

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FEDCHILL: ADAPTIVE TEMPERATURE SCALING FOR FEDERATED LEARNING IN HETEROGENEOUS CLIENT ENVIRONMENTS

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Federated Learning (FL) enables collaborative model training with data privacy
014 but suffers in non-i.i.d. settings due to client drift, which degrades both global
015 and local generalizability. Recent works show that clients can benefit from lower
016 softmax temperatures for optimal local training. However, existing methods apply
017 a uniform value across all participants, which may lead to suboptimal conver-
018 gence and reduced generalization in non-i.i.d. client settings. We propose
019 **FedChill**, a heterogeneity-aware strategy that adapts temperatures to each client.
020 FedChill initializes temperatures using a heterogeneity score, quantifying local
021 divergence from the global distribution, without exposing private data, and ap-
022 plies performance-aware decay to adjust temperatures dynamically during train-
023 ing. This enables more effective optimization under heterogeneous data while
024 preserving training stability. Experiments on CIFAR-10, CIFAR-100, and SVHN
025 show that FedChill consistently outperforms baselines, achieving up to 8.35%
026 higher global accuracy on CIFAR-100 with 50 clients, while using 2.26 \times fewer
027 parameters than state-of-the-art methods.

028 1 INTRODUCTION

031 Federated Learning (FL) enables collaborative model training across decentralized edge devices
032 while preserving privacy, since clients share only model updates rather than raw data (McMahan
033 et al., 2017). In practice, however, heterogeneous (non-i.i.d.) client data induces client drift and
034 weight divergence, which significantly degrade both global performance and personalization (Yan
035 et al., 2023; Li et al., 2019; Lee et al., 2024). To mitigate these challenges, numerous methods have
036 been proposed. FedAvg (McMahan et al., 2017) provides the foundation but struggles under hetero-
037 geneity (Li et al., 2019). Subsequent extensions include FedProx (Li et al., 2020) with a proximal
038 term, Moon (Li et al., 2021) with contrastive learning, FedProto (Tan et al., 2021) with prototype
039 aggregation, FedGen (Zhu et al., 2021) using generative data sharing, and FedAlign (Mendieta et al.,
040 2022) for feature alignment. In parallel, Knowledge Distillation (KD) (Hinton et al., 2014) has been
041 integrated into FL, giving rise to Federated KD methods that reduce communication and mitigate
042 heterogeneity (Wu et al., 2022; Li et al., 2024), such as FedMD (Li & Wang, 2019) for mutual
043 distillation and FedHKD (Chen et al., 2023) for data-free hyper-knowledge distillation.

044 Despite these advances, important limitations persist. Regularization- and contrastive-based meth-
045 ods (e.g., FedProx, Moon) only partially address knowledge transfer (Li et al., 2020; 2021).
046 Prototype-based approaches like FedProto require carefully chosen representatives and scale poorly
047 with diverse clients (Tan et al., 2021), while generative methods such as FedGen impose computa-
048 tional overhead and introduce privacy concerns through synthetic data (Zhu et al., 2021; Chen et al.,
049 2023). As a result, effectively addressing statistical heterogeneity in federated learning remains an
050 open challenge.

051 To address this, logit chilling (Lee et al., 2024) shows that fractional temperature values can mit-
052 igate client data heterogeneity during local training. While low temperatures (e.g., $T = 0.05$)
053 may accelerate convergence by sharpening gradients, they can also introduce instability and overfit-
054 ting, especially in high-capacity models or in scenarios with varying client heterogeneity (Lee et al.,
055 2024). Furthermore, uniform temperature scaling across clients overlooks heterogeneity differences,

Figure 1: Validation of the temperature-heterogeneity hypothesis. (Left) Client-wise heatmap of validation accuracy across temperatures, showing varying optimal temperatures. (Right) Scatter plot of client heterogeneity vs. accuracy, colored by temperature, highlighting performance trends

making a static one-size-fits-all approach ineffective in non-i.i.d. settings (Lee et al., 2024). These limitations highlight the need for a more comprehensive solution that can effectively address client drift without requiring public data or imposing significant computational overhead.

To this end, we propose **FedChill**, a dynamic, context-aware temperature strategy that adapts to each client’s needs and training stage. FedChill introduces adaptive temperature initialization as well as temperature chilling for each client during training. The contributions of our proposed FedChill framework are as follows:

1. We introduce a novel method to compute client-specific heterogeneity scores by comparing each client’s local class distribution to a globally approximated distribution, constructed without sharing private data. This score quantifies the divergence and drives the personalized temperature initialization process.
2. Based on each client’s heterogeneity score, we introduce a **per-client exponential temperature initialization strategy** that ensures each client starts with a temperature value uniquely suited to the distribution and complexity of its local data.
3. During training, FedChill adopts a **unique adaptive temperature decay mechanism** that decreases temperature by a factor once a tolerance parameter is triggered (based on the clients local accuracies) to cater to enhanced client personalization through sharpened gradient signals, as well as improved server performance.

2 PROBLEM FORMULATION

Recent research shows that applying **lower temperatures** ($T \in (0, 1)$) during the training process can improve convergence and accuracy, especially in heterogeneous federated learning scenarios (Lee et al., 2024). For example, consider the softmax operation (Hinton et al., 2014; Guo et al., 2017) with a temperature parameter T , which transforms logits z_i into class probabilities p_i as follows:

$$p_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)} \quad (1)$$

When $T < 1$, the exponential effect in equation 1 is amplified, leading to a sharper probability distribution where the model is more confident in its predictions. From a training perspective, the gradient of the cross-entropy loss with respect to the logit z_i under temperature-scaled softmax can be expressed as:

$$108 \quad \frac{\partial \mathcal{L}}{\partial z_i} = \frac{1}{T} (p_i - y_i) \quad (2)$$

$$109$$

$$110$$

111 where y_i is the ground truth label. It shows that the gradient magnitude is inversely proportional to
112 the temperature, indicating that lower temperatures increase the sensitivity of the loss w.r.t the logits.

114 2.1 COMPLEXITY OF THE TEMPERATURE SEARCH SPACE

116 As illustrated in Figure 1, the relationship between temperature and client performance reveals a
117 highly complex and client-specific optimization landscape. The left panel demonstrates that different
118 clients achieve optimal performance at vastly different temperature values, with some clients
119 performing best at $T = 0.1$ while others require $T = 0.5$ or higher. This client-wise variation in
120 optimal temperatures creates a challenging optimization problem: no single universal temperature
121 can capture the heterogeneous requirements of all clients, and even small changes in temperature
122 can yield large performance shifts, especially for clients with skewed or highly diverse data.

124 2.2 HETEROGENEITY AS A PREDICTIVE HEURISTIC

126 The right panel of Figure 1 provides a crucial insight: each point represents a client, with the x-
127 axis indicating the client’s heterogeneity score (divergence from global distribution) and the y-axis
128 showing validation accuracy. Points are colored by the temperature value that achieved that accu-
129 racy. The visualization demonstrates that different clients achieve their best performance at vastly
130 different temperature values. Crucially, there exists a non-uniform relationship: clients with higher
131 heterogeneity scores tend to benefit from lower temperatures to sharpen their predictions, whereas
132 representative clients align with higher values. This confirms that no single universal temperature
133 can effectively serve all clients.

134 Our empirical analysis across multiple heterogeneity measures in Appendix A.5 further supports
135 this hypothesis. While individual measures show varying correlation strengths with optimal tem-
136 peratures, the **heterogeneity score** demonstrates the most consistent negative correlation (e.g.,
137 $r = -0.389$), suggesting that clients with higher heterogeneity benefit from lower temperatures.
138 This relationship provides a principled foundation for temperature initialization rather than random
139 or uniform selection.

142 2.3 FORMAL PROBLEM STATEMENT

144 The fundamental limitation of existing temperature-scaling approaches is that T remains fixed dur-
145 ing training across all the nodes $n \in \{1, \dots, N\}$, despite the demonstrated need for client-specific
146 optimization. To overcome this, we formulate two primary objectives. The first is to devise a het-
147 erogeneity score that can predict a unique initial temperature $T_{n,0}$ for each client n , leveraging the
148 observed correlation between data distribution divergence and optimal temperature regimes. The
149 second goal is to develop a strategy to identify stagnation during communication round k and adap-
150 tively decay $T_{n,k}$ such that it dynamically balances both model performance and training stability.

151 This leads to the following client-specific and round-adaptive softmax formulation:

$$152 \quad p_{i,n,k} = \frac{\exp(z_{i,n,k}/T_{n,k})}{\sum_j \exp(z_{j,n,k}/T_{n,k})}. \quad (3)$$

$$153$$

$$154$$

155 and the corresponding modified cross-entropy loss becomes:

$$157 \quad L = - \sum_{i=1}^N y_i \log(p_{i,n,k}). \quad (4)$$

$$158$$

$$159$$

160 By leveraging heterogeneity as a heuristic for temperature initialization and implementing adaptive
161 decay mechanisms, we can navigate the complex temperature optimization landscape more effec-
162 tively than existing uniform approaches.

162

3 METHODOLOGY

163

3.1 OVERALL FRAMEWORK

166 Our proposed FedChill extends the FedAvg (McMahan et al., 2017) algorithm by introducing client-
 167 specific temperature scaling to handle statistical heterogeneity across clients. It consists of three key
 168 components i) Client-Specific Heterogeneity Score, ii) Personalized Temperature Initialization, and
 169 iii) Adaptive Temperature Decay Strategy. The overall algorithm is summarized in Appendix 1.

189 Figure 2: Overview of the proposed FedChill framework. (Key: $T_{n,k}$: Temperature of client n at
 190 communication round k , h_n : Heterogeneity score of client n , G.D: Global Distribution, L.D.: Local
 191 Distribution).

192 Our framework in Fig. 2 begins by partitioning data among n clients. Each client's local class
 193 distribution is compared against an approximated global distribution to compute a heterogeneity
 194 score. These heterogeneity scores are used to initialize personalized softmax temperatures through
 195 an exponential decay function before the communication rounds begin.

196 With client-specific temperatures initialized, the global model (e.g. a lightweight convolutional
 197 neural network) is broadcast to all participating clients. After loading the latest global model, the
 198 clients begin training locally on their private datasets \mathcal{D}_n , wherein each client minimizes the negative
 199 log-likelihood loss:

$$200 \quad \mathcal{L}_{n,k} = - \sum_{\forall i} \log (p_{i,n,k}) . \quad (5)$$

201 Following training, each client evaluates its model on a private validation set. If performance stagnates,
 202 the local controller adaptively reduces the temperature by multiplying it with a fixed decay
 203 factor once a predefined tolerance threshold is exceeded, thereby intensifying the sharpness of pre-
 204 dictions in subsequent rounds.

205 Finally, after all clients complete local training, model updates are aggregated on the server using
 206 FedAvg (McMahan et al., 2017). This process is then repeated for a fixed number of communication
 207 rounds.

208

3.2 CLIENT-SPECIFIC HETEROGENEITY SCORE

209 The temperature initialization process is driven by a client-specific heterogeneity score that quantifies
 210 how much a client's local data distribution diverges from the global distribution. To estimate the

global class distribution without sharing client data distributions, we use a principled approximation approach. The server constructs an ideal global distribution that represents a balanced allocation of classes across the federation. In a balanced classification scenario, this corresponds to a uniform distribution where each class has equal representation. For datasets with known natural class imbalances, the global distribution can be adjusted to reflect these expected priors. This approach preserves privacy while providing a meaningful reference point against which client heterogeneity can be measured.

For each client, we calculate the heterogeneity score by comparing its class distribution with this global distribution:

$$h_n = \sum_{c=1}^C \left| \frac{p_n(c)}{p_g(c)} - 1 \right| \quad (6)$$

where $p_n(c)$ is the probability of class c in client n 's dataset, $p_g(c)$ is the probability of class c in the global distribution, and C is the number of classes. This score is normalized to the range $[0, 1]$, with higher values indicating greater divergence from the global distribution.

3.3 PERSONALIZED TEMPERATURE INITIALIZATION

The temperature is then initialized using an exponential decay function:

$$T_{n,0} = T_{\max} \cdot e^{-s \cdot h_n} \quad (7)$$

where T_{\max} is the maximum allowed temperature, s is a scaling factor, and h_n is the client's heterogeneity score.

The use of an exponential decay policy ensures a smooth, non-linear scaling of temperature with respect to heterogeneity. This choice amplifies the impact of higher heterogeneity scores, allowing clients with significantly skewed data to receive much lower temperatures, thereby enforcing stronger learning signals. Conversely, clients with near-i.i.d. data maintain higher temperatures, preserving the expressiveness of their predictions.

3.4 ADAPTIVE TEMPERATURE DECAY STRATEGY

Our approach FedChill integrates an adaptive temperature decay mechanism (Appendix A.1, Algorithm 1) into the standard federated learning workflow to improve convergence under non-i.i.d. settings. During local training in each communication round, clients evaluate their models on private validation data at the end to compute a validation accuracy score. The client tracks its performance over time using past accuracies. If accuracy does not improve for P consecutive rounds (i.e., stagnation occurs), the temperature is adaptively decayed as follows:

$$T_{n,k+1} \leftarrow \max(\gamma \cdot T_{n,k}, T_{\min}) \quad (8)$$

where $\gamma \in (0, 1)$ is a fixed decay factor and T_{\min} is a lower bound to prevent excessive sharpening.

The condition for stagnation is checked by comparing the current validation accuracy with the accuracy two rounds ago. If the current accuracy is less than or equal to that value, a counter is incremented. Otherwise, the counter is reset. Once this counter reaches the patience threshold P , and the temperature is still sufficiently above the minimum threshold ($T_{n,k} > 1.1 \cdot T_{\min}$), the temperature is updated and the counter is reset.

This mechanism allows each client to autonomously calibrate its prediction confidence based on its performance trajectory, thereby adapting to local data distributions.

4 EXPERIMENTAL SETUP

4.1 DATASET SELECTION

We utilize CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and SVHN (Netzer et al., 2011) datasets to evaluate our FedChill approach. These datasets were selected because they enable evaluation across different complexity levels (10 vs. 100 classes), allow meaningful simulation of non-

270 i.i.d distributions via Dirichlet partitioning. They also provide sufficient challenge while remaining
 271 computationally feasible, and serve as standard benchmarks in federated learning (Krizhevsky &
 272 Hinton, 2009; Li et al., 2024).

273
 274 **4.2 IMPLEMENTATION**
 275

276 **4.2.1 MODEL ARCHITECTURE**
 277

278 We employ custom convolutional neural networks (CNNs) across our experiments, with approxi-
 279 mately 685k, 4.96M, and 13.96M parameters respectively. For SVHN, we utilize an architecture
 280 of 1.243M. The architectures are outlined in Appendix A.2, Table 8. The architecture for SVHN is
 281 presented in Appendix A.2, Table 9.

282
 283 **4.2.2 DATA PARTITIONING**
 284

285 We implement a non-i.i.d partitioning strategy using Dirichlet allocation (Chen et al., 2023):

286
 287 • For each class $c_i \in C$, we sample class proportions from $\text{Dir}(\alpha \cdot \mathbf{1})$
 288 • The sampled proportions are normalized and adjusted to ensure balanced client datasets
 289 • Each client receives a local training set and a validation set, the latter derived from the
 290 global test set
 291 • A client-specific subsampling rate (`frac`) controls the local dataset size
 292

294 We adopt a Dirichlet-based partitioning scheme to generate realistic heterogeneous data distributions
 295 among clients, with concentration parameters serving as the primary mechanism for controlling
 296 statistical heterogeneity levels (Chen et al., 2023).

297
 298 **4.2.3 EXPERIMENTAL SETTINGS**
 299

300 In our primary experimental evaluation, we implement FedChill using PyTorch (Paszke et al.,
 301 2019) with consistent configuration across all experiments. We employ the SGD optimizer (Ruder,
 302 2017) with a learning rate of 0.01 and train for 5 local epochs per communication round, with a total
 303 of 50 communication rounds. For data partitioning, we utilize a Dirichlet distribution ($\alpha = 0.5$) to
 304 simulate non-i.i.d scenarios across varying client configurations (10, 20, and 50 clients) (Chen et al.,
 305 2023). The batch size is set to 64, and we use a data fraction of 0.1 for 10-client, 0.2 for 20-client,
 306 and 0.5 for 50-client configurations (Chen et al., 2023).

307 For FedChill’s adaptive temperature mechanism, we initialize temperatures based on client hetero-
 308 geneity scores, constrained within the range $[0.05, 1.0]$ (Lee et al., 2024). The scaling factor s
 309 was chosen on the basis of an empirical experiment using a 1D hyperparameter sweep provided in
 310 Appendix A.4.1, and temperature decay factor $\gamma \in \{0.8, 0.95\}$ were selected based on empirical
 311 analysis across different experimental configurations. Temperature adjustments are triggered when
 312 performance plateaus for two consecutive rounds as shown in Appendix A.1.

313
 314 **4.3 EVALUATION METRICS**
 315

316 To comprehensively assess performance, we track three key aspects of the federated system. First,
 317 we measure the test accuracy of the global model on the global test set after each communication
 318 round (Chen et al., 2023). Second, we evaluate client performance by recording local validation
 319 accuracy on private data as well as generalization to the global test set (Chen et al., 2023). Finally,
 320 we monitor the evolution of temperature parameters across rounds to capture the adaptive behavior
 321 of our approach.

322 For comprehensive assessment, in our primary experiment we conduct experiments with varying
 323 numbers of clients (10, 20, and 50) and data fractions (0.1, 0.2, and 0.5) to evaluate the scalability
 and robustness of our approach under different federated learning scenarios (Chen et al., 2023).

324

5 RESULTS AND EVALUATION

325

5.1 COMPARISON WITH SOTA

326 Our experimental evaluation demonstrates FedChill’s superior performance across 3 different dataset
 327 complexities, client configurations, and heterogeneity scenarios. Tables 1 and 2 present a comprehensive
 328 comparison with state-of-the-art federated learning methods.

329
 330
 331 Table 1: Comparison of local and global accuracy across multiple SOTA methods on CIFAR10,
 332 CIFAR100, and SVHN with varying clients

333 Dataset	Scheme	Local Accuracy			Global Accuracy			Params (M)	Pub Data
		10	20	50	10	20	50		
337 CIFAR10	FedAvg	0.5950	0.6261	0.5825	0.4741	0.5516	0.3773	11.209	No
	FedProx	0.5981	0.6295	0.6490	0.4793	0.5258	0.5348	22.418	No
	Moon	0.5901	0.6482	0.5513	0.4579	0.5651	0.3514	33.627	No
	FedAlign	0.5946	0.6023	0.6402	0.4976	0.5184	0.5641	11.209	No
	FedGen	0.5879	0.6395	0.6533	0.4800	0.5408	0.5651	11.281	No
	FedMD	0.6147	0.6666	0.6533	0.5088	0.5575	0.5714	11.209	Yes
	FedProto	0.6131	0.6505	0.5939	0.5012	0.5548	0.4016	11.209	No
	FedHKD*	0.6227	0.6515	0.6675	0.5049	0.5596	0.5074	11.209	No
	FedHKD	0.6254	0.6816	0.6671	0.5213	0.5735	0.5493	11.209	No
345 CIFAR100	FedChill	0.6887	0.7239	0.7626	0.5335	0.6410	0.6820	4.959	No
	FedAvg	0.2361	0.2625	0.2658	0.2131	0.2748	0.2907	11.215	No
	FedProx	0.2332	0.2814	0.2955	0.2267	0.2708	0.2898	22.430	No
	Moon	0.2353	0.2729	0.2428	0.2141	0.2652	0.1928	33.645	No
	FedAlign	0.2467	0.2617	0.2854	0.2281	0.2729	0.2933	11.215	No
	FedGen	0.2393	0.2701	0.2739	0.2176	0.2620	0.2739	11.333	No
	FedMD	0.2681	0.3054	0.3293	0.2323	0.2669	0.2968	11.215	Yes
	FedProto	0.2568	0.3188	0.3170	0.2121	0.2756	0.2805	11.215	No
	FedHKD*	0.2551	0.2997	0.3016	0.2286	0.2715	0.2976	11.215	No
353 SVHN	FedHKD	0.2981	0.3245	0.3375	0.2369	0.2795	0.2988	11.215	No
	FedChill	0.2412	0.3025	0.4185	0.2619	0.3266	0.3823	4.959	No
	FedAvg	0.6766	0.7329	0.6544	0.4948	0.6364	0.5658	1.286	No
	FedProx	0.6927	0.6717	0.6991	0.5191	0.6419	0.6139	2.572	No
	Moon	0.6602	0.7085	0.7192	0.4883	0.5536	0.6543	3.858	No
	FedAlign	0.7675	0.7920	0.7656	0.6426	0.7138	0.7437	1.286	No
	FedGen	0.5788	0.5658	0.4679	0.3622	0.3421	0.3034	1.357	No
	FedMD	0.8038	0.8086	0.7912	0.6812	0.7344	0.8085	1.286	Yes
	FedProto	0.8071	0.8148	0.8039	0.6064	0.6259	0.7895	1.286	No

362

5.1.1 BASELINES

363 We compare FedChill with several state-of-the-art federated learning methods including FedAvg
 364 (McMahan et al., 2017), FedProx (Li et al., 2020), Moon (Li et al., 2021), FedAlign (Mendieta
 365 et al., 2022), FedGen (Zhu et al., 2021), FedMD (Li & Wang, 2019), and FedHKD (Chen et al.,
 366 2023). The novelty of FedChill lies in its adaptive temperature-based regularization mechanism that
 367 requires no public dataset, generative model, or additional communication overhead. This contrasts
 368 with methods like FedMD which relies on a public dataset, and FedGen which employs a generative
 369 model. While FedHKD achieves strong performance through knowledge distillation, our approach
 370 differs by using client-specific temperature scaling based on our heterogeneity metrics.

373

5.1.2 PERFORMANCE ANALYSIS

374 Our experimental evaluation demonstrates FedChill’s superior performance across different dataset
 375 complexities, client configurations, and heterogeneity scenarios. Table 1 presents a comprehensive
 376 comparison with state-of-the-art federated learning methods.

378
 379 **Global Model Performance:** On CIFAR-10, FedChill achieves significant improvements in global
 380 model accuracy across all client configurations. With 10 clients, FedChill attains 53.35% accu-
 381 racy, outperforming FedHKD (52.13%) and FedMD (50.88%). This advantage becomes more pro-
 382 nounced with 20 clients (64.10% vs. 57.35%) and 50 clients (68.20% vs. 54.93%), demon-
 383 strating exceptional scalability. Similarly, on the more challenging CIFAR-100, FedChill delivers su-
 384 perior global accuracy, particularly with larger client numbers (38.23% vs. 29.88% with 50 clients),
 385 highlighting its effectiveness on complex tasks. On SVHN, FedChill achieves 86.49%, 87.23%,
 386 and 91.25% global accuracy for 10, 20, and 50 clients, respectively, highlighting its robustness on
 387 real-world image datasets.
 388

389 **Local Model Performance:** FedChill exhibits remarkable improvement in client-side model per-
 390 formance. On CIFAR-10, it achieves local accuracies of 68.87%, 72.39%, and 76.26% for 10, 20, and
 391 50 clients, respectively, substantially outperforming all baselines. This pattern extends to CIFAR-
 392 100 for configurations with larger client numbers, where FedChill reaches 41.85% local accuracy
 393 with 50 clients, compared to FedHKD’s 33.75%. On SVHN, FedChill achieves 90.22% local ac-
 394 curacy for 50 clients, above the best baseline. The positive correlation between client count and
 395 performance improvement is particularly noteworthy, suggesting that FedChill effectively leverages
 396 client diversity.
 397

398 **Model Efficiency:** A key advantage of FedChill is its parameter efficiency, utilizing only 4.96M
 399 parameters compared to 11.21M for most baselines (and 22.43M for FedProx, 33.65M for Moon)
 (Chen et al., 2023). This represents a 55.7% reduction in model size while achieving superior per-
 400 formance, leading to reduced communication overhead and computational requirements in resource-
 401 constrained federated environments.
 402

403 **Heterogeneity Handling:** Table 2 provides further
 404 evidence of FedChill’s effectiveness in handling data
 405 heterogeneity. Under both low ($\alpha = 0.2$) and high
 406 ($\alpha = 5$) Dirichlet concentration parameters, Fed-
 407 Chill consistently outperforms all baselines. The
 408 margin is particularly significant in the challenging
 409 low-concentration setting ($\alpha = 0.2$), where Fed-
 410 Chill achieves 80.77% local and 50.85% global ac-
 411 curacy, compared to the next best method’s 67.89% and
 412 47.36%, respectively. This demonstrates FedChill’s
 413 robust adaptation to varying levels of statistical het-
 414 erogeneity.
 415

416 5.2 ABLATION STUDIES

417 We conduct comprehensive ablation studies to evaluate: (1) the impact of temperature scaling across
 418 different model capacities, and (2) the individual contributions of FedChill’s key components across
 419 varying levels of data heterogeneity.
 420

421 5.2.1 TEMPERATURE SCALING ACROSS MODEL CAPACITIES

422 Table 3 presents accuracy results for three CNN architectures (see Appendix A.2) with different
 423 parameter counts (685K, 4.95M, and 13.95M) across various temperature settings and our adaptive
 424 FedChill approach. Temperature values significantly affect performance across all architectures,
 425 with $T = 0.25$ generally outperforming $T = 1.0$ (standard cross-entropy) by 2–4% in both local
 426 and global accuracy, confirming our hypothesis that appropriate scaling benefits training in federated
 427 settings. While fixed temperatures vary in effectiveness across architectures, FedChill consistently
 428 achieves superior performance, yielding the highest local accuracy for CNN1 (67.16% vs. 66.46%)
 429 and CNN2 (67.56% vs. 67.87%), while remaining competitive for CNN3. Moreover, model capacity
 430 strongly influences temperature sensitivity: the largest model (CNN3) exhibits the greatest variance
 431 in performance (6.73% difference between best and worst local accuracy), indicating that higher-
 432 capacity models are more prone to temperature effects, likely due to their greater tendency to overfit
 433 to local data distributions.
 434

Table 2: CIFAR-10 local and global accu-
 435 racy under varying heterogeneity (α)

Method	Local Acc.		Global Acc.	
	$\alpha=0.2$	$\alpha=5$	$\alpha=0.2$	$\alpha=5$
FedAvg	0.5917	0.4679	0.3251	0.5483
FedProx	0.6268	0.4731	0.3845	0.5521
Moon	0.5762	0.3794	0.3229	0.4256
FedAlign	0.6434	0.4799	0.4446	0.5526
FedGen	0.6212	0.4432	0.4623	0.4432
FedMD	0.6532	0.4940	0.4408	0.5543
FedProto	0.6471	0.4802	0.3887	0.5488
FedHKD	0.6789	0.4976	0.4736	0.5573
FedChill	0.8077	0.5995	0.5085	0.6435

432
 433 Table 3: Ablation Study: Local vs global ac-
 434 curacy for different CNNs and frameworks on
 435 CIFAR-10

Architecture	Framework	Local Acc (%)	Global Acc (%)
CNN 1 (685k)	Flex&Chill T=0.05	63.83	47.36
	Flex&Chill T=0.25	66.46	48.66
	Flex&Chill T=0.5	66.46	47.76
	Flex&Chill T=1.0	63.44	46.76
	FedChill	67.16	50.14
CNN 2 (4.95M)	Flex&Chill T=0.05	64.91	48.94
	Flex&Chill T=0.25	67.87	50.08
	Flex&Chill T=0.5	66.13	49.44
	Flex&Chill T=1.0	64.28	48.82
	FedChill	67.56	52.03
CNN 3 (13.95M)	Flex&Chill T=0.05	63.44	42.43
	Flex&Chill T=0.25	69.17	49.00
	Flex&Chill T=0.5	68.14	48.12
	Flex&Chill T=1.0	65.42	45.75
	FedChill	67.04	47.58

Table 4: Ablation Study: Showing component contributions in FedChill (30 training rounds, 10 clients, $\text{frac} = 0.1$)

Het. (α)	CNN Arch.	Component	Local Acc (%)	Global Acc (%)
$\alpha = 0.5$	CNN1 (0.685M)	FedAvg (T=1.0)	64.54	46.96
		Fixed T=0.05	65.65	47.26
		FedChill	67.91	49.33
		FedChill*	65.36	49.49
$\alpha = 5.0$	CNN3 (13.95M)	FedAvg (T=1.0)	65.97	45.74
		Fixed T=0.05	61.73	39.22
		FedChill	67.69	47.55
		FedChill*	64.55	45.39
$\alpha = 5.0$	CNN1 (0.685M)	FedAvg (T=1.0)	52.08	54.56
		Fixed T=0.05	50.55	56.10
		FedChill	54.27	55.67
		FedChill*	53.39	55.81
$\alpha = 5.0$	CNN3 (13.95M)	FedAvg (T=1.0)	50.70	53.44
		Fixed T=0.05	47.24	53.48
		FedChill	53.85	55.57
		FedChill*	50.81	56.54

5.2.2 COMPONENT-WISE CONTRIBUTION ANALYSIS

Table 4 isolates the contributions of heterogeneity-based initialization versus adaptive decay across high ($\alpha = 0.5$) and low ($\alpha = 5.0$) heterogeneity. In high heterogeneity settings, initialization serves as the primary driver, boosting local accuracy by up to 3.37% over baselines and effectively adapting to skewed data. Conversely, in near-homogeneous settings ($\alpha = 5.0$), the full adaptive decay (FedChill*) yields superior global accuracy, suggesting that dynamic decay prevents overfitting when client distributions are uniform. Crucially, both adaptive variants consistently outperform fixed static temperatures ($T = 0.05$), validating that client-specific scaling is superior to uniform regularization strategies.

Gradient Analysis: Magnitude vs. Direction To address whether FedChill functions merely as an adaptive learning rate, we dissected the mechanism by isolating the effects of gradient magnitude and direction. We compared the full FedChill method against a **Magnitude-Only** variant (standard softmax, manually scaled gradients) and a **Direction-Only** variant (temperature-scaled softmax, normalized magnitudes).

Method	Final Accuracy	Δ vs Baseline
FedAvg-Baseline	55.19%	—
FedChill-MagOnly	59.68%	+4.49%
FedChill-DirOnly	52.09%	-3.10%
FedChill-Full	57.78%	+2.59%

Table 5: Decoupling gradient magnitude and direction effects.

Results in Table 5 reveal that FedChill acts primarily through **gradient magnitude amplification**. Interestingly, directional changes induced by low temperatures actually degrade performance when isolated (-3.10%). However, the full FedChill configuration yields positive gains, suggesting a constructive interaction where magnitude amplification allows heterogeneous clients to retain influence during aggregation, while temperature-controlled directional adjustments prevent excessive divergence.

5.2.3 ROBUSTNESS TO FEATURE SHIFT

To assess FedChill under feature shift (concept drift), we conducted experiments on CIFAR-10 where data is distributed IID but subjected to client-specific Gaussian noise ($\sigma \in [0.1, 0.3]$). As shown in Table 6, FedChill achieves 58.92% accuracy compared to FedAvg's 57.98%, demonstrating robustness even when heterogeneity stems from feature skew rather than label skew.

Method	Accuracy (%)
FedAvg	57.98
FedChill	58.92

490
491
492
493 Table 6: Performance under feature shift (IID + Gaussian noise).
494
495
496
497
498
499500 5.2.4 HYPERPARAMETER SENSITIVITY (P AND s)
501
502
503504 We analyzed the sensitivity of the patience parameter P and scaling factor s . As shown in Table 7,
505 performance is more sensitive to s than to P , as s directly determines the initial temperature scale
506 and gradient magnitudes. Values of $s \approx 2$ consistently produce the highest accuracy across varying
507 patience levels. While lower P values provide moderate improvements, decreasing P yields limited
508 marginal gains once s is within the optimal range of [2, 2.5].
509510 To validate that this parameter choice is not specific to a single configuration, we provide an extended
511 analysis in Appendix A.4.1 (Table 10). This broader sweep confirms that $s = 2.0$ yields robust
512 performance across varying client counts (10, 20, and 50) and also lists performance against other
513 heterogeneity metrics like KL-divergence in extreme-scaling regimes (Appendix A.4.2).
514

Patience (P)	$s = 1.0$	$s = 2.0$	$s = 3.0$	$s = 4.0$	$s = 5.0$
1	54.58	57.11	52.96	51.50	53.06
3	54.86	56.80	50.91	49.86	52.79
5	55.37	55.92	49.10	50.92	50.49
10	55.25	56.68	50.83	49.91	51.29

515 Table 7: Sensitivity analysis of scaling factor (s) and patience (P) on server accuracy (%).
516
517
518
519
520
521522 6 CONCLUSION
523
524525 In this work, we presented **FedChill**, a heterogeneity-aware framework that addresses the critical
526 challenge of statistical divergence in federated learning. While prior approaches have utilized static
527 temperature scaling to sharpen local objectives (Lee et al., 2024), we demonstrate that a one-size-
528 fits-all strategy is suboptimal in non-i.i.d. environments. FedChill overcomes this by introducing a
529 dynamic, context-aware strategy rooted in two key mechanisms: a privacy-preserving heterogene-
530 ity score for personalized temperature initialization, and a performance-aware decay schedule that
531 adapts to training stagnation.
532533 Our extensive evaluation against 8 state-of-the-art methods confirms the efficacy of this two-fold
534 strategy. On the challenging CIFAR-100 dataset with 50 clients, FedChill yielded improvements of
535 8.1% in local accuracy and 8.35% in global accuracy compared to baselines. Notably, these gains
536 are achieved with a highly efficient architecture, requiring $2.26 \times$ fewer parameters than comparable
537 state-of-the-art methods.
538539 Finally, we highlight the extensibility of our approach. Since FedChill operates exclusively by mod-
540 ulating the local training objective, it is independent to server-side aggregation logic. Future work
541 can explore synergistic integrations with aggregation-level strategies, such as FedProx or FedAlign,
542 to simultaneously address heterogeneity at both the local optimization and global model-fusion
543 stages.
544545 REFERENCES
546
547548 Huancheng Chen, Johnny Wang, and Haris Vikalo. The best of both worlds: Accurate global
549 and personalized models through federated learning with data-free hyper-knowledge distillation.
550 *arXiv preprint arXiv:2301.08968*, 2023.
551
552 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
553 networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International*

540 *Conference on Machine Learning (ICML)*, volume 70, pp. 1321–1330. PMLR, 2017. URL
 541 <https://proceedings.mlr.press/v70/guo17a.html>.
 542

543 G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In *NeurIPS*, 2014.
 544

545 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009. Technical Report.
 546

547 Kichang Lee, Songkuk Kim, and JeongGil Ko. Improving local training in federated learning via
 548 temperature scaling. *arXiv preprint arXiv:2401.09986*, 2024.
 549

550 Daliang Li and Junpu Wang. FedMD: Heterogeneous federated learning via model distillation. *arXiv
 551 preprint arXiv:1910.03581*, 2019.
 552

553 Lin Li, Jianping Gou, Baosheng Yu, Lan Du, and Zhang Yiand Dacheng Tao. Federated distillation:
 554 A survey, 2024. URL <https://arxiv.org/abs/2404.08564>.
 555

556 Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proc. of the
 557 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp. 10713–10722. IEEE,
 2021.

558 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 559 Federated optimization in heterogeneous networks. In *Proc. of the 2nd Conf. on Machine Learn-
 560 ing and Systems*, pp. 429–450, 2020.
 561

562 Xiang Li, Kaibin Huang, Wenhao Yang, Shiyu Wang, and Zhaoyang Zhang. On the convergence of
 563 fedavg on non-iid data. *arXiv preprint arXiv:1907.02189*, 2019.
 564

565 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 566 Communication-efficient learning of deep networks from decentralized data. In *Proc. of the 20th
 567 International Conf. on Artificial Intelligence and Statistics*, pp. 1273–1282. PMLR, 2017.
 568

569 Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen.
 570 Local learning matters: Rethinking data heterogeneity in federated learning. In *Proc. of the
 571 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp. 8397–8406. IEEE,
 2022.

572 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
 573 digits in natural images with unsupervised feature learning. In *Proceedings of the NIPS Work-
 574 shop on Deep Learning and Unsupervised Feature Learning*, 2011. URL [http://ufldl.
 575 stanford.edu/housenumbers](http://ufldl.stanford.edu/housenumbers).
 576

577 Frank Nielsen. On a generalization of the jensen–shannon divergence and the jensen–shannon cen-
 578 troid. *Entropy*, 2020.
 579

580 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 581 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 582 performance deep learning library. In *Proc. of the 33rd Conf. on Neural Information Processing
 583 Systems*, volume 32, 2019.
 584

585 Kaustubh R. Patil, Simon B. Eickhoff, and Robert Langner. Predictive data calibration for linear
 586 correlation significance testing. *arXiv preprint arXiv:2208.07081*, 2022.
 587

588 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint
 589 arXiv:1609.04747*, 2017. URL <https://arxiv.org/abs/1609.04747>.
 590

591 Jonathon Shlens. Notes on kullback–leibler divergence and likelihood. *arXiv preprint
 592 arXiv:1404.2000*, 2014.
 593

594 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi
 595 Zhang. Fedproto: Federated prototype learning over heterogeneous devices. *arXiv preprint
 596 arXiv:2105.00243*, 2021.

594 Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. FedKD:
 595 Communication-efficient federated learning via knowledge distillation. *Nature Communications*,
 596 13(1), April 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-29763-x. URL <http://dx.doi.org/10.1038/s41467-022-29763-x>.

598
 599
 600
 601 Yunlu Yan, Chun-Mei Feng, Mang Ye, Wangmeng Zuo, Ping Li, Rick Siow Mong Goh, Lei Zhu,
 602 and C. L. Philip Chen. Rethinking client drift in federated learning: A logit perspective, 2023.
 603 URL <https://arxiv.org/abs/2308.10162>.

604
 605
 606
 607 Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
 608 federated learning. In *Proc. of the 38th International Conf. on Machine Learning*, pp. 12878–
 609 12889. PMLR, 2021.

615 A APPENDIX

618 A.1 ADAPTIVE TEMPERATURE DECAY ALGORITHM

622 Algorithm 1 Adaptive Temperature Decay in Client Training

623 **Require:**

624 Validation Accuracy History \mathcal{A}_n ,
 625 Current Temperature $T_{n,k}$,
 626 Patience Threshold P ,
 627 Decay Factor γ ,
 628 Minimum Temperature T_{\min}

629
 630 1: $stagnation_count \leftarrow 0$
 631 2: $\mathcal{A}_n \leftarrow []$
 632 3: **for each communication round k do**
 633 4: $a_k \leftarrow$ current round's validation accuracy
 634 5: Append a_k to \mathcal{A}_n
 6:
 635 7: **if** $|\mathcal{A}_n| \geq 3$ **and** $a_k \leq \mathcal{A}_n[-2]$ **then**
 636 8: $stagnation_count \leftarrow stagnation_count + 1$
 637 9: **else**
 638 10: $stagnation_count \leftarrow 0$
 639 11: **end if**
 640 12:
 641 13: **if** $stagnation_count \geq P$ **and** $T_{n,k} > 1.1 \cdot T_{\min}$ **then**
 642 14: $T_{n,k+1} \leftarrow \max(\gamma \cdot T_{n,k}, T_{\min})$
 643 15: $stagnation_count \leftarrow 0$
 644 16: **else**
 645 17: $T_{n,k+1} \leftarrow T_{n,k}$
 646 18: **end if**
 19:
 20: **end for**

648
649
650

A.2 CNN ARCHITECTURES

651
652

Table 8: CNN architecture details (Key: Dims.: Dimensions, Padd.: Padding, Act.: Activation, C: 10 for CIFAR-10, SVHN & 100 for CIFAR-100)

#	CNN1					CNN2					CNN3										
	#	Type	Output Dims.	P.	Norm.	Act.	#	Type	Output Dims.	P.	Norm.	Act.	#	Type	Output Dims.	P.	Norm.	Act.	Others		
1	1	Conv2d	3 × 32 × 3	1	BN	ReLU	-	1	Conv2d	3 × 64 × 3	1	BN	ReLU	MaxPool(2,2)	1	Conv2d	3 × 80 × 3	1	BN	ReLU	-
2	2	Conv2d	32 × 32 × 3	1	BN	ReLU	MaxPool(2,2)	2	Conv2d	64 × 128 × 3	1	BN	ReLU	MaxPool(2,2)	2	Conv2d	80 × 80 × 3	1	BN	ReLU	-
3	3	Conv2d	32 × 64 × 3	1	BN	ReLU	-	3	Conv2d	128 × 256 × 3	1	BN	ReLU	MaxPool(2,2)	3	Conv2d	80 × 80 × 3	1	BN	ReLU	MaxPool(2,2)
4	4	Conv2d	64 × 64 × 3	1	BN	ReLU	MaxPool(2,2)	4	Conv2d	256 × 512 × 3	1	BN	ReLU	Ada.AvgPool(1,1)	4	Conv2d	80 × 160 × 3	1	BN	ReLU	-
5	5	Conv2d	64 × 128 × 3	1	BN	ReLU	-	5	FC	1024	-	-	ReLU	Dropout(0.25)	5	Conv2d	160 × 160 × 3	1	BN	ReLU	-
6	6	Conv2d	128 × 128 × 3	1	BN	ReLU	-	6	FC	512	-	-	ReLU	Dropout(0.25)	6	Conv2d	160 × 160 × 3	1	BN	ReLU	MaxPool(2,2)
7	7	FC	512	-	BN	ReLU	Dropout(0.5)	7	Output	C	-	-	-	-	7	Conv2d	160 × 320 × 3	1	BN	ReLU	-
8	8	FC	256	-	BN	ReLU	Dropout(0.3)	8	Conv2d	320 × 320 × 3	1	BN	ReLU	-	8	Conv2d	320 × 320 × 3	1	BN	ReLU	MaxPool(2,2)
9	9	Output	C	-	-	-	-	9	Conv2d	320 × 320 × 3	1	BN	ReLU	-	10	Conv2d	320 × 640 × 3	1	BN	ReLU	-
								11	Conv2d	640 × 640 × 3	1	BN	ReLU	Ada.AvgPool(2,2)	12	FC	1536	-	BN	ReLU	Dropout(0.5)
								13	FC	768	-	BN	ReLU	Dropout(0.4)	14	FC	384	-	BN	ReLU	Dropout(0.3)
								15	Output	C	-	-	-	-							

662
663
664

Table 9: SVHN CNN architecture (Key: Dims.: Dimensions, Padd.: Padding, Act.: Activation, C: 10 for SVHN)

#	Layer	Output Dim.	P.	Norm.	Act.	Others
1	Conv1	32 × 32 × 32	1	BN	ReLU	-
2	Conv2	32 × 32 × 32	1	BN	ReLU	MaxPool(2,2)→32 × 16 × 16
3	Conv3	64 × 16 × 16	1	BN	ReLU	-
4	Conv4	64 × 16 × 16	1	BN	ReLU	MaxPool(2,2)→64 × 8 × 8
5	Conv5	128 × 8 × 8	1	BN	ReLU	-
6	Conv6	128 × 8 × 8	1	BN	ReLU	MaxPool(2,2)→128 × 4 × 4
7	Conv7	256 × 4 × 4	1	BN	ReLU	AdaptiveAvgPool(2,2)→256 × 2 × 2
8	FC1	512	-	BN	ReLU	Dropout(0.5)
9	FC2	256	-	BN	ReLU	Dropout(0.3)
10	FC3	C	-	-	-	Logits
11	Output	C	-	-	Softmax	Final prediction

675
676
677
678
679

A.3 CONVERGENCE ANALYSIS - FULL DEVICE PARTICIPATION

680
681
682
683
684
685ASSUMPTIONS
We analyze convergence under the following assumptions:

- (A1) Temperature bounds: $0 < T_{\min} \leq T_k(t) \leq T_{\max} < \infty$.
- (A2) F_t is L -smooth for all t , with $L = O(1/T_{\min}^2)$.
- (A3) Stochastic gradients have bounded variance: $\mathbb{E}\|\nabla f_i(w; \xi) - \nabla f_i(w)\|^2 \leq \sigma^2$.
- (A4) Bounded heterogeneity: $\frac{1}{K} \sum_k \|\nabla F_k(w) - \nabla F(w)\|^2 \leq \zeta^2$.
- (A5) Gradients bounded: $\|\nabla F_k(w)\| \leq G$.
- (A6) Each client's temperature schedule changes finitely many times, say $M < \infty$.

694
695
696
697
698
699

Proof for (A6). Given that there are T communication rounds and the patience factor for the FedChill algorithm is n (i.e., the number of rounds without improvement after which the temperature is decayed), the maximum number of changes can only be $\lfloor T/n \rfloor$. Since T is finite, the number of changes is also finite, which proves the claim.

700
701

NOTATION

- N clients, weights $p_k \geq 0$ with $\sum_{k=1}^K p_k = 1$.
- At round t the server holds $w_t \in \mathbb{R}^d$.

702 • Each client k has a population loss with temperature T :
 703
$$F_k^T(w) = \mathbb{E}_{\mathcal{D}_k}[f_k^T(w)]$$

 704
 705 where f_k^T is the per-sample cross-entropy loss with temperature T .
 706
 707 • The **round- t global objective** is:
 708
$$F_t(w) := \sum_{k=1}^K p_k F_k^{T_{t,k}}(w).$$

 709
 710 where $T_{t,k}$ is the temperature for client k at round t .
 711

712 **FEDCHILL ALGORITHM**

713 For $t = 0, 1, 2, \dots$:

714 1. Server sends w_t to clients.
 715 2. Each client k sets $w_{t,0}^k = w_t$ and runs τ steps of stochastic gradient descent with stepsize
 716 η :
 717
$$w_{t,j+1}^k = w_{t,j}^k - \eta g_{t,j}^k, \quad j = 0, \dots, \tau - 1,$$

 718 where $g_{t,j}^k$ is an unbiased stochastic gradient of $F_k^{T_{t,k}}$.
 719 3. Client returns $w_{t,\tau}^k$; server aggregates
 720
$$w_{t+1} = \sum_{k=1}^K p_k w_{t,\tau}^k.$$

 721
 722 4. Each client may update its temperature $T_{t,k} \rightarrow T_{t+1,k}$.
 723

724 **PROOF**

725 Since F_t is L -smooth, for any w, u we have

$$F_t(u) \leq F_t(w) + \langle \nabla F_t(w), u - w \rangle + \frac{L}{2} \|u - w\|^2. \quad (9)$$

726 Let w_t be the global model at round t . Each client k performs τ steps of SGD with step size η :

$$w_{t,\tau}^k = w_t - \eta \sum_{s=0}^{\tau-1} g_{t,s}^k,$$

727 where $g_{t,s}^k$ is the stochastic gradient on client k at local step s .
 728

729 The server averages ($p_k = \frac{1}{K}$):

$$w_{t+1} = \frac{1}{K} \sum_{k=1}^K w_{t,\tau}^k. \quad (10)$$

730 Define the global update:

$$\Delta_t := w_{t+1} - w_t = -\eta \cdot \frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} g_{t,s}^k.$$

731 Using (9) with $u = w_{t+1}$ and $w = w_t$ to be used for future reference:

$$F_t(w_{t+1}) \leq F_t(w_t) + \langle \nabla F_t(w_t), \Delta_t \rangle + \frac{L}{2} \|\Delta_t\|^2. \quad (11)$$

732 Since each client uses the full dataset at every local step, the gradient is exact (no stochastic noise).
 733 Thus,

$$g_{t,s}^k = \nabla F_k(w_{t,s}^k).$$

734 Therefore, the global update becomes the following:

756

$$\Delta_t = -\eta \cdot \frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} \nabla F_k(w_{t,s}^k). \quad (12)$$

760

761 Since each client uses its full dataset, there is no stochastic gradient noise. Thus, taking expectation
 762 only over client sampling (if partial participation) yields

763

764

$$\mathbb{E} \langle \nabla F_t(w_t), \Delta_t \rangle = -\eta \tau \|\nabla F_t(w_t)\|^2 + \underbrace{O(\eta \tau \zeta)}_{\text{client drift}}. \quad (13)$$

767

768 **Working:** Starting from the global update,

769

$$\Delta_t = -\eta \cdot \frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} \nabla F_k(w_{t,s}^k),$$

772

773 we compare the average of local gradients to the global gradient. If all local iterates remained at w_t ,
 774 we would have

775

$$\frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} \nabla F_k(w_t) = \tau \cdot \nabla F_t(w_t).$$

776

777 Define the client drift error:

778

779

780

$$\delta_t := \frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} [\nabla F_k(w_{t,s}^k) - \nabla F_k(w_t)].$$

781

782 Thus, the decomposition becomes

783

784

$$\frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} \nabla F_k(w_{t,s}^k) = \tau \cdot \nabla F_t(w_t) + \delta_t,$$

785

786 and therefore

787

$$\Delta_t = -\eta(\tau \nabla F_t(w_t) + \delta_t).$$

788

789 The descent term is

790

$$\langle \nabla F_t(w_t), \Delta_t \rangle = -\eta \tau \|\nabla F_t(w_t)\|^2 - \eta \langle \nabla F_t(w_t), \delta_t \rangle.$$

791

792 Using Cauchy–Schwarz and assuming $\|\delta_t\| \leq \tau \zeta$, we obtain

793

$$\langle \nabla F_t(w_t), \Delta_t \rangle \leq -\eta \tau \|\nabla F_t(w_t)\|^2 + \eta \tau \zeta \|\nabla F_t(w_t)\|.$$

794

795 Taking expectation gives the bound

796

$$\mathbb{E} \langle \nabla F_t(w_t), \Delta_t \rangle \leq -\eta \tau \|\nabla F_t(w_t)\|^2 + O(\eta \tau \zeta).$$

797

798 Similarly, the quadratic term satisfies

799

$$\mathbb{E} \|\Delta_t\|^2 = O(\eta^2 \tau^2 (\zeta^2 + G^2)), \quad (14)$$

800

801 where ζ quantifies data heterogeneity across clients and G bounds the gradient norm.

802

803 **Quadratic term bound.** Recall the decomposition

804

805

$$\Delta_t = -\eta(\tau \nabla F_t(w_t) + \delta_t), \quad \delta_t := \frac{1}{K} \sum_{k=1}^K \sum_{s=0}^{\tau-1} (\nabla F_k(w_{t,s}^k) - \nabla F_k(w_t)).$$

806

807 We first expand the norm square:

808

809

$$\begin{aligned} \|\Delta_t\|^2 &= \eta^2 \|\tau \nabla F_t(w_t) + \delta_t\|^2 \\ &\leq 2\eta^2 (\tau^2 \|\nabla F_t(w_t)\|^2 + \|\delta_t\|^2), \end{aligned}$$

810 where we used $\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2$.
 811

812 Next we bound $\|\delta_t\|^2$. Using the inequality $\left\| \frac{1}{m} \sum_{i=1}^m v_i \right\|^2 \leq \frac{1}{m} \sum_{i=1}^m \|v_i\|^2$ with $m = K\tau$ (there
 813 are $K\tau$ terms in the definition of δ_t), we get

$$814 \quad 815 \quad 816 \quad \|\delta_t\|^2 \leq \frac{1}{K\tau} \sum_{k=1}^K \sum_{s=0}^{\tau-1} \|\nabla F_k(w_{t,s}^k) - \nabla F_k(w_t)\|^2.$$

817 Introduce the per-round heterogeneity measure

$$818 \quad 819 \quad 820 \quad \zeta_t^2 := \frac{1}{K\tau} \sum_{k=1}^K \sum_{s=0}^{\tau-1} \|\nabla F_k(w_{t,s}^k) - \nabla F_t(w_t)\|^2,$$

821 and note the identity

$$822 \quad \nabla F_k(w_{t,s}^k) - \nabla F_k(w_t) = (\nabla F_k(w_{t,s}^k) - \nabla F_t(w_t)) - (\nabla F_k(w_t) - \nabla F_t(w_t)).$$

823 By expanding squared norms and using the triangle / Jensen inequalities one obtains (up to constant
 824 factors) a bound of the form

$$825 \quad 826 \quad 827 \quad \|\delta_t\|^2 \leq C_1 \tau \zeta_t^2 + C_2 \tau^2 \cdot \frac{1}{K} \sum_{k=1}^K \|\nabla F_k(w_t) - \nabla F_t(w_t)\|^2,$$

828 and under the common bounded-dissimilarity assumption

$$829 \quad 830 \quad 831 \quad \frac{1}{K} \sum_{k=1}^K \|\nabla F_k(w) - \nabla F(w)\|^2 \leq \zeta^2 \quad \text{for all } w,$$

832 this simplifies (absorbing constants) to

$$833 \quad 834 \quad \|\delta_t\|^2 \leq C \tau \zeta^2,$$

835 for some universal constant C (we may take $C = 1$ with the more careful definition of ζ_t used
 836 earlier). For a simple, clean bound it suffices to use

$$837 \quad \|\delta_t\|^2 \leq \tau \zeta_t^2 \leq \tau \zeta^2.$$

838 Combining the two bounds gives

$$839 \quad 840 \quad 841 \quad \|\Delta_t\|^2 \leq 2\eta^2 \left(\tau^2 \|\nabla F_t(w_t)\|^2 + \tau \zeta^2 \right).$$

842 Finally, taking expectation (over client sampling, if any) and using a uniform gradient bound
 843 $\|\nabla F_t(w_t)\| \leq G$ if desired, we obtain the commonly stated form

$$844 \quad \boxed{\mathbb{E} \|\Delta_t\|^2 = O(\eta^2 \tau^2 (\mathbb{E} \|\nabla F_t(w_t)\|^2 + \zeta^2)) = O(\eta^2 \tau^2 (\zeta^2 + G^2))}.$$

845 **Descent bound.** Taking expectation and applying the results from the previous results:

846 (i) *Descent term.*

$$847 \quad \mathbb{E} \langle \nabla F_t(w_t), \Delta_t \rangle \leq -\eta \tau \|\nabla F_t(w_t)\|^2 + O(\eta \tau \zeta).$$

848 (ii) *Quadratic term.* From the quadratic bound,

$$849 \quad \frac{L}{2} \mathbb{E} \|\Delta_t\|^2 = O(L \eta^2 \tau^2 (\zeta^2 + G^2)).$$

850 Combining (i) and (ii) in equation 11 gives

$$851 \quad \mathbb{E}[F_t(w_{t+1})] \leq F_t(w_t) - \eta \tau \|\nabla F_t(w_t)\|^2 + O(\eta \tau \zeta) + O(L \eta^2 \tau^2 (\zeta^2 + G^2)). \quad (15)$$

852 **Absorbing error terms.** Since there is no variance term (full-batch), the error contribution is only
 853 due to heterogeneity and higher-order smoothness. For sufficiently small η ,

$$854 \quad O(\eta \tau \zeta) + O(L \eta^2 \tau^2 (\zeta^2 + G^2)) \leq \frac{1}{4} \eta \tau \|\nabla F_t(w_t)\|^2 + O(\eta^3 L^2 \tau^3).$$

855 **Final descent inequality.** Thus, under full-batch gradients,

$$856 \quad F_t(w_{t+1}) \leq F_t(w_t) - \frac{3}{4} \eta \tau \|\nabla F_t(w_t)\|^2 + O(\eta^3 L^2 \tau^3). \quad (16)$$

864 Recall the per-round descent inequality under full-batch gradients (cf. equation 16):
 865
$$F_t(w_{t+1}) \leq F_t(w_t) - \frac{3}{4}\eta\tau\|\nabla F_t(w_t)\|^2 + O(\eta^3L^2\tau^3).$$

 866

867 When temperature changes from $T_{t,k}$ to $T_{t+1,k}$, the loss shifts from F_t to F_{t+1} .
 868

869 Define the objective shift

$$870 \Delta F_t(w) := F_{t+1}(w) - F_t(w),$$

871 and assume (A6) that the temperature (hence the objective) changes at most M rounds and that
 872 along the trajectory

$$873 |\Delta F_t(w_t)| \leq \Delta_{\max} \quad \text{for all } t.$$

874 Therefore

$$875 \sum_{t=0}^{T-1} |\Delta F_t(w_t)| \leq M\Delta_{\max}.$$

877 Add the shift to convert the bound for $F_t(w_{t+1})$ into a bound for $F_{t+1}(w_{t+1})$:
 878
$$F_{t+1}(w_{t+1}) = F_t(w_{t+1}) + \Delta F_t(w_{t+1}) \leq F_t(w_t) - \frac{3}{4}\eta\tau\|\nabla F_t(w_t)\|^2 + O(\eta^3L^2\tau^3) + \Delta F_t(w_{t+1}).$$

 879

880 Sum the last inequality over $t = 0, \dots, T-1$. The left-hand side telescopes:

$$881 \sum_{t=0}^{T-1} (F_{t+1}(w_{t+1}) - F_t(w_t)) = F_T(w_T) - F_0(w_0).$$

884 Rearranging and summing the error / shift terms yields

$$885 \frac{3}{4}\eta\tau \sum_{t=0}^{T-1} \|\nabla F_t(w_t)\|^2 \leq F_0(w_0) - F_T(w_T) + T \cdot O(\eta^3L^2\tau^3) + \sum_{t=0}^{T-1} \Delta F_t(w_{t+1}).$$

888 Using $\sum_{t=0}^{T-1} \Delta F_t(w_{t+1}) \leq M\Delta_{\max}$ we obtain

$$889 \frac{3}{4}\eta\tau \sum_{t=0}^{T-1} \|\nabla F_t(w_t)\|^2 \leq F_0(w_0) - F_T(w_T) + T \cdot O(\eta^3L^2\tau^3) + M\Delta_{\max}.$$

892 Divide by $\frac{3}{4}\eta\tau T$ to get the averaged-stationarity bound

$$894 \frac{1}{T} \sum_{t=0}^{T-1} \|\nabla F_t(w_t)\|^2 \leq \frac{C_1}{\eta\tau T} + C_2 \eta^2 L^2 \tau^2 + \frac{C_3 M \Delta_{\max}}{\eta\tau T}, \quad (17)$$

896 where $C_1, C_2, C_3 > 0$ are explicit constants (traceable to the $3/4$ factor and the constants hidden in
 897 the $O(\cdot)$ term). (We have removed any σ^2 term because in the full-batch setting $\sigma^2 = 0$.)
 898

899 We must respect the one-step descent requirement used earlier, in particular choose η so that

$$900 \eta \leq \frac{1}{4L\tau}. \quad (\text{S})$$

902 Under (S) the coefficient of $\|\nabla F_t\|^2$ in the one-step bound remains positive.

903 The RHS of equation 17 contains two η -dependent terms:

$$904 \Phi(\eta) = \frac{C_1}{\eta\tau T} + C_2 \eta^2 L^2 \tau^2 + \frac{C_3 M \Delta_{\max}}{\eta\tau T}.$$

907 Combine the $1/(\eta\tau T)$ terms:

$$908 \tilde{C} := C_1 + C_3 M \Delta_{\max}, \quad \Phi(\eta) = \frac{\tilde{C}}{\eta\tau T} + C_2 \eta^2 L^2 \tau^2.$$

911 Minimizing $\Phi(\eta)$ over $\eta > 0$ (subject to (S)) gives

$$912 \eta^* = \left(\frac{\tilde{C}}{2C_2 L^2 \tau^3 T} \right)^{1/3} = \Theta\left(\frac{1}{L^{2/3} \tau T^{1/3}} \right).$$

915 Pick the largest step size allowed by (S), e.g.

$$916 \eta = \frac{1}{4L\tau}.$$

918 Plugging this constant η into equation 17 yields
 919
 920
 921

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla F_t(w_t)\|^2 = O\left(\frac{L}{T}\right) + O\left(\frac{\zeta^2}{\tau}\right) + O\left(\frac{M\Delta_{\max}L}{T}\right),$$

922 which (absorbing L into constants) is the commonly used full-batch FedAvg-style rate
 923

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla F_t(w_t)\|^2 = O\left(\frac{1}{T}\right) + O\left(\frac{\zeta^2}{\tau}\right) + O\left(\frac{M}{T}\right).$$

927 Since M is a fixed finite constant, we have $O(M/T) = O(1/T)$, and thus the bound simplifies to
 928
 929
 930
 931

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla F_t(w_t)\|^2 = O\left(\frac{1}{T}\right) + O\left(\frac{\zeta^2}{\tau}\right).$$

933 A.4 ABLATION STUDIES

934 A.4.1 SELECTION OF SCALING FACTOR

936 The scaling factor s for the FedChill algorithm was determined through a one-dimensional sweep
 937 over values in the range 0.5 to 3.5, conducted across 10-, 20-, and 50-client settings on CIFAR-10
 938 with their respective `frac` values. As shown in Table 10, the choice of $s = 2.0$ consistently yielded
 939 strong performance, achieving the best or near-best accuracy across different configurations, and
 940 was therefore selected as the final value.
 941

942 A.4.2 SCALING FACTOR VS. HETEROGENEITY MEASURES

944 An ablation study was conducted to evaluate different heterogeneity measures against the scaling
 945 factor (effectively, the range of temperature initialization) Here, $s = 0.5$ and $s = 3$ were chosen
 946 as the extremities of the scaling factor range to study the impact of different heterogeneity
 947 measures on performance. As shown in Table 11, the choice of heterogeneity measure directly affects
 948 both local and server accuracies. For $s = 3$, the Jensen–Shannon (JS) (Nielsen, 2020) divergence
 949 provided the best trade-off, achieving the highest local (70.33%) and server (55.97%) accuracies.
 950 Conversely, when $s = 0.5$, the performance was more balanced across different measures: KL di-
 951 vergence yielded the highest local accuracy (69.85%), while Entropy Difference achieved the high-
 952 est server accuracy (55.18%). These results highlight that the JS divergence is particularly effective
 953 at capturing distributional closeness in higher scaling regimes, while KL and Entropy Difference
 954 remain competitive at lower scaling values (Shlens, 2014).
 955

956 Table 10: Ablation Study: Scaling Factor (s)

Scaling Factor (s)	10 (0.1)	20 (0.2)	50 (0.5)
0.5	49.42%	57.74%	60.13%
1.0	49.81%	58.47%	60.76%
1.5	51.06%	58.67%	61.40%
2.0	51.68%	59.38%	62.70%
2.5	48.62%	59.81%	61.11%
3.0	49.39%	56.20%	58.41%
3.5	47.60%	56.32%	57.75%

957 Table 11: Ablation Study: Heterogeneity Measures vs. Accuracy

s	Measure	Local (%)	Server (%)
3	Ratio	69.80	50.98
	KL	68.16	47.41
	JS	70.33	55.97
	Entropy Diff	66.47	49.94
0.5	Ratio	68.92	54.89
	KL	69.85	54.53
	JS	68.95	54.66
	Entropy Diff	69.88	55.18

972

A.5 CORRELATION ANALYSIS DIAGRAMS

973

974

975

976 This analysis investigates whether alternative client characteristics can better predict optimal tem-
 977 perature settings than the heterogeneity score used in the main FedChill implementation. We tested
 978 multiple client metrics across 10 clients with varying data distributions under a Dirichlet partitioning
 979 scheme ($\alpha = 0.5$). A similar study was also repeated using 50 clients. The evaluated characteristics
 980 included heterogeneity score, Gini coefficient, dominant class probability, number of active classes,
 981 dataset size, Shannon entropy, and KL divergence (Nielsen, 2020) (Shlens, 2014).

982

983 The correlation analysis revealed that the heterogeneity score remains the strongest single predictor
 984 of optimal temperature ($r = -0.389, p = 0.267$), supporting the hypothesis that clients with
 985 higher heterogeneity benefit from lower temperatures. Other metrics such as the Gini coefficient
 986 ($r = 0.198$) and dominant class probability ($r = -0.160$) showed only weak correlations, while
 987 multi-variable combinations did not improve predictive power. When examining performance gains,
 988 dominant class probability exhibited the strongest negative correlation ($r = -0.361$), but most other
 989 measures showed little association with improvements (Patil et al., 2022).

990

991 The scatter plots illustrate the relationships between each predictor and optimal temperature set-
 992 tings. Trend lines indicate the direction and strength of correlations, with the heterogeneity score
 993 plot showing the clearest downward trend, consistent with the FedChill hypothesis that more hetero-
 994 geneous clients benefit from lower temperatures. Overall, although no alternative predictor outper-
 995 formed the heterogeneity score in the 10-client setting, the analysis reinforces its role as a principled
 996 basis for temperature assignment.

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Figure 3: (10 clients) Correlation analysis between client characteristics and optimal temperature values. Scatter plots show relationships between various client metrics and optimal temperatures

1047

1048 Figure 4: (50 clients) Correlation analysis between client characteristics and optimal temperature
 1049 values. Scatter plots show relationships between various client metrics and optimal temperatures.

1050

A.6 DISCLAIMER

1051
 1052 The convergence analysis in Appendix A.3 was developed with the assistance of a large language
 1053 model and manually verified to the best of our abilities. Furthermore, large language models were
 1054 used modestly to assist in polishing the writing of this paper.

1055