language prompt.1128
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Input:
### Instruction
Suppose that you are an excellent linguist studying a three-word language. Given the following
dictionary:
Input Type Description
<kgl:black poodle> Head entity black poodle
<kgl:is a> Relation is a
Please complete the last word (?) of the sentence: <kgl:black poodle><kgl:is a>?

### Response:
<kgl:black poodle><kgl:is a>

Table 5: KG language prompt: In the context of three-word Language, link prediction task corresponds to
completing the sentence hr?. Note that we take <kgl:black poodle> and <kgl:is a> as a example.
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(a) Levi graph of example subgraph with relative distances for dog and distinction for <red rose, is a, flower>

black poodle is a dog is a animal cat is a red rose is a flower

black 0 1 2 3 4 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

poodle -1 0 1 2 3 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

is -2 -1 0 1 2 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

a -3 -2 -1 0 1 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

dog -4 -3 -2 -1 0 1 2 3 G2G G2G G2G G2G G2G G2G G2G G2G

is G2G G2G G2G G2G -1 0 1 2 G2G G2G G2G G2G G2G G2G G2G G2G

a G2G G2G G2G G2G -2 -1 0 1 G2G G2G G2G G2G G2G G2G G2G G2G

animal G2G G2G G2G G2G -3 -2 -1 0 -3 -2 -1 G2G G2G G2G G2G G2G

cat G2G G2G G2G G2G G2G G2G G2G 3 0 1 2 G2G G2G G2G G2G G2G

is G2G G2G G2G G2G G2G G2G G2G 2 -1 0 1 G2G G2G G2G G2G G2G

a G2G G2G G2G G2G G2G G2G G2G 1 -2 -1 0 G2G G2G G2G G2G G2G

red G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G 0 1 2 3 4

rose G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G -1 0 1 2 3

is G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G -2 -1 0 1 2

a G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G -3 -2 -1 0 1

flower G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G -4 -3 -2 -1 0

(b) Relative position matrix P for (a)

black poodle is a dog is a animal cat is a red rose is a flower

black 0 0 1 1 0 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

poodle 0 0 1 1 0 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

is 2 2 3 3 2 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

a 2 2 3 3 2 G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G

dog 0 0 1 1 0 1 1 0 G2G G2G G2G G2G G2G G2G G2G G2G

is G2G G2G G2G G2G 2 3 3 2 G2G G2G G2G G2G G2G G2G G2G G2G

a G2G G2G G2G G2G 2 3 3 2 G2G G2G G2G G2G G2G G2G G2G G2G

animal G2G G2G G2G G2G 0 1 1 0 0 1 1 G2G G2G G2G G2G G2G

cat G2G G2G G2G G2G G2G G2G G2G 0 0 1 1 G2G G2G G2G G2G G2G

is G2G G2G G2G G2G G2G G2G G2G 2 2 3 3 G2G G2G G2G G2G G2G

a G2G G2G G2G G2G G2G G2G G2G 2 2 3 3 G2G G2G G2G G2G G2G

red G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G 0 0 1 1 0

rose G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G 0 0 1 1 0

is G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G 2 2 3 3 2

a G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G 2 2 3 3 2

flower G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G G2G 0 0 1 1 0

(c) Relative distinction matrix D for (a)

Figure 5: Example of subgraph preprocessing with P and D in gGLM (Plenz and Frank, 2024). Note that entries
with G2G are initialized to +∞.
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