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ABSTRACT

Most existing Image Restoration (IR) models are task-specific, which can not be
generalized to different degradation operators. In this work, we propose the De-
noising Diffusion Null-Space Model (DDNM), a novel zero-shot framework for
arbitrary linear IR problems, including but not limited to image super-resolution,
colorization, inpainting, compressed sensing, and deblurring. DDNM only needs
a pre-trained off-the-shelf diffusion model as the generative prior, without any ex-
tra training or network modifications. By refining only the null-space contents
during the reverse diffusion process, we can yield diverse results satisfying both
data consistency and realness. We further propose an enhanced and robust version,
dubbed DDNM+, to support noisy restoration and improve restoration quality for
hard tasks. Our experiments on several IR tasks reveal that DDNM outperforms
other state-of-the-art zero-shot IR methods. We also demonstrate that DDNM+

can solve complex real-world applications, e.g., old photo restoration.

1 INTRODUCTION

(a) Robust to arbitrary scales with realness and strict data consistency (b) Diverse tasks with diverse results

(c) Robust to synthetic/real-world noise (d) Flexible in solving complex degradations
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Figure 1: We use DDNM+ to solve various image restoration tasks in a zero-shot way. Here we
show some of the results that best characterize our method, where y is the input degraded image and
x0 represents the restoration result. Part (a) shows the results of DDNM+ on image super-resolution
(SR) from scale 2× to extreme scale 256×. Note that DDNM+ assures strict data consistency. Part
(b) shows multiple results of DDNM+ on inpainting and colorization. Part (c) shows the results
of DDNM+ on SR with synthetic noise and colorization with real-world noise. Part (d) shows the
results of DDNM+ on old photo restoration. All the results here are yielded in a zero-shot way.

*Equal contribution. † Corresponding author. Code is available at https://github.com/wyhuai/DDNM. This
work was supported in part by Shenzhen Research Project under Grant JCYJ20220531093215035 and Grant
JSGGZD20220822095800001.
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Image Restoration (IR) is a long-standing problem due to its extensive application value and its ill-
posed nature (Richardson, 1972; Andrews & Hunt, 1977). IR aims at yielding a high-quality image
x̂ from a degraded observation y = Ax+n, where x stands for the original image and n represents
a non-linear noise. A is a known linear operator, which may be a bicubic downsampler in image
super-resolution, a sampling matrix in compressed sensing, or even a composite type. Traditional
IR methods are typically model-based, whose solution can be usually formulated as:

x̂ = argmin
x

1

2σ2
||Ax− y||22 + λR(x). (1)

The first data-fidelity term 1
2σ2 ||Ax−y||22 optimizes the result toward data consistency while the sec-

ond image-prior term λR(x) regularizes the result with formulaic prior knowledge on natural image
distribution, e.g., sparsity and Tikhonov regularization. Though the hand-designed prior knowledge
may prevent some artifacts, they often fail to bring realistic details.

The prevailing of deep neural networks (DNN) brings new patterns of solving IR tasks (Dong et al.,
2015), which typically train an end-to-end DNN Dθ by optimizing network parameters θ following

argmin
θ

N∑
i=1

||Dθ(yi)− xi||22, (2)

where N pairs of degraded image yi and ground truth image xi are needed to learn the mapping
from y to x directly. Although end-to-end learning-based IR methods avoid explicitly modeling
the degradation A and the prior term in Eq. 1 and are fast during inference, they usually lack in-
terpretation. Some efforts have been made in exploring interpretable DNN structures (Zhang &
Ghanem, 2018; Zhang et al., 2020), however, they still yield poor performance when facing domain
shift since Eq. 2 essentially encourage learning the mapping from yi to xi. For the same reason,
the end-to-end learning-based IR methods usually need to train a dedicated DNN for each specific
task, lacking generalizability and flexibility in solving diverse IR tasks. The evolution of generative
models (Goodfellow et al., 2014; Bahat & Michaeli, 2014; Van Den Oord et al., 2017; Karras et al.,
2019; 2020; 2021) further pushes the end-to-end learning-based IR methods toward unprecedented
performance in yielding realistic results (Yang et al., 2021; Wang et al., 2021; Chan et al., 2021;
Wang et al., 2022). At the same time, some methods (Menon et al., 2020; Pan et al., 2021) start to
leverage the latent space of pretrained generative models to solve IR problems in a zero-shot way.
Typically, they optimize the following objective:

argmin
w

1

2σ2
||AG(w)− y||22 + λR(w), (3)

where G is the pretrained generative model, w is the latent code, G(w) is the corresponding gener-
ative result and R(w) constrains w to its original distribution space, e.g., a Gaussian distribution.
However, this type of method often struggles to balance realness and data consistency.

The Range-Null space decomposition (Schwab et al., 2019; Wang et al., 2023) offers a new perspec-
tive on the relationship between realness and data consistency: the data consistency is only related to
the range-space contents, which can be analytically calculated. Hence the data term can be strictly
guaranteed, and the key problem is to find proper null-space contents that make the result satisfy-
ing realness. We notice that the emerging diffusion models (Ho et al., 2020; Dhariwal & Nichol,
2021) are ideal tools to yield ideal null-space contents because they support explicit control over the
generation process.

In this paper, we propose a novel zero-shot solution for various IR tasks, which we call the Denoising
Diffusion Null-Space Model (DDNM). By refining only the null-space contents during the reverse
diffusion sampling, our solution only requires an off-the-shelf diffusion model to yield realistic and
data-consistent results, without any extra training or optimization nor needing any modifications
to network structures. Extensive experiments show that DDNM outperforms state-of-the-art zero-
shot IR methods in diverse IR tasks, including super-resolution, colorization, compressed sensing,
inpainting, and deblurring. We further propose an enhanced version, DDNM+, which significantly
elevates the generative quality and supports solving noisy IR tasks. Our methods are free from
domain shifts in degradation modes and thus can flexibly solve complex IR tasks with real-world
degradation, such as old photo restoration. Our approaches reveal a promising new path toward
solving IR tasks in zero-shots, as the data consistency is analytically guaranteed, and the realness
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is determined by the pretrained diffusion models used, which are rapidly evolving. Fig. 1 provides
some typical applications that fully show the superiority and generality of the proposed methods.

Contributions. (1) In theory, we reveal that a pretrained diffusion model can be a zero-shot solver
for linear IR problems by refining only the null-space during the reverse diffusion process. Corre-
spondingly, we propose a unified theoretical framework for arbitrary linear IR problems. We further
extend our method to support solving noisy IR tasks and propose a time-travel trick to improve the
restoration quality significantly; (2) In practice, our solution is the first that can decently solve di-
verse linear IR tasks with arbitrary noise levels, in a zero-shot manner. Furthermore, our solution
can handle composite degradation and is robust to noise types, whereby we can tackle challenging
real-world applications. Our proposed DDNMs achieve state-of-the-art zero-shot IR results.

2 BACKGROUND

2.1 REVIEW THE DIFFUSION MODELS

We follow the diffusion model defined in denoising diffusion probabilistic models (DDPM) (Ho
et al., 2020). DDPM defines a T -step forward process and a T -step reverse process. The forward
process slowly adds random noise to data, while the reverse process constructs desired data samples
from the noise. The forward process yields the present state xt from the previous state xt−1:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) i.e., xt =

√
1− βtxt−1 +

√
βtϵ, ϵ ∼ N (0, I),

(4)
where xt is the noised image at time-step t, βt is the predefined scale factor, and N represents the
Gaussian distribution. Using reparameterization trick, it becomes

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) with αt = 1− βt, ᾱt =

t∏
i=0

αi. (5)

The reverse process aims at yielding the previous state xt−1 from xt using the posterior distribution
p(xt−1|xt,x0), which can be derived from the Bayes theorem using Eq. 4 and Eq. 5:

p(xt−1|xt,x0) = q(xt|xt−1)
q(xt−1|x0)

q(xt|x0)
= N (xt−1;µt(xt,x0), σ

2
t I), (6)

with the closed forms of mean µt(xt,x0)=
1√
αt

(
xt − ϵ 1−αt√

1−ᾱt

)
and variance σ2

t=
1−ᾱt−1

1−ᾱt
βt. ϵ

represents the noise in xt and is the only uncertain variable during the reverse process. DDPM uses
a neural network Zθ to predict the noise ϵ for each time-step t, i.e., ϵt = Zθ(xt, t), where ϵt denotes
the estimation of ϵ at time-step t. To train Zθ, DDPM randomly picks a clean image x0 from the
dataset and samples a noise ϵ ∼ N (0, I), then picks a random time-step t and updates the network
parameters θ in Zθ with the following gradient descent step (Ho et al., 2020):

∇θ||ϵ−Zθ(
√
ᾱtx0 + ϵ

√
1− ᾱt, t)||22. (7)

By iteratively sampling xt−1 from p(xt−1|xt,x0), DDPM can yield clean images x0∼q(x) from
random noises xT∼N (0, I), where q(x) represents the image distribution in the training dataset.

2.2 RANGE-NULL SPACE DECOMPOSITION

For ease of derivation, we represent linear operators in matrix form and images in vector form. Note
that our derivations hold for all linear operators. Given a linear operator A ∈ Rd×D, its pseudo-
inverse A† ∈ RD×d satisfies AA†A ≡ A. There are many ways to solve the pseudo-inverse A†,
e.g., the Singular Value Decomposition (SVD) is often used to solve A† in matrix form, and the
Fourier transform is often used to solve the convolutional form of A†.

A and A† have some interesting properties. A†A can be seen as the operator that projects samples
x ∈ RD×1 to the range-space of A because AA†Ax ≡ Ax. In contrast, (I−A†A) can be seen as
the operator that projects samples x to the null-space of A because A(I−A†A)x ≡ 0.

Interestingly, any sample x can be decomposed into two parts: one part is in the range-space of A
and the other is in the null-space of A, i.e.,

x ≡ A†Ax+ (I−A†A)x. (8)
This decomposition has profound significance for linear IR problems, which we will get to later.
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3 METHOD

3.1 DENOISING DIFFUSION NULL-SPACE MODEL

Null-Space Is All We Need. We start with noise-free Image Restoration (IR) as below:

y = Ax, (9)

where x ∈ RD×1, A ∈ Rd×D, and y ∈ Rd×1 denote the ground-truth (GT) image, the linear degra-
dation operator, and the degraded image, respectively. Given an input y, IR problems essentially
aim to yield an image x̂ ∈ RD×1 that conforms to the following two constraints:

Consistency : Ax̂ ≡ y, Realness : x̂ ∼ q(x), (10)

where q(x) denotes the distribution of the GT images.

For the Consistency constraint, we can resort to range-null space decomposition. As discussed in
Sec. 2.2, the GT image x can be decomposed as a range-space part A†Ax and a null-space part
(I − A†A)x. Interestingly, we can find that the range-space part A†Ax becomes exactly y after
being operated by A, while the null-space part (I−A†A)x becomes exactly 0 after being operated
by A, i.e., Ax ≡ AA†Ax+A(I−A†A)x ≡ Ax+ 0 ≡ y.

More interestingly, for a degraded image y, we can directly construct a general solution x̂ that
satisfies the Consistency constraint Ax̂ ≡ y, that is x̂ = A†y+(I−A†A)x̄. Whatever x̄ is, it does
not affect the Consistency at all. But x̄ determines whether x̂ ∼ q(x). Then our goal is to find a
proper x̄ that makes x̂ ∼ q(x). We resort to diffusion models to generate the null-space (I−A†A)x̄
which is in harmony with the range-space A†y.

Refine Null-Space Iteratively. We know the reverse diffusion process iteratively samples xt−1

from p(xt−1|xt,x0) to yield clean images x0 ∼ q(x) from random noises xT ∼ N (0, I). However,
this process is completely random, and the intermediate state xt is noisy. To yield clean intermediate
states for range-null space decomposition, we reparameterize the mean µt(xt,x0) and variance σ2

t
of distribution p(xt−1|xt,x0) as:

µt(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, σ2

t =
1− ᾱt−1

1− ᾱt
βt, (11)

where x0 is unknown, but we can reverse Eq. 5 to estimate a x0 from xt and the predicted noise
ϵt = Zθ(xt, t). We denote the estimated x0 at time-step t as x0|t, which can be formulated as:

x0|t =
1√
ᾱt

(
xt −Zθ(xt, t)

√
1− ᾱt

)
. (12)

Note that this formulation is equivalent to the original DDPM. We do this because it provides a
“clean” image x0|t (rather than noisy image xt). To finally yield a x0 satisfying Ax0 ≡ y, we fix
the range-space as A†y and leave the null-space unchanged, yielding a rectified estimation x̂0|t as:

x̂0|t = A†y + (I−A†A)x0|t. (13)

Hence we use x̂0|t as the estimation of x0 in Eq. 11, thereby allowing only the null space to partici-
pate in the reverse diffusion process. Then we yield xt−1 by sampling from p(xt−1|xt, x̂0|t):

xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂0|t +

√
αt(1− ᾱt−1)

1− ᾱt
xt + σtϵ, ϵ ∼ N (0, I). (14)

Roughly speaking, xt−1 is a noised version of x̂0|t and the added noise erases the disharmony
between the range-space contents A†y and the null-space contents (I − A†A)x0|t. Therefore,
iteratively applying Eq. 12, Eq. 13, and Eq. 14 yields a final result x0∼q(x). Note that all the
rectified estimation x̂0|t conforms to Consistency due to the fact that

Ax̂0|t ≡ AA†y +A(I−A†A)x0|t ≡ AA†Ax+ 0 ≡ Ax ≡ y. (15)

Considering x0 is equal to x̂0|1, so the final result x0 also satisfies Consistency. We call the pro-
posed method the Denoising Diffusion Null-Space Model (DDNM) because it utilizes the denoising
diffusion model to fill up the null-space information.
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Algorithm 1 Sampling of DDNM
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do

3: x0|t = 1√
ᾱt

(
xt − Zθ(xt, t)

√
1 − ᾱt

)
4: x̂0|t = A†y + (I − A†A)x0|t
5: xt−1 ∼ p(xt−1|xt, x̂0|t)

6: return x0

Algorithm 2 Sampling of DDNM+

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: L = min{T − t, l}
4: xt+L ∼ q(xt+L|xt)
5: for j = L, ..., 0 do
6: x0|t+j = 1√

ᾱt+j

(
xt+j − Zθ(xt+j , t + j)

√
1 − ᾱt+j

)
7: x̂0|t+j = x0|t+j − Σt+jA

†(Ax0|t+j − y)

8: xt+j−1 ∼ p̂(xt+j−1|xt+j , x̂0|t+j)

9: return x0

A†y

xT ... x0^
xt

x0|t μt

σt ϵ
⊕ xt-1

(I - A†A)x0|t 

A†Ax0|t x0|t⊕ ^

p

...

(a) (b) 

xt+l

xt

...
xt-1Time-Travel

q

Figure 2: Illustration of (a) DDNM and (b) the time-travel trick.

Algo. 1 and Fig. 2(a) show the whole reverse diffusion process of DDNM. For ease of understanding,
we visualize the intermediate results of DDNM in Appendix G. By using a denoising network Zθ

pre-trained for general generative purposes, DDNM can solve IR tasks with arbitrary forms of linear
degradation operator A. It does not need task-specific training or optimization and forms a zero-shot
solution for diverse IR tasks.

It is worth noting that our method is compatible with most of the recent advances in diffusion models,
e.g., DDNM can be deployed to score-based models (Song & Ermon, 2019; Song et al., 2020) or
combined with DDIM (Song et al., 2021a) to accelerate the sampling speed.

3.2 EXAMPLES OF CONSTRUCTING A AND A†

Typical IR tasks usually have simple forms of A and A†, some of which are easy to construct by
hand without resorting to complex Fourier transform or SVD. Here we introduce three practical
examples. Inpainting is the simplest case, where A is the mask operator. Due to the unique property
that AAA ≡ A, we can use A itself as A†. For colorization, A can be a pixel-wise operator[
1
3

1
3

1
3

]
that converts each RGB channel pixel [r g b]

⊤ into a grayscale value
[
r
3 + g

3 + b
3

]
.

It is easy to construct a pseudo-inverse A† = [1 1 1]
⊤ that satisfies AA† ≡ I. The same idea

can be used for SR with scale n, where we can set A ∈ R1×n2

as the average-pooling operator[
1
n2 ... 1

n2

]
that averages each patch into a single value. Similarly, we can construct its pseudo-

inverse as A† ∈ Rn2×1 = [1 ... 1]
⊤. We provide pytorch-like codes in Appendix E.

Considering A as a compound operation that consists of many sub-operations, i.e., A = A1...An,
we may still yield its pseudo-inverse A† = A†

n...A
†
1. This provides a flexible solution for solving

complex IR tasks, such as old photo restoration. Specifically, we can decompose the degradation
of old photos as three parts, i.e., A = A1A2A3, where A3 is the grayscale operator, A2 is the
average-pooling operator with scale 4, and A1 is the mask operator defined by the damaged areas
on the photo. Hence the pseudo-inverse is A† = A†

3A
†
2A

†
1. Our experiments show that these

hand-designed operators work very well (Fig. 1(a,b,d)).

3.3 ENHANCED VERSION: DDNM+

DDNM can solve noise-free IR tasks well but fails to handle noisy IR tasks and yields poor Realness
in the face of some particular forms of A†. To overcome these two limits, as described by Algo. 2,
we propose an enhanced version, dubbed DDNM+, by making the following two major extensions
to DDNM to enable it to handle noisy situations and improve its restoration quality.

Scaling Range-Space Correction to Support Noisy Image Restoration We consider noisy IR
problems in the form of y=Ax + n, where n∈Rd×1∼N (0, σ2

yI) represents the additive Gaussian
noise and Ax represents the clean measurement. Applying DDNM directly yields

x̂0|t = A†y + (I−A†A)x0|t = x0|t −A†(Ax0|t −Ax) +A†n, (16)
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where A†n ∈ RD×1 is the extra noise introduced into x̂0|t and will be further introduced into xt−1.
A†(Ax0|t−Ax) is the correction for the range-space contents, which is the key to Consistency. To
solve noisy image restoration, we propose to modify DDNM (on Eq. 13 and Eq. 14) as:

x̂0|t = x0|t −ΣtA
†(Ax0|t − y), (17)

p̂(xt−1|xt, x̂0|t) = N (xt−1;µt(xt, x̂0|t),ΦtI). (18)

Σt ∈ RD×D is utilized to scale the range-space correction A†(Ax0|t−y) and Φt ∈ RD×D is used
to scale the added noise σtϵ in p(xt−1|xt, x̂0|t). The choice of Σt and Φt follows two principles: (i)
Σt and Φt need to assure the total noise variance in xt−1 conforms to the definition in q(xt−1|x0)
(Eq. 5) so the total noise can be predicted by Zθ and gets removed; (ii) Σt should be as close as
possible to I to maximize the preservation of the range-space correction A†(Ax0|t − y) so as to
maximize the Consistency. For SR and colorization defined in Sec.3.2, A† is copy operation. Thus
A†n can be approximated as a Gaussian noise N (0, σ2

yI), then Σt and Φt can be simplified as

Σt = λtI and Φt = γtI. Since xt−1 =
√
ᾱt−1βt

1−ᾱt
x̂0|t +

√
αt(1−ᾱt−1)

1−ᾱt
xt + σtϵ, principle (i) is

equivalent to: (atλtσy)
2 + γt ≡ σ2

t with at denotes
√
ᾱt−1βt

1−ᾱt
. Considering principle (ii), we set:

γt = σ2
t − (atλtσy)

2, λt =

{
1, σt ≥ atσy

σt/atσy, σt < atσy
. (19)

In addition to the simplified version above, we also provide a more accurate version for general
forms of A†, where we set Σt = Vdiag{λt1, . . . , λtD}V⊤, Φt = Vdiag{γt1, . . . , γtD}V⊤. V is
derived from the SVD of the operator A(= UΣV⊤). The calculation of λti and γti are presented
in Appendix I. Note that the only hyperparameter that need manual setting is σy.

We can also approximate non-Gaussian noise like Poisson, speckle, and real-world noise as Gaussian
noise, thereby estimating a noise level σy and resorting to the same solution mentioned above.

Time-Travel For Better Restoration Quality We find that DDNM yields inferior Realness when
facing particular cases like SR with large-scale average-pooling downsampler, low sampling ratio
compressed sensing(CS), and inpainting with a large mask. In these cases, the range-space contents
A†y is too local to guide the reverse diffusion process toward yielding a global harmony result.

Let us review Eq. 11. We can see that the mean value µt(xt,x0) of the posterior distribution
p(xt−1|xt,x0) relies on accurate estimation of x0. DDNM uses x̂0|t as the estimation of x0 at time-
step t, but if the range-space contents A†y is too local or uneven, x̂0|t may have disharmonious
null-space contents. How can we salvage the disharmony? Well, we can time travel back to change
the past. Say we travel back to time-step t+ l, we can yield the next state xt+l−1 using the “future”
estimation x̂0|t, which should be more accurate than x̂0|t+l. By reparameterization, this operation
is equivalent to sampling xt+l−1 from q(xt+l−1|xt−1). Similar to Lugmayr et al. (2022) that use a
“back and forward” strategy for inpainting tasks, we propose a time-travel trick to improve global
harmony for general IR tasks: For a chosen time-step t, we sample xt+l from q(xt+l|xt). Then we
travel back to time-step t+ l and repeat normal DDNM sampling (Eq. 12, Eq. 13, and Eq. 14) until
yielding xt−1. l is actually the travel length. Fig. 2(b) illustrates the basic time-travel trick.

Intuitively, the time-travel trick produces a better “past”, which in turn produces a better “future”.
For ease of use, we assign two extra hyperparameters: s controls the interval of using the time-travel
trick; r determines the repeat times. The time-travel trick in Algo. 2 is with s = 1, r = 1. Fig. 4(b)
and the right part in Tab. 4 demonstrate the improvements that the time-travel trick brings.

It is worth emphasizing that although Algo. 1 and Algo. 2 are derived based on DDPM, they can also
be easily extended to other diffusion frameworks, such as DDIM (Song et al., 2021a). Obviously,
DDNM+ becomes exactly DDNM when setting Σt = I, Φt = σ2

t I, and l = 0.

4 EXPERIMENTS

Our experiments consist of three parts. Firstly, we evaluate the performance of DDNM on five
typical IR tasks and compare it with state-of-the-art zero-shot IR methods. Secondly, we experiment
DDNM+ on three typical IR tasks to verify its improvements against DDNM. Thirdly, we show that
DDNM and DDNM+ perform well on challenging real-world applications.
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ImageNet 4× SR Deblurring Colorization CS 25% Inpainting

Method PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ Cons↓/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓

A†y 24.26 / 0.684 / 134.4 18.56 / 0.6616 / 55.42 0.0 / 43.37 15.65 / 0.510 / 277.4 14.52 / 0.799 / 72.71

DGP 23.18 / 0.798 / 64.34 N/A - / 69.54 N/A N/A

ILVR 27.40 / 0.870 / 43.66 N/A N/A N/A N/A

RePaint N/A N/A N/A N/A 31.87 / 0.968 / 12.31

DDRM 27.38 / 0.869 / 43.15 43.01 / 0.992 / 1.48 260.4 / 36.56 19.95 / 0.704 / 97.99 31.73 / 0.966 / 4.82

DDNM(ours) 27.46 / 0.870/ 39.26 44.93 / 0.994 / 1.15 42.32 / 36.32 21.66 / 0.749 / 64.68 32.06 / 0.968 / 3.89

CelebA-HQ 4× SR Deblurring Colorization CS 25% Inpainting

Method PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ Cons↓/FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓

A†y 27.27 / 0.782 / 103.3 18.85 / 0.741 / 54.31 0.0 / 68.81 15.09 / 0.583 / 377.7 15.57 / 0.809 / 181.56

PULSE 22.74 / 0.623 / 40.33 N/A N/A N/A N/A

ILVR 31.59 / 0.945 / 29.82 N/A N/A N/A N/A

RePaint N/A N/A N/A N/A 35.20 / 0.981 /14.19

DDRM 31.63 / 0.945 / 31.04 43.07 / 0.993 / 6.24 455.9 / 31.26 24.86 / 0.876 / 46.77 34.79 / 0.978 /12.53

DDNM(ours) 31.63 / 0.945 / 22.27 46.72 / 0.996 / 1.41 26.25 / 26.44 27.56 / 0.909 / 28.80 35.64 / 0.982 /4.54

Table 1: Quantitative results of zero-shot IR methods on ImageNet(top) and CelebA-HQ(bottom),
including five typical IR tasks. We mark N/A for those not applicable and bold the best scores.

4× SR 8× SR 16× SR 32× SR

A†y
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Super-Resolution on CelebA

DDNM+

(ours)

DDRM

ILVR

PULSE

A†y

DDNM+

(ours)

DDRM

Compressed Sensing on CelebA

A†y

DGP

DDRM

DDNM+

(ours)

Colorization on DIV2K

A†y

DDRM

RePaint

DDNM+

(ours)

Inpainting on DIV2K

Ratio 40%

2× SR

Figure 3: Qualitative results of zero-shot IR methods.
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Figure 4: DDNM+ improves (a) denoising performance and (b) restoration quality.

CelebA-HQ 16× SR σ=0.2 C σ=0.2 CS ratio=25% σ=0.2 32× SR C CS ratio=10%

Method PSNR↑/SSIM↑/FID↓ FID↓ PSNR↑/SSIM↑/FID↓ PSNR↑/SSIM↑/FID↓ FID↓ PSNR↑/SSIM↑/FID↓

DDNM 13.10 / 0.2387 / 281.45 216.74 17.89 / 0.4531 / 82.81 17.55 / 0.437 / 39.37 22.79 15.74/ 0.275 / 110.7

DDNM+ 19.44 / 0.712 / 58.31 46.11 25.02 / 0.868 / 51.35 18.44 / 0.501 / 37.50 18.23 26.33 / 0.741 / 47.93

Table 2: Ablation study on denoising improvements (left) and the time-travel trick (right). C repre-
sents the colorization task. σ denotes the noise variance on y.

4.1 EVALUATION ON DDNM

To evaluate the performance of DDNM, we compare DDNM with recent state-of-the-art zero-shot
IR methods: DGP(Chen & Davies, 2020), Pulse(Menon et al., 2020), ILVR(Choi et al., 2021),
RePaint(Lugmayr et al., 2022) and DDRM(Kawar et al., 2022). We experiment on five typical
noise-free IR tasks, including 4× SR with bicubic downsampler, deblurring with Gaussian blur ker-
nel, colorization with average grayscale operator, compressed sensing (CS) using Walsh-Hadamard
sampling matrix with a 0.25 compression ratio, and inpainting with text masks. For each task, we
use the same degradation operator for all methods. We choose ImageNet 1K and CelebA-HQ 1K
datasets with image size 256×256 for validation. For ImageNet 1K, we use the 256×256 denoising
network as Zθ, which is pretrained on ImageNet by Dhariwal & Nichol (2021). For CelebA-HQ 1K,
we use the 256×256 denoising network pretrained on CelebA-HQ by Lugmayr et al. (2022). For
fair comparisons, we use the same pretrained denoising networks for ILVR, RePaint, DDRM, and
DDNM. We use DDIM as the base sampling strategy with η = 0.85, 100 steps, without classifier
guidance, for all diffusion-based methods. We choose PSNR, SSIM, and FID (Heusel et al., 2017)
as the main metrics. Since PSNR and SSIM can not reflect the colorization performance, we use
FID and the Consistency metric (calculated by ||Ax0 − y||1 and denoted as Cons) for colorization.

Tab. 1 shows the quantitative results. For those tasks that are not supported, we mark them as
“NA”. We can see that DDNM far exceeds previous GAN prior based zero-shot IR methods (DGP,
PULSE). Though with the same pretrained denoising models and sampling steps, DDNM achieves
significantly better performance in both Consistency and Realness than ILVR, RePaint, and DDRM.
Appendix J shows more quantitative comparisons and qualitative results.

4.2 EVALUATION ON DDNM+

We evaluate the performance of DDNM+ from two aspects: the denoising performance and the
robustness in restoration quality.

Denoising Performance. We experiment DDNM+ on three noisy IR tasks with l = 0, i.e., we
disable the time-travel trick to only evaluate the denoising performance. Fig. 4(a) and the left part in
Tab. 2 show the denoising improvements of DDNM+ against DDNM. We can see that DDNM fully
inherits the noise contained in y, while DDNM+ decently removes the noise.

Robustness in Restoration Quality. We experiment DDNM+ on three tasks that DDNM may yield
inferior results, they are 32× SR, colorization, and compressed sensing (CS) using orthogonalized
sampling matrix with a 10% compression ratio. For fair comparison, we set T = 250, l = s = 20,
r = 3 for DDNM+ while set T = 1000 for DDNM so that the total sampling steps and computa-
tional consumptions are roughly equal. Fig. 4(b) and the right part in Tab. 2 show the improvements
of the time-travel trick. We can see that the time-travel trick significantly improves the overall per-
formance, especially the Realness (measured by FID).
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To the best of our knowledge, DDNM+ is the first IR method that can robustly handle arbitrary
scales of linear IR tasks. As is shown in Fig. 3, We compare DDNM+ (l = s = 10, r = 5)
with state-of-the-art zero-shot IR methods on diverse IR tasks. We also crop images from DIV2K
dataset (Agustsson & Timofte, 2017) as the testset. The results show that DDNM+ owns excellent
robustness in dealing with diverse IR tasks, which is remarkable considering DDNM+ as a zero-shot
method. More experiments of DDNM/DDNM+ can be found in Appendix A and B.

4.3 REAL-WORLD APPLICATIONS

Theoretically, we can use DDNM+ to solve real-world IR task as long as we can construct an
approximate linear degradation A and its pseudo-inverse A†. Here we demonstrate two typical
real-world applications using DDNM+ with l = s = 20, r = 3: (1) Real-World Noise. We
experiment DDNM+ on real-world colorization with A and A† defined in Sec. 3.2. We set σy by
observing the noise level of y. The results are shown in Fig. 6, Fig. 7, and Fig. 1(c). (2) Old Photo
Restoration. For old photos, we construct A and A† as described in Sec 3.2, where we manually
draw a mask for damaged areas on the photo. The results are shown in Fig. 1(d), and Fig. 15.

5 RELATED WORK

5.1 DIFFUSION MODELS FOR IMAGE RESTORATION

Recent methods using diffusion models to solve image restoration can be roughly divided into two
categories: supervised methods and zero-shot methods.

Supervised Methods. SR3 (Saharia et al., 2021) trains a conditional diffusion model for image
super-resolution with synthetic image pairs as the training data. This pattern is further promoted to
other IR tasks (Saharia et al., 2022). To solve image deblurring, Whang et al. (2022) uses a deter-
ministic predictor to estimate the initial result and trains a diffusion model to predict the residual.
However, these methods all need task-specific training and can not generalize to different degrada-
tion operators or different IR tasks.

Zero-Shot Methods. Song & Ermon (2019) first propose a zero-shot image inpainting solution by
guiding the reverse diffusion process with the unmasked region. They further propose using gradi-
ent guidance to solve general inverse problems in a zero-shot fashion and apply this idea to medical
imaging problems (Song et al., 2020; 2021b). ILVR (Choi et al., 2021) applies low-frequency guid-
ance from a reference image to achieve reference-based image generation tasks. RePaint (Lugmayr
et al., 2022) solves the inpainting problem by guiding the diffusion process with the unmasked re-
gion. DDRM (Kawar et al., 2022) uses SVD to decompose the degradation operators. However,
SVD encounters a computational bottleneck when dealing with high-dimensional matrices. Actu-
ally, the core guidance function in ILVR (Choi et al., 2021), RePaint (Lugmayr et al., 2022) and
DDRM (Kawar et al., 2022) can be seen as special cases of the range-null space decomposition used
in DDNM, detailed analysis is in Appendix H.

5.2 RANGE-NULL SPACE DECOMPOSITION IN IMAGE INVERSE PROBLEMS

Schwab et al. (2019) first proposes using a DNN to learn the missing null-space contents in image
inverse problems and provide detailed theory analysis. Chen & Davies (2020) proposes learning
the range and null space respectively. Bahat & Michaeli (2020) achieves editable super-resolution
via exploring the null-space contents. Wang et al. (2023) apply range-null space decomposition to
existing GAN prior based SR methods to improve their performance and convergence speed.

6 CONCLUSION & DISCUSSION

This paper presents a unified framework for solving linear IR tasks in a zero-shot manner. We believe
that our work demonstrates a promising new path for solving general IR tasks, which may also be
instructive for general inverse problems. Theoretically, our framework can be easily extended to
solve inverse problems of diverse data types, e.g., video, audio, and point cloud, as long as one can
collect enough data to train a corresponding diffusion model. More discussions are in Appendix C.
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A TIME & MEMORY CONSUMPTION

Our method has obvious advantages in time & memory consumption among recent zero-shot
diffusion-based restoration methods (Kawar et al., 2022; Ho et al., 2022; Chung et al., 2022b;a).
These methods are all based on basic diffusion models, the differences are how to bring the con-
straint y = Ax+ n into the reverse diffusion process. We conclude our advantages as below:

• DDNM yields almost the same consumption as the original diffusion models.
• DDNM does not need any optimization toward minimizing ||y − Ax0|t|| since we di-

rectly yield the optimal solution by range-null space decomposition (Section 3.1) and pre-
cise range-space denoising (Section 3.3). We notice some recent works (Ho et al., 2022;
Chung et al., 2022b;a) resort to such optimization, e.g., DPS (Chung et al., 2022a) uses
xt−1 = xt−1− ζt∇xt ||y−Ax0|t||22 to update xt−1; however, this involves costly gradient
computation.

• Unlike DDRM (Kawar et al., 2022), our DDNM does not necessarily need SVD. As is
presented in Section 3.2, we construct A and A† for colorization, inpainting, and super-
resolution problems by hand, which bring negligible computation and memory consump-
tion. In contrast, SVD-based methods suffer heavy cost on memory and computation if A
has a high dimension (e.g., 128xSR, as shown below).

Experiments in Tab. 3 well support these claims.

ImageNet 4× SR 64× SR 128× SR

Method PSNR↑ FID↓ Time(s/image) Memory(MB) Time Memory Time Memory

DDPM* N/A N/A 11.9 5758 11.9 5758 11.9 5758
DPS 25.51 55.92 36.5 8112 - - - -

DDRM 27.05 38.05 12.4 5788 36.4 5788 83.3 6792
DDNM 27.04 33.81 11.9 5728 11.9 5728 11.9 5728

Table 3: Comparisons on Time & Memory Consumption. We use the average-pooling downsampler,
4× SR, 100 DDIM steps with η=0.85 and without classifier guidance, on a single 2080Ti GPU
with batch size 1. For DPS, we set ζt=100

√
ᾱt−1. *The DDPM here is tested on unconditional

generation.

B COMPARING DDNM WITH SUPERVISED METHODS

Our method is superior to existing supervised IR methods (Zhang et al., 2021; Liang et al., 2021) in
these ways:

• DDNM is zero-shot for diverse tasks, but supervised methods need to train separate models
for each task.

• DDNM is robust to degradation modes, but supervised methods own poor generalized per-
formance.

• DDNM yields significantly better performance on certain datasets and resolutions (e.g.,
ImageNet at 256x256).

These claims are well supported by experiments in Tab. 4.

ImageNet Bicubic, σy=0 Average-pooling, σy=0 Average-pooling, σy=0.2 Inference time

Method PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ s/image

SwinIR-L 21.21 0.7410 56.77 23.88 0.8010 54.93 18.39 0.5387 134.18 6.1
BSRGAN 21.46 0.7384 68.15 24.14 0.7948 67.70 14.06 0.3663 195.41 0.036

DDNM 27.46 0.8707 39.26 27.04 0.8651 33.81 22.67 0.7400 80.69 11.9

Table 4: Comparisons between DDNM and supervised SR methods. DDNM uses 100 DDIM steps
with η=0.85 and without classifier guidance. We use the official SwinIR-L (Liang et al., 2021) and
BSRGAN (Zhang et al., 2021) pretrained for SR tasks.
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C LIMITATIONS

There remain many limitations that deserve further study.

• Though DDNM brings negligible extra cost on computations, it is still limited by the slow
inference speed of existing diffusion models.

• DDNM needs explicit forms of the degradation operator, which may be challenging to
acquire for some tasks. Approximations may work well, but not optimal.

• In theory, DDNM only supports linear operators. Though nonlinear operators may also
have “pseudo-inverse”, they may not conform to the distributive property, e.g., sin(a+b) ̸=
sin(a) + sin(b), so they may not have linearly separable null-space and range-space.

• DDNM inherits the randomness of diffusion models. This property benefits diversity but
may yield undesirable results sometimes.

• The restoration capabilities of DDNM are limited by the performance of the pretrained
denoiser, which is related to the network capacity and the training dataset. For example,
existing diffusion models do not outperform StyleGANs (Karras et al., 2019; 2020; 2021)
in synthesizing FFHQ/AFHQ images at 1024×1024 resolution.

D SOLVING REAL-WORLD DEGRADATION USING DDNM+

DDNM+ can well handle real-world degradation, where the degradation operator A is unknown and
non-linear and even contains non-Gaussian noise. We follow these observations:

• In theory, DDNM+ is designed to solve IR tasks of diverse noise levels. As is shown in
Fig. 5, DDNM+ can well handle 4× SR even with a strong noise σy=0.9.

• For real-world degraded images, the non-linear artifacts can generally be divided into
global (e.g., the real-world noise in Fig. 1(c)) and local (e.g., the scratches in Fig. 1(d)).

• For global non-linear artifacts, we can set a proper σy to cover them. As is shown in Fig. 6,
the input images y suffer JPEG-like unknown artifacts, but DDNM+ can still remove them
decently by setting a proper σy.

• For local non-linear artifacts, we can directly draw a mask to cover them. Hence all we
need is to construct A = AcolorAmask and set a proper σy. We have proved Acolor

and Amask and their pseudo-inverse can be easily constructed by hand. (maybe a ASR is
needed for resize when y is too blur)

GT

DDNM+

A†y

Figure 5: DDNM+ can well handle 4× SR even with a strong noise σy=0.9.
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y

DDNM+

σy = 0.1

DDNM+

σy = 0.2

Figure 6: Solving JPEG-like artifacts using DDNM+. Here we set A = I to exert a pure denoising.
y denotes the input degraded image. When we set σy = 0.1, the artifacts are decently removed.
When we set σy = 0.2, the results become smoother but yield relatively poor identity consistency.

A†yy σy = 0 σy = 0.1 σy = 0.15 σy = 0.25

Figure 7: Old photo restoration. Zoom in for the best view. By setting σy = 0.1, the noise is
removed, and the identity is well preserved. When we set higher σy = 0.25, the results becomes
much smoother but yield relatively poor identity consistency.

In Fig. 7 we demonstrate an example. The input image y is a black-and-white photo with unknown
noise and scratches. We first manually draw a mask Amask to cover these scratches. Then we
use a grayscale operator Acolor to convert the image into grayscale. Definition of Amask and
Acolor and their pseudo-inverse can be find in Sec. 3.2. Then we take A = AcolorAmask and
A† = Amask

†Acolor
† for DDNM+, and set a proper σy. From the results in Fig. 7, we can see

that when setting σy = 0, the noise is fully inherited by the results. By setting σy = 0.1, the noise
is removed, and the identity is well preserved. When we set higher σy = 0.25, the results becomes
much smoother but yield relatively poor identity consistency.

The choice of σy is critical to achieve the best balance between realness and consistency. But for
now we can only rely on manual estimates.
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E PYTORCH-LIKE CODE IMPLEMENTATION

Here we provide a basic PyTorch-Like implementation of DDNM+. Readers can quickly implement
a basic DDNM+ on their own projects by referencing Algo. 2 and Sec. 3.3 and the code below.

1
d e f c o l o r 2 g r a y ( x ) :

3 c o e f =1/3
x = x [ : , 0 , : , : ] * c o e f + x [ : , 1 , : , : ] * c o e f + x [ : , 2 , : , : ] * c o e f

5 r e t u r n x . r e p e a t ( 1 , 3 , 1 , 1 )

7 d e f g r a y 2 c o l o r ( x ) :
x = x [ : , 0 , : , : ]

9 c o e f =1/3
base = c o e f **2 + c o e f **2 + c o e f **2

11 r e t u r n t h . s t a c k ( ( x* c o e f / base , x* c o e f / base , x* c o e f / ba se ) , 1 )

13 d e f PatchUpsample ( x , s c a l e ) :
n , c , h , w = x . shape

15 x = t o r c h . z e r o s ( n , c , h , s c a l e , w, s c a l e ) + x . view ( n , c , h , 1 ,w, 1 )
r e t u r n x . view ( n , c , s c a l e *h , s c a l e *w)

17
# I m p l e m e n t a t i o n o f A and i t s pseudo − i n v e r s e Ap

19
i f IR mode==” c o l o r i z a t i o n ” :

21 A = c o l o r 2 g r a y
Ap = g r a y 2 c o l o r

23
e l i f IR mode==” i n p a i n t i n g ” :

25 A = lambda z : z *mask
Ap = A

27
e l i f IR mode==” s u p e r r e s o l u t i o n ” :

29 A = t o r c h . nn . Adapt iveAvgPool2d ( ( 2 5 6 / / s c a l e , 2 5 6 / / s c a l e ) )
Ap = lambda z : PatchUpsample ( z , s c a l e )

31
e l i f IR mode==” o l d pho to r e s t o r a t i o n ” :

33 A1 = lambda z : z *mask
A1p = A1

35
A2 = c o l o r 2 g r a y

37 A2p = g r a y 2 c o l o r

39 A3 = t o r c h . nn . Adapt iveAvgPool2d ( ( 2 5 6 / / s c a l e , 2 5 6 / / s c a l e ) )
A3p = lambda z : PatchUpsample ( z , s c a l e )

41
A = lambda z : A3 ( A2 ( A1 ( z ) ) )

43 Ap = lambda z : A1p ( A2p ( A3p ( z ) ) )

45
# Core I m p l e m e n t a t i o n o f DDNM+ , s i m p l i f i e d d e n o i s i n g s o l u t i o n

47 # For more a c c u r a t e d e n o i s i n g , p l e a s e r e f e r t o Appendix I and t h e f u l l s o u r c e code .

49 d e f ddnmp core ( x0t , y , s igma y , s i g m a t , a t ) :

51 #Eq 19
i f s i g m a t >= a t * s igma y :

53 l a m b d a t = 1
gamma t = s i g m a t **2 − ( a t * l a m b d a t * s igma y ) **2

55 e l s e :
l a m b d a t = s i g m a t / ( a t * s igma y )

57 gamma t = 0

59 #Eq 17
x 0 t = x 0 t + l a m b d a t *Ap ( y − A( x 0 t ) )

61
r e t u r n x0t , gamma t
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F DETAILS OF THE DEGRADATION OPERATORS

Super Resolution (SR). For SR experiments in Tab. 1, we use the bicubic downsampler as the
degradation operator to ensure fair comparisons. For other cases in this paper, we use the average-
pooling downsampler as the degradation operator, which is easy to get the pseudo-inverse as de-
scribed in Sec. 3.2. Fig. 8(a) and Fig. 8(b) show examples of the bicubic operation and the average-
pooling operation.

Inpainting. We use text masks, random pixel-wise masks, and hand-drawn masks for inpainting
experiments. Fig.8(d) demonstrates examples of different masks.

Deblurring. For deblurring experiments, We use three typical kernels to implement blurring oper-
ations, including Gaussian blur kernel, uniform blur kernel, and anisotropic blur kernel. For Gaus-
sian blur, the kernel size is 5 and kernel width is 10; For uniform blur kernel, the kernel size is 9; For
anisotropic blur kernel, the kernel size is 9 and the kernel widths of each axis are 20 and 1. Fig.8(c)
demonstrates the effect of these kernels.

Compressed Sensing (CS). For CS experiments, we choose two types of sampling matrices: one
is based on the Walsh-Hadamard transformation, and the other is an orthogonalized random matrix
applied to the original image block-wisely. For the Walsh-Hadamard sampling matrix, we choose
50% and 25% as the sampling ratio. For the orthogonalized sampling matrix, we choose ratios from
40% to 5%. Fig.8(e) and (f) demonstrate the effects of the Walsh-Hadamard sampling matrix and
orthogonalized sampling matrix with different CS ratios.

Colorization. For colorization, we choose the degradation matrix A =
[
1
3

1
3

1
3

]
for each pixel

as we described in Sec. 3.2. Fig.8(g) demonstrates the example of colorization degradation.

Solve the Pseudo-Inverse Using SVD Considering we have a linear operator A, we need to com-
pute its pseudo-inverse A† to implement the algorithm of the proposed DDNM. For some sim-
ple degradation like inpainting, colorization, and SR based on average pooling, the pseudo-inverse
A† can be constructed manually, which has been discussed in Sec. 3.2. For general cases, we
can use the singular value decomposition (SVD) of A(= UΣV⊤) to compute the pseudo-inverse
A†(= VΣ†U⊤) where Σ and Σ† have the following relationship:

Σ = diag{s1, s2, · · · },Σ† = diag{d1, d2, · · · }, (20)

di =

{
1
si

si ̸= 0

0 si = 0
, (21)

where si means the i-th singular value of A and di means the i-th diagonal element of Σ†.

G VISUALIZATION OF THE INTERMEDIATE RESULTS

In Fig. 9, we visualize the intermediate results of DDNM on 4× SR, 16× SR, and deblurring.
Specifically, we show the noisy result xt, the clean estimation x0|t, and the rectified clean estimation
x̂0|t. The total diffusion step is 1000. From Fig. 9(a), we can see that due to the fixed range-space
contents A†y, x̂0|t already owns meaningful contents in early stages while xt and x0|t contains
limited information. But when t = 0, we can observe that x0|0 contains much more details than
A†y. These details are precisely the null-space contents. We may notice a potential speed-up trick
here. For example, we can replace x0|t=100 with A†y and start DDNM directly from t = 100, which
yields a 10 times faster sampling. We leave it to future work. From Fig. 9(b), we can see that the
reverse diffusion process gradually restores images from low-frequency contours to high-frequency
details.
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(e) CS (Walsh-Hadamard) (f) CS (Block-Based) (g) Grayscale

Figure 8: Visualization of different degradation operators. (a) Bicubic downsampler. The scale
factors from left to right are ×4, ×8, ×16, ×32; (b) Average-pooling downsampler. The scale
factors from left to right are ×4, ×8, ×16, ×32; (c) Blur operators. The type of kernels from left to
right are Gaussian, uniform, and anisotropic; (d) Masks; (e) Walsh-Hadamard sampling matrix. The
sampling ratios from left to right are 0.5 and 0.25; (f) Block-based sampling matrix. The sampling
ratios from left to right are 0.4, 0.3, 0.2, 0.1, 0.05; (g) Grayscale operator.
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(a) Visualization of DDNM on 4×SR, with DDPM as the sampling strategy
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(b) Visualization of DDNM on 16×SR and deblurring, with DDIM as the sampling strategy

Figure 9: Visualization of the intermediate results in DDNM. Zoom-in for the best view.
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H COMPARING DDNM WITH RECENT DIFFUSION-BASED IR METHODS

Here we provide detailed comparison between DDNM and recent diffusion-based IR methods, in-
cluding RePaint (Lugmayr et al., 2022), ILVR (Choi et al., 2021), DDRM (Kawar et al., 2022),
SR3 (Saharia et al., 2021) and SDE (Song et al., 2020). For easier comparison, we rewrite their
algorithms based on DDPM (Ho et al., 2020) and follow the characters used in DDNM. Algo. 3,
Algo. 4 show the reverse diffusion process of DDPM and DDNM. We mark in blue those that are
most distinct from DDNM. All the IR problems discussed here can be formulated as

y = Ax+ n, (22)

where y, A, x, n represents the degraded image, the degradation operator, the original image, and
the additive noise, respectively.

H.1 REPAINT AND ILVR.

RePaint (Lugmayr et al., 2022) solves noise-free image inpainting problems, where n = 0 and A
represents the mask operation. RePaint first create a noised version of the masked image y

yt−1 = A(
√
ᾱt−1y +

√
1− ᾱt−1ϵ), ϵ ∼ N (0, I). (23)

Then uses yt−1 to fill in the unmasked regions in xt−1:

xt−1 = yt−1 + (I−A)xt−1, (24)

Besides, RePaint applies an “back and forward” strategy to refine the results. Algo. 5 shows the
algorithm of RePaint.

ILVR (Choi et al., 2021) focuses on reference-based image generation tasks, where n = 0 and A
represents a low-pass filter defined by A = A1A2 (A1 is a bicubic upsampler and A2 is a bicubic
downsampler). ILVR creates a noised version of the reference image x and uses the low-pass filter
A to extract its low-frequency contents:

yt−1 = A(
√
ᾱt−1x+

√
1− ᾱt−1ϵ), ϵ ∼ N (0, I). (25)

Then combines the high-frequency part of xt−1 with the low-frequency contents in yt−1:

xt−1 = yt−1 + (I−A)xt−1, (26)

Algo. 6 shows the algorithm of ILVR.

Essentially, RePaint and ILVR share the same formulations, with different definitions of the degra-
dation operator A. DDNM differs from RePaint and ILVR mainly in two parts:

(i) Operating on Different Domains. RePaint and ILVR all operate on the noisy xt domain of dif-
fusion models, which is inaccurate in range-space preservation during the reverse diffusion process.
Instead, we directly operate on the noise-free x0|t domain, which does not need extra process on y
and is strictly derived from the theory and owns strict data consistency.

(ii) As Special Cases. Aside from the difference in operation domain, Eq. 24 of RePaint is essen-
tially a special case of the range-null space decomposition. Considering A as a mask operator, it
satisfies AAA = A, so we can use A itself as the pseudo-inverse A†. Hence the range-null space
decomposition becomes x̂ = A†y + (I −A†A)x̄ = Ay + (I −AA)x̄ = y + (I −A)x̄, which
is exactly the same as Eq. 24. Similarly, Eq. 26 of ILVR can be seen as a special case of range-null
space decomposition, which uses I as the approximation of A†. Note that the final result x0 of
RePaint satisfies Consistency, i.e., Ax0 ≡ y, while ILVR does not because the pseudo-inverse A†

they used is inaccurate.
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Algorithm 3 Reverse Diffusion Process of DDPM
Require: None

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0.
4: xt−1 = 1√

αt

(
xt −Zθ(xt, t)

βt√
1−ᾱt

)
+ σtϵ

5: return x0

Algorithm 4 Reverse Diffusion Process of DDNM Based On DDPM
Require: The degraded image y, the degradation operator A and its pseudo-inverse A†

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0.
4: x0|t =

1√
ᾱt

(
xt −Zθ(xt, t)

√
1− ᾱt

)
5: x̂0|t = x0|t −A†(Ax0|t − y)

6: xt−1 =
√
ᾱt−1βt

1−ᾱt
x̂0|t +

√
αt(1−ᾱt−1)

1−ᾱt
xt + σtϵ

7: return x0

Algorithm 5 Reverse Diffusion Process of RePaint
Require: The masked image y, the mask A

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: for s = 1, ..., St do
4: ϵ1, ϵ2 ∼ N (0, I) if t > 1, else ϵ1, ϵ2 = 0.
5: yt−1 =

√
ᾱt−1y +

√
1− ᾱt−1ϵ1

6: xt−1 = 1√
αt

(
xt −Zθ(xt, t)

βt√
1−ᾱt

)
+ σtϵ2

7: xt−1 = yt−1 + (I−A)xt−1

8: if t ̸= 0 and s ̸= St then
9: xt =

√
1− βtxt−1 +

√
βtϵ2

10: return x0

Algorithm 6 Reverse Diffusion Process of ILVR
Require: The reference image x, the low-pass filter A

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: ϵ1, ϵ2 ∼ N (0, I) if t > 1, else ϵ1, ϵ2 = 0.
4: yt−1 = A(

√
ᾱt−1x+

√
1− ᾱt−1ϵ1)

5: xt−1 = 1√
αt

(
xt −Zθ(xt, t)

βt√
1−ᾱt

)
+ σtϵ2

6: xt−1 = yt−1 + (I−A)xt−1

7: return x0
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Algorithm 7 Reverse Diffusion Process of DDRM
Require: The degraded image y with noise level σy, the operator A = UΣV⊤, A ∈ Rd×D

1: xT ∼ N (0, I).
2: ȳ = Σ†U⊤y
3: for t = T, ..., 1 do
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0.
5: x̄0|t = V⊤ 1√

ᾱt

(
xt −Zθ(xt, t)

√
1− ᾱt

)
6: for i = 1, ..., D do
7: if si = 0 then

8: x̄
(i)
t−1 = x̄

(i)
0|t +

√
1− η2σt−1

x̄
(i)
t −x̄

(i)

0|t
σt

+ ησt−1ϵ
(i)

9: else if σt−1 <
σy

si
then

10: x̄
(i)
t−1 = x̄

(i)
0|t +

√
1− η2σt−1

ȳ(i)−x̄
(i)

0|t
σy/si

+ ησt−1ϵ
(i)

11: else if σt−1 ≥ σy

si
then

12: x̄
(i)
t−1 = ȳ(i) +

√
σ2
t−1 −

σ2
y

s2i
ϵ(i)

13: xt−1 = Vx̄t−1

14: return x0

H.2 DDRM

The forward diffusion process defined by DDRM is
xt = x0 + σtϵ, ϵ ∼ N (0, I) (27)

The original reverse diffusion process of DDRM is based on DDIM, which is

xt−1 = x0 +
√
1− η2σt−1

xt − x0

σt
+ ησt−1ϵ (28)

For noisy linear inverse problem y = Ax + n where n ∼ N (0, σ2
y), DDRM first uses SVD to

decompose A as UΣV⊤, then use ȳ = Σ†U⊤y and x̄0|t = V⊤x0|t for derivation. Each element
in ȳ and x̄0|t corresponds to a singular value in Σ(the nonexistent singular value is defined as 0),
hence it is possible to modify x0|t element-wisely according to each singular value. Then one can
yield the final result x0 by x0 = Vx̄0. Algo. 7 describes the whole reverse diffusion process of
DDRM.

For noise-free(σy = 0) situation, the final result x0 of DDRM is essentially yielded through a special
range-null space decomposition. Specifically, when t = 0 and σy = 0, we can rewrite the formula
of the i-th element of x̄0 as:

x̄
(i)
0 =

{
x̄
(i)
0|1, si = 0

ȳ(i), si ̸= 0
(29)

To simplify the representation, we define a diagonal matrix Σ1:

Σ
(i)
1 =

{
0, si = 0

1, si ̸= 0
(30)

Then we can rewrite x̄0 as
x̄0 = Σ1ȳ + (I−Σ1)x̄0|1 (31)

and yield the result x0 by left multiplying V:
x0 = Vx̄0 = VΣ1ȳ +V(I−Σ1)x̄0|1 (32)

This result is essentially a special range-null space decomposition:
x0 = VΣ1ȳ +V(I−Σ1)x̄0|1

= VΣ1Σ
†U⊤y +V(I−Σ1)V

⊤x0|1

= VΣ†U⊤y + (I−VΣ1V
⊤)x0|1

= A†y + (I−A†A)x0|1

(33)
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Now we can clearly see that VΣ1ȳ = A†y is the range-space part while V(I − Σ1)x̄0|1 = (I −
A†A)x0|1 is the null-space part. However for our DDNM, A† can be any linear operator as long as
it satisfies AA†A ≡ A, where A† = VΣ†U⊤ is a special case.

Due to the calculation needs of SVD, DDRM needs to convert the operator A into matrix form.
However, common operations in computer vision are in the form of convolution, let alone A as a
compound or high-dimension one. For example, DDRM is difficult to handle old photo restoration.
Rather, our DDNM supports any linear forms of operator A and A†, as long as AA†A = A is
satisfied. It is worth mentioning that there exist diverse ways of yielding the pseudo-inverse A†,
and SVD is just one of them. Besides, DDNM is more concise than DDRM in the formulation and
performs better in noise-free IR tasks.

H.3 OTHER DIFFUSION-BASED IR METHODS

SR3 (Saharia et al., 2021) is a task-specific super-resolution method which trains a denoiser with
y as an additional input, i.e., Zθ(xt, t,y). Then follow the similar reverse diffusion process in
DDPM (Ho et al., 2020) to implement image super-resolution, as is shown in Algo. 8. SR3 needs to
modify the network structures to support extra input y and needs paired data to train the conditional
denoiser Zθ(xt, t,y), while our DDNM is free from those burdens and is fully zero-shot for diverse
IR tasks. Besides, DDNM can be also applied to SR3 to improve its performance. Specifically, we
insert the core process of DDNM, the range-null space decomposition process, into SR3, yielding
Algo.9. Results are demonstrated in Fig.10. We can see that the range-null space decomposition can
improve the restoration quality by ensuring data consistency.

Algorithm 8 Reverse Diffusion Process of SR3
Require: The degraded image y

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0.
4: xt−1 = 1√

αt

(
xt −Zθ(xt, t,y)

βt√
1−ᾱt

)
+ σtϵ

5: return x0

Algorithm 9 Reverse Diffusion Process of SR3+DDNM
Require: The degraded image y

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0.
4: x0|t =

1√
ᾱt

(
xt −Zθ(xt, t,y)

√
1− ᾱt

)
5: x̂0|t = x0|t −A†(Ax0|t − y)

6: xt−1 =
√
ᾱt−1βt

1−ᾱt
x̂0|t +

√
αt(1−ᾱt−1)

1−ᾱt
xt + σtϵ

7: return x0

Algorithm 10 Reverse Diffusion Process of SDE (conditional)
Require: The condition y, the operator A and the rate λ

1: xT ∼ N (0, I).
2: for t = T, ..., 1 do
3: ϵ1, ϵ2 ∼ N (0, I) if t > 1, else ϵ1, ϵ2 = 0.
4: x̂t = xt + λ∇xt

f(Axt,y)

5: xt−1 = 1√
αt

(
x̂t −Zθ(x̂t, t)

βt√
1−ᾱt

)
+ σtϵ2

6: return x0
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Figure 10: DDNM can be applied to SR3 to improve the restoration performance. Here we experi-
ment on 8× SR (from image size 16×16 to 128×128), the metrics are PSNR/Consistency.

Song et al. (2020) propose a conditional sampling strategy in diffusion models, which we abbreviate
as SDE in this paper. Specifically, SDE optimize each latent variable xt toward a specific condition
f(Axt,y) and put the optimized xt back to the original reverse diffusion process, as is shown in
Algo. 10. y is the condition and A is an operator with f(·, ·) measures the distance between Axt

and y.

It is worth noting that DDNM is compatible with extra sources of constraints in the form of operation
5 in Algo. 10. For example, our results in Fig. 1 and Fig. 3 are generated using the diffusion model
pretrained on ImageNet with classifier guidance.

I SOLVING NOISY IMAGE RESTORATION PRECISELY

For noisy tasks y = Ax+ n,n ∼ N (0, σ2
yI), Sec. 3.3 provide a simple solution where A†n is

approximated as N (0, σ2
yI). However, the precise distribution of A†n is N (0, σ2

yA
†(A†)T ) where

the covariance matrix is usually non-diagonal. To use similar principles in Eq. 19, we need to
orthodiagonalize this matrix. Next, we conduct detailed derivations.

This solution involves the Singular Value Decomposition(SVD), which can decompose the degrada-
tion operator A and yield its pseudo-inverse A†:

A = UΣV⊤, A† = VΣ†U
⊤
, (34)

A ∈ Rd×D,A† ∈ RD×d,U ∈ Rd×d,V ∈ RD×D,Σ ∈ Rd×D,Σ† ∈ RD×d, (35)

Σ = diag{s1, s2, · · · , sd}, Σ(i) = si, Σ†(i) =

{
1
si
, si ̸= 0,

0, si = 0
, (36)

To find out how much noise has been introduced into x̂0|t, we first rewrite Eq. 17 as:

x̂0|t = x0|t −ΣtA
†(Ax0|t −Ax− n), (37)

where Ax represents the clean measurements before adding noise. Σt = VΛtV
⊤ is the scaling

matrix with Λt = diag{λt1, λt2, · · · , λtD}. Then we can rewrite the additive noise n as σyϵn
where ϵn ∼ N (0, I). Now Eq. 37 becomes

x̂0|t = x0|t −ΣtA
†(Ax0|t −Ax) + σyVΛtV

⊤A†ϵn, (38)
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where x0|t −ΣtA
†(Ax0|t −Ax) denotes the clean part of x̂0|t (written as x̂c

0|t). It is clear that the
noise introduced into x̂0|t is σyVΛtV

⊤A†ϵn. The handling of the introduced noise depends on the
sampling strategy we used. We will discuss the solution for DDPM and DDIM, respectively.

The Situation in DDPM. When using DDPM as the sampling strategy, we yield xt−1 by sampling
from p(xt−1|xt,x0) = N (xt−1;µt(xt,x0), σ

2
t I), i.e.,

xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂0|t +

√
αt(1− ᾱt−1)

1− ᾱt
xt + σtϵ, ϵ ∼ N (0, I), (39)

Considering the introduced noise, we change σtϵ to ensure the entire noise level not exceed
N (0, σ2

t I). Hence we construct a new noise ϵnew ∼ N (0,ΦtI). Then the Eq. 39 becomes

xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂c
0|t +

√
αt(1− ᾱt−1)

1− ᾱt
xt + ϵintro + ϵnew, (40)

ϵintro =

√
ᾱt−1βt

1− ᾱt
σyVΛtV

⊤A†ϵn, (41)

ϵintro + ϵnew ∼ N (0, σ2
t I). (42)

ϵintro denotes the introduced noise, which can be further written as

ϵintro =

√
ᾱt−1βt

1− ᾱt
σyVΛtV

⊤A†ϵn (43)

∼ N (0, (

√
ᾱt−1βt

1− ᾱt
)2σ2

y(VΛtV
⊤A†)I(VΛtV

⊤A†)⊤) (44)

∼ N (0, (

√
ᾱt−1βt

1− ᾱt
)2σ2

yVΛtV
⊤A†(A†)⊤VΛtV

⊤) (45)

∼ N (0, (

√
ᾱt−1βt

1− ᾱt
)2σ2

yVΛtV
⊤VΣ†U⊤U(Σ†)⊤V⊤VΛtV

⊤) (46)

∼ N (0, (

√
ᾱt−1βt

1− ᾱt
)2σ2

yVΛtΣ
†(Σ†)⊤ΛtV

⊤) (47)

The variance matrix of ϵintro can be simplified as VDtV
⊤, with Dt = diag{dt1, dt2, · · · , dtD}:

ϵintro ∼ N (0,VDtV
⊤), dti =

 (

√
ᾱt−1βt

1−ᾱt
)2σ2

yλ
2
ti

s2i
, si ̸= 0,

0, si = 0
, (48)

To construct ϵnew, we define a new diagonal matrix Γt(= diag{γt1, γt2, · · · , γtD}):

Γt = σ2
t I−Dt, γti =

σ2
t −

(

√
ᾱt−1βt

1−ᾱt
)2σ2

yλ
2
ti

s2i
, si ̸= 0,

σ2
t , si = 0

, (49)

Now we can yield ϵnew by sampling from N (0,VΓtV
⊤) to ensure that ϵintro + ϵnew ∼

N (0,V(Dt + Γt)V
⊤) = N (0, σ2

t I). An easier implementation method is firstly sampling ϵtemp

from N (0,Γt) and finally get ϵnew = Vϵtemp. From Eq. 49, we also observe that λti guarantees
the noise level of the introduced noise do not exceed the pre-defined noise level σt so that we can
get the formula of λti in Σt(= VΛtV

⊤,Λt = diag{λt1, λt2, · · · , λtD}}):

λti =


1, σt ≥

(

√
ᾱt−1βt

1−ᾱt
)σy

si

σtsi

(

√
ᾱt−1βt

1−ᾱt
)σy

, σt <
(

√
ᾱt−1βt

1−ᾱt
)σy

si

1, si = 0

, (50)

The Situation in DDIM. When using DDIM as the sampling strategy, the process of getting xt−1

from xt becomes:

xt−1 =
√
ᾱt−1x̂0|t + σt

√
1− η2Zθ(xt, t) + σtηϵ, ϵ ∼ N (0, I), (51)
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where σt =
√
1− ᾱt−1 is the noise level of the t-th time-step, Zθ is the denoiser which estimates

the additive noise from xt and η control the randomness of this sampling process. Considering the
noise part is subject to a normal distribution, that is, σt

√
1− η2Zθ(xt, t) + σtηϵ ∼ N (0, σ2

t I), so
that the equation can be rewritten as

xt−1 =
√
ᾱt−1x̂0|t + ϵorig, ϵorig ∼ N (0, σ2

t I) (52)

Considering the introduced noise, we change ϵorig to ensure the entire noise level not exceed
N (0, σ2

t I). Hence we construct a new noise term ϵnew ∼ N (0,ΦtI):

xt−1 =
√
ᾱt−1x̂

c
0|t + ϵintro + ϵnew, (53)

ϵintro =
√
ᾱt−1σyVΛtV

⊤A†ϵn, (54)

ϵintro + ϵnew ∼ N (0, σ2
t I). (55)

ϵintro denotes the introduced noise, which can be further written as

ϵintro =
√
ᾱt−1σyVΛtV

⊤A†ϵn (56)

∼ N (0, ᾱt−1σ
2
y(VΛtV

⊤A†)I(VΛtV
⊤A†)⊤) (57)

∼ N (0, ᾱt−1σ
2
yVΛtV

⊤A†(A†)⊤VΛtV
⊤) (58)

∼ N (0, ᾱt−1σ
2
yVΛtV

⊤VΣ†U⊤U(Σ†)⊤V⊤VΛtV
⊤) (59)

∼ N (0, ᾱt−1σ
2
yVΛtΣ

†(Σ†)⊤ΛtV
⊤) (60)

The variance matrix of ϵintro can be simplified as VDtV
⊤, with Dt = diag{dt1, dt2, · · · , dtD}:

ϵintro ∼ N (0,VDtV
⊤), dti =

{
ᾱt−1σ

2
yλ

2
ti

s2i
, si ̸= 0,

0, si = 0
, (61)

To construct ϵnew, we define a new diagonal matrix Γt(= diag{γt1, γt2, · · · , γtD}):

Γt = σ2
t I−Dt, γti =

{
σ2
t −

ᾱt−1σ
2
yλ

2
ti

s2i
, si ̸= 0,

σ2
t , si = 0

, (62)

Now we can construct ϵnew by sampling from N (0,VΓtV
⊤) to ensure that ϵintro + ϵnew ∼

N (0,V(Dt + Γt)V
⊤) = N (0, σ2

t I). An easier implementation is firstly sampling ϵtemp from
N (0,Γt) and finally get ϵnew = Vϵtemp. From Eq. 62, we also observe that λti guarantees the
noise level of the introduced noise do not exceed the pre-defined noise level σt so that we can get
the formula of λti in Σt(= VΛtV

⊤,Λt = diag{λt1, λt2, · · · , λtD}}):

λti =


1, σt ≥

√
ᾱt−1σy

si
,

siσt

√
1−η2

√
ᾱt−1σy

, σt <
√
ᾱt−1σy

si
,

1, si = 0,

, (63)

In the actual implementation, we have adopted the following formula for ϵtemp and it can be proved
that its distribution is N (0,Γt):

ϵ
(i)
temp =


√
σ2
t −

ᾱt−1σ2
y

s2i
ϵ(i), σt ≥

√
ᾱt−1σy

si
,

σtηϵ
(i), σt <

√
ᾱt−1σy

si
,

σt

√
1− η2Z(i)

θ + σtηϵ
(i), si = 0,

, (64)

where ϵ
(i)
temp denotes the i-th element of the vector ϵtemp and ϵ ∼ N (0, I).

Note that the blue η is not necessarily needed. By our theory in Sec. 3.3, η should be 0 to maximize
the preservation of range-space correction. But inspired by DDRM(Kawar et al., 2022), we find that
involving η help improves the robustness, though sacrificing some range-space information.
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J ADDITIONAL RESULTS

We present additional quantitative results in Tab. 5, with corresponding visual results of DDNM in
Fig. 11 and Fig. 12. Additional visual results of DDNM+ are shown in Fig. 13 and Fig. 14. Addi-
tional results for real-world photo restoration are presented in Fig. 15. Note that all the additional
results presented here do not use the time-travel trick.

CelebA-HQ 4× bicubic SR 8× bicubic SR 16× bicubic SR

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 31.63 0.9452 33.88 31.04 28.11 0.9039 3.23 38.84 24.80 0.8612 0.36 46.67

DDNM 31.63 0.9450 4.80 22.27 28.18 0.9043 0.68 37.50 24.96 0.8634 0.10 45.5

ImageNet 4× bicubic SR 8× bicubic SR 16× bicubic SR

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 27.38 0.8698 19.79 43.15 23.75 0.7668 2.70 83.67 20.85 0.6842 0.38 130.81

DDNM 27.46 0.8707 4.92 39.26 23.79 0.7684 0.72 80.15 20.90 0.6853 0.11 128.13

CelebA-HQ inpainting (Mask 1) inpainting (Mask 2) inpainting (Mask 3)

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 34.79 0.9783 1325.46 12.53 38.27 0.9879 1357.09 10.34 35.77 0.9767 - 21.49

DDNM 35.64 0.9823 0.0 4.54 39.38 0.9915 0.0 2.82 36.32 0.9797 - 12.46

ImageNet inpainting (Mask 1) inpainting (Mask 2) inpainting (Mask 3)

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 31.73 0.9663 876.86 4.82 34.60 0.9785 1036.85 3.77 31.34 0.9439 - 12.84

DDNM 32.06 0.9682 0.0 3.89 34.92 0.9801 0.0 3.19 31.62 0.9461 - 9.73

CelebA-HQ deblur (Gaussian) deblur (anisotropic) deblur (uniform)

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 43.07 0.9937 297.15 6.24 41.29 0.9909 312.14 7.02 40.95 0.9900 182.27 7.74

DDNM 46.72 0.9966 60.00 1.41 43.19 0.9931 66.14 2.80 42.85 0.9923 41.86 3.79

ImageNet deblur (Gaussian) deblur (anisotropic) deblur (uniform)

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 43.01 0.9921 207.90 1.48 40.01 0.9855 221.23 2.55 39.72 0.9829 134.60 3.73

DDNM 44.93 0.9937 59.09 1.15 40.81 0.9864 63.89 2.14 40.70 0.9844 41.86 3.22

CelebA-HQ CS (ratio=0.5) CS (ratio=0.25)

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 31.52 0.9520 2171.76 25.71 24.86 0.8765 1869.03 46.77

DDNM 33.44 0.9604 1640.67 15.81 27.56 0.9090 1511.51 28.80

ImageNet CS (ratio=0.5) CS (ratio=0.25)

Method PSNR↑ SSIM↑ Cons↓ FID↓ PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 26.94 0.8902 6293.69 25.01 19.95 0.7048 3444.50 97.99

DDNM 29.22 0.9106 5564.00 18.55 21.66 0.7493 3162.30 64.68

CelebA-HQ Colorization

Method PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 26.38 0.7974 455.90 31.26

DDNM 26.25 0.7947 48.87 26.44

ImageNet Colorization

Method PSNR↑ SSIM↑ Cons↓ FID↓

DDRM 23.34 0.6429 260.43 36.56

DDNM 23.47 0.6550 42.32 36.32

Table 5: Comprehensive quantitative comparisons between DDNM and DDRM.
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Figure 11: Image restoration results of DDNM on CelebA-HQ.
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Figure 12: Image restoration results of DDNM on ImageNet.
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Figure 13: Noisy image restoration results of DDNM+ on CelebA-HQ. The results here do not use
the time-travel trick.
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Figure 14: Noisy image restoration results of DDNM+ on ImageNet. The results here do not use
the time-travel trick.
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Figure 15: Restoring real-world photos using DDNM. y represents the degraded images collected
from the internet. The results here do not use the time-travel trick.
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