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ABSTRACT

Krotov and Hopfield (2021) proposed a biologically plausible two-layer associative
memory network with memory storage capacity exponential in the number of
visible neurons. However, the capacity was only linear in the number of hidden
neurons. This limitation arose from the choice of nonlinearity between the visible
and hidden units, which enforced winner-takes-all dynamics in the hidden layer,
thereby restricting each hidden unit to encode only a single memory. We overcome
this limitation by introducing a novel associative memory network with a threshold
nonlinearity that enables distributed representations. In contrast to winner-takes-all
dynamics, where each hidden neuron is tied to an entire memory, our network
allows hidden neurons to encode basic components shared across many memories.
Consequently, complex patterns are represented through combinations of hidden
neurons. These representations reduce redundancy and allow many correlated
memories to be stored compositionally. Thus, we achieve much higher capacity:
exponential in the number of hidden units, provided the number of visible units is
sufficiently larger than the number of hidden neurons. Exponential capacity arises
because all binary states of the hidden units can become stable memory patterns
with an appropriately chosen threshold. Moreover, the distributed hidden repre-
sentation, which has much lower dimensionality than the visible layer, preserves
class-discriminative structure, supporting efficient nonlinear decoding. These re-
sults establish a new regime for associative memory, enabling high-capacity, robust,
and scalable architectures consistent with biological constraints.

1 INTRODUCTION

Associative memory networks are a class of attractor models in which the system can recall stored
memories from their incomplete or noisy versions via recurrent dynamics (Krotov et al.|(2025)). In
such models, memories are conceptualized as the stable fixed points of the network dynamics. The
number of fixed points determines the storage capacity of the network, and significant efforts have
been made to construct networks with sufficiently high storage capacity to explain human memory.

The classical Hopfield network, a leading model for associative memory, has a storage capacity that
scales linearly with the number of neurons in the network (Hopfield| (1982)). Dense associative
memories, sometimes also referred to as modern Hopfield networks (Krotov and Hopfield| (2016))), are
promising modifications of the classical Hopfield model. By incorporating higher-order interactions
(e.g., interactions that are quadratic, rather than linear, in the input to a neuron), they achieve a storage
capacity that scales super-linearly with the number of neurons. There are many possible choices for
the energy function in this class of models. For instance, the power interaction vertex leads to the
power-law scaling of the capacity (Baldi and Venkatesh|(1987); Gardner| (1987);|Abbott and Arian
(1987); Horn and Usher| (1988); [Chen et al.| (1986); Krotov and Hopfield (2016))). More sophisticated
shapes of the energy function result in exponential storage capacity in the number of neurons, while
maintaining large basins of attraction (Demircigil et al.|(2017); Lucibello and Mézard| (2024)).

The naive implementation of Dense Associative Memory models, however, relies on synaptic inter-
actions that are challenging to implement broadly in biological circuits. In particular, these models
require nonlinear interactions among synapses. While several biological mechanisms could in prin-
ciple support restricted forms of higher-order interactions, such as astrocytic processes, dendritic
computations, or distributed neurotransmitter effects, these remain limited in scope and dictate strong
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constraints on the possible shape of the energy landscape (Burns and Fukai| (2023)); [Kozachkov
et al.| (2025)); [Kafraj et al.|(2025))). The implementation of Dense Associative Memory introduced
by Krotov and Hopfield|(2021)) does not suffer from these limitations, as it relies only on standard
synaptic interactions. In this architecture, the visible neurons correspond to features of the patterns,
while the hidden neurons serve as auxiliary computational elements that mediate complex interactions.
Higher-order interactions among visible neurons emerge by selecting appropriate activation functions
for the hidden neurons.

Nevertheless, the two-layer implementation of Krotov and Hopfield has two key limitations. First,
the storage capacity is at most linear in the number of hidden neurons (Krotov|(2021)); Krotov and
Hopfield| (2021)). This is unsatisfactory from the perspective of information storage — one would like
to store as much information as possible while utilizing only a small number of neurons. Second, at
inference time, the network demonstrates a winner-takes-all behavior. This means that the asymptotic
fixed point that the network converges to corresponds to a single hidden neuron being activated, while
the rest of the hidden neurons are inactive. This behavior results in grandmother-like representations
for hidden neurons, as opposed to distributed representations, which are more efficient at storing
information.

Our work tackles these two limitations. Specifically, we present a novel implementation of Dense
Associative Memory that achieves exponential storage capacity in the number of hidden neurons.
This is accomplished with a simple yet critical change: we use a threshold activation function that
does not enforce winner-takes-all dynamics. The threshold activation enables distributed memory
representations—multiple hidden neurons can be active for a memory, and each hidden neuron
can participate in multiple memories. As a result, all possible binary patterns of hidden neuron
states become stable fixed points, enabling the network to store exponentially many memories,
including highly correlated ones. Beyond high capacity, the hidden layer of the network is low-
dimensional compared to the visible layer, yet it produces structured representations that preserve
class-discriminative information, with memories sharing components represented close together in
the hidden activity space. We establish this result through both theoretical analysis and numerical
simulations, and show that the resulting fixed points also possess large basins of attraction.

Our model is closely related to the framework recently proposed by |Chandra et al.[(2025), which
combines multiple Dense Associative Memory modules to produce a distributed code for the visible
neurons. Each module performs a winner-takes-all operation similar to |Krotov and Hopfield| (2021),
so only a single hidden neuron is active per module. By combining several modules, though, they
achieve exponential storage capacity. However, we show that multiple modules are unnecessary:
exponential capacity can be achieved with a single module, provided the activation function is chosen
appropriately.

Beyond its biological motivation, our work also connects to a growing body of research on Dense
Associative Memories in machine learning. Notably, it has been shown that Dense Associative
Memory closely corresponds to the attention mechanism in transformer architectures Ramsauer et al.
(2021); |[Hoover et al.|(20234a), offering a principled framework for viewing the transformer’s attention
and feedforward computations as steps in a global energy minimization process. Complementary
research has demonstrated that generative diffusion models, widely used in high-quality image
generation, also exhibit associative memory behavior Hoover et al.| (2023b)); /Ambrogioni| (2024);
Pham et al.|(2025). Further studies have expanded the model’s functionality: for instance, (Chaudhry
et al.| (2023) examined its ability to store and retrieve long sequences; Burns and Fukai| (2023)
introduced higher-order simplicial interactions; and [Dohmatob| (2023)); Hoover et al.| (2025) proposed
alternative energy functions that also support exponential storage capacity. Our results contribute to
this line of work by showing how exponential storage capacity can be achieved within a biologically
plausible two-layer framework, thereby bridging theoretical neuroscience with modern machine
learning architectures.

In the following sections, we first formally define the model and its dynamics and derive the optimal
threshold analytically for a network with fixed weights. We then present a theoretical analysis of
storage capacity and basins of attraction, showing that the network exhibits large basins of attraction,
making recall robust to substantial noise in the visible inputs. Next, we introduce a learning rule for
storing real, correlated memories, enabling compositional memory storage, and present numerical
experiments on MNIST and CIFAR-10 that demonstrate high-capacity recall, structured hidden
representations, and robustness to noise. Finally, we conclude by discussing the biological plausibility
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of the network and potential directions for extending the model to incorporate additional constraints
and more realistic neuronal properties.

2 MODEL

In this section, we present our model and demonstrate that its storage capacity scales exponentially
with the number of hidden neurons, meaning that all possible binary patterns of hidden neurons are
stable fixed points.

We first define the dynamics of the system as follows:
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The parameter 6 will be chosen to ensure the stability of all binary patterns in the hidden layer.

The network consists of N,, visible neurons (the v;) and N}, hidden neurons (the h,,), arranged in a
bipartite architecture, i.e., without lateral connections within either layer.

Synaptic connections between visible neuron ¢ and hidden neuron y are reciprocal and randomly
drawn from a standard normal distribution:

Eui = &ip ~ N(0,1). 3

The scaling factors in front of the sums are chosen purely for convenience, as they simplify subsequent
expressions. Additionally, for simplicity, our theoretical analysis and experiments assume a Heaviside
step function; however, Appendix [F|shows that this assumption is not strictly required.

2.1 STORAGE CAPACITY

To determine the storage capacity, we’ll first focus on the fixed points of the dynamics given in
Eq. (1. Defining
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it is straightforward to show that in steady state, s, satisfies
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Equation (3), with the weight matrix given in Eq. (@), is very close to the classical Hopfield model;
the only difference is that in the classical model, the ,,; are binary, whereas in our model they’re
Gaussian. However, the classical Hopfield model works in the regime N, < N}, with memory
storage possible only if N, < 0.138Np,(Amit et al.| (1985)). Here, though, we’ll consider a very
different regime: N, > N},. In this limit, J,,,, approaches the identity matrix (Marchenko and Pastur
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(1967)), which completely decouples the hidden neurons. Assuming the threshold, 6, is chosen
correctly, this leads immediately to exponential storage capacity.

Exponential capacity clearly holds in the limit N,, — co. What happens when NN, is finite? We show
in Appendix [A.T]that

</L v
VN,

where the (,,,, are independent, zero-mean, unit-variance Gaussian random variable,
Cuw ~ N(0,1), ®

and here and in what follows d,,,, is the Kronecker delta. Thus, Eq. (3) may be written
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Because the ¢, are independent, the second term in parentheses, which we denote ¢,,, scales as (see

Eq. in Appendix
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where the second inequality follows because s, is either O or 1.

If we set § = 1/2, in the limit N, > N, Eq. Q) typically has two solutions: one at s, = 0
and one at s, = 1. In fact, the probability that there is only one solution is the probability that
(25, — 1)g, < —1; in Appendix [D|(see in particular Eq. (34)) we show that
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where N, is the number of active hidden neurons. Thus, even when NNV, is only about ten times larger
than IV}, and the threshold is not exactly 1/2, there are approximately 2™V fixed points.

There are exponentially many fixed points, but are they stable? To answer that, we need to do stability
analysis. Combining Eq. (I)) with the definitions of s,,, Eq. @), and J,,,,, Eq. (6), we have

hy =Y Juusu - (12)

Since J,,,, is approximately the identity matrix, we see that at equilibrium h,, is close to either O or 1.
Thus, because our nonlinearity is a step function, its derivative vanishes at equilibrium, guaranteeing
the stability of the fixed points (Appendix A.2). Consequently, when we solve Eq. (I, we expect to
see 2™ stable fixed points in the regime N, > Nj,. This prediction is consistent with numerical
simulations, as can be seen in Figure Th.

2.2 BASINS OF ATTRACTION

Although the fixed points are stable, that still leaves the question: how big are the basins of attraction?
We’ll assume that noisy input enters the network via the visible units, and initially all the h,, are zero.
How far from the fixed points can the input be and still be recalled perfectly?

Assuming the noise is additive, the initial values of the visible and hidden neurons are,

Np
1
Ui (O) = E Eiue(hu,larget - 9) + 6;} (13a)
VN, et

h,(0) =0 (13b)

where hy, tareee = 1 if neuron p encodes the target memory, and O otherwise (motivated by the fact
that h,, is close to either O or 1 at the fixed points; see Eq. (12)).
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To reach the target fixed point in both the hidden and visible unit space, the hidden neurons must
evolve to their target values, h, targer, before the visible units change much. That requires the visible
units to evolve much more slowly than the hidden units, which we can guarantee by setting 7, < 7,
(see Appendix). With this condition, at a time ¢ satisfying 7, < t < T, h,,(t) reaches equilibrium
while v;(¢) is still approximately equal to v;(0). Using Eq. (Ta) with dv;/dt = 0 along with Eq. (6),
that equilibrium is given by
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Using Eq. (7), we see that the first term is ©(h, target — 0) + O(y/Nn/Ny). And the second term
scales as 0,1/ Ny /N, where 05 is the variance of the noise. Thus, so long as

N,
Ve — 15
arfe] < N, (15)
h,.(t) will be close to its target value when ¢ < 7,,. Since v;(t) is close to its target value at that time,
it will stay close, and asymptotically the target pattern will be recovered. Given that N,, >> Ny, €
can be very large without affecting recall. Thus, the basin of attraction is very large (see Figure[Tp
and Appendix D).
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Figure 1: Capacity versus the number of hidden units, N, with NV, = 100N}, and 7, = 2073,. (a)
Capacity for different thresholds, 6. The highest storage capacity is achieved when the threshold is set
to its optimal theoretical value , § = 0.5. (b) The effect of noise in the visible layer (¢} in Eq. (I3a)),
shown for different noise variances, demonstrates the large basin of attraction of the fixed points.

2.3 BIOLOGICAL PLAUSIBILITY

Compared to Krotov and Hopfield| (202 1)), our model exhibits greater biological plausibility in several
respects.

The activation function used here is local and keeps neuron activity within a biologically realistic
range. In contrast, in |Krotov and Hopfield| (2021)), Model A is not biologically plausible because
the hidden neuron activities can grow to unrealistically large values as a consequence of the power-
law activation, which does not reflect realistic neural firing. Models B and C, on the other hand,
rely on non-local activation functions, softmax and spherical normalization, respectively, which
are biologically implausible unless additional mechanisms are assumed.(see Appendix [C]for more
details).

Although our theoretical analysis focuses on symmetric weights and a global threshold for all
neurons for simplicity, these assumptions are not restrictions of the model. Experimentally, we
show that networks with asymmetric weights and heterogeneous neuron-specific thresholds also
achieve stable recall. Allowing asymmetric weights is important because exact symmetry is rarely
observed in biological neural circuits, yet memory networks can remain robust even without it.
Similarly, heterogeneous thresholds capture the variability in neuron excitability across real neurons
and demonstrate that stable memory dynamics do not require finely tuned, uniform parameters.
Together, these features indicate that our model better reflects realistic neural mechanisms while
retaining associative memory functionality. Figure [0]in Appendix [E] shows representative recall
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examples for networks with asymmetric weights and heterogeneous thresholds that stored MNIST
and CIFAR-10 images, respectively, using a learning rule similar to that discussed in Subsection [3.1}
with the key differences being the absence of a symmetry restriction on the weights and the allowance
of heterogeneous thresholds.

3 RESULTS

3.1 LEARNING RULE

So far we have focused on storage capacity with fixed synaptic weights. A natural next step is to
understand how these weights can be learned. In this section, we introduce a learning rule that reflects
compositional learning: a small number of simple, reusable components can be combined to form
complex patterns, and conversely, complex patterns can be decomposed into simpler components.

In the steady-state, visible activity in Eq. (I)) can be expressed as

Np,

1
V== D s, (16)
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where &, is the p-th column of £ € RNoXNe je., (&u)i = &p- If only hidden neuron y is active,
the visible state equals &,,. A visible memory is thus called basic if it corresponds to a single active
hidden neuron, and complex if it is formed by the activation of multiple hidden neurons, i.e. a
composition of several basic memories.

The goal of learning is to find a synaptic weight matrix ¢ and a threshold 6 such that a set of target
memories {v,, € RY}M_ approximately correspond to stable fixed points of the network dynamics,
with M > N, (e.g., MNIST or CIFAR-10). This is achieved using the following optimization
procedure,
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where s, is replaced by its target steady-state value. This learning rule is identical to the one proposed
in|Radhakrishnan et al.|(2020). We used Xavier initialization for the weights and approximated the
threshold function © with a sharp sigmoid to allow gradient-based training.

3.2 EXPERIMENTS

Figure [2] shows recall results after storing 60,000 MNIST digits with N,, = 784 and N}, = 50.
Despite the high correlation among patterns, the network learns 57913 unique minima corresponding
to the 60,000 stored images. Variants of the same digit produce hidden representations that are
distinct yet partially overlapping, and the recalled visible states remain recognizable.

FigureE}a shows the learned basic memories for the MNIST dataset, which correspond to the columns
of £&. As shown in Figure 3p, these basic memories are nearly orthogonal, consistent with Eq. (7).

To evaluate the generality of the proposed learning rule beyond MNIST, we applied the same
procedure to the CIFAR-10 dataset. In this case, N, = 3072 (3 x 32 x 32), and to compensate for
the increased complexity of this dataset, we used a network with 500 hidden neurons, compared
to 50 hidden neurons for MNIST. Figure [ presents examples of the cues alongside their recalls.
These results show that the network is able to reconstruct interpretable outputs from the learned
representations, despite storing a large number of complex memories (50,000) and significantly
violating the condition N,, > Nj,. Importantly, these images are highly correlated, yet the network
produces 49982 unique stable minima corresponding to the stored memories, with each memory
representation being both stable and interpretable.

The learned basic memories for CIFAR-10 images are shown in Figure Bp. They form a more
heterogeneous set, yet remain nearly orthogonal, as shown in Figure [Sp.
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Figure 2: Examples of recall in a network with 50 hidden neurons that memorized 60,000 MNIST
images. Hidden neurons are shown on the ring, and visible neurons are visualized as two-dimensional
images. On the ring, black indicates high activity, and white indicates low activity. Highly correlated
images of every digit, for instance, the digit 6 shown here, converge to unique but overlapping hidden
representations.
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Figure 3: a) 25 (out of 50) columns of the learned weight matrix, for MNIST images, which serve as
basic memories, are shown as two-dimensional images. b) Correlation matrix of the basic patterns,
which correspond to the hidden units. ¢) The network generalizes compositionally, associating unseen
cues with interpretable fixed points.
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The network learns an effective threshold of § = 0.21 for MNIST and 8 = 0.43 for CIFAR-10. Note
that the statistics of the learned base memories in MNIST and CIFAR-10 differ from one another
and from the normal distribution assumed in the theory, which explains the difference between the
learned thresholds.
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Figure 4: Examples of recall in a network with 500 hidden neurons that memorized 50,000 CIFAR-10
images. Hidden neurons are arranged on a ring (50 out of 500), while visible neurons are shown as
two-dimensional images. On the ring, black indicates high activity, and white indicates low activity.
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Figure 5: a) 25 (out of 500) columns of the learned weight matrix for CIFAR-10 images, which
serve as basic memories, are shown as images. b) Correlation matrix of the basic patterns, which
correspond to the hidden units. ¢) The network generalizes compositionally, associating unseen cues
with interpretable fixed points.

For this system to function as an associative memory, new “unseen’” cues should converge toward
the approximately correct fixed points. For example, cues related to dogs should end up near fixed
points associated with dogs, not horses. As shown in Figure 3k and Figure 5k, this behavior is indeed
observed. The network converges to the nearest minimum of the energy landscape relative to the cue.

Importantly, when the learned basic memories are expressive enough, this nearest minimum can
correspond to a stable representation that is very close to the unseen cue itself rather than to a
memorized pattern. In other words, the network not only memorizes but also generalizes: the learned
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basic memories shape the energy landscape so that unseen inputs are mapped to stable attractors that
capture their distinctive features.

For example, in Figure [3k, when two unseen images of the digit "6" are presented, the network
converges to two distinct attractors that preserve the distinguishing details of each input while still
sharing overlapping components in the hidden layer that identify them as class "6". This illustrates an
advantage of our model: it supports both memorization and generalization through its learned basic
components.

To quantitatively evaluate this behavior, we trained nonlinear classifiers on the recalled representations
of the stored images, and tested them on the recalled representations of unseen images (Convolutional
neural network (CNN) for visible representations and multilayer perceptron (MLP) for hidden
representations). For comparison, we trained CNNs directly on the original stored images and tested
them on the original unseen images as well. This allows us to assess the classifiability of the recalled
visible representations by the associative memory network relative to the original memories. (see
Appendix [B|for details of the classifiers)

For the MNIST dataset, classification accuracy is high for both the hidden and visible representations.
This is a desirable property, as it indicates that the lower-dimensional hidden representations still
preserve strong class discriminability. In MNIST, the raw pixel space itself carries strong class
structure: two images of the same digit are highly correlated and closer to each other than images of
different digits. Consequently, the hidden neurons retain this information almost perfectly, having
structured and meaningful encodings in which correlated memories are represented close together
and remain classifiable.

For CIFAR-10, classification accuracy is high for the visible representations but low for the hidden
ones. This difference arises because, in CIFAR-10, two images of the same class (for example,
dogs) are not necessarily correlated in raw pixel space, so the hidden layer, which is a nonlinear
transformation of those pixels, does not exhibit a clear class structure. The classifier used for the
visible representations in this analysis is a CNN, which, when trained on raw pixel data, first learns a
nonlinear transformation that maps images of the same class close together in a learned feature space
while separating images from different classes. After this transformation, classification is performed
using a linear decision boundary in that space. This ability to internally build such class-specific
representations explains why classification accuracy remains higher for the visible neurons.

Overall, the high performance of the visible representations for both MNIST and CIFAR-10 demon-
strates that the recalled representations remain highly class-discriminative and that the associative
memory preserves the essential structure of the data, enabling compositional generalization to unseen
examples.(for the CIFAR10 dataset, the classification accuracy can be increased by scaling up the
associative memory, including N, the epoch size, the optimization step, and the number of training
samples.)

Representation \ MNIST Accuracy CIFAR-10 Accuracy
Recalled Hidden Patterns 95% 40%
Recalled Visible Patterns 98% 56%

Original Images 99% 88%

Table 1: Classification test accuracy of nonlinear classifiers trained and tested on recalled hidden
and visible representations, as well as on the original images for comparison, for MNIST and
CIFAR-10 datasets. High accuracy on visible representations for both datasets demonstrates that
the recalled representations remain highly class-discriminative, while the lower accuracy on hidden
representations for CIFAR-10 reflects the lack of strong class structure in raw pixel space.

4 CONCLUSION

This work introduces a novel Dense Associative Memory |[Krotov and Hopfield (2021)) that achieves
exponential storage capacity in the number of hidden neurons, overcoming the limitations of previous
two-layer models. By using a threshold activation function, with a theoretically derived threshold, the
network supports distributed hidden representations, allowing each hidden neuron to participate in
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multiple memories. This enables compositional storage of complex and correlated patterns, reducing
redundancy while maintaining robust retrieval.

Specifically, the network achieves exponential capacity, 2/¥», using only Nj, N, parameters. In
contrast, previous two-layer implementations were limited to a maximum capacity of N}, (Krotov and

Hopfield| (2021))). As a result, the number of memories per weight grows as J\?N;\} ~ 2Nn while in

previous implementations it is at best ~. Even for complex datasets such as MNIST and CIFAR-10,
networks with only 50 and 500 hldden units, respectively, were able to store tens of thousands of
highly correlated memories and associate the vast majority of them with unique minima, whereas
previous models could not store more memories than the number of hidden units (see AppendixC).

Beyond storing exponentially many memories, the network is also able to generalize to novel inputs.
This behavior arises because the hidden layer encodes a set of basic memories that can be flexibly
composed to represent previously unseen patterns, associating them with distinct minima rather than
forcing retrieval toward the nearest stored pattern, while still producing meaningful, class-consistent
representations. Our results are consistent with biological principles of feature learning, as embodied
in hierarchical predictive coding models, which detect novelty and generalize by recombining features
across successive levels of abstraction (L1 et al.| (2025)); Salvatori et al.| (2021))). This mechanism
further illustrates that learning the underlying compositional structure of naturalistic data enables a
biological associative memory to effectively support both memorization and generalization.

The model is biologically grounded, relying solely on standard pairwise synapses and a local
activation function. We also provide evidence that it achieves stable recall even in the presence
of asymmetric weights and heterogeneous neuronal thresholds. Moreover, the hidden layer forms
low-dimensional representations that preserve class-discriminative information, placing memories
with shared components close together in activity space. This structured organization supports
efficient nonlinear decoding.

Overall, this work establishes a new regime for associative memory that combines high capacity,
robust recall, compositional and interpretable representations, and biological plausibility. It provides
a theoretical foundation for scalable memory systems that bridge neuroscience models with modern
machine learning architectures.

Future work will focus on developing a biologically plausible learning rule and on examining the
model’s capacity under additional biological constraints, including sparse connectivity and adherence
to Dale’s law.

10
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 DISTRIBUTIONAL PROPERTIES OF C,W

We define the matrix elements

1 X
<uyzﬁ;§uisiy, [# v, (18)

where §,,;s are randomly drawn from a standard normal distribution.

Each product &,,;&;, is a zero-mean random variable, since §,,; and &;,, are independent with zero
mean.

By the central limit theorem, the sum of these V,, independent terms converges in distribution to a
Gaussian. Specifically,

1 &
VN, (N > &uibiv — EK’”&”]) ~5 N(0,1), (19)
V=1
given that E[¢,,;&;,] = 0, and Var[€,,;&;,] = 1,
Cuv 4, N(0,1). (20)

Now consider the random variable g, defined as:

1 Np,
Qu = 7 CuvSus (2D
= ; ,
This is a random variable with respect to the index . with s, fixed. Its variance is given by
1 Np 1 Np 1 Ny,
Var Cuwsu | = S2Var[C] = — ) 2 (22)
] = S = 1 3

where we used the fact that the (,,,, are independent random variables with mean 0 and variance 1.

A.2 STABILITY OF THE FIXED POINTS

The stability of fixed points is determined by the Jacobian of the system. Grouping the variables into
(v, h), corresponding to the visible and hidden units respectively, the Jacobian has the block structure

_ Avv Avh
A= { A Ahh} . (23)

For the diagonal blocks, consider first the visible units. We have

v; -1, j=i
= ’ ’ = A, =-Iy ’ 24
v, {0, j#i, N @4
where Iy, is the N, x N, identity matrix. Similarly, for the hidden units,
6hﬂ -1, v=yp
= ’ ’ = A =1 25
o, {07 v, hh Nis (25)

where I, is the IV, x NN}, identity matrix.

For the off-diagonal blocks, the derivative of the Heaviside step function in Eq. (2) is zero almost
everywhere,

0'(z) =0, z #0. (26)
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Therefore, away from threshold crossings (h,, # 6) in Eq. (Ta)),
0v;
oh,,

=0 = A,,=0. Q7)

The hidden dynamics depend explicitly on the visible variables:

oh,,
(%i

= guiv = Apy = (g/u')- (28)

Putting everything together, the Jacobian is lower-triangular,

[-In, 0O
A= { AL —Iwh} : (29)

The eigenvalues of a triangular matrix are its diagonal entries, which in this case are all equal to —1.

Hence, all fixed points of the dynamics are stable.

B DETAILS OF THE CLASSIFIERS

Table 2: Architecture and Parameters of the CNN Classifier

Block Layer Type Channels / Filters Kernel / Pool Activation
Conv Block 1 2 x Conv2D + BatchNorm2D 332 3 x 3, MaxPool(2) RelLLU
Conv Block 2 2 x Conv2D + BatchNorm2D 32 — 64 3 x 3, MaxPool(2) ReLU
Conv Block 3 2 x Conv2D + BatchNorm2D 64 — 128 3 x 3, MaxPool(2) RelLU
Flatten - Auto-computed (f) - -
Fully Connected 1 Linear f— 128 - ReLU
Fully Connected 2 Linear 128 = N jgsses - Softmax

Table 3: Architecture and Parameters of the MLP Classifier

Layer Type Dimensions/Units Activation
Input Linear Input dimension = d -
Hidden Layer 1  Linear d — 256 ReLU
Hidden Layer 2  Linear 256 — 128 ReLU
Output Layer Linear 128 — N jasses Softmax

C COMPARISON WITH PREVIOUS DENSE ASSOCIATIVE MEMORY NETWORKS

Krotov and Hopfield| (2021)) proposed a two-layer associative memory defined as

dv; n
Tyt =it > winf(hy), (30a)

pn=1

N,

dh =
Tt = —hu Y wig(vi), (30b)

i=1

where w,,; = w;,, and each w,, € R™* represents a stored memory. Three choices for the nonlineari-
ties f and g were introduced in |Krotov and Hopfield (2021), summarized in Table E}

We evaluate their recall performance (Models A, B, and C) together with our proposed model. Model
A is tested using f(h,) = hj, (A1) and f(h,) = h,” (A ii).

Despite differences, all three models operate under the same effective mechanism: during recall, a
single hidden neuron becomes strongly active while the others remain suppressed, allowing only one
memory per hidden neuron.
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In contrast, our nonlinearity produces a fundamentally different recall regime. Multiple hidden
neurons remain active simultaneously, enabling each hidden neuron to encode multiple stored
patterns. This results in a dramatic increase in storage capacity: with only fifty hidden neurons, our
model successfully stores all MNIST images (60,000) with high recall accuracy. By comparison,
Models A, B, and C are limited to 50 memories and often fail to recall reliably (e.g., Model A i and
Model C), as shown in Table 4]

And from a biological perspective, the nonlinearity used in Model A is not plausible, because the
power-law activation causes hidden neuron activity to reach unrealistically high values during recall.
Models B and C also rely on non-local activation functions, which would require additional circuit
mechanisms to implement. In contrast, our model maintains bounded activity, and the nonlinearity is
fully local.

Model f(hy) g(vi) Ny, # Stored Memories  Recall Performance
A () h{‘z sign(v;) 50 50 12%
A (i) h#O sign(v;) 50 50 84%
e'n
C hs — 2 50 50 2%
' V2 vi
Our model ©(h, —0) v; 50 60,000 98 %

Table 4: Nonlinearities used in the Dense Associative Memory models from [Krotov and Hopfield
(2021)) and in our model, and a comparison of their recall performance. Recall performance is the
percentage of recalled digits that are classified correctly.

D THE RATIO BETWEEN THE NUMBER OF VISIBLE NEURONS AND HIDDEN
NEURONS

From Egs. (I0) and (14), and setting § = 0.5, we have

N,
Np
Sﬂ(t) =0 (Su,[arget + q;;,,target + \/]\7 E gﬂieg + O(t/Tv) — 05) 5 (31)

i=1

where gy, targer 1S @ normally distributed random variable with variance % (see , where N, is the

number of active hidden neurons. The third term in the parentheses has variance o Ny, /N,. Thus, in
the limit 7, > 75, > ¢, we can approximate

Sp (t> =0 (S;L,target + 2y target — 0-5)7 (32
where
N, + O'EN )
2y, target " N(O, 03), 03 = T] (33)
Consequently, the probability of having no bit flip is
Protiip = ®(1/20,)™" (34)

where ® is the cumulative normal function. This probability rapidly approaches 1 as the o, becomes
small. In this regime, both the stability of the fixed point and correct recall are ensured.
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Figure 6: Capacity versus the ratio between visible and hidden neurons, for a fixed value of N;, = 10.

And, to determine how many hidden neurons are required for real world memories with diverse
statistics, note that memories from an V,-dimensional space are recalled within an at most Nj,-
dimensional subspace spanned by the IV, basic memories defined by the hidden to visible weights. If
this subspace is not expressive enough, the reconstructed images will not be recognizable, particularly
for complex datasets such as CIFAR-10.

In summary, the number of hidden neurons must be sufficiently smaller than the number of visible
neurons to guarantee stable recall, but it must also be large enough to represent the statistical structure
of the stored memories so that the reconstructions remain recognizable.

Figure[7]and Figure[§]show representative recall examples on MNIST and CIFAR-10, for networks
with an insufficient number of hidden neurons (N, = 16).

Cue
.
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o

Figure 7: Learned basic memories (columns of learned weight matrix) and representative recall
examples for MNIST, for a network with an insufficient number of hidden neurons (N, = 16).

RecaH

o

o

16



Under review as a conference paper at ICLR 2026

vl BN
EEBEF a .
ENEN -

NESE s F

Figure 8: Learned basic memories (columns of learned weight matrix) and representative recall
examples for CIFAR-10, for a network with an insufficient number of hidden neurons (N, = 16).

Recall

E ASYMMETRIC WEIGHTS AND HETEROGENEOUS THRESHOLDS

Figure 9] shows representative recall examples for networks with asymmetric weights and heteroge-
neous neuron thresholds on both MNIST and CIFAR-10.

Cue Recall Cue Recall
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Figure 9: Representative recall examples for networks with asymmetric weights and heterogeneous
neuron thresholds. On the left are examples of cue and recall for a network that stored 60,000 MNIST
images with 50 hidden neurons, and on the right are examples for a network that stored 50,000
CIFAR-10 images with 500 hidden neurons.

F SIGMOID ACTIVATION FUNCTIONS

In both the theory and the experiments, we used the Heaviside step function for the activation of
hidden neurons. A smooth step function was used only during optimization.

However, the Heaviside function is not the only valid choice of activation. In fact, any sigmoid
function that has three intersections with the identity line as showin in Figure[I0p where the middle
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intersection at 1/2 is an unstable fixed point of (E[), and the intersections near 0 and 1 are stable fixed
points, is a valid activation function that guarantees stable recall as shown in .

We demonstrated this experimentally by showing that recall remains perfect even when a smooth
sigmoid is used in place of the Heaviside function, as shown in Figure[T0]

a b
sharpness =10 109 o Theory /
1. = :
° - ,Sr:la)r:?(ess 20 ,.>: 91 § Sim: sharpness =10 /’
0.8 = 8 Sim: sharpness = 20 /
O 7
© /
__06 O 6
é © 5 /
0.4 (@) /
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0.2 o> 3
o,
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Figure 10: a) Sigmoid nonlinearities with different sharpness, each having three intersections with
the identity line. b) Both nonlinearities produce stable recall, and the capacity remains exponential.

G THE TIME CONSTANT OF HIDDEN AND VISIBLE NEURONS

Figure [IT]shows the impact of the time constant ratio between visible and hidden neurons on recall
performance. As discussed in Section 3.2 on the basin of attraction, the visible neurons must be
sufficiently slower than the hidden neurons because, during the cue, only the visible neurons receive
input while the hidden neurons are initialized to zero. The visible neurons therefore need to evolve
slowly enough to allow the hidden neurons to reach their correct steady state before the visible pattern
changes significantly.

10 °

log, (Capacity)
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Figure 11: Capacity versus the ratio between the time constant of visible and hidden neurons for
Np, =10 and N,, = 100N},.
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