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Abstract

Modern unsupervised machine translation001
(MT) systems reach reasonable translation qual-002
ity under clean and controlled data conditions.003
As the performance gap between supervised004
and unsupervised MT narrows, it is interesting005
to ask whether the different training methods006
result in systematically different output beyond007
what is visible via quality metrics like adequacy008
or BLEU. We compare translations from super-009
vised and unsupervised MT systems of sim-010
ilar quality, finding that unsupervised output011
is more fluent and more structurally different012
in comparison to human translation than is su-013
pervised MT. We then demonstrate a way to014
combine the benefits of both methods into a015
single system which results in improved ade-016
quacy and fluency as rated by human evaluators.017
Our results open the door to interesting discus-018
sions about how supervised and unsupervised019
MT might be different yet mutually-beneficial.020

1 Introduction021

Supervised machine translation (MT) utilizes par-022

allel bitext to learn to translate. Ideally, this data023

consists of natural texts and their human transla-024

tions. In a way, the goal of supervised MT training025

is to produce a machine that mimicks human trans-026

lators in their craft. Unsupervised MT, on the other027

hand, uses monolingual data alone to learn to trans-028

late. Critically, unsupervised MT never sees an029

example of human translation, and therefore must030

create its own style of translation. Unlike super-031

vised MT where one side of each training sentence032

pair must be a translation, unsupervised MT can be033

trained with natural text alone.034

In this work, we investigate the output of su-035

pervised and unsupervised MT systems of similar036

quality to assess whether systematic differences in037

translation exist. Our exploration of this research038

area focuses on English→German for which abun-039

dant bilingual training examples exist, allowing us040

to train high-quality systems with both supervised 041

and unsupervised training. 042

Our main contributions are: 043

• We observe systematic differences between 044

the output of supervised and unsupervised MT 045

systems of similar quality. High-quality un- 046

supervised output appears more natural, and 047

more structurally diverse when compared to 048

human translation. 049

• We show a way to incorporate unsupervised 050

back-translation into a standard supervised 051

MT system, improving adequacy, naturalness, 052

and fluency as measured by human evaluation. 053

Our results provoke interesting questions about 054

what unsupervised methods might contribute be- 055

yond the traditional context of low-resource lan- 056

guages which lack bilingual training data, and sug- 057

gest that unsupervised MT might have contribu- 058

tions to make for high-resource scenarios as well. 059

It is worth exploring how combining supervised 060

and unsupervised setups might contribute to a sys- 061

tem better than either creates alone. 062

We discuss related work in §2. In §3, we in- 063

troduce the dataset, model details, and evaluation 064

setups. In §4, we characterize the differences be- 065

tween the output of unsupervised and supervised 066

neural MT systems of similar quality. In §5, we 067

demonstrate a combined system which benefits 068

from the complementary strengths of the two meth- 069

ods. We summarize the paper in §6. 070

2 Related Work 071

Unsupervised MT Two paradigms for unsuper- 072

vised MT are finding a linear transformation to 073

align two monolingual embedding spaces (Lample 074

et al., 2018a,b; Conneau et al., 2018; Artetxe et al., 075

2018, 2019), and pretraining a bi-/multilingual 076

language model then finetuning on a translation 077

task (Conneau and Lample, 2019; Song et al., 2019; 078
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Liu et al., 2020). We study the Masked Sequence-079

to-Sequence Pretraining (MASS) language model080

pretraining paradigm of Song et al. (2019). MASS081

is an encoder-decoder trained jointly with a masked082

language modeling objective on monolingual data.083

Iterative back-translation (BT) follows pretraining.084

Monolingual Data in MT BT is widely-used to085

exploit monolingual data (Sennrich et al., 2016).086

“Semi-supervised" systems use monolingual and087

parallel data to improve performance (e.g. Artetxe088

et al. (2018)). Siddhant et al. (2020) combine mul-089

tilingual supervised training with MASS for many090

languages and zero-shot translation.091

Source Artifacts in Translated Text Because su-092

pervised MT is trained ideally on human-generated093

translation, characteristics of human translation af-094

fects the style of machine translation from such095

systems. Dubbed “translationese", human transla-096

tion includes source language artifacts (Koppel and097

Ordan, 2011) and source-independent artifacts—098

Translation Universals (Mauranen and Kujamäki,099

2004). There are systematic biases inherent to100

translated texts (Baker, 1993; Selinker, 1972),101

and biases coming from interference from source102

text (Toury, 1995). In MT, Freitag et al. (2019,103

2020) attribute these patterns as a source of mis-104

match between BLEU (Papineni et al., 2002) and105

human evaluation measures of quality, raising con-106

cerns that overlap-based metrics reward hypotheses107

with the characteristics of translated text more than108

those with natural language. Vanmassenhove et al.109

(2019, 2021) note loss of linguistic diversity and110

richness from MT, and Toral (2019) see related ef-111

fects even after human post-editing. The impact of112

translated text on human evaluation has also been113

studied (Toral et al., 2018; Zhang and Toral, 2019;114

Graham et al., 2019; Fomicheva and Specia, 2016;115

Ma et al., 2017), as has the impact in training data116

(Kurokawa et al., 2009; Lembersky et al., 2012;117

Bogoychev and Sennrich, 2019; Riley et al., 2020).118

Measuring Word Reordering Word reordering119

models are well-studied because they formed a criti-120

cal part of statistical MT (see Bisazza and Federico121

(2016) for a review). Others examined metrics122

for measuring reordering in translation (e.g. Birch123

et al., 2008, 2009, 2010). Wellington et al. (2006)124

and Fox (2002) use part-of-speech (POS) tags in125

the context of parse trees, and Fox (2002) measure126

the similarity of French and English with respect127

to phrasal cohesion by calculating alignment cross-128

ings using parse trees. Most similar to us, Birch 129

(2011) view simplified word alignments as permu- 130

tations and compare distance metrics over these to 131

quantify the amount of reordering done. They use 132

TER computed over the alignments as a baseline. 133

Birch and Osborne (2011)’s LRScore interpolates a 134

reordering metric with a lexical translation metric. 135

3 Experimental Setup 136

3.1 Data 137

Training Experiments are in English→German. 138

For the main study comparing supervised and un- 139

supervised MT, we use News Commentary v14 140

(329,000 sentences) as parallel bitext for the super- 141

vised system, and News Crawl 2007-17 as mono- 142

lingual data for the unsupervised system. Dedupli- 143

cated News Crawl 2007-17 has 165 million English 144

sentences and 226 million German sentences. 145

The combined system demonstration at the end 146

of our work utilizes a BT selection method. We use 147

the bilingual training data from WMT2018 (Bojar 148

et al., 2018) (News Commentary v13, Europarl v7, 149

Common Crawl, EU Press Release) so that our 150

model can be compared with well-known work 151

using BT (e.g. Edunov et al., 2018; Caswell et al., 152

2019). We deduplicate and filter out pairs with 153

> 250 tokens in either language or length ratio 154

over 1.5, resulting in 5.2 million paired sentences. 155

Development and Test Sets For the main ex- 156

periments, we use newstest2017 as the dev set 157

with newstest2018 and newstest2019 for test. new- 158

stest2018 was originally created by translating one 159

half of the test data from English→German (orig- 160

en) and the other half from German→English (orig- 161

de). Since 2019, WMT produces newstest sets with 162

only source-original text and human translations 163

on the target side to mitigate known issues when 164

translating and evaluating on target-original data 165

(e.g. Koppel and Ordan, 2011; Freitag et al., 2019). 166

For most experiments, we evaluate on orig-en 167

sentences only to reflect the real use-case for trans- 168

lation and modern evaluation practice. We examine 169

orig-de only for BLEU score as an additional data 170

point of difference between supervised and unsu- 171

pervised MT. Zhang and Toral (2019) show that 172

target-language-original text should not be used for 173

human evaluation (orig-de, in our case). 174

We use the newstest2018 “paraphrased" test ref- 175

erences from Freitag et al. (2020),1 which are made 176

1github.com/google/wmt19-paraphrased-references
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for orig-en sentences only. These additional ref-177

erences have different structure than the source178

sentence but maintain semantics, and provide a179

way to measure system quality without favoring180

translations with the same structure as the source.181

Observing work that uses these references, BLEU182

is typically much lower than on original test sets,183

and score differences tend to be small but reflect184

tangible quality difference (Freitag et al., 2020).185

For the system combination demonstration,186

we use newstest2018 for development and new-187

stest2019 for test. We also use newstest2019188

German→English and swap source and target to189

make an orig-de English→German test set, and use190

paraphrase references for newtest2019 (orig-en).191

Testing on the official newstest2018 in the main192

experiments allows us to see interesting differences193

between unsupervised and supervised MT that are194

hidden with newstest2019 because it is orig-en only.195

Using newstest2018 for development in the system196

combination demonstration aligns with similar liter-197

ature (e.g. Edunov et al., 2018; Caswell et al., 2019).198

We use SacreBLEU throughout (Post, 2018).2199

3.2 Part-of-Speech Tagging200

We use part-of-speech taggers for some experi-201

ments: universal dependencies (UD) implemented202

in spaCy3 and spaCy’s language-specific fine-203

grained POS tags for German from the TIGER204

Corpus (Albert et al., 2003; Brants et al., 2004).205

3.3 Models206

Our unsupervised MT model is a MASS trans-207

former with the hyperparameters of Song et al.208

(2019). We train MASS on the News Crawl cor-209

pora, hereafter called “Unsup". Our supervised210

MT systems use the transformer-big (Vaswani211

et al., 2017) as implemented in Lingvo (Shen et al.,212

2019) with a vocabulary of 32k subword units.213

To investigate differences between approaches,214

we train two language models (LMs) on differ-215

ent types of data and calculate the perplexity of216

translations generated by the supervised and un-217

supervised MT systems. We train one LM on the218

monolingual German News Crawl dataset with a219

decoder-only transformer, hereafter called the “nat-220

ural text LM" (nLM). We train another on machine221

translated sentences which we call the “translated222

text LM" (tLM). We generate the training corpus223

2BLEU+case.mixed+lang.ende+numrefs.1+smooth.exp+
{TESTSET}+tok.13a+version.1.4.12

3https://spacy.io/, https://universaldependencies.org/

by translating the English News Crawl dataset into 224

German with a English→German transformer-big 225

model trained on the WMT18 bitext. 226

3.4 Human Evaluations 227

Human evaluation complements automatic eval- 228

uation and abstracts away from comparison to a 229

human reference which favors the characteristics 230

of translated text (Freitag et al., 2020). We score 231

adequacy using direct assessment and run side-by- 232

side evaluations measuring fluency and adequacy 233

preference between systems. Each campaign has 234

1,000 test items. For side-by-side eval, a test item 235

includes a pair of translations of the same source 236

sentence: one from the supervised system and one 237

from the unsupervised. We hire 12 professional 238

translators, who are more reliable than crowd work- 239

ers (Toral, 2020; Freitag et al., 2021). Human eval 240

is done on the official WMT-19 en→de test set. 241

Direct Assessment Adequacy We use the tem- 242

plate from the WMT 2019 evaluation campaign. 243

Human translators assess a translation by how ad- 244

equately it expresses the meaning of the source 245

sentence on a 0-100 scale. Unlike WMT, we report 246

the average rating and do not normalize the scores. 247

Side-by-side Adequacy Raters see a source sen- 248

tence with two translations (one supervised, one 249

unsupervised) and rate each on a 6-point scale. 250

Side-by-side Fluency Raters assess the alterna- 251

tive translations (one supervised, one unsupervised) 252

without the source, and rate each on a 6-point scale. 253

4 Unsupervised vs. Supervised MT 254

The goal of this section is to analyse supervised 255

and unsupervised systems of similar overall trans- 256

lation quality so that differences in quality do not 257

confound analyses. As unsupervised systems un- 258

derperform supervised systems, we use a smaller 259

parallel corpus (news commentary) to train systems 260

of similar quality. Table 1 summarizes the BLEU 261

scores and human side-by-side adequacy results 262

for both systems. Although the supervised system 263

is below state-of-the-art, these experiments help 264

elucidate how unsupervised and supervised output 265

is different. The overall BLEU scores and human 266

ratings suggest similar translation quality. Never- 267

theless, we observe notable differences between 268

orig-de and orig-en sides of the test set when com- 269

paring both systems. Recall that orig-de has natu- 270

ral German text on the target side. Unsup scores 271
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higher than Sup on orig-de, suggesting that its out-272

put is more natural-sounding as it better matches273

text originally written in German. Performance274

discrepancies on orig-en and orig-de indicate that275

differences in system output may exist and prompt276

further investigation.277

Overall orig-en orig-de nt18p Human Adq.
Sup 29.2 34.0 21.1 9.3 3.89
Unsup 30.1 30.9 27.1 9.6 3.82

Table 1: SacreBLEU and human adequacy ratings on
newstest2018 and newstest2018p (nt18p = paraphrase
references). nt18p is available for orig-en only.

4.1 Selecting Translations of Same Adequacy278

To assess the translation style and compare linguis-279

tic aspects of supervised and unsupervised MT,280

we further must compare translations that have281

the same accuracy level on the segment level, so282

that neither confounds analysis. We use the ade-283

quacy evaluation from Table 1 and retain sentences284

for which both approaches yield similar adequacy285

scores. We divide the rating scale into bins of low286

(0–2), medium (3–4), and high (5–6) adequacy. Ta-287

ble 2 shows the percentage of sentences in each bin.288

For each source sentence, there is one translation289

by Unsup and one by Sup. If human judges assert290

that both translations belong in the same adequacy291

bin, that sentence also appears in “Both". There 86,292

255, and 218 sentences in “Both" for low, medium,293

and high bins, respectively. For subsequent analy-294

ses, we examine sentences falling into “Both".295

Low Medium High
Sup 18.7% 42.1% 39.2%

Unsup 19.3% 44.6% 36.1%
Both 8.6% 25.5% 21.8%

Table 2: Percentage of sentences with low, medium
and high human-evaluated adequacy ratings. “Both" are
sentences which have same rating from both systems.

4.2 Comparing Translation Style296

Measuring Structural Similarity We develop a297

metric to ascertain the degree of structural similar-298

ity between two sentences, regardless of language.299

When evaluated on a source-translation pair, it mea-300

sures the influence of the source structure on the301

structure of the output without penalizing for dif-302

fering word choice; thus it is a measure of "mono-303

tonicity" – the degree to which words are translated304

in-order. Given alternative translations in the same305

language, it assesses the degree of structural simi- 306

larity between the two. Thus given a machine trans- 307

lation and a human translation of the same source 308

sentence, it can measure the structural similarity 309

between the machine and human translations. 310

Word alignment seems well-suited here. Like 311

Birch (2011), we calculate Kendall’s tau (Kendall, 312

1938) over alignments of source-translation pairs, 313

but do not simplify alignments into permutations. 314

We use fast_align (Dyer et al., 2013) but observe 315

that it struggles to align words not on the diagonal, 316

so alignments were sometimes skipped. This may 317

make the correlation coefficient deceptively high.4 318

We propose measuring translation edit rate (TER, 319

Snover et al. (2006)) over POS tag sequences. TER 320

is a well-known word-level translation quality met- 321

ric which measures the number of edits required 322

to transform a “hypothesis" sentence into the refer- 323

ence. It outputs a “rate” by normalizing by sentence 324

length. Between languages, we compute TER be- 325

tween POS tag sequences of the source text (consid- 326

ered the reference) and the translation (considered 327

the hypothesis), so that TER now measures changes 328

in structure independent of word choice. Source- 329

target POS sequences which can be mapped onto 330

each other with few edits are considered similar—a 331

sign of a monotonic translation. Given a machine 332

translation (hypothesis) and a human reference in 333

the same language, TER over POS tags measures 334

structural similarity between the machine and hu- 335

man translations. Outputs with identical POS pat- 336

terns score 0, increasing to 1+ as sequences diverge. 337

Higher TER for (source, translation) pairs indicate 338

monotonic translation; Higher TER for (machine 339

translation, human translation) pairs indicates struc- 340

tural similarity to human translation. 341

Monotonicity POS sequences are comparable 342

across languages thanks to universal POS tags. Ta- 343

ble 3 has a toy example with two possible German 344

translations of an English source. Next to each sen- 345

tence is its universal dependencies POS sequence. 346

In the third column, TER is calculated with the 347

POS sequence of the English source as reference 348

and the sequence of the translation as hypothesis. 349

Table 4 shows TER over universal dependencies 350

of German translations versus the newstest2018 351

(orig-en) source sentences. While the standard 352

newstest2018 references (Ref) score 0.410, new- 353

stest2018p’s (RefP) higher score of 0.546 reflects 354

4We ran fast_align with and without diagonal-favoring and
all 5 symmetrization heuristics, and see similar trends.
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Sentence POS Sequence TER
I made myself a cup of coffee this morning. PRON VERB PRON DET NOUN ADP -

PNOUN DET NOUN PUNCT
Ich habe mir heute Morgen eine Tasse PRON AUX PRON ADV NOUN DET 0.5
Kaffee gemacht. NOUN NOUN VERB PUNCT
Heute morgen habe ich mir eine Tasse ADV ADV AUX PRON PRON DET 0.7
Kaffee gemacht. NOUN NOUN VERB PUNCT

Table 3: TER over universal dependencies POS sequences for example toy German translations of an English source.
Row 1 is the source with its POS tag sequence. Rows 2/3 are example translations with the POS sequence of each.
TER is calculated via the POS sequences of the translation (hypothesis) and the source (considered the reference).

the fact that the paraphrase references are designed355

to have different structure than the source. Dif-356

ferences in overall monotonicity between Sup and357

Unsup are unapparent at this level of granularity.358

nt18 nt18p Sup Unsup
Src 0.410 0.546 0.409 0.399

Table 4: TER (0-1+) over universal dependencies of
translations of newstest2018 (orig-en) vs. the source. ↑
= more monotonic translation. nt18p=paraphrase ref.

Because universal dependencies are designed to359

suit many languages, the 17 UD categories may be360

too broad to adequately distinguish moderate struc-361

tural difference. Whereas UD has a single class for362

“VERB", the finer-grained German TIGER tags dis-363

tinguish between 8 sub-verb types including infini-364

tive, modal, and imperative. We use these language-365

specific categories next to uncover differences be-366

tween systems that broad categories conceal.367

Similarity to Human Translation Recall that su-368

pervised MT essentially mimics human translators,369

while unsupervised MT learns to translate without370

examples. Intuitively, supervised MT output might371

be stylistically more like human translation, even372

when controlling for quality. We compare the struc-373

ture of MT output with the human reference using374

German TIGER tags. Lower TER indicates more375

structural similarity, while higher TER indicates376

stylistic deviation from human translation.377

We compare system output to the newstest2018378

orig-en human reference in Table 5. Sup and Unsup379

show negligible difference overall, but binning by380

adequacy shows Unsup output as less structurally381

similar to the human reference on the high-end of382

adequacy, and more similar on the low-end. This383

suggests systematic difference between system out-384

puts, and that unsupervised MT might have more385

structural diversity as quality improves.386

Naturalness Edunov et al. (2020) recommend387

Overall Low Med High
Sup 0.280 0.348 0.282 0.255

Unsup 0.287 0.313 0.298 0.296

Table 5: TER (0-1+ scale) over TIGER POS tags of
system output vs. the human reference, grouped by
adequacy (newstest2018, orig-en). ↓ = greater structural
similarity to the human reference.

augmenting BLEU-based evaluation with perplex- 388

ity from a language model (LM) to assess fluency 389

or naturalness of MT output. Perplexity (Jelinek 390

et al., 1977) measures similarity of a text sample to 391

a model’s training data. 392

We contrast the likelihood of output according 393

to two LMs: one trained on machine-translated 394

text (tLM) and another trained on non-translated 395

natural text (nLM). While machine-translated and 396

human-translated text differ, the LMs are nonethe- 397

less a valuable heuristic and contribute insights on 398

whether systematic differences between MT sys- 399

tem outputs exist. Low perplexity from the nLM 400

indicates natural language. Low perplexity from 401

the tLM (trained on English News Crawl that has 402

been machine-translated into German) shows prox- 403

imity to training data composed of translated text, 404

indicating simplified language. 405

Sup perplexity is lower than Unsup across ade- 406

quacy bins for the tLM, seen in Table 6. Conversely, 407

Sup generally has higher perplexity from the nLM. 408

All adequacy levels for Unsup have similar nLM 409

perplexity, suggesting it is particularly skilled at 410

generating fluent output. Together, these findings 411

suggest that unsupervised MT output is more natu- 412

ral than supervised MT output. 413

Ablation: Architecture vs. Data One reason 414

Unsup might produce more natural-sounding out- 415

put could be simply that it develops language- 416

modeling capabilities from natural German alone, 417

whereas Sup sees synthetic data with the charac- 418
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Natural Text LM Translated Text LM
Overall Low Medium High Overall Low Medium High

Sup 72.69 90.61 76.36 68.37 41.06 51.91 40.32 36.70
Unsup 67.01 68.32 60.56 69.88 58.17 61.50 53.71 57.95

Table 6: Perplexity of MT output on newstest2018 based on LMs trained on natural text vs. translated text, binned
by adequacy. Sup and Unsup are comparable supervised and unsupervised MT systems, respectively. ↓ from the
Natural Text LM and ↑ from the Translated Text LM indicate more natural-sounding output.

teristics of translated text. Next, we ask whether419

the improved naturalness and structural diversity420

is due to the unsupervised NMT architecture, or421

simply the natural training data.422

We build a supervised MT system using 329,000423

paired lines of translated English source and nat-424

ural German, where the source is back-translated425

German News Crawl from a supervised system.426

This supervised system can then also develop427

its language-modeling capabilities on natural sen-428

tences alone. If more natural output is simply a429

response to training on natural data, then this sys-430

tem should perform as well as Unsup, or better.431

We train another unsupervised system on trans-432

lated text only. Source-side training data is syn-433

thetic English from translating German News434

Crawl with a supervised system. Target-side is435

synthetic German which was machine-translated436

from English News Crawl. If naturalness solely re-437

sults from data, this system should perform worst,438

being trained only on translated (unnatural) text.439

Table 7 shows the results. The original unsuper-440

vised system (Unsup) performs best according to441

both LMs, having output that is more natural and442

less like translated text. When given only natural443

German from which to build a language model,444

the supervised system (Sup En-Trns/De-Orig) still445

produces more unnatural output than Unsup. Even446

when the unsupervised system uses translated data447

only (Unsup-Trns), its output is still more natural448

than the original supervised system (Sup) accord-449

ing to both LMs. These findings suggest that both450

German-original data and the unsupervised archi-451

tecture encourage output to sound more natural.452

5 Application: Leveraging Unsupervised453

Back-translation454

Our results indicate that high-adequacy unsuper-455

vised MT output is more natural and more struc-456

turally diverse in comparison to human translation,457

than is supervised MT output. We are thus moti-458

vated to use these advantages to improve transla-459

tion. We explore how to incorporate unsupervised 460

MT into a supervised system via back-translation. 461

We train for ∼500,000 updates for each experiment, 462

and select models based on validation performance 463

on newstest2018. We test on newstest2019(p). 464

5.1 Baselines 465

The first row of Table 8 is the supervised baseline 466

trained on the WMT18 bitext. The second row is 467

Unsup, used throughout this work. 468

We back-translate 24 million randomly-selected 469

sentences of German News Crawl twice: once us- 470

ing a supervised German-English system trained on 471

WMT18 bitext with a transformer-big architecture, 472

and once using Unsup. Both use greedy decoding 473

for efficiency. We augment the WMT18 bitext with 474

either the supervised or unsupervised BT. 475

Seen in Table 8, adding supervised BT (+SupBT) 476

performs as expected; minorly declining on the 477

source-original test set (orig-en), improving on 478

the target-original set (orig-de), and improving on 479

the paraphrase set (nt19p). Conversely, adding 480

unsupervised BT (+UnsupBT) severely lowers 481

BLEU on source-original and paraphrase test sets. 482

Randomly-partitioning the BT sentences such that 483

50% are supervised BT and 50% are unsupervised 484

also lowers performance on orig-en (+50-50BT). 485

5.2 Tagged BT 486

Following Caswell et al. (2019), we tag BT on 487

the source-side. Tagging aids supervised BT 488

(+SupBT_Tag) and greatly improves unsupervised 489

BT (+UnsupBT_Tag), which outperforms the base- 490

line and is nearly on-par with +SupBT_Tag. Com- 491

bining supervised and unsupervised BT using the 492

same tag for both (+50-50BT_Tag) shows no im- 493

provement over +SupBT_Tag. We also use dif- 494

ferent tags for supervised vs. unsupervised BT 495

(+50-50BT_TagDiff). Decoding with tags during 496

validation degraded performance across conditions. 497
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LM Perplexity (PPL) BLEU
Natural Text LM Translated Text LM Overall orig-en orig-de

Supervised (Sup) 72.69 41.06 29.2 34.0 21.1
Sup En-Trns/De-Orig 69.75 50.65 35.4 35.5 34.1

Unsup 67.01 58.17 30.1 30.9 27.1
Unsup-Trns 69.88 48.90 33.4 35.4 28.4

Table 7: Comparison of 4 English→German MT systems: ppl from LMs trained on natural or translated text, BLEU
on newstest2018. ↓ ppl = model prefers the output. Sup En-Trns/De-Orig is supervised, trained on translated English
and German-original News Crawl. Unsup is trained on natural English and German News Crawl. Unsup-Trns uses
translated News Crawl only. Unsup performs best == more like natural text and less like translated text.

Figure 1: Back-translation selection method. Both systems translate the same source sentences. If an unsupervised
output sentence is more than T% as likely as the supervised one, select the unsupervised. Here, T=65%.

5.3 Probability-Based BT Selection498

We design a BT selection method based on transla-499

tion probability to exclude unsupervised BT of low500

quality. We assume that supervised BT is “good501

enough". Given translations of the same source sen-502

tence (one supervised, one unsupervised) we assert503

that an unsupervised translation is “good enough"504

if its translation probability is similar or better than505

that of the supervised translation. If much lower,506

the unsupervised output may be low-quality.507

• Score each supervised and unsupervised BT508

with a supervised de-en system.509

• Normalize the translation probabilities to con-510

trol for translation difficulty and output length.511

• Compare probability of the supervised and
unsupervised BT of the same source sentence:

∆P =
Pnorm(unsup)
Pnorm(sup)

• Sort translation pairs by ∆P.512

• Select the unsupervised BT for pairs scoring513

highest ∆P and the supervised BT for the rest.514

This filters out unsupervised outputs less than T%515

as likely as the corresponding supervised sentence516

and swaps them with the corresponding supervised 517

sentence. T is a hyperparameter. Importantly, the 518

same 24M source sentences are used in all experi- 519

ments. The procedure is shown in Figure 1. 520

The model we call “+MediumMix_Tag" uses the 521

top ∼40% of ranked unsupervised BT with the rest 522

supervised (9.4M unsupervised, 14.6M supervised). 523

“+SmallMix_Tag" uses the top ∼13% of unsuper- 524

vised BT (3.1M unsupervised, 20.9M supervised).5 525

We use the same tag for all BTs. 526

Table 8 shows the results. +SmallMix_Tag 527

performs better than the previous best on new- 528

stest2018p and +MediumMix_Tag performs high- 529

est overall on nt19p. We recall that small differ- 530

ences on paraphrase test sets can signal tangible 531

quality differences (Freitag et al., 2020). Trusting 532

BLEU on nt19p, we use +MediumMix_Tag as our 533

model for human evaluation. 534

One might inquire whether improved perfor- 535

mance is due to the simple addition of noise in light 536

of Edunov et al. (2018), who conclude that noising 537

BT improves MT quality. Subsequent work, how- 538

ever, found that benefit is not from the noise itself 539

but rather that noise helps the system distinguish 540

between parallel and synthetic data (Caswell et al., 541

5The numbers are not round because data was selected
using round numbers for the hyperparameter T.
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newstest2018 newstest2019
Overall orig-en orig-de nt18p orig-en orig-de nt19p

Supervised Baseline (5.2M) 41.8 46.1 34.3 12.6 38.8 30.4 11.7
Unsup 30.1 30.9 27.1 9.6 24.6 28.5 8.8
Supervised Baseline

+ SupBT 43.4 43.7 41.8 12.5 37.0 39.9 12.0
+ UnsupBT 33.3 33.8 31.1 9.9 27.2 30.8 9.5
+ 50-50BT 38.0 36.4 39.0 12.9 29.4 38.3 10.0
+ SupBT_Tag 44.8 47.0 40.7 13.0 40.3 38.2 12.4
+ UnsupBT_Tag 43.3 46.9 36.9 12.9 39.1 35.0 12.2
+ 50-50BT_Tag 44.4 47.1 39.6 12.9 39.4 38.0 12.2
+ 50-50BT_TagDiff 44.4 46.8 40.1 13.0 39.9 37.9 12.4
+ SmallMix_Tag 44.8 46.8 40.8 13.2 39.8 38.8 12.5
+ MediumMix_Tag 44.7 46.8 40.8 13.0 40.1 38.2 12.6

Table 8: SacreBLEU of supervised baseline plus 24M supervised or unsupervised BTs. +MediumMix_Tag and
+SmallMix_Tag use the BT selection method of §5.3. +MediumMix_Tag has 9.4M unsupervised BT and 14.6M
supervised BT. +SmallMix_Tag has 3.1M and 20.9M, respectively. nt18p and nt19p are paraphrase references
from Freitag et al. (2020), where small BLEU score changes can indicate tangible quality difference.

2019; Marie et al., 2020). Yang et al. (2019) also542

propose tagging to distinguish synthetic data. With543

tagging instead of noising, Caswell et al. (2019)544

outperform Edunov et al. (2018) in 4 of 6 test sets545

for En-De, furthermore find that noising on top of546

tagging does not help. They conclude that “tagging547

and noising are not orthogonal signals but rather548

different means to the same end". In light of this,549

our improved results are likely not due to increased550

noise but rather to systematic differences between551

supervised and unsupervised BT.552

5.4 Human Evaluation553

We run human evaluation with professional trans-554

lators for +MediumMix_Tag, comparing its output555

translation of the newstest2019 test set with two556

baseline models. Table 9 shows that humans prefer557

the combined system over the baseline outputs.6 Ta-558

ble 10 shows the percentage of sentences judged as559

“worse than", “about the same as", or “better than"560

the corresponding +SupBT_Tag output, based on561

fluency. Raters again prefer the combined system.562

The improvements are modest, but encouragingly563

indicate that unsupervised MT may have something564

to contribute to machine translation, even in high-565

resource settings.566

6 Conclusion567

Recent unsupervised MT systems can reach reason-568

able translation quality under clean and controlled569

6Scores are low because we use only WMT18 bitext + BT,
and translators score more harshly than crowd workers.

Adequacy
+ UnsupBT_Tag 54.82
+ SupBT_Tag 56.13
+ MediumMix_Tag 58.62

Table 9: Human-eval direct assessment (adequacy) of
supervised MT with supplemental back-translation.

Better Same Worse
51.1% 3.7% 45.2%

Table 10: Human side-by-side fluency eval. Shown: %
of +MediumMix_Tag sentences judged “worse than",
“about the same", or “better than" +SupBT_Tag output.

data conditions, and could bring alternative transla- 570

tions to language pairs with ample parallel data. We 571

perform the first systematic comparison of super- 572

vised and unsupervised MT output from systems 573

of similar quality. We find that systematic differ- 574

ences do exist, and that high-quality unsupervised 575

MT output appears more natural and more struc- 576

turally diverse when compared to human transla- 577

tion, than does supervised MT output. Our findings 578

indicate that there may be useful differences be- 579

tween supervised and unsupervised MT systems 580

that could contribute to a system better than either 581

achieves alone. As a first step, we demonstrate an 582

unsupervised back-translation augmented model 583

that takes advantage of the differences between 584

the translation methodologies and outperforms a 585

traditional supervised system on human-evaluated 586

measures of adequacy and fluency. 587
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