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ABSTRACT

Federated Learning (FL) enables collaborative model training with data privacy
but suffers in non-i.i.d. settings due to client drift, which degrades both global
and local generalizability. Recent works show that clients can benefit from lower
softmax temperatures for optimal local training. However, existing methods ap-
ply a uniform value across all participants, which may lead to suboptimal con-
vergence and reduced generalization in non-i.i.d. client settings. We propose
FedChill, a heterogeneity-aware strategy that adapts temperatures to each client.
FedChill initializes temperatures using a heterogeneity score, quantifying local
divergence from the global distribution, without exposing private data, and ap-
plies performance-aware decay to adjust temperatures dynamically during train-
ing. This enables more effective optimization under heterogeneous data while
preserving training stability. Experiments on CIFAR-10, CIFAR-100, and SVHN
show that FedChill consistently outperforms baselines, achieving up to 8.35%
higher global accuracy on CIFAR-100 with 50 clients, while using 2.26× fewer
parameters than state-of-the-art methods.

1 INTRODUCTION

Federated Learning (FL) enables collaborative model training across decentralized edge devices
while preserving privacy, since clients share only model updates rather than raw data (McMahan
et al., 2017). In practice, however, heterogeneous (non-i.i.d.) client data induces client drift and
weight divergence, which significantly degrade both global performance and personalization (Yan
et al., 2023; Li et al., 2019; Lee et al., 2024). To mitigate these challenges, numerous methods have
been proposed. FedAvg (McMahan et al., 2017) provides the foundation but struggles under hetero-
geneity (Li et al., 2019). Subsequent extensions include FedProx (Li et al., 2020) with a proximal
term, Moon (Li et al., 2021) with contrastive learning, FedProto (Tan et al., 2021) with prototype
aggregation, FedGen (Zhu et al., 2021) using generative data sharing, and FedAlign (Mendieta et al.,
2022) for feature alignment. In parallel, Knowledge Distillation (KD) (Hinton et al., 2014) has been
integrated into FL, giving rise to Federated KD methods that reduce communication and mitigate
heterogeneity (Wu et al., 2022; Li et al., 2024), such as FedMD (Li & Wang, 2019) for mutual
distillation and FedHKD (Chen et al., 2023) for data-free hyper-knowledge distillation.

Despite these advances, important limitations persist. Regularization- and contrastive-based meth-
ods (e.g., FedProx, Moon) only partially address knowledge transfer (Li et al., 2020; 2021).
Prototype-based approaches like FedProto require carefully chosen representatives and scale poorly
with diverse clients (Tan et al., 2021), while generative methods such as FedGen impose computa-
tional overhead and introduce privacy concerns through synthetic data (Zhu et al., 2021; Chen et al.,
2023). As a result, effectively addressing statistical heterogeneity in federated learning remains an
open challenge.

To address this, logit chilling (Lee et al., 2024) shows that fractional temperature values can mit-
igate client data heterogeneity during local training. While low temperatures (e.g., T = 0.05)
may accelerate convergence by sharpening gradients, they can also introduce instability and overfit-
ting, especially in high-capacity models or in scenarios with varying client heterogeneity (Lee et al.,
2024). Furthermore, uniform temperature scaling across clients overlooks heterogeneity differences,
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Figure 1: Validation of the temperature-heterogeneity hypothesis. (Left) Client-wise heatmap of
validation accuracy across temperatures, showing varying optimal temperatures. (Right) Scatter
plot of client heterogeneity vs. accuracy, colored by temperature, highlighting performance trends

making a static one-size-fits-all approach ineffective in non-i.i.d. settings (Lee et al., 2024). These
limitations highlight the need for a more comprehensive solution that can effectively address client
drift without requiring public data or imposing significant computational overhead.

To this end, we propose FedChill, a dynamic, context-aware temperature strategy that adapts to each
client’s needs and training stage. FedChill introduces adaptive temperature initialization as well as
temperature chilling for each client during training. The contributions of our proposed FedChill
framework are as follows:

1. We introduce a novel method to compute client-specific heterogeneity scores by compar-
ing each client’s local class distribution to a globally approximated distribution, constructed
without sharing private data. This score quantifies the divergence and drives the personal-
ized temperature initialization process.

2. Based on each client’s heterogeneity score, we introduce a per-client exponential tem-
perature initialization strategy that ensures each client starts with a temperature value
uniquely suited to the distribution and complexity of its local data.

3. During training, FedChill adopts a unique adaptive temperature decay mechanism that
decreases temperature by a factor once a tolerance parameter is triggered (based on the
clients local accuracies) to cater to enhanced client personalization through sharpened gra-
dient signals, as well as improved server performance.

2 PROBLEM FORMULATION

Recent research shows that applying lower temperatures (T ∈ (0, 1)) during the training process
can improve convergence and accuracy, especially in heterogeneous federated learning scenarios
(Lee et al., 2024). For example, consider the softmax operation (Hinton et al., 2014; Guo et al.,
2017) with a temperature parameter T , which transforms logits zi into class probabilities pi as
follows:

pi =
exp(zi/T )∑
j exp(zj/T )

(1)

When T < 1, the exponential effect in equation 1 is amplified, leading to a sharper probability
distribution where the model is more confident in its predictions. From a training perspective, the
gradient of the cross-entropy loss with respect to the logit zi under temperature-scaled softmax can
be expressed as:
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∂L
∂zi

=
1

T
(pi − yi) (2)

where yi is the ground truth label. It shows that the gradient magnitude is inversely proportional to
the temperature, indicating that lower temperatures increase the sensitivity of the loss w.r.t the logits.

2.1 COMPLEXITY OF THE TEMPERATURE SEARCH SPACE

As illustrated in Figure 1, the relationship between temperature and client performance reveals a
highly complex and client-specific optimization landscape. The left panel demonstrates that differ-
ent clients achieve optimal performance at vastly different temperature values, with some clients
performing best at T = 0.1 while others require T = 0.5 or higher. This client-wise variation in
optimal temperatures creates a challenging optimization problem: no single universal temperature
can capture the heterogeneous requirements of all clients, and even small changes in temperature
can yield large performance shifts, especially for clients with skewed or highly diverse data.

2.2 HETEROGENEITY AS A PREDICTIVE HEURISTIC

The right panel of Figure 1 provides a crucial insight: each point represents a client, with the x-
axis indicating the client’s heterogeneity score (divergence from global distribution) and the y-axis
showing validation accuracy. Points are colored by the temperature value that achieved that accu-
racy. The visualization demonstrates that different clients achieve their best performance at vastly
different temperature values. Crucially, there exists a non-uniform relationship: clients with higher
heterogeneity scores tend to benefit from lower temperatures to sharpen their predictions, whereas
representative clients align with higher values. This confirms that no single universal temperature
can effectively serve all clients.

Our empirical analysis across multiple heterogeneity measures in Appendix A.5 further supports
this hypothesis. While individual measures show varying correlation strengths with optimal tem-
peratures, the heterogeneity score demonstrates the most consistent negative correlation (e.g.,
r = −0.389), suggesting that clients with higher heterogeneity benefit from lower temperatures.
This relationship provides a principled foundation for temperature initialization rather than random
or uniform selection.

2.3 FORMAL PROBLEM STATEMENT

The fundamental limitation of existing temperature-scaling approaches is that T remains fixed dur-
ing training across all the nodes n ∈ {1, · · · , N}, despite the demonstrated need for client-specific
optimization. To overcome this, we formulate two primary objectives. The first is to devise a het-
erogeneity score that can predict a unique initial temperature Tn,0 for each client n, leveraging the
observed correlation between data distribution divergence and optimal temperature regimes. The
second goal is to develop a strategy to identify stagnation during communication round k and adap-
tively decay Tn,k such that it dynamically balances both model performance and training stability.

This leads to the following client-specific and round-adaptive softmax formulation:

pi,n,k =
exp(zi,n,k/Tn,k)∑
j exp(zj,n,k/Tn,k)

. (3)

and the corresponding modified cross-entropy loss becomes:

L = −
N∑
i=1

yi log (pi,n,k) . (4)

By leveraging heterogeneity as a heuristic for temperature initialization and implementing adaptive
decay mechanisms, we can navigate the complex temperature optimization landscape more effec-
tively than existing uniform approaches.
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3 METHODOLOGY

3.1 OVERALL FRAMEWORK

Our proposed FedChill extends the FedAvg (McMahan et al., 2017) algorithm by introducing client-
specific temperature scaling to handle statistical heterogeneity across clients. It consist of three key
components i) Client-Specific Heterogeneity Score, ii) Personalized Temperature Initialization, and
iii) Adaptive Temperature Decay Strategy. The overall algorithm is summarized in Appendix 1.

Figure 2: Overview of the proposed FedChill framework. (Key: Tn,k : Temperature of client n at
communication round k, hn : Heterogeneity score of client n, G.D: Global Distribution, L.D.: Local
Distribution).

Our framework in Fig. 2 begins by partitioning data among n clients. Each client’s local class
distribution is compared against an approximated global distribution to compute a heterogeneity
score. These heterogeneity scores are used to initialize personalized softmax temperatures through
an exponential decay function before the communication rounds begin.

With client-specific temperatures are initialized, the global model (e.g. a lightweight convolutional
neural network) is broadcast to all participating clients. After loading the latest global model, the
clients begin training locally on their private datasetsDn, wherein each client minimizes the negative
log-likelihood loss:

Ln,k = −
∑
∀i

log (pi,n,k) . (5)

Following training, each client evaluates its model on a private validation set. If performance stag-
nates, the local controller adaptively reduces the temperature by multiplying it with a fixed decay
factor once a predefined tolerance threshold is exceeded, thereby intensifying the sharpness of pre-
dictions in subsequent rounds.

Finally, after all clients complete local training, model updates are aggregated on the server using
FedAvg (McMahan et al., 2017). This process is then repeated for a fixed number of communication
rounds.

3.2 CLIENT-SPECIFIC HETEROGENEITY SCORE

The temperature initialization process is driven by a client-specific heterogeneity score that quanti-
fies how much a client’s local data distribution diverges from the global distribution. To estimate the
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global class distribution without sharing client data distributions, we use a principled approximation
approach. The server constructs an ideal global distribution that represents a balanced allocation
of classes across the federation. In a balanced classification scenario, this corresponds to a uni-
form distribution where each class has equal representation. For datasets with known natural class
imbalances, the global distribution can be adjusted to reflect these expected priors. This approach
preserves privacy while providing a meaningful reference point against which client heterogeneity
can be measured.

For each client, we calculate the heterogeneity score by comparing its class distribution with this
global distribution:

hn =

C∑
c=1

∣∣∣∣pn(c)pg(c)
− 1

∣∣∣∣ (6)

where pi(c) is the probability of class c in client n’s dataset, pg(c) is the probability of class c in the
global distribution, and C is the number of classes. This score is normalized to the range [0, 1], with
higher values indicating greater divergence from the global distribution.

3.3 PERSONALIZED TEMPERATURE INITIALIZATION

The temperature is then initialized using an exponential decay function:

Tn,0 = Tmax · e−s·hn (7)
where Tmax is the maximum allowed temperature, s is a scaling factor, and hn is the client’s hetero-
geneity score.

The use of an exponential decay policy ensures a smooth, non-linear scaling of temperature with
respect to heterogeneity. This choice amplifies the impact of higher heterogeneity scores, allow-
ing clients with significantly skewed data to receive much lower temperatures, thereby enforcing
stronger learning signals. Conversely, clients with near-i.i.d. data maintain higher temperatures,
preserving the expressiveness of their predictions.

3.4 ADAPTIVE TEMPERATURE DECAY STRATEGY

Our approach FedChill integrates an adaptive temperature decay mechanism (Appendix A.1, Al-
gorithm 1) into the standard federated learning workflow to improve convergence under non-i.i.d.
settings. During local training in each communication round, clients evaluate their models on private
validation data at the end to compute a validation accuracy score. The client tracks its performance
over time using past accuracies. If accuracy does not improve for P consecutive rounds (i.e., stag-
nation occurs), the temperature is adaptively decayed as follows:

Tn,k+1 ← max(γ · Tn,k, Tmin) (8)

where γ ∈ (0, 1) is a fixed decay factor and Tmin is a lower bound to prevent excessive sharpening.

The condition for stagnation is checked by comparing the current validation accuracy with the ac-
curacy two rounds ago. If the current accuracy is less than or equal to that value, a counter is incre-
mented. Otherwise, the counter is reset. Once this counter reaches the patience threshold P , and the
temperature is still sufficiently above the minimum threshold (Tn,k > 1.1 ·Tmin), the temperature is
updated and the counter is reset.

This mechanism allows each client to autonomously calibrate its prediction confidence based on its
performance trajectory, thereby adapting to local data distributions.

4 EXPERIMENTAL SETUP

4.1 DATASET SELECTION

We utilize CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and SVHN (Netzer et al., 2011)
datasets to evaluate our FedChill approach. These datasets were selected because they enable eval-
uation across different complexity levels (10 vs. 100 classes), allow meaningful simulation of non-
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i.i.d distributions via Dirichlet partitioning. They also provide sufficient challenge while remaining
computationally feasible, and serve as standard benchmarks in federated learning (Krizhevsky &
Hinton, 2009; Li et al., 2024).

4.2 IMPLEMENTATION

4.2.1 MODEL ARCHITECTURE

We employ custom convolutional neural networks (CNNs) across our experiments, with approxi-
mately 685k, 4.96M, and 13.96M parameters respectively. For SVHN, we utilize an architecture
of 1.243M. The architectures are outlined in Appendix A.2, Table 8. The architecture for SVHN is
presented in Appendix A.2, Table 9.

4.2.2 DATA PARTITIONING

We implement a non-i.i.d partitioning strategy using Dirichlet allocation (Chen et al., 2023):

• For each class ci ∈ C, we sample class proportions from Dir(α · 1)

• The sampled proportions are normalized and adjusted to ensure balanced client datasets

• Each client receives a local training set and a validation set, the latter derived from the
global test set

• A client-specific subsampling rate (frac) controls the local dataset size

We adopt a Dirichlet-based partitioning scheme to generate realistic heterogeneous data distributions
among clients, with concentration parameters serving as the primary mechanism for controlling
statistical heterogeneity levels (Chen et al., 2023).

4.2.3 EXPERIMENTAL SETTINGS

In our primary experimental evaluation, we implement FedChill using PyTorch (Paszke et al.,
2019) with consistent configuration across all experiments. We employ the SGD optimizer (Ruder,
2017) with a learning rate of 0.01 and train for 5 local epochs per communication round, with a total
of 50 communication rounds. For data partitioning, we utilize a Dirichlet distribution (α = 0.5) to
simulate non-i.i.d scenarios across varying client configurations (10, 20, and 50 clients) (Chen et al.,
2023). The batch size is set to 64, and we use a data fraction of 0.1 for 10-client, 0.2 for 20-client,
and 0.5 for 50-client configurations (Chen et al., 2023).

For FedChill’s adaptive temperature mechanism, we initialize temperatures based on client hetero-
geneity scores, constrained within the range [0.05, 1.0] (Lee et al., 2024). The scaling factor s
was chosen on the basis of an empirical experiment using a 1D hyperparameter sweep provided in
Appendix A.4.1, and temperature decay factor γ ∈ {0.8, 0.95} were selected based on empirical
analysis across different experimental configurations. Temperature adjustments are triggered when
performance plateaus for two consecutive rounds as shown in Appendix A.1.

4.3 EVALUATION METRICS

To comprehensively assess performance, we track three key aspects of the federated system. First,
we measure the test accuracy of the global model on the global test set after each communication
round (Chen et al., 2023). Second, we evaluate client performance by recording local validation
accuracy on private data as well as generalization to the global test set (Chen et al., 2023). Finally,
we monitor the evolution of temperature parameters across rounds to capture the adaptive behavior
of our approach.

For comprehensive assessment, in our primary experiment we conduct experiments with varying
numbers of clients (10, 20, and 50) and data fractions (0.1, 0.2, and 0.5) to evaluate the scalability
and robustness of our approach under different federated learning scenarios (Chen et al., 2023).
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5 RESULTS AND EVALUATION

5.1 COMPARISON WITH SOTA

Our experimental evaluation demonstrates FedChill’s superior performance across 3 different dataset
complexities, client configurations, and heterogeneity scenarios. Tables 1 and 2 present a compre-
hensive comparison with state-of-the-art federated learning methods.

Table 1: Comparison of local and global accuracy across multiple SOTA methods on CIFAR10,
CIFAR100, and SVHN with varying clients

Dataset Scheme Local Accuracy Global Accuracy Params (M) Pub Data
10 20 50 10 20 50

CIFAR10

FedAvg 0.5950 0.6261 0.5825 0.4741 0.5516 0.3773 11.209 No
FedProx 0.5981 0.6295 0.6490 0.4793 0.5258 0.5348 22.418 No
Moon 0.5901 0.6482 0.5513 0.4579 0.5651 0.3514 33.627 No
FedAlign 0.5946 0.6023 0.6402 0.4976 0.5184 0.5641 11.209 No
FedGen 0.5879 0.6395 0.6533 0.4800 0.5408 0.5651 11.281 No
FedMD 0.6147 0.6666 0.6533 0.5088 0.5575 0.5714 11.209 Yes
FedProto 0.6131 0.6505 0.5939 0.5012 0.5548 0.4016 11.209 No
FedHKD* 0.6227 0.6515 0.6675 0.5049 0.5596 0.5074 11.209 No
FedHKD 0.6254 0.6816 0.6671 0.5213 0.5735 0.5493 11.209 No
FedChill 0.6887 0.7239 0.7626 0.5335 0.6410 0.6820 4.959 No

CIFAR100

FedAvg 0.2361 0.2625 0.2658 0.2131 0.2748 0.2907 11.215 No
FedProx 0.2332 0.2814 0.2955 0.2267 0.2708 0.2898 22.430 No
Moon 0.2353 0.2729 0.2428 0.2141 0.2652 0.1928 33.645 No
FedAlign 0.2467 0.2617 0.2854 0.2281 0.2729 0.2933 11.215 No
FedGen 0.2393 0.2701 0.2739 0.2176 0.2620 0.2739 11.333 No
FedMD 0.2681 0.3054 0.3293 0.2323 0.2669 0.2968 11.215 Yes
FedProto 0.2568 0.3188 0.3170 0.2121 0.2756 0.2805 11.215 No
FedHKD* 0.2551 0.2997 0.3016 0.2286 0.2715 0.2976 11.215 No
FedHKD 0.2981 0.3245 0.3375 0.2369 0.2795 0.2988 11.215 No
FedChill 0.2412 0.3025 0.4185 0.2619 0.3266 0.3823 4.959 No

SVHN

FedAvg 0.6766 0.7329 0.6544 0.4948 0.6364 0.5658 1.286 No
FedProx 0.6927 0.6717 0.6991 0.5191 0.6419 0.6139 2.572 No
Moon 0.6602 0.7085 0.7192 0.4883 0.5536 0.6543 3.858 No
FedAlign 0.7675 0.7920 0.7656 0.6426 0.7138 0.7437 1.286 No
FedGen 0.5788 0.5658 0.4679 0.3622 0.3421 0.3034 1.357 No
FedMD 0.8038 0.8086 0.7912 0.6812 0.7344 0.8085 1.286 Yes
FedProto 0.8071 0.8148 0.8039 0.6064 0.6259 0.7895 1.286 No
FedHKD* 0.8064 0.8157 0.8072 0.6405 0.6884 0.7921 1.286 No
FedHKD 0.8086 0.8381 0.7891 0.6781 0.7357 0.7891 1.286 No
FedChill 0.8654 0.8884 0.9022 0.8649 0.8723 0.9125 1.243 No

5.1.1 BASELINES

We compare FedChill with several state-of-the-art federated learning methods including FedAvg
(McMahan et al., 2017), FedProx (Li et al., 2020), Moon (Li et al., 2021), FedAlign (Mendieta
et al., 2022), FedGen (Zhu et al., 2021), FedMD (Li & Wang, 2019), and FedHKD (Chen et al.,
2023). The novelty of FedChill lies in its adaptive temperature-based regularization mechanism that
requires no public dataset, generative model, or additional communication overhead. This contrasts
with methods like FedMD which relies on a public dataset, and FedGen which employs a generative
model. While FedHKD achieves strong performance through knowledge distillation, our approach
differs by using client-specific temperature scaling based on our heterogeneity metrics.

5.1.2 PERFORMANCE ANALYSIS

Our experimental evaluation demonstrates FedChill’s superior performance across different dataset
complexities, client configurations, and heterogeneity scenarios. Table 1 presents a comprehensive
comparison with state-of-the-art federated learning methods.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Global Model Performance: On CIFAR-10, FedChill achieves significant improvements in global
model accuracy across all client configurations. With 10 clients, FedChill attains 53.35% accu-
racy, outperforming FedHKD (52.13%) and FedMD (50.88%). This advantage becomes more pro-
nounced with 20 clients (64.10% vs. 57.35%) and 50 clients (68.20% vs. 54.93%), demonstrating
exceptional scalability. Similarly, on the more challenging CIFAR-100, FedChill delivers supe-
rior global accuracy, particularly with larger client numbers (38.23% vs. 29.88% with 50 clients),
highlighting its effectiveness on complex tasks. On SVHN, FedChill achieves 86.49%, 87.23%,
and 91.25% global accuracy for 10, 20, and 50 clients, respectively, highlighting its robustness on
real-world image datasets.

Local Model Performance: FedChill exhibits remarkable improvement in client-side model perfor-
mance. On CIFAR-10, it achieves local accuracies of 68.87%, 72.39%, and 76.26% for 10, 20, and
50 clients, respectively, substantially outperforming all baselines. This pattern extends to CIFAR-
100 for configurations with larger client numbers, where FedChill reaches 41.85% local accuracy
with 50 clients, compared to FedHKD’s 33.75%. On SVHN, FedChill achieves 90.22% local ac-
curacy for 50 clients, above the best baseline. The positive correlation between client count and
performance improvement is particularly noteworthy, suggesting that FedChill effectively leverages
client diversity.

Model Efficiency: A key advantage of FedChill is its parameter efficiency, utilizing only 4.96M
parameters compared to 11.21M for most baselines (and 22.43M for FedProx, 33.65M for Moon)
(Chen et al., 2023). This represents a 55.7% reduction in model size while achieving superior per-
formance, leading to reduced communication overhead and computational requirements in resource-
constrained federated environments.

Table 2: CIFAR-10 local and global accu-
racy under varying heterogeneity (α)

Method Local Acc. Global Acc.
α=0.2 α=5 α=0.2 α=5

FedAvg 0.5917 0.4679 0.3251 0.5483
FedProx 0.6268 0.4731 0.3845 0.5521
Moon 0.5762 0.3794 0.3229 0.4256
FedAlign 0.6434 0.4799 0.4446 0.5526
FedGen 0.6212 0.4432 0.4623 0.4432
FedMD 0.6532 0.4940 0.4408 0.5543
FedProto 0.6471 0.4802 0.3887 0.5488
FedHKD 0.6789 0.4976 0.4736 0.5573
FedChill 0.8077 0.5995 0.5085 0.6435

Heterogeneity Handling: Table 2 provides further
evidence of FedChill’s effectiveness in handling data
heterogeneity. Under both low (α = 0.2) and high
(α = 5) Dirichlet concentration parameters, Fed-
Chill consistently outperforms all baselines. The
margin is particularly significant in the challenging
low-concentration setting (α = 0.2), where Fed-
Chill achieves 80.77% local and 50.85% global accu-
racy, compared to the next best method’s 67.89% and
47.36%, respectively. This demonstrates FedChill’s
robust adaptation to varying levels of statistical het-
erogeneity.

5.2 ABLATION STUDIES

We conduct comprehensive ablation studies to evaluate: (1) the impact of temperature scaling across
different model capacities, and (2) the individual contributions of FedChill’s key components across
varying levels of data heterogeneity.

5.2.1 TEMPERATURE SCALING ACROSS MODEL CAPACITIES

Table 3 presents accuracy results for three CNN architectures (see Appendix A.2) with different
parameter counts (685K, 4.95M, and 13.95M) across various temperature settings and our adaptive
FedChill approach. Temperature values significantly affect performance across all architectures,
with T = 0.25 generally outperforming T = 1.0 (standard cross-entropy) by 2–4% in both local
and global accuracy, confirming our hypothesis that appropriate scaling benefits training in federated
settings. While fixed temperatures vary in effectiveness across architectures, FedChill consistently
achieves superior performance, yielding the highest local accuracy for CNN1 (67.16% vs. 66.46%)
and CNN2 (67.56% vs. 67.87%), while remaining competitive for CNN3. Moreover, model capacity
strongly influences temperature sensitivity: the largest model (CNN3) exhibits the greatest variance
in performance (6.73% difference between best and worst local accuracy), indicating that higher-
capacity models are more prone to temperature effects, likely due to their greater tendency to overfit
to local data distributions.
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Table 3: Ablation Study: Local vs global ac-
curacy for different CNNs and frameworks on
CIFAR-10
Architecture Framework Local Global

Acc (%) Acc (%)

CNN 1
(685k)

Flex&Chill T=0.05 63.83 47.36
Flex&Chill T=0.25 66.46 48.66
Flex&Chill T=0.5 66.46 47.76
Flex&Chill T=1.0 63.44 46.76
FedChill 67.16 50.14

CNN 2
(4.95M)

Flex&Chill T=0.05 64.91 48.94
Flex&Chill T=0.25 67.87 50.08
Flex&Chill T=0.5 66.13 49.44
Flex&Chill T=1.0 64.28 48.82
FedChill 67.56 52.03

CNN 3
(13.95M)

Flex&Chill T=0.05 63.44 42.43
Flex&Chill T=0.25 69.17 49.00
Flex&Chill T=0.5 68.14 48.12
Flex&Chill T=1.0 65.42 45.75
FedChill 67.04 47.58

Table 4: Ablation Study: Showing component
contributions in FedChill (30 training rounds, 10
clients, frac = 0.1)
Het. (α) CNN Arch. Component Local Global

Acc (%) Acc (%)

α = 0.5

CNN1
(0.685M)

FedAvg (T=1.0) 64.54 46.96
Fixed T=0.05 65.65 47.26
FedChill 67.91 49.33
FedChill* 65.36 49.49

CNN3
(13.95M)

FedAvg (T=1.0) 65.97 45.74
Fixed T=0.05 61.73 39.22
FedChill 67.69 47.55
FedChill* 64.55 45.39

α = 5.0

CNN1
(0.685M)

FedAvg (T=1.0) 52.08 54.56
Fixed T=0.05 50.55 56.10
FedChill 54.27 55.67
FedChill* 53.39 55.81

CNN3
(13.95M)

FedAvg (T=1.0) 50.70 53.44
Fixed T=0.05 47.24 53.48
FedChill 53.85 55.57
FedChill* 50.81 56.54

5.2.2 COMPONENT-WISE CONTRIBUTION ANALYSIS

Table 4 isolates the contributions of heterogeneity-based initialization versus adaptive decay across
high (α = 0.5) and low (α = 5.0) heterogeneity. In high heterogeneity settings, initialization
serves as the primary driver, boosting local accuracy by up to 3.37% over baselines and effectively
adapting to skewed data. Conversely, in near-homogeneous settings (α = 5.0), the full adaptive
decay (FedChill*) yields superior global accuracy, suggesting that dynamic decay prevents overfit-
ting when client distributions are uniform. Crucially, both adaptive variants consistently outperform
fixed static temperatures (T = 0.05), validating that client-specific scaling is superior to uniform
regularization strategies.

Gradient Analysis: Magnitude vs. Direction To address whether FedChill functions merely as
an adaptive learning rate, we dissected the mechanism by isolating the effects of gradient magnitude
and direction. We compared the full FedChill method against a Magnitude-Only variant (standard
softmax, manually scaled gradients) and a Direction-Only variant (temperature-scaled softmax,
normalized magnitudes).

Method Final Accuracy ∆ vs Baseline
FedAvg-Baseline 55.19% —

FedChill-MagOnly 59.68% +4.49%
FedChill-DirOnly 52.09% -3.10%

FedChill-Full 57.78% +2.59%

Table 5: Decoupling gradient magnitude and direction effects.

Results in Table 5 reveal that FedChill acts primarily through gradient magnitude amplification.
Interestingly, directional changes induced by low temperatures actually degrade performance when
isolated (-3.10%). However, the full FedChill configuration yields positive gains, suggesting a con-
structive interaction where magnitude amplification allows heterogeneous clients to retain influence
during aggregation, while temperature-controlled directional adjustments prevent excessive diver-
gence.

5.2.3 ROBUSTNESS TO FEATURE SHIFT

To assess FedChill under feature shift (concept drift), we conducted experiments on CIFAR-10
where data is distributed IID but subjected to client-specific Gaussian noise (σ ∈ [0.1, 0.3]). As
shown in Table 6, FedChill achieves 58.92% accuracy compared to FedAvg’s 57.98%, demonstrating
robustness even when heterogeneity stems from feature skew rather than label skew.

9
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Method Accuracy (%)

FedAvg 57.98
FedChill 58.92

Table 6: Performance under feature shift (IID + Gaussian noise).

5.2.4 HYPERPARAMETER SENSITIVITY (P AND s)

We analyzed the sensitivity of the patience parameter P and scaling factor s. As shown in Table 7,
performance is more sensitive to s than to P , as s directly determines the initial temperature scale
and gradient magnitudes. Values of s ≈ 2 consistently produce the highest accuracy across varying
patience levels. While lower P values provide moderate improvements, decreasing P yields limited
marginal gains once s is within the optimal range of [2, 2.5].

To validate that this parameter choice is not specific to a single configuration, we provide an extended
analysis in Appendix A.4.1 (Table 10). This broader sweep confirms that s = 2.0 yields robust
performance across varying client counts (10, 20, and 50) and also lists performance against other
heterogeneity metrics like KL-divergence in extreme-scaling regimes (Appendix A.4.2).

Patience (P ) s = 1.0 s = 2.0 s = 3.0 s = 4.0 s = 5.0

1 54.58 57.11 52.96 51.50 53.06
3 54.86 56.80 50.91 49.86 52.79
5 55.37 55.92 49.10 50.92 50.49
10 55.25 56.68 50.83 49.91 51.29

Table 7: Sensitivity analysis of scaling factor (s) and patience (P ) on server accuracy (%).

6 CONCLUSION

In this work, we presented FedChill, a heterogeneity-aware framework that addresses the critical
challenge of statistical divergence in federated learning. While prior approaches have utilized static
temperature scaling to sharpen local objectives (Lee et al., 2024), we demonstrate that a one-size-
fits-all strategy is suboptimal in non-i.i.d. environments. FedChill overcomes this by introducing a
dynamic, context-aware strategy rooted in two key mechanisms: a privacy-preserving heterogene-
ity score for personalized temperature initialization, and a performance-aware decay schedule that
adapts to training stagnation.

Our extensive evaluation against 8 state-of-the-art methods confirms the efficacy of this two-fold
strategy. On the challenging CIFAR-100 dataset with 50 clients, FedChill yielded improvements of
8.1% in local accuracy and 8.35% in global accuracy compared to baselines. Notably, these gains
are achieved with a highly efficient architecture, requiring 2.26× fewer parameters than comparable
state-of-the-art methods.

Finally, we highlight the extensibility of our approach. Since FedChill operates exclusively by mod-
ulating the local training objective, it is independent to server-side aggregation logic. Future work
can explore synergistic integrations with aggregation-level strategies, such as FedProx or FedAlign,
to simultaneously address heterogeneity at both the local optimization and global model-fusion
stages.
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A APPENDIX

A.1 ADAPTIVE TEMPERATURE DECAY ALGORITHM

Algorithm 1 Adaptive Temperature Decay in Client Training
Require:

Validation Accuracy History An,
Current Temperature Tn,k,
Patience Threshold P ,
Decay Factor γ,
Minimum Temperature Tmin

1: stagnation count← 0
2: An ← [ ]
3: for each communication round k do
4: ak ← current round’s validation accuracy
5: Append ak to An

6:
7: if |An| ≥ 3 and ak ≤ An[−2] then
8: stagnation count← stagnation count + 1
9: else

10: stagnation count← 0
11: end if
12:
13: if stagnation count ≥ P and Tn,k > 1.1 · Tmin then
14: Tn,k+1 ← max(γ · Tn,k, Tmin)
15: stagnation count← 0
16: else
17: Tn,k+1 ← Tn,k

18: end if
19:
20: end for
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A.2 CNN ARCHITECTURES

Table 8: CNN architecture details (Key: Dims.: Dimensions, Padd.: Padding, Act.: Activation, C:
10 for CIFAR-10, SVHN & 100 for CIFAR-100)

CNN1 CNN2 CNN3
# # Type Output Dims. P. Norm. Act. Others # Type Output Dims. P. Norm. Act. Others # Type Output Dims. P. Norm. Act. Others
1 1 Conv2d 3× 32× 3 1 BN ReLU - 1 Conv2d 3× 64× 3 1 BN ReLU MaxPool(2,2) 1 Conv2d 3× 80× 3 1 BN ReLU -
2 2 Conv2d 32× 32× 3 1 BN ReLU MaxPool(2,2) 2 Conv2d 64× 128× 3 1 BN ReLU MaxPool(2,2) 2 Conv2d 80× 80× 3 1 BN ReLU -
3 3 Conv2d 32× 64× 3 1 BN ReLU - 3 Conv2d 128× 256× 3 1 BN ReLU MaxPool(2,2) 3 Conv2d 80× 80× 3 1 BN ReLU MaxPool(2,2)
4 4 Conv2d 64× 64× 3 1 BN ReLU MaxPool(2,2) 4 Conv2d 256× 512× 3 1 BN ReLU Ada.AvgPool(1,1) 4 Conv2d 80× 160× 3 1 BN ReLU -
5 5 Conv2d 64× 128× 3 1 BN ReLU - 5 FC 1024 - - ReLU Dropout(0.25) 5 Conv2d 160× 160× 3 1 BN ReLU -
6 6 Conv2d 128× 128× 3 1 BN ReLU Ada.AvgPool(2,2) 6 FC 512 - - ReLU Dropout(0.25) 6 Conv2d 160× 160× 3 1 BN ReLU MaxPool(2,2)
7 7 FC 512 - BN ReLU Dropout(0.5) 7 Output C - - - - 7 Conv2d 160× 320× 3 1 BN ReLU -
8 8 FC 256 - BN ReLU Dropout(0.3) 8 Conv2d 320× 320× 3 1 BN ReLU -
9 9 Output C - - - - 9 Conv2d 320× 320× 3 1 BN ReLU MaxPool(2,2)

10 Conv2d 320× 640× 3 1 BN ReLU -
11 Conv2d 640× 640× 3 1 BN ReLU Ada.AvgPool(2,2)
12 FC 1536 - BN ReLU Dropout(0.5)
13 FC 768 - BN ReLU Dropout(0.4)
14 FC 384 - BN ReLU Dropout(0.3)
15 Output C - - - -

Table 9: SVHN CNN architecture (Key: Dims.: Dimensions, Padd.: Padding, Act.: Activation, C:
10 for SVHN)

# Layer Output Dim. P. Norm. Act. Others

1 Conv1 32× 32× 32 1 BN ReLU -
2 Conv2 32× 32× 32 1 BN ReLU MaxPool(2,2)→32× 16× 16

3 Conv3 64× 16× 16 1 BN ReLU -
4 Conv4 64× 16× 16 1 BN ReLU MaxPool(2,2)→64× 8× 8

5 Conv5 128× 8× 8 1 BN ReLU -
6 Conv6 128× 8× 8 1 BN ReLU MaxPool(2,2)→128× 4× 4

7 Conv7 256× 4× 4 1 BN ReLU AdaptiveAvgPool(2,2)→256× 2× 2

8 FC1 512 - BN ReLU Dropout(0.5)
9 FC2 256 - BN ReLU Dropout(0.3)
10 FC3 C - - - Logits
11 Output C - - Softmax Final prediction

A.3 CONVERGENCE ANALYSIS - FULL DEVICE PARTICIPATION

ASSUMPTIONS

We analyze convergence under the following assumptions:

(A1) Temperature bounds: 0 < Tmin ≤ Tk(t) ≤ Tmax <∞.
(A2) Ft is L-smooth for all t, with L = O(1/T 2

min).
(A3) Stochastic gradients have bounded variance: E∥∇fi(w; ξ)−∇fi(w)∥2 ≤ σ2.
(A4) Bounded heterogeneity: 1

K

∑
k ∥∇Fk(w)−∇F (w)∥2 ≤ ζ2.

(A5) Gradients bounded: ∥∇Fk(w)∥ ≤ G.
(A6) Each client’s temperature schedule changes finitely many times, say M <∞.

Proof for (A6). Given that there are T communication rounds and the patience factor for
the FedChill algorithm is n (i.e., the number of rounds without improvement after which
the temperature is decayed), the maximum number of changes can only be ⌊T/n⌋. Since
T is finite, the number of changes is also finite, which proves the claim.

NOTATION

• N clients, weights pk ≥ 0 with
∑K

k=1 pk = 1.

• At round t the server holds wt ∈ Rd.
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• Each client k has a population loss with temperature T :
FT
k (w) = EDk

[fT
k (w)]

where fT
k is the per-sample cross-entropy loss with temperature T .

• The round-t global objective is:

Ft(w) :=

K∑
k=1

pkF
Tt,k

k (w).

where Tt,k is the temperature for client k at round t.

FEDCHILL ALGORITHM

For t = 0, 1, 2, . . . :

1. Server sends wt to clients.
2. Each client k sets wk

t,0 = wt and runs τ steps of stochastic gradient descent with stepsize
η: wk

t,j+1 = wk
t,j − ηgkt,j , j = 0, . . . , τ − 1,

where gkt,j is an unbiased stochastic gradient of FTt,k

k .

3. Client returns wk
t,τ ; server aggregates

wt+1 =

K∑
k=1

pkw
k
t,τ .

4. Each client may update its temperature Tt,k → Tt+1,k.

PROOF

Since Ft is L-smooth, for any w, u we have
Ft(u) ≤ Ft(w) + ⟨∇Ft(w), u− w⟩+ L

2 ∥u− w∥2. (9)

Let wt be the global model at round t. Each client k performs τ steps of SGD with step size η:

wk
t,τ = wt − η

τ−1∑
s=0

gkt,s,

where gkt,s is the stochastic gradient on client k at local step s.

The server averages (pk = 1
K ):

wt+1 =
1

K

K∑
k=1

wk
t,τ . (10)

Define the global update:

∆t := wt+1 − wt = −η ·
1

K

K∑
k=1

τ−1∑
s=0

gkt,s.

Using (9) with u = wt+1 and w = wt to be used for future reference:

Ft(wt+1) ≤ Ft(wt) + ⟨∇Ft(wt),∆t⟩+ L
2 ∥∆t∥2. (11)

Since each client uses the full dataset at every local step, the gradient is exact (no stochastic noise).
Thus,

gkt,s = ∇Fk(w
k
t,s).

Therefore, the global update becomes the following:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

∆t = −η ·
1

K

K∑
k=1

τ−1∑
s=0

∇Fk(w
k
t,s). (12)

Since each client uses its full dataset, there is no stochastic gradient noise. Thus, taking expectation
only over client sampling (if partial participation) yields

E⟨∇Ft(wt),∆t⟩ = −ητ∥∇Ft(wt)∥2 +O(ητζ)︸ ︷︷ ︸
client drift

. (13)

Working: Starting from the global update,

∆t = −η ·
1

K

K∑
k=1

τ−1∑
s=0

∇Fk(w
k
t,s),

we compare the average of local gradients to the global gradient. If all local iterates remained at wt,
we would have 1

K

K∑
k=1

τ−1∑
s=0

∇Fk(wt) = τ · ∇Ft(wt).

Define the client drift error:

δt :=
1

K

K∑
k=1

τ−1∑
s=0

[
∇Fk(w

k
t,s)−∇Fk(wt)

]
.

Thus, the decomposition becomes
1

K

K∑
k=1

τ−1∑
s=0

∇Fk(w
k
t,s) = τ · ∇Ft(wt) + δt,

and therefore
∆t = −η

(
τ∇Ft(wt) + δt

)
.

The descent term is
⟨∇Ft(wt),∆t⟩ = −ητ∥∇Ft(wt)∥2 − η⟨∇Ft(wt), δt⟩.

Using Cauchy–Schwarz and assuming ∥δt∥ ≤ τζ, we obtain
⟨∇Ft(wt),∆t⟩ ≤ −ητ∥∇Ft(wt)∥2 + ητζ∥∇Ft(wt)∥.

Taking expectation gives the bound
E⟨∇Ft(wt),∆t⟩ ≤ −ητ∥∇Ft(wt)∥2 +O(ητζ).

Similarly, the quadratic term satisfies

E∥∆t∥2 = O
(
η2τ2(ζ2 +G2)

)
, (14)

where ζ quantifies data heterogeneity across clients and G bounds the gradient norm.

Quadratic term bound. Recall the decomposition

∆t = −η
(
τ∇Ft(wt) + δt

)
, δt :=

1

K

K∑
k=1

τ−1∑
s=0

(
∇Fk(w

k
t,s)−∇Fk(wt)

)
.

We first expand the norm square:
∥∆t∥2 = η2

∥∥τ∇Ft(wt) + δt
∥∥2

≤ 2η2
(
τ2∥∇Ft(wt)∥2 + ∥δt∥2

)
,
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where we used ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2.

Next we bound ∥δt∥2. Using the inequality
∥∥ 1
m

∑m
i=1 vi

∥∥2 ≤ 1
m

∑m
i=1 ∥vi∥2 with m = Kτ (there

are Kτ terms in the definition of δt), we get

∥δt∥2 ≤
1

Kτ

K∑
k=1

τ−1∑
s=0

∥∥∇Fk(w
k
t,s)−∇Fk(wt)

∥∥2.
Introduce the per-round heterogeneity measure

ζ2t :=
1

Kτ

K∑
k=1

τ−1∑
s=0

∥∥∇Fk(w
k
t,s)−∇Ft(wt)

∥∥2,
and note the identity

∇Fk(w
k
t,s)−∇Fk(wt) =

(
∇Fk(w

k
t,s)−∇Ft(wt)

)
−
(
∇Fk(wt)−∇Ft(wt)

)
.

By expanding squared norms and using the triangle / Jensen inequalities one obtains (up to constant
factors) a bound of the form

∥δt∥2 ≤ C1τ ζ
2
t + C2τ

2 · 1
K

K∑
k=1

∥∇Fk(wt)−∇Ft(wt)∥2,

and under the common bounded-dissimilarity assumption
1

K

K∑
k=1

∥∇Fk(w)−∇F (w)∥2 ≤ ζ2 for all w,

this simplifies (absorbing constants) to
∥δt∥2 ≤ C τ ζ2,

for some universal constant C (we may take C = 1 with the more careful definition of ζt used
earlier). For a simple, clean bound it suffices to use

∥δt∥2 ≤ τ ζ2t ≤ τ ζ2.

Combining the two bounds gives
∥∆t∥2 ≤ 2η2

(
τ2∥∇Ft(wt)∥2 + τ ζ2

)
.

Finally, taking expectation (over client sampling, if any) and using a uniform gradient bound
∥∇Ft(wt)∥ ≤ G if desired, we obtain the commonly stated form

E∥∆t∥2 = O
(
η2τ2(E∥∇Ft(wt)∥2 + ζ2)

)
= O

(
η2τ2(ζ2 +G2)

)
.

Descent bound. Taking expectation and applying the results from the previous results:

(i) Descent term.
E⟨∇Ft(wt),∆t⟩ ≤ −ητ∥∇Ft(wt)∥2 +O(ητζ).

(ii) Quadratic term. From the quadratic bound,
L
2E∥∆t∥2 = O

(
Lη2τ2(ζ2 +G2)

)
.

Combining (i) and (ii) in equation 11 gives
E[Ft(wt+1)] ≤ Ft(wt)− ητ∥∇Ft(wt)∥2 +O(ητζ) +O

(
Lη2τ2(ζ2 +G2)

)
. (15)

Absorbing error terms. Since there is no variance term (full-batch), the error contribution is only
due to heterogeneity and higher-order smoothness. For sufficiently small η,

O(ητζ) +O
(
Lη2τ2(ζ2 +G2)

)
≤ 1

4ητ∥∇Ft(wt)∥2 +O(η3L2τ3).

Final descent inequality. Thus, under full-batch gradients,
Ft(wt+1) ≤ Ft(wt)− 3

4ητ∥∇Ft(wt)∥2 +O(η3L2τ3). (16)
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Recall the per-round descent inequality under full-batch gradients (cf. equation 16):
Ft(wt+1) ≤ Ft(wt)− 3

4ητ∥∇Ft(wt)∥2 +O(η3L2τ3).

When temperature changes from Tt,k to Tt+1,k, the loss shifts from Ft to Ft+1.

Define the objective shift
∆Ft(w) := Ft+1(w)− Ft(w),

and assume (A6) that the temperature (hence the objective) changes at most M rounds and that
along the trajectory

|∆Ft(wt)| ≤ ∆max for all t.
Therefore T−1∑

t=0

|∆Ft(wt)| ≤M∆max.

Add the shift to convert the bound for Ft(wt+1) into a bound for Ft+1(wt+1):
Ft+1(wt+1) = Ft(wt+1)+∆Ft(wt+1) ≤ Ft(wt)− 3

4ητ∥∇Ft(wt)∥2+O(η3L2τ3)+∆Ft(wt+1).

Sum the last inequality over t = 0, . . . , T − 1. The left-hand side telescopes:
T−1∑
t=0

(
Ft+1(wt+1)− Ft(wt)

)
= FT (wT )− F0(w0).

Rearranging and summing the error / shift terms yields

3

4
ητ

T−1∑
t=0

∥∇Ft(wt)∥2 ≤ F0(w0)− FT (wT ) + T ·O(η3L2τ3) +

T−1∑
t=0

∆Ft(wt+1).

Using
∑T−1

t=0 ∆Ft(wt+1) ≤M∆max we obtain

3

4
ητ

T−1∑
t=0

∥∇Ft(wt)∥2 ≤ F0(w0)− FT (wT ) + T ·O(η3L2τ3) +M∆max.

Divide by 3
4ητT to get the averaged-stationarity bound

1

T

T−1∑
t=0

∥∇Ft(wt)∥2 ≤
C1

ητT
+ C2 η

2L2τ2 +
C3M∆max

ητT
, (17)

where C1, C2, C3 > 0 are explicit constants (traceable to the 3/4 factor and the constants hidden in
the O(·) term). (We have removed any σ2 term because in the full-batch setting σ2 = 0.)

We must respect the one-step descent requirement used earlier, in particular choose η so that

η ≤ 1

4Lτ
. (S)

Under (S) the coefficient of ∥∇Ft∥2 in the one-step bound remains positive.

The RHS of equation 17 contains two η-dependent terms:

Φ(η) =
C1

ητT
+ C2 η

2L2τ2 +
C3M∆max

ητT
.

Combine the 1/(ητT ) terms:

C̃ := C1 + C3M∆max, Φ(η) =
C̃

ητT
+ C2 η

2L2τ2.

Minimizing Φ(η) over η > 0 (subject to (S)) gives

η⋆ =
( C̃

2C2L2τ3T

)1/3

= Θ
( 1

L2/3τ T 1/3

)
.

Pick the largest step size allowed by (S), e.g.

η =
1

4Lτ
.
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Plugging this constant η into equation 17 yields
1

T

T−1∑
t=0

∥∇Ft(wt)∥2 = O
(L
T

)
+O

(ζ2
τ

)
+O

(M∆maxL

T

)
,

which (absorbing L into constants) is the commonly used full-batch FedAvg-style rate

1

T

T−1∑
t=0

∥∇Ft(wt)∥2 = O
( 1

T

)
+O

(ζ2
τ

)
+O

(M
T

)
.

Since M is a fixed finite constant, we have O(M/T ) = O(1/T ), and thus the bound simplifies to

1

T

T−1∑
t=0

∥∇Ft(wt)∥2 = O
(

1
T

)
+O

(
ζ2

τ

)
.

A.4 ABLATION STUDIES

A.4.1 SELECTION OF SCALING FACTOR

The scaling factor s for the FedChill algorithm was determined through a one-dimensional sweep
over values in the range 0.5 to 3.5, conducted across 10-, 20-, and 50-client settings on CIFAR-10
with their respective frac values. As shown in Table 10, the choice of s = 2.0 consistently yielded
strong performance, achieving the best or near-best accuracy across different configurations, and
was therefore selected as the final value.

A.4.2 SCALING FACTOR VS. HETEROGENEITY MEASURES

An ablation study was conducted to evaluate different heterogeneity measures against the scaling
factor (effectively, the range of temperature initialization) Here, s = 0.5 and s = 3 were chosen
as the extremities of the scaling factor range to study the impact of different heterogeneity mea-
sures on performance. As shown in Table 11, the choice of heterogeneity measure directly affects
both local and server accuracies. For s = 3, the Jensen–Shannon (JS) (Nielsen, 2020) divergence
provided the best trade-off, achieving the highest local (70.33%) and server (55.97%) accuracies.
Conversely, when s = 0.5, the performance was more balanced across different measures: KL di-
vergence yielded the highest local accuracy (69.85%), while Entropy Difference achieved the high-
est server accuracy (55.18%). These results highlight that the JS divergence is particularly effective
at capturing distributional closeness in higher scaling regimes, while KL and Entropy Difference
remain competitive at lower scaling values (Shlens, 2014).

Table 10: Ablation Study: Scaling Factor (s)
Scaling Factor (s) 10 (0.1) 20 (0.2) 50 (0.5)

0.5 49.42% 57.74% 60.13%
1.0 49.81% 58.47% 60.76%
1.5 51.06% 58.67% 61.40%
2.0 51.68% 59.38% 62.70%
2.5 48.62% 59.81% 61.11%
3.0 49.39% 56.20% 58.41%
3.5 47.60% 56.32% 57.75%

Table 11: Ablation Study: Heterogeneity Mea-
sures vs. Accuracy

s Measure Local (%) Server (%)

3 Ratio 69.80 50.98
KL 68.16 47.41
JS 70.33 55.97

Entropy Diff 66.47 49.94
0.5 Ratio 68.92 54.89

KL 69.85 54.53
JS 68.95 54.66

Entropy Diff 69.88 55.18
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A.5 CORRELATION ANALYSIS DIAGRAMS

This analysis investigates whether alternative client characteristics can better predict optimal tem-
perature settings than the heterogeneity score used in the main FedChill implementation. We tested
multiple client metrics across 10 clients with varying data distributions under a Dirichlet partitioning
scheme (α = 0.5). A similar study was also repeated using 50 clients. The evaluated characteristics
included heterogeneity score, Gini coefficient, dominant class probability, number of active classes,
dataset size, Shannon entropy, and KL divergence (Nielsen, 2020) (Shlens, 2014).

The correlation analysis revealed that the heterogeneity score remains the strongest single predic-
tor of optimal temperature (r = −0.389, p = 0.267), supporting the hypothesis that clients with
higher heterogeneity benefit from lower temperatures. Other metrics such as the Gini coefficient
(r = 0.198) and dominant class probability (r = −0.160) showed only weak correlations, while
multi-variable combinations did not improve predictive power. When examining performance gains,
dominant class probability exhibited the strongest negative correlation (r = −0.361), but most other
measures showed little association with improvements (Patil et al., 2022) .

The scatter plots illustrate the relationships between each predictor and optimal temperature set-
tings. Trend lines indicate the direction and strength of correlations, with the heterogeneity score
plot showing the clearest downward trend, consistent with the FedChill hypothesis that more hetero-
geneous clients benefit from lower temperatures. Overall, although no alternative predictor outper-
formed the heterogeneity score in the 10-client setting, the analysis reinforces its role as a principled
basis for temperature assignment.

Figure 3: (10 clients) Correlation analysis between client characteristics and optimal temperature
values. Scatter plots show relationships between various client metrics and optimal temperatures
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Figure 4: (50 clients) Correlation analysis between client characteristics and optimal temperature
values. Scatter plots show relationships between various client metrics and optimal temperatures.

A.6 DISCLAIMER

The convergence analysis in Appendix A.3 was developed with the assistance of a large language
model and manually verified to the best of our abilities. Furthermore, large language models were
used modestly to assist in polishing the writing of this paper.
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