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ABSTRACT

LLMs are known to store vast amounts of knowledge in their parametric memory.
However, learning and recalling facts from this memory is known to be unreli-
able, depending largely on the prevalence of particular facts in the training data
and other factors which are poorly understood. Practitioners are lacking tools
which will allow them to ensure that the models learn a given body of knowl-
edge reliably and consistently. To this end, we propose Active Reading: a frame-
work where we train models to study a given set of material with self-generated
learning strategies. First, we demonstrate models trained with Active Reading
on expert domains absorb significantly more knowledge than vanilla finetuning
and other data augmentations. We train expert 8B models that achieve 66% on a
Wikipedia-grounded subset of SimpleQA (+313% relative over vanilla finetuning)
and 26% on FinanceBench (+160% relative over vanilla finetuning) by applying
Active Reading to the source documents for each benchmark. Finally, we show
that Active Reading can be utilized at pre-training scale to build more factual
models. As a demonstration of this, we release WikiExpert-8B, a Wikipedia-
expert model trained on 1 trillion generated tokens, which outcompetes models
with hundreds of billions of parameters on factual QA.

1 INTRODUCTION

Large language models (LLMs) have the remarkable ability to store and retrieve a vast amount of
world knowledge in their parameters. However, it is poorly understood how to teach models to
reliably learn and recall facts from this memory. During pretraining, models struggle to learn the
long tail of facts that may appear only sparsely in the pretraining corpora (Kandpal et al., 2023; Wei
et al., 2024). Incorporating new knowledge into models during finetuning has also been shown to
be brittle, leading to increased hallucinations (Gekhman et al., 2024) or memorization without the
ability to manipulate new knowledge (Allen-Zhu & Li, 2024).

While models seem to learn common facts from pretraining, a central challenge in language model
training is how to systematically and scalably teach LLMs to learn facts without relying on incidental
co-occurrence in large-scale web corpora. In this work, we study the question: given a closed
body of knowledge, how can we train models to most effectively internalize the information (e.g.
to approach perfect factual recall)? Rote memorization of training data is neither sufficient nor
desirable for robust knowledge integration. Instead, we aim to promote generalization—that is,
enabling models to internalize facts in a way that supports accurate reasoning, transfer to novel
contexts, and compositional inference.

To that end, we introduce Active Reading, a scalable and human-inspired framework that enables
LLMs to study a given corpus by self-synthesizing data through a diverse set of learning strategies.
While models are typically trained with a sequential pass through the training text, humans actively
study new knowledge to internalize it. Beyond reading a piece of text once, we might imagine
problems to apply a new math theorem to, relate a new fact to what we already know about a per-
son, or understand a concept by explaining it to ourselves in a different way (Brown et al., 2014).
Active Reading applies the same principles to synthesize training data for LLMs by allowing the
model itself to propose multiple study strategies—e.g., paraphrasing, knowledge linking, active re-
call, analogical reasoning—and instantiate these strategies on a per-document basis. Unlike existing
synthetic data generation methods that rely on fixed templates such as question-answer generation or
simple repetition, this process results in a highly diverse and contextually grounded training signal
that emulates the way humans actively engage with new information.
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IEEE Frank Rosenblatt Award

**Create a timeline** of 
the recipients and 
identify any pattern...

**Create a Song or 
Rhyme**, using the names 
of the recipients...

**Use Association** with 
other people or events 
that you are familiar 
with...

2006: Lawrence J. Fogel

2007: ...

(Verse 1) In two thousand 
six, Lawrence Fogel won 
the prize**John J. Hopfield 

(2009)**: John J. 
Hopfield is associated 
with the Hopfield 
network...

Source Document �� Generate learning strategies to 
seed data generation

�� Apply strategies to generate 
diverse synthetic documents

Wikipedia

Figure 1: Active Reading as a two-stage synthetic data generation pipeline. In the first stage, the
model comes up with diverse learning strategies specific to the given document. In the second stage,
strategies are applied independently to generate the self-training data.

First, we show that Active Reading is highly effective at improving factual recall given a closed body
of knowledge (Section 4.1). We achieve state-of-the-art factual recall on SimpleQA by studying the
associated Wikipedia documents (Wei et al., 2024), improving factual recall from 16% to 66% (50%
absolute, 312% relative) compared to naı̈vely finetuning on the documents. We also show that
Active Reading can be used to train expert models in a specific domain of interest such as finance,
improving factual recall by 16% (160% relative) over vanilla finetuning on FinanceBench (Islam
et al., 2023).

We find that Active Reading also exhibits improved scaling trends compared to other synthetic data
generation strategies as we increase data scale (Figure 2). While paraphrasing and synthetic QA
generation plateau in downstream recall performance as we generate more tokens, Active Reading
continues to improve as we generate up to 4B words.

Finally, we push Active Reading to pre-training scale by generating 1 trillion tokens of synthetic
Wikipedia data to train WikiExpert, demonstrating that it can be a viable approach for build-
ing more factual base models. WikiExpert (8B) substantially improves factual accuracy on Sim-
pleQA and NaturalQuestions, outperforming substantially larger models including the 236B param-
eter DeepSeekV2 and 405B parameter Llama 3.1 models and competitive with the state-of-the-art
DeepSeekV3 (671B) model.

Taken together, our results suggest that Active Reading is an effective and scalable method to teach
models knowledge.

As part of this work, we make the following contributions:

• We propose Active Reading, a flexible and scalable pipeline for LLMs to study a corpus
with self-generated learning strategies, enabling more effective fact learning.

• We demonstrate that studying text with Active Reading leads to substantial improvements
(160-312% relative) in factual recall on expert benchmarks and adversarial fact QA tasks,
as well as improved scaling behavior as we scale synthetic data generation up to 4B words.

• We scale Active Reading to 1 trillion tokens of synthetic Wikipedia data, demonstrating
its viability as a pre-training augmentation. We release WikiExpert, the most factual 8B
parameter model to date, and the full 1T-token synthetic dataset to support future research
in factual language modeling.

Together, these contributions offer a step towards building reliably factual language models.

2 RELATED WORK

Knowledge Incorporation. Large pretrained language models (LLMs) have been shown to en-
code substantial world knowledge, effectively acting as implicit knowledge bases (Petroni et al.,
2019; Roberts et al., 2020). Their information storing capacity and ability to use this information
scales with model size (Brown et al., 2020; Tirumala et al., 2022; Morris et al., 2025). It has been
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repeatedly observed that these abilities are inconsistent, and degrade substantially for rare facts (Sun
et al., 2024; Wei et al., 2024; Kandpal et al., 2023). Generally, it is not fully understood how to
teach models new knowledge after pretraining (Zhao et al., 2025; Ren & Sutherland, 2025; Sun
et al., 2025; Lu et al., 2024b; Chang et al., 2024). Simply finetuning on facts, paraphrases, or
documents exhibit limited effectiveness or poor scaling, knowledge conflicts (Sun et al., 2025) or
unintended side effects like hallucination (Kang et al., 2024; Ghosal et al., 2024). AlKhamissi et al.
(2022) presents a comprehensive survey. Our work provides a method to incorporate large amounts
of new knowledge at pretraining data scale, and finds that factors such as data diversity and mixing
in pretraining data are critical to scale knowledge incorporation.

Synthetic Data Generation. Numerous prior works study synthetic data generation for question
answering (Du et al., 2017; Alberti et al., 2019; Lewis et al., 2021). These explicitly target factuality
with a narrow task focus, however do not consider generalization in the context of general purpose
language models. Another line of work, which resulted in the Phi series of models (Gunasekar
et al., 2023; Li et al., 2023b; Abdin et al., 2024a;b), investigates the use of synthetic training for
LLMs for a wider variety of tasks including language understanding, math and reasoning. However,
learning knowledge is an explicit non-goal for this work, and the models do poorly in this area.
For knowledge incorporation, several works try direct paraphrasing to improve factual recall, as
suggested by Allen-Zhu & Li (2024). Ovadia et al. (2024); Maini et al. (2024); Park et al. (2025)
apply this idea at moderate scale. More recently, Yang et al. (2024b) propose synthetic training
using the EntiGraph method, which underperformed synthetic QA but showed better generalization.
Our method is a superset of these specific data generation methods, and we hypothesize that we
outperform them due to increased diversity in generation.

Domain Adaptation Domain adaptation of language models for knowledge-intensive expert do-
mains is a large area of literature in itself (Ling et al., 2023), particularly in medical (Peng et al.,
2019; Lee et al., 2020; Luo et al., 2022; Singhal et al., 2025), financial (Araci, 2019; Liu et al.;
Li et al., 2023a) and legal (Chalkidis et al., 2020; Guha et al., 2023) domains. Most works in this
area focus on curating large domain-specific datasets, with only a few focusing on synthetic data
generation (Yue et al., 2021). Our method is both general, in that it can be applied to any domain,
and specific, in that it naturally adapts to the domain it is applied on, making it unique among prior
domain adaptation methods.

3 ACTIVE READING

The prevailing method used by practitioners to improve factual coverage of a given knowledge
source is simply to increase the mixing weight of that source in the data. However, such passive
repetition is known to have limited effectiveness, since too much repetition causes overfitting without
generalization. Recent work has established that paraphrasing the data can address this issue to some
extent, allowing for more repetition of the target semantic content without overfitting to particular
surface forms (Allen-Zhu & Li, 2024). However, paraphrasing is but one strategy for learning.
Humans often learn by employing several diverse strategies: ranging from active recall, spaced
repetition, asking and answering questions, using diagrams, and many others (Brown et al., 2014).

Some of these strategies might be more effective than others, and may depend on what knowledge we
aim to learn. For instance, one might want to study a historical period by putting events on a timeline.
Abstract mathematical concepts might be more robustly understood with concrete analogies, or
practice problems. Moreover, learning strategies might be complementary, and combining them
might be better than using any one of them in isolation. Instead of trying to engineer the best strategy
for learning facts, we ask the model itself to come up with a diverse set of learning strategies, given
a document we want to study. We then apply each generated strategy to the associated document,
creating multiple diverse augmentations which can then be used to train the model. We refer to this
simple two-stage data generation pipeline as Active Reading, which we illustrate in Figure 1.

While one can think of many ways in which to prompt a model to generate Active Reading strategies,
in this work we instantiate the framework with two prompts. One is a generic prompt which asks
the model to generate strategies to study the given material generally, without any particular appli-
cation in mind (task agnostic). The other is a task-specific prompt, where the model is told what
downstream task it will be evaluated on (e.g. a trivia competition, or expert financial analysis). This
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Table 1: Performance on expert domains. SimpleWikiQA tests general tail knowledge, while Fi-
nanceBench focuses on domain-specific knowledge. The info. subset of FinanceBench consists of
questions which pre-dominantly test for information-extraction, while all corresponds to the perfor-
mance on the whole set of questions.

Model / Method SimpleWikiQA FinanceBench
Model Grader info. all

Llama 3.1 8B Base 7.42 3.93 6.00
repeat (finetune on raw documents) 15.92 18.43 10.49
paraphrase 25.74 43.87 17.64
synth QA 47.87 44.23 17.16
Active Reading (task-agnostic) 63.33 66.18 26.83
Active Reading (task-specific) 66.25 61.49 25.16
paraphrase + synth QA + Active Reading 66.66 64.45 26.12

gold context (Llama 3.1 8B Base) 65.85 84.71 44.36
gold context ceiling (Llama 3.1 70B Instruct) 90.55 92.49 57.43

strategy asks the model to first imagine questions from the downstream task, and then come up with
strategies that would help it master the type of content asked in its self-synthesized questions. This
enables it to generate data that is both (1) more relevant for downstream performance (e.g. focusing
on tail facts for a trivia competition), as well as (2) more diverse, by focusing on specific aspects of
the document at a time. We refer to this as task-specific Active Reading. We provide both prompts
in the Appendix D.3.

Regardless of the particular strategy prompt, the resulting learning strategies from Active Reading
are both diverse and context-specific, providing an advantage over any single fixed strategy. In fact,
we find that Active Reading recovers many of the previously proposed data augmentation strategies,
including paraphrasing (Allen-Zhu & Li, 2024), synthetic question answering (Lewis et al., 2021),
and concept maps (Yang et al., 2024b).

4 APPLICATIONS

We will evaluate Active Reading on two overlapping but distinct use cases.

4.1 EXPERT DOMAIN ADAPTATION

First, we investigate whether Active Reading can be an effective strategy to train expert models
on a given knowledge-intensive domain, such as medical or finance. In this setting, given a set of
documents, we aim to internalize as much knowledge as possible from the documents to solve a
downstream task (e.g., question answering). We use the following benchmarks for this purpose:

FinanceBench (Islam et al., 2023) is a question answering benchmark grounded on financial dis-
closure documents of a number of publicly traded companies. The benchmark consists of 10,231
questions, which are split into categories such as numerical reasoning, logical reasoning, and infor-
mation extraction. Since teaching the model knowledge (rather than reasoning) is the focus of our
work, we focus on the “information extraction” category, but also report overall results.

SimpleWikiQA is a subset of 3,449 questions from the recent adversarially collected factual ques-
tion answering benchmark SimpleQA (Wei et al., 2024), where at least one reference document for
each question is from Wikipedia. Despite the fact that grounding in Wikipedia ensures that the in-
formation has been seen multiple times in the pre-training corpus of every mainstream LLM, the
obscure questions in this benchmark remain challenging for current models. In the expert domain
setting, we use the set of Wikipedia documents from SimpleWikiQA as our training corpus, evaluat-
ing how effectively models can learn tail facts from this small set of documents that have otherwise
proven difficult for models to learn.

4
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Figure 2: Scaling trends with respect
to the number of generated words for
each method. While baseline data aug-
mentation strategies like paraphrasing
and synthetic QA generation plateau in
performance as we scale the amount of
synthetic data, Active Reading leads to
continued gains in downstream QA ac-
curacy up to 4B generated words.

For baselines, we evaluate training on raw documents with simple repetition, paraphrasing and syn-
thetic question generation. We also provide a baseline where we provide the relevant documents as
context to the model (gold setting) in addition to the question, which serves as an upper bound of
performance for this task. We do not consider EntiGraph(Yang et al., 2024b), since it was shown to
underperform synthetic QA (see their Appendix D therein). For prompts and other implementation
details pertaining to baselines, see Appendix D and Appendix A.

For the main experiments in this section, we finetune the Llama3.1 8B base model for 20,000 steps.
We fix the number of tokens generated for each baseline to ∼ 4 billion words. During training, we
mix in 10% of pre-training data from DCLM (Li et al., 2024) to prevent model degradation. For full
training details, see Appendix A.

Results are presented in Table 1. We evaluate the answers of the models using GPT-4o (version
2024-06-01). Compared to the base model performance (Llama 3.1 8B Base), finetuning on the raw
documents (repeat) provides only small gains in downstream QA performance. Training with data
augmentations like paraphrase and synthetic question-answer (synth QA) provides some improve-
ments. Active Reading leads to the strongest factual recall performance on both SimpleWikiQA
and FinanceBench, even matching the gold context baseline on SimpleWikiQA, where the base
model is provided with the documents in context. On FinanceBench, despite good performance on
the information extraction subset, there is still a substantial gap with the gold ceiling on the overall
benchmark, indicating that on questions that require additional reasoning, in-context processing still
outperforms our purely parametric method.

In Figure 2, we show the scaling trends of each method with respect to the size of the generated
data up to 4 billion words. This figure confirms that Active Reading outperforms other methods
across data scales, and maintains a stronger scaling trend, likely due to higher data diversity. In
particular, paraphrasing saturates quickly, likely due to the limited number of ways a model can find
to paraphrase a particular document. While synth QA demonstrates strong performance at smaller
scales, it also plateaus as we scale the number of synthetic tokens.

4.2 FACT LEARNING AT SCALE

How does Active Reading scale as we increase the size of the corpus of knowledge we want the
model to internalize? With a sufficiently scalable approach, one could imagine integrating Active
Reading into large scale pre-training or mid-training training pipelines, with the hope of mastering
domains with large knowledge corpora (e.g. all medical research) or making base models more
factually consistent on a wide set of domains.

To this end, we apply Active Reading on the entirety of Wikipedia, generating 1 trillion tokens by
augmenting 6 million articles. Training on such a large set of (synthetic) data comes with its own
challenges, some of which we go into in the next section.
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4.2.1 SCALING LAWS FOR FACT LEARNING WITH SYNTHETIC DATA
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Figure 3: Effect of distractors in a
fine-tuning setting. Expanding the set
of Wikipedia documents 4x and 16x
leads to substantial degradation of per-
formance on SimpleWikiQA.

The SimpleWikiQA reference document set is a subset of
Wikipedia, covering only about 0.1% of all documents.
When we start expanding this set with more Wikipedia
documents in our Active Reading training set, we un-
surprisingly see declines in SimpleWikiQA performance.
As the pool of documents gets larger, recall of specific
facts decrease. This problem is analogous to scaling is-
sues faced by dense (Piktus et al., 2022) and generative
(Pradeep et al., 2023) retrieval models. In Figure 3, we
expand our training set with 4x and 16x more Wikipedia
documents and see that the degradation of performance is
substantial, even at this moderate scale (less than 2% of
Wikipedia documents).

We find that two major modifications to our training setup
greatly improve the scaling behaviour. First, we modify
hyper-parameters to more closely resemble (continued)
pre-training rather than fine-tuning, by greatly increasing
the learning rate (from 1e − 5 to 3e − 4). Second, we
increase the weight of pre-training data in our data mix.

First, we hypothesized that with the typical learning rates used for fine-tuning (as in the previous
section; Figure 3), the model struggles to allocate enough capacity to learn new facts at scale. In-
creasing the learning rate forces the model out of its local minima, creating more elasticity for
learning. However, the larger learning rate also “breaks” previously learned capabilities, causing
decreased performance on guardrail tasks. To encourage the model to recover previous capabili-
ties, we increase the weight of pre-training data in the data mix. In Figure 4, we plot scaling laws
as we scale up the data size with these changes. We continue training from Llama-3.1-8B on a
data mix of Active Reading-augmented SimpleWikiQA documents (a subset of Wikipedia docu-
ments), Active Reading-augmented Wikipedia, and generic pre-training data. We keep the mixing
ratio of augmented Wikipedia and pre-training data 1:1 and decrease the relative weight of aug-
mented SimpleWikiQA, so that the relative proportion of SimpleWikiQA data varies between 80%
(mostly SimpleWikiQA) to 2.5% (mostly augmented Wikipedia and pre-training data). For the
largest scaling run, we do a total of 200k steps with 2.5% augmented SimpleWikiQA (5k steps),
48.75% augmented Wikipedia (97.5k steps), 48.75% pre-training data (97.5k steps). To keep the
number of gradient steps we do on SimpleWikiQA constant, we increase the total number of steps
as we decrease the relative proportion of SimpleWikiQA. The detailed configurations, details on
training dynamics, and performance arc on guardrail metrics can be found in Appendix B.

As seen in Figure 4b, increasing the relative amount of pre-training data recovers guardrail per-
formance on NaturalQuestions(Kwiatkowski et al., 2019), a Wikipedia-based question answering
benchmark. Surprisingly, we also recover performance on our target task of SimpleWikiQA, even
as we scale down the relative proportion of augmented SimpleWikiQA training data. The poorly
performing intermediate checkpoints still output well-formed and reasonable incorrect answers (e.g.
when asked “Who received the IEEE Frank Rosenblatt Award in 2010?”, the 40% model responds
“geoffrey hinton,” an award winner for another year mentioned in the document). This suggests that
the typical explanation of catastrophic forgetting of underlying model capabilities does not fully ac-
count for the scaling behavior we observe. This poses an interesting question for future work as to
why mixing in pre-training data is beneficial for learning, which we discuss in Section 6.

4.2.2 TRAINING A WIKIPEDIA EXPERT

Based on these scaling experiments, for our final model we train for 4 epochs over 1T tokens of
Active Reading-augmented Wikipedia data and 1T tokens of pretraining data, resulting in 8T tokens
of training. We do not upweight the SimpleWikiQA documents for this run. We refer to this model
as WikiExpert, and evaluate it on 3 factuality benchmarks:

• SimpleQA (Wei et al., 2024), and adversarially collected QA benchmark which measures
the ability of models to recall tail facts from their pre-training data

6
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(a) Scaling behavior on SimpleWikiQA.
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(b) Scaling behavior on NaturalQuestions (guardrail
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Figure 4: Continued pre-training as we decrease the proportion of SimpleWikiQA training data
from 80% to 2.5% by scaling up the amount of Active Reading Wikipedia and pretraining data.
We compare the finetuning baseline (Finetune with lr=1e-5, 100% Active Reading SimpleWik-
iQA data) against different amounts of Active Reading-augmented SimpleWikiQA, Active Reading-
augmented Wikipedia, and pretraining data with a higher learning rate (3e-4). We keep the number
of steps on augmented SimpleWikiQA fixed at 5000 but increase the relative amount of augmented
Wikipedia and pretraining data, so that the proportion of SimpleWikiQA varies from 80% to 2.5%.
Surprisingly, when we increase the relative amount of pretraining data, we not only recover guardrail
performance, but also recover the original performance on SimpleWikiQA despite doing the same
number of steps on this data.

• NaturalQuestions (NQ) (Kwiatkowski et al., 2019), a popular Wikipedia-based question
answering benchmark which covers a more natural distribution of facts

• TriviaQA (Joshi et al., 2017), a question answering dataset sourced from trivia websites

We summarize results for each benchmark in Table 2. For tail-fact recall as measured by Sim-
pleQA, we see that WikiExpert improves over it’s base model by 222% (7.2 → 23.5), outperforms
much larger models including the 236 billion parameter DeepSeekV2 and the 405 billion parame-
ter Llama 3.1 models, and is competitive with the state-of-the-art DeepSeekV3 (671B) model. On
non-adversarial factual QA benchmarks, WikiExpert also improves over its base model (7.6% on
NQ and 6.5% on TQA), approaching the performance of a SoTA 72B model. These results suggest
that Active Reading is a scalable approach for learning knowledge and has the potential to be useful
more broadly in pre-training or mid-training pipelines.

5 ANALYSIS

5.1 UNDERSTANDING ACTIVE READING DATA

What accounts for the difference between data generated by Active Reading and those generated by
other synthetic data generation methods—i.e., why is it so much more effective to learn with Active
Reading?

First, we investigate whether different methods differ in their coverage of the answers in SimpleWik-
iQA. One hypothesis for why Active Reading is more effective is that generating long-form synthetic
documents incorporates knowledge from the source documents more comprehensively, whereas
methods like synthetic QA may only help the model to answer a test question correctly if it happens
to generate the exact question during data generation. We sample a subset of 100 SimpleWikiQA
questions and ask a Llama 3.1 70B Instruct model to judge whether the question is answerable from
each synthetic document chunk generated from the source document for that question. In Figure 5,
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Table 2: Performance comparison across
factual QA benchmarks: SimpleQA,
Natural Questions (NQ) and TriviaQA
(TQA). Qwen and DeepSeek numbers are
reported at https://github.com/
deepseek-ai/DeepSeek-V3.

Model SimpleQA NQ TQA
Llama 8B 7.3 29.0 64.3
WikiExpert-8B 23.5 31.2 68.5

Qwen2.5 72B 9.1 33.2 71.9
DeepSeekV2 236B 10.2 38.6 80.0
Llama 405B 17.1 41.5 82.7
DeepSeekV3 671B 24.9 40.0 82.9

Table 3: Impact of scaling size of the trained
model and data-generating model.

Model SimpleQA
Llama 8B Base 7.42

with 8B-generated data 66.25
with 70B-generated data 62.26

Llama 70B Base 75.76
with 8B-generated data 71.52
with 70B-generated data 77.14

we plot the fraction of answerable questions (i.e. at least one document contains the answer) as we
increase the number of synthetic documents, corresponding to training with more synthetic tokens.
Synthetic QA data exhibit the highest coverage, despite underperforming Active Reading. Gener-
ally, the differences between methods are small, and most questions are answerable after generating
75 document chunks (corresponding to approximately 1M to 2M total generated words on Figure 2).
Therefore, we conclude that the differences between the methods are not primarily accounted for by
coverage of the target answers.

We hypothesize that Active Reading data is more effective because it is more diverse, which may
improve knowledge incorporation and learning. We quantify the diversity of the data by measuring
Self-BLEU (Zhu et al., 2018), considering each synthetic document as the hypothesis and all other
synthetic document as the references and averaging these BLEU scores. Lower self-BLEU scores
indicate more diversity (less n-gram overlap) between different synthetic data samples for the same
source document. In Figure 6, we compare self-BLEU for 100 sampled source documents as we
increase the number of synthetic words generated. As we generate more synthetic tokens, we expect
to see self-BLEU scores increase, as it becomes more likely that we generate repetitions of the
same way to study the content. Even with few synthetic augmentations per source document, data
generated from synthetic QA and paraphrasing is highly self-similar, while data generated by both
Active Reading methods is more diverse. Task-specific Active Reading is also more diverse than
task-agnostic, aligning with the improved scaling properties that we observe.

5.2 SCALING MODEL SIZE

We investigate the impact of scaling model size on performance by additionally training and gener-
ating data with 70B models. We show the performance of task-specific Active Reading in Table 3
as we scale model size. Surprisingly, training the 8B model with data generated by the 70B model
does not outperform using self-generated data, despite intuitions that 70B-generated data may be
more diverse or higher quality. One hypothesis is that training on data that is closer to the model’s
existing comprehension capabilities and knowledge leads to better learning (i.e. not too challenging
or out-of-distribution for the model), and perhaps that it may important to generate the data from the
exact model itself. We leave these hypotheses as directions for future work to investigate.

6 DISCUSSION & CONCLUSION

Understanding the role of pretraining data in knowledge acquisition. In Figure 4, we found
that mixing in a large amount of pretraining data was necessary to recover performance on Sim-
pleWikiQA. We kept the number of steps on SimpleWikiQA fixed, decreasing the proportion of this
data as we increase the pretraining weight. This poses a question for future work as to why mixing
in pre-training data helps with knowledge acquisition: is it because we recover some underlying
capability of the base model that is important for task performance, or because some feature of di-
verse pre-training data induces more “plasticity,” making the model more amenable to absorbing

8
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Figure 6: Diversity of data synthesized by differ-
ent methods, measured with self-BLEU between
synthetic data documents for the same source
document. We observe that the more effective
methods generally exhibit higher data diversity.

or organizing new knowledge (e.g., by reversing knowledge entropy decay (Kim et al., 2024)?).
Understanding the properties of pre-training that lead to robust knowledge acquisition may enable
practitioners to train models that master any domain of interest, and may be a key milestone towards
lifelong learning settings where the model continually acquires new knowledge.

Parametric knowledge vs. retrieval-augmented generation. A common approach to improving
factuality, particularly on rare domains and tail queries, is retrieval augmented generation (RAG). In
this work, we have opted to focus on the closed-book setting. However, the “gold-context” baselines
provide a sense of the performance of a RAG system with an oracle retrieval. Modern RAG systems
are reported to perform close to this oracle baseline on the benchmarks we evaluated in this work.
Therefore our results suggest that there is still a substantial gap between the RAG setting and what
the best methods can achieve with parametric updates.

Nevertheless, there are numerous advantages to improving parametric model knowledge (vs. using
an external knowledge index). Practically, RAG pipelines are considerably more complex, with
larger storage cost, higher memory and compute requirements (due to longer context demanded
by additional context) and higher latency, due to the need to query an external index. In the long
term, storing knowledge natively in the model’s parameters may provide generalization advantages,
as the model can relate different pieces of knowledge in its parameters. For example, it is clear a
coding model that operates primarily by retrieving similar problems is fundamentally limited in its
capabilities. This is also particularly apparent for complex or indirect queries, where simple retrieval
augmentation falls short (Yang et al., 2024a). We believe integrating our method with more powerful
reasoning models can make progress in these areas.

Scaling up Active Reading as a training paradigm. Our scaling results suggest that Active Read-
ing has potential to be scaled up as a standard pre-training or mid-training procedure. One could
imagine augmenting training data with Active Reading by default— ensuring the model always
“studies” new information in diverse enough contexts for learning, and providing a solution to con-
cerns that pre-training is increasingly limited by data scale (Villalobos et al., 2024).

What would be needed to get to 100% recall on all facts (that we care about) in the pre-training
data? Whether or not LLMs can eventually replace search engines seems to be a recurring question
(Tay et al., 2022; Bevilacqua et al., 2022). Recent work (Lu et al., 2024a) has suggested that this
is an altogether infeasible goal. The capacity of LLMs to store facts with respect to the number
of parameters remains an open area of research. Architectures which allow scaling this capacity
without increasing FLOPs would be of particular interest in studying these scaling laws (Shazeer
et al., 2017; Berges et al., 2024).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024a.
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A TRAINING DETAILS

The training runs from Table 1 and Figure 2 had the following hyperparameters: Trained for 20,000
steps, total batch size of 128 and sequence length of 4,096 with a constant learning rate of 10−5. We
report the performance of the best checkpoint after 20,000 steps, evaluating every 2,000 steps.

The training data for the repeat method is the raw documents. For the scaling experiments,
we generated approximately 4 billion words for each method. The actual word count was:
3,486,858,220 for paraphrasing, 3,694,833,139 for synthetic QA, 4,000,262,090 for active read-
ing task-agnostic and 4,000,330,802 for active reading task-specific. For Figure 2, each dataset was
subsampled from 4B generated words to the indicated number of words. In all runs, we mix in
10% of pre-training data from DCLM (Li et al., 2024), although we did not find it strictly neces-
sary to prevent model degradation at the scale of these experiments and performance improves on
SimpleWikiQA by a couple of percentage points if we do not mix pre-training data.

B SCALING LAW TRAINING CONFIGURATIONS

For Figure 4, we use the following hyperparameters for each method. We vary the proportions
of Active Reading-augmented SimpleWikiQA documents, Active Reading-augmented Wikipedia
documents, and generic pretraining data by varying the mixing weights. For all methods, we use a
sequence length of 4096 and batch size of 4,194,304 tokens.
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Table 4: Hyperparameters for scaling law experiments.

Finetune 80% 40% 20% 10% 5% 2.5%

Learning Rate 1e-5 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Weight AR SimpleWikiQA 100 755.2 125.87 47.20 20.98 9.94 4.84
Weight AR Wikipedia 0 94.4 94.4 94.4 94.4 94.4 94.4
Weight Pretraining 0 94.4 94.4 94.4 94.4 94.4 94.4
% AR SimpleWikiQA 100% 80% 40% 20% 10% 5% 2.50%
% AR Wikipedia 0 10% 30% 40% 45% 47.50% 48.75%
% Pretraining 0 10% 30% 40% 45% 47.50% 48.75%
# Steps on SimpleWikiQA 5000 5000 5000 5000 5000 5000 5000
# Total Steps 5000 6250 12500 25000 50000 100000 200000
Total Tokens 2.10E+10 2.62E+10 5.24E+10 1.05E+11 2.10E+11 4.19E+11 8.39E+11

Table 5: Benchmark performance of WikiExpert 8B and Llama3.1 8B on guardrail tasks

Model OBQA PIQA HellaS. Winog. ARC-e RACE-m MMLU BOOLQ GSM8k MBPP

WikiExpert 8B 44.4 81.3 80.5 75.1 78.4 64.7 65.5 83.1 48.6 39.4
LlaMA3.1 8B 45.8 81.0 80.7 74.3 81.5 65.3 66.4 83.4 54.4 48.0

Figure 7: Drop and recovery of performance for guardrail task HellaSwag, mirroring the drop and
recovery on NaturalQuestions seen in Figure 4b.

C PERFORMANCE OF WIKIEXPERT ON GUARDRAIL TASKS

D GENERATION PROMPTS

For all generation, {chunk} is replaced by the corresponding document that we are trying to aug-
ment.

D.1 PARAPHRASING

Use the information in the following snippet to write an informational
paragraph in your own words. Make sure to cover all the information,
including all entities, dates and places in the original document. Do
not add additional material. Directly output the paragraph and nothing
else, e.g. do not say "Here’s the paragraph".

<document>
{chunk}
</document>

D.2 SYNTHETIC QUESTION ANSWER
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Generate a comprehensive list of all questions and corresponding answers
that can be answered from this document.
Make sure all entities (including people, dates and locations) are
covered.

Output one question-answer pair per line, answer seperated from the
question by a single space. Questions should be unambiguous, have proper
capitalization and a question mark. The answers should be as concise as

possible. Do not output anything additional, only output question-answer
pairs (do not start with "Here are the questions and ...").

Example lines of output:
What is the native range of the European fan worm? The northeastern
Atlantic Ocean, the North Sea and the Mediterranean Sea.
What countries are in the European fan worm’s native range? The United
Kingdom, Ireland, France, Spain, Portugal, Italy, Greece, and Turkey.
Is the European fan worm found in South America? Yes.
(...)

<document>
{chunk}
</document>

D.3 ACTIVE READING

For active reading, in addition to {chunk} the model is given a strategy. In the following prompt,
{strategy} is replaced an active reading strategy. The prompts used to create the strategy are in
Section D.3.1 and D.3.2

Here’s a learning strategy:
{strategy}

Apply this strategy to the following document:
<document>
{chunk}
</document>

D.3.1 TASK AGNOSTIC STRATEGY GENERATION

Consider the following document. What are some strategies specific to
this document that I can use to help me learn and remember all of the
information contained? Use markdown and prefix each strategy with ##

<document>
{chunk}
</document>

D.3.2 TASK-SPECIFIC STRATEGY GENERATION

I need to study for a trivia competition. Generate a list of questions
that covers every piece of information in this document. After generating
all the questions, for each question, generate a general study strategy

or prompt that would help me memorize that kind of information (without
focusing too much on the particular question). The prompt should outline
a detailed set of guidelines or step-by-step for how I should rehearse or
exercise the information to most effectively internalize it.

Output all the questions, then <start_strategies>, then all the
strategies. Prefix each strategy with a ##.

<document>
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810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

{chunk}
</document>
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