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ABSTRACT

Krotov and Hopfield (2021) proposed a biologically plausible two-layer associative
memory network with memory storage capacity exponential in the number of
visible neurons. However, the capacity was only linear in the number of hidden
neurons. This limitation arose from the choice of nonlinearity between the visible
and hidden units, which enforced winner-takes-all dynamics in the hidden layer,
thereby restricting each hidden unit to encode only a single memory. We overcome
this limitation by introducing a novel associative memory network with a threshold
nonlinearity that enables distributed representations. In contrast to winner-takes-all
dynamics, where each hidden neuron is tied to an entire memory, our network
allows hidden neurons to encode basic components shared across many memories.
Consequently, complex patterns are represented through combinations of hidden
neurons. These representations reduce redundancy and allow many correlated
memories to be stored compositionally. Thus, we achieve much higher capacity:
exponential in the number of hidden units, provided the number of visible units
is sufficiently larger than the number of hidden neurons. Exponential capacity
arises because all binary states of the hidden units can become stable memory
patterns with an appropriately chosen threshold. Moreover, the distributed hidden
representation, which has much lower dimensionality than the visible layer, pre-
serves class-discriminative structure more effectively than the raw visible patterns,
supporting efficient nonlinear decoding. These results establish a new regime
for associative memory, enabling high-capacity, robust, and scalable architectures
consistent with biological constraints.

1 INTRODUCTION

Associative memory networks are a class of attractor models in which the system can recall stored
memories from their incomplete or noisy versions via recurrent dynamics (Krotov et al. (2025)). In
such models, memories are conceptualized as the stable fixed points of the network dynamics. The
number of fixed points determines the storage capacity of the network, and significant efforts have
been made to construct networks with sufficiently high storage capacity to explain human memory.

The classical Hopfield network, a leading model for associative memory, has a storage capacity that
scales linearly with the number of neurons in the network (Hopfield (1982)). Dense associative
memories, sometimes also referred to as modern Hopfield networks (Krotov and Hopfield (2016)), are
promising modifications of the classical Hopfield model. By incorporating higher-order interactions
(e.g., interactions that are quadratic, rather than linear, in the input to a neuron), they achieve a storage
capacity that scales super-linearly with the number of neurons. There are many possible choices for
the energy function in this class of models. For instance, the power interaction vertex leads to the
power-law scaling of the capacity (Baldi and Venkatesh (1987); Gardner (1987); Abbott and Arian
(1987); Horn and Usher (1988); Chen et al. (1986); Krotov and Hopfield (2016)). More sophisticated
shapes of the energy function result in exponential storage capacity in the number of neurons, while
maintaining large basins of attraction (Demircigil et al. (2017); Lucibello and Mézard (2024)).

The naive implementation of Dense Associative Memory models, however, requires synaptic inter-
actions that are biologically implausible. In particular, these models rely on nonlinear interactions
among synapses; e.g., the drive to a neuron could be a quadratic function of its input. While specific
biological mechanisms have been proposed to support these interactions, such as astrocytic processes
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enabling four-neuron interactions (Kozachkov et al. (2025)), or dendritic computation Kafraj et al.
(2025), these remain limited in scope and dictate strong constraints on the possible shape of the
energy landscape. To get around the biological implausibility of these models, Krotov and Hopfield
(2021) introduced a two-layer model. In this architecture, the visible neurons correspond to features
of the patterns, while the hidden neurons serve as auxiliary computational elements that mediate com-
plex interactions. Higher-order interactions among visible neurons emerge by selecting appropriate
activation functions for the hidden neurons.

Nevertheless, the two-layer implementation of Krotov and Hopfield has two key limitations. First,
the storage capacity is at most linear in the number of hidden neurons (Krotov (2021); Krotov and
Hopfield (2021)). This is unsatisfactory from the perspective of information storage – one would like
to store as much information as possible while utilizing only a small number of neurons. Second, at
inference time, the network demonstrates a winner-takes-all behavior. This means that the asymptotic
fixed point that the network converges to corresponds to a single hidden neuron being activated, while
the rest of the hidden neurons are inactive. This behavior results in grandmother-like representations
for hidden neurons, as opposed to distributed representations, which are more efficient at storing
information.

Our work tackles these two limitations. Specifically, we present a novel implementation of Dense
Associative Memory that achieves exponential storage capacity in the number of hidden neurons.
This is accomplished with a simple yet critical change: we use a threshold activation function that
does not enforce winner-takes-all dynamics. The threshold activation enables distributed memory
representations—multiple hidden neurons can be active for a memory, and each hidden neuron
can participate in multiple memories. As a result, all possible binary patterns of hidden neuron
states become stable fixed points, enabling the network to store exponentially many memories,
including highly correlated ones. Beyond high capacity, the hidden layer of the network is low-
dimensional compared to the visible layer, yet it produces structured representations that preserve
class-discriminative information, with memories sharing components represented close together in
the hidden activity space. We establish this result through both theoretical analysis and numerical
simulations, and show that the resulting fixed points also possess large basins of attraction.

Our model is closely related to the framework recently proposed by Chandra et al. (2025), which
combines multiple Dense Associative Memory modules to produce a distributed code for the visible
neurons. Each module performs a winner-takes-all operation similar to Krotov and Hopfield (2021),
so only a single hidden neuron is active per module. By combining several modules, though, they
achieve exponential storage capacity. However, we show that multiple modules are unnecessary:
exponential capacity can be achieved with a single module, provided the activation function is chosen
appropriately.

Beyond its biological motivation, our work also connects to a growing body of research on Dense
Associative Memories in machine learning. Notably, it has been shown that Dense Associative
Memory closely corresponds to the attention mechanism in transformer architectures Ramsauer et al.
(2021); Hoover et al. (2023a), offering a principled framework for viewing the transformer’s attention
and feedforward computations as steps in a global energy minimization process. Complementary
research has demonstrated that generative diffusion models, widely used in high-quality image
generation, also exhibit associative memory behavior Hoover et al. (2023b); Ambrogioni (2024);
Pham et al. (2025). Further studies have expanded the model’s functionality: for instance, Chaudhry
et al. (2023) examined its ability to store and retrieve long sequences; Burns and Fukai (2023)
introduced higher-order simplicial interactions; and Dohmatob (2023); Hoover et al. (2025) proposed
alternative energy functions that also support exponential storage capacity. Our results contribute to
this line of work by showing how exponential storage capacity can be achieved within a biologically
plausible two-layer framework, thereby bridging theoretical neuroscience with modern machine
learning architectures.

In the following sections, we first formally define the model and its dynamics and derive the optimal
threshold analytically for a network with fixed weights. We then present a theoretical analysis of
storage capacity and basins of attraction, showing that the network exhibits large basins of attraction,
making recall robust to substantial noise in the visible inputs. Next, we introduce a learning rule for
storing real, correlated memories, enabling compositional memory storage, and present numerical
experiments on MNIST and CIFAR-10 that demonstrate high-capacity recall, structured hidden
representations, and robustness to noise. Finally, we conclude by discussing the biological plausibility
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of the network and potential directions for extending the model to incorporate additional constraints
and more realistic neuronal properties.

2 RESULTS

2.1 MODEL

In this section, we present our model and demonstrate that its storage capacity scales exponentially
with the number of hidden neurons, meaning that all possible binary patterns of hidden neurons are
stable fixed points.

We first define the dynamics of the system as follows:

τv
dvi
dt

= −vi +

Nh∑
µ=1

ξ̃iµΘ(hµ − θ) (1a)

τh
dhµ

dt
= −hµ +

Nv∑
i=1

ξ̃µivi , (1b)

where Θ(·) is the standard Heaviside step function:

Θ(z) =

{
0 if z ≤ 0

1 if z > 0 .
(2)

The parameter θ will be chosen to ensure the stability of all binary patterns in the hidden layer.

The network consists of Nv visible neurons (the vi) and Nh hidden neurons (the hµ), arranged in a
bipartite architecture—i.e., without lateral connections within either layer.

For the following analysis of capacity and basins of attraction, we chose the scaling factors of the
synaptic connections between a visible neuron i and a hidden neuron µ as:

ξ̃iµ =
1√
Nh

ξiµ (3a)

ξ̃µi =

√
Nh

Nv
ξµi (3b)

purely for convenience, as they simplify subsequent expressions. These connections are reciprocal
and randomly drawn from a standard normal distribution:

ξµi = ξiµ ∼ N (0, 1). (4)

2.2 STORAGE CAPACITY

To determine the storage capacity, we’ll first focus on the fixed points of the dynamics given in
Eq. (1). Defining

sµ ≡ Θ(hµ − θ) , (5)

it is straightforward to show that in steady state, sµ satisfies

sµ = Θ

(
Nh∑
ν=1

Jµνsν − θ

)
(6)

where

Jµν ≡ 1

Nv

Nv∑
i=1

ξµiξiν . (7)
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Equation (6), with the weight matrix given in Eq. (7), is very close to the classical Hopfield model;
the only difference is that in the classical model, the ξµi are binary, whereas in our model they’re
Gaussian. However, the classical Hopfield model works in the regime Nv < Nh, with memory
storage possible only if Nv < 0.138Nh(Amit et al. (1985)). Here, though, we’ll consider a very
different regime: Nv ≫ Nh. In this limit, Jµν approaches the identity matrix (Marchenko and Pastur
(1967)), which completely decouples the hidden neurons. Assuming the threshold, θ, is chosen
correctly, this leads immediately to exponential storage capacity.

Exponential capacity clearly holds in the limit Nv → ∞. What happens when Nv is finite? We show
in Appendix A.1 that

Jµν = δµν +
ζµν√
Nv

(8)

where the ζµν are independent, zero-mean, unit-variance Gaussian random variable,

ζµν ∼ N (0, 1) , (9)

and here and in what follows δµν is the Kronecker delta. Thus, Eq. (6) may be written

sµ = Θ

(
sµ +

1√
Nv

Nh∑
ν=1

ζµνsν − θ

)
. (10)

Because the ζµν are independent, the second term in parentheses, qµ, scales as∣∣∣∣∣ 1√
Nv

Nh∑
ν=1

ζµνsν

∣∣∣∣∣ ∼
√√√√ 1

Nv

Nh∑
ν=1

s2ν ≤
√

Nh

Nv
(11)

where the second inequality follows because sν is either 0 or 1.

If we set θ = 1/2, in the limit Nv ≫ Nh Eq. (10) typically has two solutions: one at sµ = 0 and one
at sµ = 1. In fact, the probability that there is only one solution is the probability that |qµ| > 1/2,
which scales at most as e−Nv/2Nh . Thus, even when Nv is only about ten times larger than Nh, and
the threshold is not exactly 1/2, there are approximately 2Nh fixed points. And if we consider fixed
points with, say, at most N of the sµ nonzero, then we only need Nv on the order of 10N , which can
be relatively small.

There are exponentially many fixed points, but are they stable? To answer that, we need to determine
the value of hµ at the fixed points. combining Eq. (1) with the definitions of sµ, Eq. (5), and Jµν ,
Eq. (7), we have

hµ =
∑
ν

Jµνsν . (12)

Since Jµν is approximately the identity matrix, we see that at equilibrium hµ is close to either 0 or 1.
Thus, because our nonlinearity is a step function, its derivative vanishes at equilibrium, guaranteeing
the stability of the fixed points (Appendix A.2). Consequently, when we solve Eq. (1), we expect to
see 2Nh stable fixed points in the regime Nv ≫ Nh. This prediction is consistent with numerical
simulations, as can be seen in Figure 1a.

2.3 BASINS OF ATTRACTION

Although the fixed points are stable, that still leaves the question: how big are the basins of attraction?
Since the hidden units have no structure, we’ll assume that noisy input enters the network via the
visible units, and initially all the hµ are zero. How far from the fixed points can the input be and still
be recalled perfectly?

Assuming the noise is additive, the initial values of the visible and hidden neurons are,

vi(0) =
1√
Nh

Nh∑
µ=1

ξiµΘ(hµ,target − θ) + ϵvi (13a)

hµ(0) = 0 (13b)
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where hµ,target = 1 if neuron µ encodes the target memory, and 0 otherwise (motivated by the fact
that hµ is close to either 0 or 1 at the fixed points; see Eq. (12)).

To reach the target fixed point in both the hidden and visible unit space, the hidden neurons must
evolve to their target values, hµ,target, before the visible units change much. That requires the visible
units to evolve much more slowly than the hidden units, which we can guarantee by setting τh ≪ τv .
With this condition, at a time t satisfying τh ≪ t ≪ τv , hµ(t) reaches equilibrium while vi(t) is still
approximately equal to vi(0). Using Eq. (1a) with dvi/dt = 0 along with Eq. (7), that equilibrium is
given by

hµ(t) =
∑
ν

JµνΘ(hν,target − θ) +

√
Nh

Nv

Nv∑
i=1

ξµiϵ
v
i +O(t/τv) . (14)

Using Eq. (8), we see that the first term is Θ(hµ,target − θ) + O(
√

Nh/Nv). And the second term
scales as σv

√
Nh/Nv where σ2

v is the variance of the noise. Thus, so long as

Var[ϵ] ≪ Nv

Nh
, (15)

hµ(t) will be close to its target value when t ≪ τv . Since vi(t) is close to its target value at that time,
it will stay close, and asymptotically the target pattern will be recovered. Given that Nv ≫ Nh, ϵvi
can be very large without affecting recall. Thus, the basin of attraction is very large (see Figure 1b).

a b

Figure 1: Capacity versus the number of hidden units, Nh, with Nv = 100Nh and τv = 20τh. (a)
Capacity for different thresholds, θ. The highest storage capacity is achieved when the threshold is set
to its optimal theoretical value , θ = 0.5. (b) The effect of noise in the visible layer (ϵvi in Eq. (13a)),
shown for different noise variances, demonstrates the large basin of attraction of the fixed points.

2.4 LEARNING RULE

So far we have focused on storage capacity with fixed synaptic weights. A natural next step is to
understand how these weights can be learned. In this section, we introduce a learning rule that reflects
compositional learning: a small number of simple, reusable components can be combined to form
complex patterns, and conversely, complex patterns can be decomposed into simpler components.

Assuming symmetric weights, ξ̃iµ = ξ̃µi, the steady-state visible activity in Eq. (1) can be expressed
as

v =

Nh∑
µ=1

ξ̃µsµ, (16)

where ξ̃µ is the µ-th column of ξ̃ ∈ RNv×Nh , i.e., (ξ̃µ)i = ξ̃iµ. If only hidden neuron µ is active,
the visible state equals ξ̃µ. A visible memory is thus called basic if it corresponds to a single active
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hidden neuron, and complex if it is formed by the activation of multiple hidden neurons, i.e. a
composition of several basic memories.

The goal of learning is to find a synaptic weight matrix ξ̃ and a threshold θ such that a set of target
memories {vm ∈ RNv}Mm=1 approximately correspond to stable fixed points of the network dynamics,
with M ≫ Nh (e.g., MNIST or CIFAR-10). This is achieved using the following optimization
procedure,

(ξ̃, θ) = argmin
ξ̃,θ

M∑
m=1

∥∥∥vm −
Nh∑
µ=1

ξ̃µ Θ(ξ̃
⊤
µ vm − θ)

∥∥∥2, (17)

where sµ is replaced by its target steady-state value. This learning rule is identical to the one proposed
in Radhakrishnan et al. (2020). We used Xavier initialization for the weights and approximated the
threshold function Θ with a sharp sigmoid to allow gradient-based training.

Figure 2 shows recall results after training on 60,000 MNIST digits with Nv = 784 and Nh = 50.
Despite the high correlation among patterns, the network learns 55,376 unique minima. Variants
of the same digit produce hidden representations that are distinct yet partially overlapping, and the
recalled visible states remain recognizable.

Figure 2: Examples of recall in a network with 50 hidden neurons that memorized 60,000 MNIST
images. Hidden neurons are shown on the ring, and visible neurons are visualized as two-dimensional
images. Red indicates high activity; blue indicates low activity. Highly correlated images of every
digit, for instance, the digit 6 shown here, converge to unique but overlapping hidden representations.
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Figure 3a shows the learned basic memories for the MNIST dataset, which correspond to the columns
of ξ̃. As shown in Figure 3b, these basic memories are nearly orthogonal, consistent with Eq. (8).

Figure 3: a) 20 (out of 50) columns of the learned weight matrix, which serve as basic memories, are
shown as two-dimensional images. b) Correlation matrix of the basic patterns, which correspond to
the hidden units.

To evaluate the generality of the proposed learning rule beyond MNIST, we applied the same
procedure to grayscale-normalized ([0, 1]) images from the CIFAR-10 dataset. In this case, Nv =
1024, and to compensate for the increased complexity of this dataset, we used a network with 500
hidden neurons, compared to 50 hidden neurons for MNIST. Figure 4 presents examples of the cues
alongside their recalls. These results show that the network is able to reconstruct interpretable outputs
from the learned representations, despite storing a large number of complex memories (50,000) and
significantly violating the condition Nv ≫ Nh. Importantly, these images are highly correlated, yet
the network produces 49,988 unique stable minima, with each memory representation being both
stable and interpretable. The learned basic memories for CIFAR-10 images are shown in Figure 5a.
They form a more heterogeneous set, yet remain nearly orthogonal, as shown in Figure 5b.

Finally, to evaluate how well the network preserves class-discriminative information, classifiers were
trained on the recalled hidden and visible representations as well as on the original images, using
both MNIST and CIFAR-10. Both a linear classifier (logistic regression) and a nonlinear multi-
layer perceptron (MLP) with two hidden layers were used. The hidden and visible representations
preserve class information very effectively compared to the original images. Importantly, the lower-
dimensional hidden layer retains this information almost perfectly, demonstrating that its encoding is
structured and meaningful: correlated memories are represented close together and remain classifiable.

Representation MNIST Accuracy CIFAR-10 Accuracy
Linear Nonlinear Linear Nonlinear

Recalled Hidden Patterns 86% 100% 35% 99%
Recalled Visible Patterns 91% 100% 34% 70%

Original Images 94% 100% 34% 66%

Table 1: Classification accuracy of linear (logistic regression) and nonlinear (MLP) classifiers on
recalled hidden and visible representations and original images for MNIST and CIFAR-10. Both
representations preserve class-discriminative information very well compared to the original images.
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Figure 4: Examples of recall in a network with 500 hidden neurons that memorized 50,000 CIFAR-10
images. Hidden neurons are arranged on a ring, while visible neurons are shown as two-dimensional
images. Red indicates high activity, and blue indicates low activity.

Figure 5: 20 (out of 500) learned basic patterns from grayscale CIFAR-10. b) Orthogonality of these
basic patterns, where 0 indicates complete orthogonality. c) Correlation matrix of the basic patterns,
which correspond to the hidden units.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3 CONCLUSION

This work introduces a novel Dense Associative Memory Krotov and Hopfield (2021) that achieves
exponential storage capacity in the number of hidden neurons, overcoming the limitations of previous
two-layer models. By using a threshold activation function, with a theoretically derived threshold, the
network supports distributed hidden representations, allowing each hidden neuron to participate in
multiple memories. This enables compositional storage of complex and correlated patterns, reducing
redundancy while maintaining robust retrieval.

Specifically, the network achieves exponential capacity, 2Nh , using only NhNv parameters. In
contrast, previous two-layer implementations were limited to a maximum capacity of Nh (Krotov and
Hopfield (2021)). As a result, the number of memories per weight grows as 2Nh

NhNv
≈ 2Nh , while in

previous implementations it is at best 1
Nv

. Even for complex datasets such as MNIST and CIFAR-10,
networks with only 50 and 500 hidden units, respectively, were able to store tens of thousands of
highly correlated memories and associate the vast majority of them with unique minima, whereas
previous models could not store more memories than the number of hidden units.

The model is biologically grounded, relying solely on standard pairwise synapses, and its fixed points
have large basins of attraction, ensuring robust recall from noisy inputs. Moreover, the hidden layer
produces low-dimensional representations that preserve class-discriminative information, organizing
memories with shared components close together in the activity space. This structured representation
supports efficient nonlinear decoding that outperforms the raw visible patterns.

Overall, this work establishes a new regime for associative memory, combining high capacity, robust
recall, compositional and interpretable representations, and biological plausibility. It provides a
theoretical foundation for scalable memory systems that bridge neuroscience models and modern
machine learning architectures. Future work will explore the model’s capacity under additional
biological constraints, including sparse connectivity, compliance with Dale’s law, and realistic,
unsaturated neuronal firing rates.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 DISTRIBUTIONAL PROPERTIES OF ζµν

We define the matrix elements

ζµν =
1√
Nv

Nv∑
i=1

ξµiξiν , µ ̸= ν, (18)

where ξµis are randomly drawn from a standard normal distribution, Eq. (4).

Each product ξµiξiν is a zero-mean random variable, since ξµi and ξiν are independent with zero
mean.

By the central limit theorem, the sum of these Nv independent terms converges in distribution to a
Gaussian. Specifically,

√
Nv

(
1

Nv

Nv∑
i=1

ξµiξiν − E[ξµiξiν ]

)
d−→ N (0, 1), (19)

given that E[ξµiξiν ] = 0, and Var[ξµiξiν ] = 1,

ζµν
d−→ N (0, 1). (20)

Now consider the random variable xµ defined as:

xµ =
1√
Nv

Nh∑
ν=1

ζµνsν , (21)

This is a random variable with respect to the index µ with sν fixed. Its variance is given by

Var

[
1√
Nv

Nh∑
ν=1

ζµνsν

]
=

1

Nv

Nh∑
ν=1

s2νVar[ζµν ] =
1

Nv

Nh∑
ν=1

s2ν (22)

where we used the fact that the ζµν are independent random variables with mean 0 and variance 1.

A.2 STABILITY OF THE FIXED POINTS

The stability of fixed points is determined by the Jacobian of the system. Grouping the variables into
(v,h), corresponding to the visible and hidden units respectively, the Jacobian has the block structure

A =

[
Avv Avh

Ahv Ahh

]
.

For the diagonal blocks, consider first the visible units. We have

∂v̇i
∂vj

=

{
−1, j = i,

0, j ̸= i,
⇒ Avv = −INv ,

where INv
is the Nv ×Nv identity matrix. Similarly, for the hidden units,

∂ḣµ

∂hν
=

{
−1, ν = µ,

0, ν ̸= µ,
⇒ Ahh = −INh

,

where INh
is the Nh ×Nh identity matrix.

For the off-diagonal blocks, the derivative of the Heaviside step function in Eq. (2) is zero almost
everywhere,

Θ′(z) = 0, z ̸= 0.
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Therefore, away from threshold crossings (hµ ̸= θ) in Eq. (1a),

∂v̇i
∂hµ

= 0 ⇒ Avh = 0.

The hidden dynamics depend explicitly on the visible variables:

∂ḣµ

∂vi
= ξ̃µi, ⇒ Ahv =

(
ξ̃µi
)
.

Putting everything together, the Jacobian is lower-triangular,

A =

[
−INv 0
Ahv −INh

]
.

The eigenvalues of a triangular matrix are its diagonal entries, which in this case are all equal to −1.
Hence, all fixed points of the dynamics are stable.
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