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Abstract

Recent progress in large language model (LLM) reasoning has focused on domains
like mathematics and coding, where abundant high-quality data and objective eval-
uation metrics are readily available. In contrast, progress in LLM reasoning models
remains limited in scientific domains such as medicine and materials science due
to limited dataset coverage and the inherent complexity of open-ended scientific
questions. To address these challenges, we introduce WildSci, a new dataset of
domain-specific science questions automatically synthesized from peer-reviewed
literature, covering 9 scientific disciplines and 26 subdomains. By framing com-
plex scientific reasoning tasks in a multiple-choice format, we enable scalable
training with well-defined reward signals. We further apply reinforcement learn-
ing to finetune models on these data and analyze the resulting training dynamics,
including domain-specific performance changes, response behaviors, and general-
ization trends. Experiments on a suite of scientific benchmarks demonstrate the
effectiveness of our dataset and approach. We release WildSci to enable scalable
and sustainable research in scientific reasoning. [[]

1 Introduction

Advancing Al for science requires models that combine domain-specific expertise with strong
reasoning capabilities to support real-world scientific discovery [Zhang et al.|[2024b| Nathani et al.|
2025, |Gottweis et al., 2025, |Prabhakar et al., [2025]]. Recent advances in large language model
(LLM) reasoning have achieved impressive progress in mathematical and coding domains [Yang
et al.,[2024b} |Shao et al.| |2024], especially driven by the rapid development of reinforcement learning
techniques for reasoning tasks [Shao et al.l 2024, [Team et al., 2025a, [Hu et al.,|2025} | Yu et al.| 2025
Liu et al., 2025bl Zeng et al., 2025]]. These areas offer natural advantages: they involve objective,
verifiable answers and have abundant high-quality datasets available in the community. This enables
the development of reasoning models with access to scalable, well-structured training and evaluation.

In contrast, scientific domains remain relatively underexplored in the context of reinforcement
learning with verifiable rewards (RLVR) [Lambert et al.| 2024, [Su et al.l 2025]]. Scientific questions
are often more complex and multifaceted, requiring not only logical and mathematical skills but
also deep domain-specific knowledge to contextualize and analyze information accurately. Existing
datasets are mostly skewed toward traditional natural sciences such as physics, chemistry, and biology,
and tend to be limited in both scope and disciplinary diversity [Rein et al.|[2023] |Li et al., [2023, Zhang
et al.| [2024al [Lu et al.| |2025]]. As a result, many scientific areas, particularly interdisciplinary fields
like materials science and medicine, remain underrepresented [[Wadden et al.,2024]]. Furthermore,
most existing data sources are drawn from textbooks or general pretraining corpora [Yue et al., 2024bl|
Yuan et al.| [2025]], which lack the specificity of research-level content.
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Table 1: Comparison of datasets by source type, domain coverage, size, question length, and
originality. ‘New?’ indicates whether questions are newly generated or parsed from existing corpora.

Dataset Source Domains #Q Avg. Len. New?
Camel-Al Science  GPT-4 (self-generated) Phys, Bio, Chem 60K 30+ 15 Yes
Sci-Instruct Textbooks, problem sets, websites ~ Phys, Chem, Math, Formal Proofs 254K 41 £33 No
SCP-116K Educational materials Phys, Chem, Bio 116K 62 + 74 No
Natural Reasoning  Pretraining corpora Multiple 28M 55+£21 Yes
WildSci Peer-reviewed papers Multiple (research focused) 56K 82419 Yes

To address this gap, we propose leveraging peer-reviewed scientific literature as a rich yet underuti-
lized source for constructing domain-specific science questions in a fully automated pipeline. Unlike
textbooks or problem sets, scientific papers reflect the depth, rigor, and complexity of real-world
research, making them well-suited for advancing models toward research-level reasoning skills. This
approach offers several key advantages: (1) it grounds questions in real-world applications and
expert-validated context; and (2) it enables the creation of new questions that are unlikely to appear
in pretraining corpora, helping mitigate issues of data contamination.

Another key challenge arises from the nature of science itself: many science questions are inherently
open-ended and do not have a single verifiable answer. For example, explaining the observed decline
in species richness in Figure[T|requires scientific judgment including interpreting evidence, reasoning
about underlying mechanisms, and constructing plausible explanations. To address this, we adopt
a more structured formulation by framing scientific reasoning tasks as multiple-choice questions
(MCQs). MCQs are widely used in existing science benchmarks and offer a practical format for
evaluation [Hendrycks et al., [2021al Rein et al., [2023, Wang et al., |2024b} [Team et al., [2025b]].
This structure provides clear supervision signals, making it easier to define rewards systematically
while preserving the richness of scientific reasoning. This simple setting offers a natural testbed for
extending RL advances from mathematical domains to scientific reasoning tasks.

In this work, we develop a generalizable approach for creating training data grounded in real-world
scientific research, and to extend RLVR reasoning to scientific domains. Our contributions are
summarized as follows.

(1) We introduce a fully automated data synthesis pipeline that generates domain-specific questions
from peer-reviewed scientific papers, followed by refinement and model voting to ensure data quality.

(2) We construct WildSci, a dataset of S6K questions spanning 9 scientific disciplines and 26
subdomains, providing broad and diverse coverage for scientific reasoning.

(3) We provide comprehensive analysis on how WildSci enables effective transfer of RLVR method
to scientific domains. Models trained on WildSci show consistent improvements on multiple science
benchmarks, including GPQA, SuperGPQA, and MMLU-Pro.

With new papers continuously emerging in the community, WildSci provides a sustainable data
synthesis approach to support ongoing exploration of scientific reasoning. We have open-sourced the
code and data for WildSci to enable scalable and sustainable research in scientific reasoning.

2  WildSci

2.1 Data Creation

An overview of our data creation pipeline is illustrated in Figure [} The entire process is fully
automated using large language models, with multiple stages of filtering and refinement to ensure
high-quality outputs. This automation enables our pipeline to generalize seamlessly to other scientific
domains with accessible research literature.

Peer-reviewed Papers We use publicly available, open-access articles from Nature Communica-
tionsﬂ as the data source [Li et al.,|2024]. The journal categorizes its content into five major areas
and 72 subdomains. We reorganize these into nine broader disciplines following the taxonomy of
SuperGPQA [Team et al., 2025bf|. To ensure balanced coverage, we randomly sample a subset of

“https://www.nature.com/ncomms/
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Figure 1: Overview of the data creation pipeline. Filtering is based on heuristic rules, while refinement
expands the option space and rephrases questions to increase diversity.

papers from each category and generate three questions per paper based on its content. While the
articles include both text and visuals, we focus exclusively on textual reasoning by using only the
title, abstract, and main body, excluding all figures and tables.

QA Generation To enable a fully automated data synthesis pipeline, we employ a large language
model to generate multiple-choice questions, corresponding answers and rationales directly from
the paper content. The model is prompted to go through the full paper and create questions that
reflect in-depth reasoning and understanding. Specifically, we instruct the model to produce context-
independent questions. These are questions that can be answered without relying on figures, tables,
or precise numerical details from the paper. This constraint ensures that the resulting questions
emphasize knowledge-based and reasoning-intensive skills within a standalone context. The full
prompt used for QA generation is provided in Appendix [I}

Filtering To eliminate questions that require fine-grained recall or external references, we apply
a set of heuristic and keyword-based filters. These filters remove items involving specific sections,
detailed experimental results, or figure and table references (Figure[I). Following previous work [[Yuan
et al.l [2025]|Gao et al.,[2024]], we also apply 13-gram deduplication against GPQA, SuperGPQA,
and MMLU-Pro to eliminate semantically similar questions. The deduplication overlap rate is 0.0%,
suggesting that our dataset is both new and free of substantial overlap with existing resources.

Refinement The refinement stage focuses on enhancing question quality by increasing both their
difficulty and diversity. Each question, along with its answer choices and rationale, is passed to
LLM, which is prompted to paraphrase the question, eliminate surface-level cues, and expand the
number of options (e.g., from 4 to 10 choices). This augmentation not only makes the questions more
challenging but also reduces the chance of correct guesses during training. To better assess domain
expert level reasoning, we explicitly instruct the model to remove well-known axioms or clues that
are too obvious within a specific scientific field.

Model Voting Dataset quality can be negatively impacted by questions that are poorly constructed,
lack necessary information, or are inherently unanswerable [Vendrow et al., 2025]. A practical way
to assess answerability is to have models attempt to solve the questions. To validate the clarity of
generated data, we apply model-based voting using an ensemble of open-source LLMs. Each model
receives the question and answer choices, along with an additional fallback option: “None of the
above / The question is unanswerable.” This allows models to flag ambiguous or ill-formed questions
while trying to approach the solutions. Based on the model voting results, we discard questions where
the majority of models select the unanswerable option.

Data Selection We further categorize the questions by the level of agreement among ensemble
models, using this as a proxy for clarity and difficulty: This grouping supports more controlled
training setups, enabling models to learn from data with varying complexity:

All Aligned All model responses match the synthetic answer, indicating the question is clear and
easily answerable.

Majority Aligned The majority vote of the model responses matches the original labels. These



questions are valid but more challenging, as models do not consistently arrive at the correct answer.
Majority Divergent The majority of responses differ from the original labels. This indicates either
that the questions are challenging or that the synthetic labels may be incorrect, with the majority
answers potentially representing more reasonable solutions.

All Divergent No single answer is selected by more than half of the ensemble responses. Such
questions are likely highly difficult or ambiguous, resulting in diverse interpretations.

2.2 Statistics
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Figure 2: Comparison of the number of papers and gen- Figure 3: Distribution of questions after
erated questions across different disciplines. filtering and refinement in WildSci.

Domains The distribution of selected papers and the resulting question dataset after filtering and
refinement are illustrated in Figure 2] and Figure[3] Note that many subdomains are interdisciplinary,
for example, Biochemistry can fall under both Biology and Chemistry. This classification serves
primarily to provide a high-level overview of the dataset composition. A comprehensive taxonomy
and detailed subdomain statistics are included in Appendix [D}

Length We measure question length by counting the number of words in each question, excluding
the options. While word count does not directly indicate difficulty, it serves as a proxy for the
complexity and richness of the question descriptions. Grounded in real-world research, questions
in WildSci often include background information to provide context. Compared to other datasets
in Table[I} WildSci has the longest questions, with a mean length of 81.74 words. Among different
disciplines, Mathematics has the highest average word count (93.9), followed by Physics (89.8) and
Engineering (88.6). In contrast, questions in Biology are the shortest on average, with 69.9 words. A
detailed distribution of question lengths is provided in Appendix [D}

2.3 Training

Reward Design In order to enable RLVR in science domains, WildSci allows obtaining verifiable
rewards during training through simple option answer matching. We denote the original labels
produced by our data creation pipeline as synthetic labels, denoted ysy,. For each question, there is
exactly one such label generated automatically from the pipeline. In this setting, we define the reward
function based solely on matching the prediction ¢ and the synthetic label ygn:

AN ]-'Oa ify:ysyna
Rem(y) = {0.0, otherwise. M)

To prevent models from memorizing option positions, we randomly shuffle the choices in each
training epoch, ensuring a balanced distribution and reducing overfitting to option labels.

Training Algorithm Following previous work that advances mathematical reasoning of LLMs, we
adopt Group Relative Policy Optimization (GRPO) as the training algorithm [Shao et al.,[2024].



3 Experiments

3.1 Evaluation Benchmarks

To assess the scientific reasoning capabilities of language models, we evaluate them on a suite of
benchmarks targeting scientific question answering. We report accuracy for each dataset by checking
whether the final selected option in the model’s response is correct.

WildSci-Val We construct an in-domain validation set using All Aligned questions from WildSci.
Specifically, we randomly sample 100 questions from each of the 9 disciplines, resulting in a total of
900 questions. Each question includes 10 available options, with exactly one correct answer.

GPQA To mitigate potential bias introduced by answer choice order, we introduce GPQA-Aug,
an augmented variant of the original GPQA-Diamond dataset [Rein et al.,|2023]]. For each of the
198 questions, we generate four versions by permuting the answer options so that the correct answer
appears once in each of the four positions, resulting in a total of 792 examples.

SuperGPQA SuperGPQA [Team et al.,|2025b] is a large-scale benchmark designed to evaluate
knowledge and reasoning across 285 graduate-level disciplines, with 26,529 questions in total.

MMLU-Pro MMLU-Pro [Wang et al., 2024b] is a dataset of 12,032 questions that builds upon the
original MMLU [Hendrycks et al.,[2021a]] by shifting its focus to reasoning-based questions.

3.2 Data Creation

We adopt Qwen2.5-32B-Instruct [Yang et al) [2024a] and Qwen3-32B [Shao et al.l [2024] as
the default model in our data generation pipeline, balancing quality and cost-effectiveness, as
supported by findings in [Moshkov et al.| [2025]]. For the model voting stage, we additionally
employ Mistral-Small-24B-Instruct-2501, selected for their similar performance in scientific
reasoning tasks. We generate 4 responses per model using temperature of 0.8, resulting in a total of 8
responses used in the voting process.

4 Results and Analysis

4.1 Improving Science Reasoning Abilities

Table 2: Performance comparison across different benchmarks. The Average column is computed
across the three public benchmarks GPQA-Aug, SuperGPQA and MMLU-Pro. Maj. Aligned stands
for the Majority Aligned subset of WildSci.

Model WildSci-Val GPQA-Aug SuperGPQA MMLU-Pro Average
QWBH2.5—1.5B—IHStht 46.701.98 23.98()‘83 18. 100.63 31 -470.84 24-520.76
+ WildSci All Ahgned 80.480.26 28.95()‘()8 23.850'25 42'540.28 31.78020
+ WildSci Maj. Aligned 80.33¢.11 25.760.44 24.41 06 41.950.03 30.710.17
Qwen2.5—3B—Instruct 72.450.4() 28.03197 23.2 1()_()3 44, 180.15 31 .800.73
+ WildSci All Ahgned 85.000.40 33-040486 26.390'33 49.330_27 36.25()‘5()
+ WildSci Maj. Aligned 84.710.06 30.980.89 26.010.24 48.66¢.10 35.22041

In this section, we apply GRPO to train models on different subsets of WildSci. Table [2|reports the
main results across multiple evaluation sets. WildSci-Val shows in-domain performance, while the
Average column reflects mean accuracy across three out-of-domain science benchmarks: GPQA-
Aug, SuperGPQA, and MMLU-Pro. Training Qwen2.5-1.5B-Instruct on the All Aligned subset
significantly boosts in-domain accuracy from 46.7% to 80.48%. It also improves generalization
to public benchmarks, with gains of 4.97%, 5.75%, and 11.07% on GPQA-Aug, SuperGPQA,
and MMLU-Pro respectively, resulting in an average increase of 7.26%. Consistent gains are also
observed with 3B models, where WildSci yields an average improvement of 4.45% across science
benchmarks. While training on the Majority Aligned subset also brings similar improvements, its
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Figure 5: Domain-specific accuracy trends on MMLU-Pro during training. We report mean accuracy
across three runs for each domain. Shaded regions indicate standard deviation. (a) shows steady
improvements in domains with higher WildSci coverage (chemistry, physics, engineering), while (b)
illustrates more variable performance in domains with lower coverage (law, history, philosophy).

performance is slightly lower than the All Aligned subset. Overall, we do not observe substantial
performance differences across subsets, aligning with findings from Wang et al.| [2025]]. A detailed
distribution and comparison of subsets is provided in Figure[6|and Appendix [E]

Furthermore, we observe that models continue to
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Figure [3] illustrates the performance trends across Figure 4: Performance trends on validation
subdomains of MMLU-Pro during training on a 1.5B  and test sets during training of the 3B model
model with WildSci Majority Aligned data. We ob- on WildSci All Aligned. The model exhibits
serve a sharp increase in accuracy within the first 100 continued generalization on test sets even af-
steps, likely due to the model’s rapid adaptation to ter overfitting on the validation set.

the multiple-choice answer format. After this initial

phase, performance stabilizes but exhibits domain-

specific dynamics. Interestingly, we find that in do-

mains such as chemistry, physics, and engineering, where WildSci provides more coverage, accuracy
continues to improve steadily throughout training (Figure[5[a)). In contrast, domains with sparser data
coverage, such as law, history, and philosophy, show more fluctuation and slower gains (Figure [5[b)).
The observed performance differences highlight the need for more balanced data coverage across
domains to ensure uniform model improvements. A detailed breakdown of domain-level performance
on SuperGPQA and MMLU-Pro can be found in Appendix [F|

4.3 Analyzing Format Alignment and Reasoning Improvement

As our training data consists of multiple-choice questions, the model naturally adapts to the expected
answer format and becomes familiar with the task structure. This raises the question: are the observed
improvements on science reasoning benchmarks only a result of format alignment, or do they reflect
gains in reasoning ability?



To disentangle the effect of format adaptation from actual reasoning improvement, we track the
model’s adherence to the expected answer format over training steps. Figure [7] presents both
the proportion of responses from which a valid final answer can be reliably extracted and the
corresponding accuracy trends.

Our analysis shows that even by step 5, the model achieves a high extraction success rate of 88.86%,
which quickly converges to around 95% within just 20 steps. This rapid convergence suggests that
the model learns the structural template of multiple-choice answers very early during training.
Furthermore, we continue to observe steady improvements in accuracy beyond this point, indicating
that the later-stage performance gains cannot be attributed solely to improved format adaptation.
Instead, these results indicate a gradual enhancement in the model’s reasoning capabilities as it
attempts and learns from more diverse responses during training.
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4.4 Ablation Analysis

In this section, we conduct an ablation analysis to examine the impact of question refinement on
final model performance. During the refinement phase, we enhance both the semantic diversity of
questions and the breadth of the answer option space. The results are presented in Table 3] In both
settings, we train the Qwen2.5-1.5B-Instruct model using All Aligned questions from WildSci.

Even without refinement, the model achieves an improved average performance of 28.83%, represent-
ing a 4.31% gain over the baseline average accuracy of 24.52%. However, with only four options
per question in the training set, the model only achieves 66.63% on the valid set which contains
10 options per question. Notably, the expanded answer space introduced during refinement not
only balances the distribution among the answer space, but also reduces the likelihood of the model
arriving at the correct answer through random guessing, thereby encouraging more robust learning
and leading to further performance improvements on OOD science benchmarks.

Table 3: Performance comparison before and after refinement stage. The average is computed across
the three public benchmarks GPQA-Aug, SuperGPQA and MMLU-Pro. We use All Aligned data as
the training data in both settings.

Setting WildSci-Val GPQA-Aug SuperGPQA MMLU-Pro Average
WildSci 80.48 26 28.95¢ 03 23.850.25 42.54 53 31.780 20
WildSci w/o refinement 66.630_06 27.940_32 20.44()‘()4 38.1 10_37 28.830_24

4.5 Mixed Training with MATH

To assess the transferability between mathematical and scientific reasoning, we conduct experiments
using the MATH dataset [Hendrycks et al.||2021b] for both training and evaluation of math reasoning
abilities. As shown in Table 4] model trained solely on MATH achieves improved performance on



math-specific tasks but fails to generalize to science reasoning benchmarks. In contrast, training
solely on WildSci also leads to improvements in math reasoning, indicating its broader effectiveness.
We then perform mixed training using both MATH and WildSci, denoted as “MATH+WildSci”. The
resulting model demonstrates improved performance on science benchmarks while preserving its
math reasoning ability. Moreover, it also improves accuracy on GPQA-Aug, highlighting the effect
of combining science and math reasoning data. These results suggest that WildSci complements
existing reasoning datasets and helps enhance model generalization across diverse reasoning
domains.

Table 4: Performance comparison when training 1.5B model with MATH. The average is computed
across the three public benchmarks GPQA-Aug, SuperGPQA and MMLU-Pro. We use Maj. Aligned
subset as the training data for WildSci.

Setting WildSci-Val GPQA-Aug SuperGPQA MMLU-Pro Sci. Avg. MATH
Qwen2.5-1.5B-Instruct 46.70193 23.980.33 18.10()‘63 31.47()‘84 24-520.76 55.470‘33
WildSci 80.330,1] 25.760,44 24-410.06 41.950'()3 30.7 10.|7 57-000.60
MATH 36.961.18 20.540 44 17.470.05 28.860.05 2229018  58.92037
MATH + WildSci 78.410.34 29.760‘45 24.250,12 42.360'()9 32.120‘22 58.730'99

4.6 Scientific Reasoning Type Analysis

To characterize the types of reasoning required in WildSci, two authors manually reviewed 200
randomly sampled questions and developed a classification scheme. Each question was catego-
rized into one of the following three scientific reasoning types: (1) Mathematical calculations and
derivations: Questions that require performing numerical computations or symbolic derivations. (2)
Model design, method analysis, or conceptual understanding: Questions that involve understanding
scientific models, evaluating methodologies, or grasping abstract concepts. (3) Causal reasoning and
mechanism inference: Questions that ask about the underlying causes, mechanisms, or consequences
of a phenomenon.

To extend this categorization to the full dataset, we use Qwen2.5-32B-Instruct to automatically
classify all questions in WildSci. The resulting distribution is as follows: 40.00% of the questions
involve numerical calculation, 37.59% require causal inference, and 22.41% focus on model analysis
or conceptual understanding. While mathematical reasoning is common in other datasets, WildSci
emphasizes higher-order scientific reasoning skills such as causal inference and model-based analysis.
These types of abilities are essential in research-oriented problem solving, reflecting the complexity
and diversity of scientific reasoning in our dataset.

5 Limitations

While involving domain-specific knowledge in the questions, some numerical questions in our dataset
are relatively simple. Although complex mathematical reasoning is not the primary focus of this work,
combining scientific knowledge with deeper quantitative reasoning is a promising future direction.
Another limitation lies in the use of a multiple-choice question (MCQ) format. Despite our efforts
to carefully design questions and diversify answer choices to reduce superficial patterns, the format
inherently introduces the risk of models exploiting spurious heuristics. Evaluating and verifying
open-ended research questions such as causal reasoning and analysis remains an open challenge in
advancing scientific reasoning abilities of LLMs.

6 Conclusion

We present WildSci, a dataset of verifiable scientific reasoning questions automatically generated from
peer-reviewed papers. Our pipeline synthesizes questions across 9 disciplines and 26 subdomains,
using model voting for quality control and pairing each question with 10 answer options. RLVR
training on WildSci leads to improved performance on multiple science reasoning benchmarks.
Training dynamics further confirm the effectiveness and generalizability of our data. As scientific
literature continues to grow, WildSci offers a sustainable approach to converting real world research
articles into valuable data for advancing scientific reasoning in language models.
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A Experiment Settings

We train our model using the GRPO algorithm implemented in the verl [Sheng et al.| 2024] frame-
work. We set a maximum response length of up to 8192 tokens and applying left-side truncation.
During rollout, we sample 8 responses per prompt with a temperature of 1.0. The model is trained
with a learning rate of 5 x 10~ and is updated with AdamW optimizer [Loshchilov and Hutter,
2017]]. We mostly adopt the training settings from Zeng et al.[[2025]] and do not perform additional
hyperparameter tuning. All experiments are conducted on a server equipped with 8 NVIDIA A100
GPUs, each with 40GB of memory. Training the 1.5B model for 700 steps takes one day using 4
GPUs, while the 3B model requires two days on all 8 GPUs for 700 steps. We select checkpoints for
evaluation based on the in-domain validation set WildSci-Val and the final training checkpoint at step
700. During the evaluation phase, we set the temperature to 0.0 using the vLLLM library to eliminate
randomness in model predictions [Kwon et al., |2023|]. To show potential variance in inference, we
report the mean and standard deviation over three independent runs.

B Related Work

B.1 Science Reasoning Data

Domain-specific datasets have significantly advanced model reasoning, especially in mathematics [ Yu
et al., 2024 [Yue et al.,[2024a, Toshniwal et al., 2025| |Albalak et al.,[2025| [Zhou et al., 2025]]. Recent
work has extended coverage to core natural sciences like physics, chemistry, and biology [Li et al.,
2023, [Lu et al.| 2025]]. Scilnstruct [Zhang et al., |2024a] collects questions from textbooks, exams,
and problem sets, while |Yue et al.| [2024b]], | Yuan et al.[[2025], Ma et al.| [2025]] synthesize questions
from web text and pretraining corpora. In contrast, WildSci constructs questions from peer-reviewed
research papers, targeting in-the-wild scientific problems and enabling generalization to long-tail
domains through an automatic data synthesis pipeline.

B.2 Reinforcement Learning in Reasoning

Reinforcement learning has advanced reasoning in areas like mathematics and coding, where simple
rule-based rewards have proven effective [Team et al., 2025a, [Hu et al.l 2025| [Yu et al.| 2025| Liu
et al.,[2025b, |[Zeng et al., 2025} Shao et al., 2024, |Liu et al., 2022]. In science domains, open-ended
questions can make rule-based verification challenging. For efficiency and simplicity, we reformat
open science research questions as MCQs. While concurrent work validates the use of MCQs for RL
training [Akter et al.| |2025]], WildSci specifically focuses on grounding its questions within real-world
scientific literature. This approach not only ensures domain specificity but also provides a convenient
training signal and facilitates generalization across diverse domains.

B.3 Science Reasoning Evaluation

Recent studies have developed benchmarks to address the limited evaluation of LLMs in the science
domain [Team et al.,[2025b, |Fei et al., 2024, Pal et al.| [2022 Jin et al.| 2020l |Zhao et al.| 2024, |Yang
et al., [2024c, |Gao et al.,|2025} |Gulati et al., [2025]]. SciBench [Wang et al., |2024a] provides open-
ended, free-response collegiate-level problems that require multi-step reasoning abilities, including
advanced mathematical derivation and understanding of scientific concepts, in chemistry, physics,
and math. Other benchmarks such as SciKnowEval [Feng et al., [2024] and SciAccess [[Cai et al.}
2024]| evaluate LLMs in memorization, comprehension and reasoning across various science domains.
Domain-specialized datasets like MaScQA [Zaki et al., [2023]] and UGPhysics [Xu et al., 2025]]
further evaluate models within a specific subject. ResearchBench [Liu et al., 2025a] provides a
benchmark to test LLMs on generating innovative scientific hypotheses, introducing a framework
to assess inspiration retrieval, hypothesis composition, and hypothesis ranking. Although these are
effective metrics to evaluate scientific proficiency, only a few domains are actively involved, mainly
chemistry, biology, materials science, and physics. WildSci encompasses a wide range of scientific
disciplines to support a comprehensive dataset. Through a multidisciplinary and multiple-choice
approach, we envision WildSci to be an impactful and scalable resource for scientific research and
model development.
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C Data Quality Analysis

C.1 Validation of Synthetic Annotations

To evaluate the reliability of the synthetic labels in WildSci, we conduct a validation study using
two strong commercial models, Gemini-2.5-Pro and Gemini-2.5-Flash [Comanici et al.| [2025]].
We randomly sample 500 questions from both the All-Aligned and Majority-Aligned subsets and
independently prompt each model to generate answers. We then compare their responses against our
synthetic labels to measure answer agreement.

On the All-Aligned subset, Flash and Pro agree with our synthetic labels in 95.0% and 96.0% of
cases, respectively. The two Gemini models agree with each other in 94.0% of cases, and among
these agreements, 98.9% match our synthetic labels. On the Majority-Aligned subset, Flash and Pro
achieve 78.6% and 80.2% agreement with our labels, while their mutual agreement rate is 80.6%,
with 88.8 of those matches aligning with our labels.

These results demonstrate that WildSci’s filtering and model-voting procedure produces annota-
tions that are highly consistent with those from substantially stronger models. Combined with
the observed performance gains when training open source models, this analysis supports that the
synthetic data quality in WildSci is sufficiently high for effective model training.

C.2 Question Redundancy

We assessed question similarity using SentenceTransformer [Reimers and Gurevych, 2019] and
computed cosine similarity between question pairs within the same domain. We only consider
question pairs with similarity > 0.9, and we found that highly similar pairs account for 2.7% in
“All-aligned” and 2.3% in “Majority-aligned”, indicating low redundancy. While these pairs often
share surface-level phrasing (e.g., from the same paper), manual inspection shows they frequently
assess distinct concepts. For example, the following pair has a similarity score of 0.902 but asks
fundamentally different things.

To assess potential redundancy in the WildSci dataset, we measured pairwise question similarity
within each domain using the SentenceTransformer model and computed cosine similarity between
question embeddings. We considered question pairs with similarity scores > 0.9 as highly similar.
Such pairs constitute only 2.7% of the All-Aligned subset and 2.3% of the Majority-Aligned subset,
indicating low redundancy across questions. Manual inspection further reveals that these high-
similarity pairs often share surface-level phrasing (e.g., derived from the same paper section) yet still
assess distinct scientific concepts or reasoning steps.

To illustrate this, Table[5]presents a representative example of two highly similar questions (cosine
similarity = 0.902). Despite their surface resemblance, the two queries probe distinct reasoning
objectives—quantitative estimation versus selectivity comparison—highlighting that lexical overlap
does not necessarily imply conceptual redundancy.

Table 5: Example of a high-similarity question pair (cosine similarity = 0.902) that differs in reasoning
objective.

Q1 A hybrid absorption—adsorption system is being evaluated for CO, capture using a
slurry composed of ZIF-8 suspended in a 2-methylimidazole-based glycol solution.
What is the total amount of CO; (in moles) that can be captured by 1 liter of the slurry
under ideal behavior assumptions?

Q2 A hybrid absorption—adsorption system for CO, capture employs a slurry of ZIF-8 in
a 2-methylimidazole-based glycol solution. What is the ratio of the amount of CO>
captured to the amount of N> captured? Assume that the selectivity is defined as the
ratio of the partition coefficients of the two gases.

Overall, this analysis confirms that WildSci maintains high question diversity despite its large scale,
with minimal duplication and strong coverage of distinct reasoning patterns even among lexically
similar items.
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C.3 Validity and Difficulty

To further evaluate data quality control, we conducted an additional analysis using Gemini-2.5-
Pro [Comanici et al., 2025 to assess the validity and difficulty of questions across the four WildSci
subsets. For each subset, we randomly sampled 500 examples and prompted the model to indepen-
dently rate question clarity and difficulty.

Validity Evaluation For validity, the model was instructed to classify each question as either good
and clear or unanswerable. As summarized in Table[6] 96.6% of questions in the All-Aligned (A.A.)
subset and 89.4% in the Majority-Aligned (M.A.) subset were rated as good and clear, compared to
87.4% and 71.2% for the Majority-Divergent (M.D.) and All-Divergent (A.D.) subsets, respectively.

These results indicate that the vast majority of WildSci questions are coherent and answerable,
particularly in the more reliable subsets. This finding aligns with the design intuition behind our
model-voting phase and helps explain why the All-Aligned and Majority-Aligned subsets lead to
stronger downstream training performance.

Table 6: Validity ratings across the four WildSci subsets. A large majority of questions, especially in
the aligned subsets, were rated as clear and answerable.

Subset All-Aligned Majority-Aligned Majority-Divergent All-Divergent
Good & Clear (%) 96.6 89.4 87.4 71.2
Unanswerable (%) 34 10.6 12.6 28.8

Difficulty Evaluation We further asked Gemini-2.5-Pro to rate each question’s difficulty on a
five-level scale, from Level 1 (Trivial) to Level 5 (Expert). As shown in Table a substantial portion
of questions in the All-Aligned (40.8%) and Majority-Aligned (59.0%) subsets were classified as
Level 4-5, requiring undergraduate- or graduate-level domain expertise.

Overall, this analysis demonstrates that the question filtering and model-voting stages effectively
select for both clarity and appropriate difficulty. The All-Aligned and Majority-Aligned subsets, in
particular, comprise questions that are not only valid and well-posed but also intellectually challenging,
supporting effective model training in various science reasoning domains.

Table 7: Distribution of difficulty levels across subsets. Levels 4-5 indicate field-specific undergradu-
ate or graduate-level reasoning.

Subset L1 L2 L3 L4 LS

AA. 0.8 28.6 298 384 24
M.A. 00 128 282 524 6.6
M.D. 02 11.8 276 556 4.8
AD. 00 66 228 598 1038

Table 8: Difficulty rubric used in the difficulty evaluation.

Level Description

Very Challenging: Expert-level (graduate/PhD) reasoning required.

Difficult: Field-specific undergraduate-level understanding.

Moderate: General background or non-specialist undergraduate-level knowledge.
Easy: General science or high-school-level knowledge.

Simple: Common-sense or minimal prior knowledge suffices.

— N Wk W

D Statistics of Subdomains

We present the distribution of questions across 26 subdomains in Figure[8] following the categorization
used by Nature Communications. Interdisciplinary areas such as Materials Science and Biochemistry
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are more prevalent in the journal, leading to a higher number of papers, and consequently more
questions from these domains. In contrast, Social Sciences represent a smaller proportion of the
journal’s content, so we include all available papers from this area in WildSci. The dataset is
constructed from papers published prior to April 2024. As new publications become available, our
data pipeline can be extended to incorporate the latest research, enabling continuous expansion of
both dataset size and knowledge coverage in WildSci.




wildSci
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Figure 10: UMAP illustration.

E Different Data Splits

Table 0] compares model performance when trained on different combinations of WildSci subsets.
We observe no substantial performance differences across the splits. We hypothesize that this is due
to the exploratory and generalization-driven nature of reinforcement learning, which emphasizes
domain alignment over data amount. We leave the exploration of how data difficulty and diversity
affect RL-based reasoning as a promising direction for future work.

Table 9: Performance comparison across different benchmarks. The average is computed across the
three public benchmarks GPQA-Aug, SuperGPQA and MMLU-Pro. A.A. means All Aligned, M.A.
means Majority Aligned, M.D. means Majority Divergent.

Model WildSci-Val GPQA-Aug SuperGPQA MMLU-Pro Average
QWCHZ.S—].SB—IHSH’UCt 46.704 o8 23.98.83 18.10¢.63 31.47).84 24.52076
WildSci A.A. 80.48 26 28.95¢ 08 23.85025 42.54 53 31.780.20
WildSci M.A. 80.330.11 25.760.44 24.41 6 41.95¢ 03 30.710.17
WildSci A.A.+M.A.+M.D. 80.000.59 27.480,19 23.940,01 41.550'17 30.990_12

F Domain-Specific Performance

We provide a breakdown of subdomain performance in the Table [I0] and Table [I1] In the model
names, ‘A.A. refers to the All Aligned subset, and ‘M.A. refers to the Majority Aligned subset.

Table 10: Subdomain performance on SuperGPQA.
Model Overall Agro Eco Edu Eng Hist Law  Lite Mar  Medi Mili  Phil Sci Socio

1.5B-A.A. 2412 2598 2898 3037 2347 20.62 2942 2321 2894 2639 29.76 29.40 22.66 25.87
1.5B-M.A.  24.46 2495 2829 3243 2321 2195 3095 2327 2934 2588 32.68 29.11 23.61 27.97
3B-AA. 26.39 2433 30.59 3326 25.82 21.81 3094 2321 3333 30.02 37.56 3343 24.88 30.07
3B-M.A. 26.25 27.01 28.52 32.65 25.82 1899 3247 2323 3333 2933 36.10 3055 25.00 29.37

G Post-saturation Generalization

Beyond the 3B model, we observe similar trends with the 1.5B model. Figure[J]illustrates performance
during training on the Majority Aligned subset. While validation accuracy fluctuates after step
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Table 11: Subdomain performance on MMLU-Pro.
Model Overall Bio Busi CS Econ Health Math Other Psyc phys Engin Hist law Philo

1.5B-A.A. 4292 64.85 5082 4659 54.03 38.02 5744 3593 5326 4049 29.10 3438 22.89 36.87
1.5B-M.A. 4198 64.99 4829 40.73 5344 3680 5507 35.07 5326 3949 3044 3255 2480 3527
3B-AA. 49.48 70.71 5856 50.73 6043 48.04 6343 46.54 5877 49.04 36.02 37.01 27.16 39.08
3B-M.A. 48.73 70.57 56.78 47.32 58.06 4817 6247 43.83 5790 49.73 3726 36.75 27.79 37.88

400, accuracy on GPQA-Aug and MMLU-Pro continues to improve, indicating post-saturation
generalization. We leave investigation of the underlying causes to future work.

H Distribution Illustration

To compare the coverage of WildSci with existing science benchmarks, we embed the question texts
(excluding answer options) using a pretrained sentence embedding model and apply UMAP [Mclnnes
and Healy, [2018] for dimensionality reduction. Figure[I0|presents a 2D visualization of questions
from different datasets. We randomly sample 5,000 questions from SuperGPQA, MMLU-Pro
respectively and 20,000 questions from WildSci. In the figure, SuperGPQA and MMLU-Pro share
similar distributions, WildSci occupies regions underrepresented by these benchmarks. The partial
mismatch in distribution suggests that existing benchmarks serve as effective out-of-distribution
(OOD) evaluations for WildSci.

I Prompts

In this section, we show the prompts we use in our data creation pipeline. During QA generation, we
randomly sample two QAs from the GPQA-Extended set, excluding those in the Diamond subset, to
serve as JSON examples.
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QA Generation

You are an expert research scientist in [[DOMAIN]]. Your task is to extract or create three
challenging and difficult, self-contained question—answer pairs from the provided academic
paper. The QAs will be used as exam questions for PhD students and must be clear, extremely
challenging, and context-independent, i.e., understandable on its own without referring back
to the original paper.

Each QA pair must include:

1. Question:

- A clear, difficult, and standalone question.

- The question must include sufficient background information or context so that one can
fully understand and attempt it without referring to the original paper.

- Define any abbreviations, notation, or domain-specific terminology used.

- DO NOT use phrases like “according to the paper” or “the proposed method.”

- The question should be complex enough to require deep understanding of the subject.

- It should engage **advanced reasoning**, such as: Conceptual analysis, Theoretical or
mathematical derivations, Methodological design, Causal reasoning or hypothesis testing,
etc.

2. Options:

- Provide four answer choices.

- Only one option should be correct.

- The three incorrect options should be plausible but clearly wrong upon careful reasoning,
ideally derived by subtly altering the logic or assumptions behind the correct answer.

3. Answer:
The correct option letter.

4. Rationale:

- A detailed explanation of why the correct answer is correct and why each incorrect option is
wrong.

- DO NOT reference the original paper in any part of the rationale.

- If calculations are required, include the full step-by-step process.

Important:

- Questions must be self-contained, including any necessary context or definitions.

- Do not reference the original paper in any part of the question, options, or rationale.
- Aim for PhD-level difficulty, testing understanding of key technical ideas.

- Ensure that only one option is unambiguously correct.

Format your QA pairs in the following JSON format, here are examples: [[JSON example]]
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You are an expert research scientist in [[DOMAIN]].

Your task is to refine each provided multiple-choice question to increase its difficulty and test
deeper reasoning appropriate for PhD-level understanding. Each item includes a question,
answer options, and a solution. Use the provided answers and solution for reference, they
may be incorrect.

Refinement Goals:

1. Expand Options with Subtle Variations

Rewrite the answer options to include 10 choices labeled A-J.

All options should seem plausible to someone with partial knowledge, but only one should be
fully correct. Introduce subtle numerical or conceptual variations among options.

2. Remove Surface-Level Hints

Eliminate obvious formulas, definitions, or axioms from the question.

Assume the solver must recall or derive them independently. You may include these concepts
in the solution rationale, but not in the question.

3. Increase Reasoning Depth

Replace direct or few-step problems with multi-step (>3) or causal reasoning.

Use reasoning chains (e.g., X leads to Y, which leads to Z, which explains W) or require
intermediate inferences without giving all variables.

4. Rephrase to Introduce Diversity

Use varied question formats: causal, hypothetical, comparative, inferential, conditional, etc.
Maintain clarity and scientific rigor while diversifying expression.

Important:

- Each refined question should challenge deep understanding of core technical concepts,
appropriate for advanced graduate-level assessment.

- The refined question must remain solvable using information provided or generally assumed
background knowledge in the domain. Avoid ambiguity or underspecified problems.

- Ensure that only one option is unambiguously correct.

- If the original question is poorly written, ambiguous, or lacks depth, you may create a new
question based on the same underlying concept or topic reflected in the provided QA.

Please only output the refined QA in the following JSON format: [[JSON example]]
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