Under review as a conference paper at ICLR 2026

AC-ODM: ACTOR-CRITIC ONLINE DATA MIXING
FOR SAMPLE-EFFICIENT LLLM PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining data coverage and composition strongly influence the generalization
of large language models (LLMs). While recent data-mixing approaches transfer
domain weights learned by a small proxy model to a larger one to reduce com-
putational costs and carbon footprint, they are typically static and ignore training
dynamics. Online Data Mixing (ODM) mitigates this with a multi-armed bandit
sampler but overlooks intra-domain interactions. We introduce AC-ODM, an ac-
tor—critic online data-mixing method that treats the LLM as the environment, uses
auxiliary actor—critic networks to dynamically adjust domain sampling weights,
and encodes intra-domain interactions through the reward. AC-ODM supports (i)
a non-proxy mode that co-trains the actor—critic with the target LLM from scratch,
and (ii) a proxy mode that first trains the actor—critic with a small, trainable proxy
LLM and then transfers the learned actor to guide the target LLM’s pretraining.
Empirically, the proxy mode incurs additional wall-clock time relative to the non-
proxy mode but delivers stronger target-LLLM performance. Across both modes,
AC-ODM enables efficient, adaptive data mixing and accelerates target-model
convergence, with negligible per-step wall-clock overhead. On Pythia-1B pre-
training over The Pile and SlimPajama, AC-ODM-410M (a policy learned with
a 410M-parameter proxy) reaches the optimal validation perplexity of ODM us-
ing 71% and 65% fewer training steps, respectively. It achieves a 27.5% rel-
ative improvement in zero-shot MMLU accuracy, a 2.23x higher pass@1 on
HumanEval, and an average +3.44% accuracy gain across five additional bench-
marks. We further show that AC-ODM maintains the fastest pretraining conver-
gence on LLaMA3-style architectures compared to prior data-mixing baselines.

1 INTRODUCTION

The pretraining corpus is a primary determinant of the generalization ability of large language mod-
els (LLMs). Its coverage and composition strongly influence both sample efficiency and downstream
accuracy |John & Draper|(1975);Du et al.| (2022)). When the corpus is fixed, the quantity and mixture
of selected data largely determine how much useful information the model can absorb as well as the
convergence speed during pretraining [Lee et al.| (2022); [Sorscher et al.| (2023); Xie et al.| (2023b));
Albalak et al.|(2024). Nevertheless, domain weights for many state-of-the-art LLMs are chosen by
heuristics |Gao et al.|(2020), which raises the question of whether a more effective set of weights can
be learned.

Data mixing methods aim to optimize domain weights to improve training efficiency and final perfor-
mance Xie et al.|(2023al)); |[Fan et al.|(2024); |Albalak et al.|(2023); Xia et al.|(2024). Broadly, methods
either determine the weights before model training in an offline manner or adapt the weights during
training in an online manner |Albalak et al.[|(2024). The representative offline approach DoReMi Xie
et al.| (2023a) adopts a two stage pipeline. A small reference model is first trained with uniform
domain weights, then a proxy model is trained to maximize the information gain over the reference
and the learned domain weights are transferred to the target model as sampling probabilities. In
addition to training two auxiliary models, the objective of minimizing the worst case loss gap is
not perfectly aligned with producing a well trained target model. Following this route, DoGE |[Fan
et al.| (2024) optimizes gradient alignment between each domain and the remainder of the corpus
rather than excess loss. However, Xie et al.| (2023a)) showed that the weights obtained in this two
stage pipeline transfer poorly across architectures and tokenizers because they do not adapt to the

Under review as a conference paper at ICLR 2026

22

AC-ODM-410M| ~ MMLU
| ODM
DoReMi-50k TPW

mem= The Pile Weights

20

DoGE-10k
o Wino Grande
= ODM
18 Nm
AC-ODM
= AC-ODM-410M

—
a

—
N

80% Faster

Validation Perplexity

20.7% Better

T1% Faster’™CQ = — — = = === 7=
64% Faster

12

16.4% Better-

13.1% Better -

0 10000 20000 30000 40000
Training Step LogiQA
(@ (b)

Figure 1: Training dynamics and downstream generalization. (a) Validation perplexity during
Pythia-1B pretraining on The Pile, reported as the unweighted average across its 22 domains. We
compare The Pile weights(TPW), DoReMi-50k, DoGE-10k, ODM, AC-ODM (non-proxy), and AC-
ODM-410M (proxy). (b) 5-shot accuracy radar over downstream benchmarks. AC-ODM-410M
consistently surpasses ODM and TPW.

changing dynamics of pretraining. As a result, a new model often needs to be trained to rediscover
appropriate weights for each setting, which compromises both the effectiveness and the efficiency
of the offline framework.

To track the training dynamics of the target model directly, Online Data Mixing (ODM) |Albalak
et al.| (2023) formulates domain selection as a multi armed bandit problem based on EXP3 |Auer
et al.| (2002). ODM treats each domain as an arm and uses the instantaneous loss as the reward,
which biases sampling toward domains that currently incur larger losses. This encourages learning
from domains whose data distributions are farther from the model’s predictions. At the same time,
this reward assumes uniform data quality and overlooks rich intra domain interactions. In practice,
examples from one domain can accelerate learning on other domains because of lexical, syntactic,
or semantic overlap. Emphasizing domains with strong cross domain interactions at early stages
could therefore speed up pretraining.

We propose AC-ODM, an actor—critic online data mixing method that models the impact of domain
weights on LLM pretraining as a reinforcement learning problem. Inspired by DoGE, we define
the reward using a gradient alignment measure W, which captures both loss reduction and intra
domain interactions. Maximizing the expected reward prioritizes datasets with strong commonalities
and more general utility, which accelerates convergence. We adopt the deep deterministic policy
gradient algorithm to learn continuous sampling weights. The LLM serves as the environment,
and lightweight actor and critic networks are trained to produce domain weights conditioned on
the current training state. AC-ODM supports two operational modes. In the non proxy mode, the
actor—critic is co trained with the target LLM from scratch, which adds negligible per step wall clock
overhead. In the proxy mode, the actor—critic is first trained with a small trainable proxy LLM and
the learned actor is then transferred to guide dynamic sampling for the target LLM. The proxy mode
introduces additional wall clock time relative to the non proxy mode but yields stronger target model
performance in our experiments. As shown in Fig.[Ta] AC-ODM markedly accelerates pretraining
by reaching the optimal validation perplexity of ODM in fewer steps. Complementarily, Fig. [Tb|
shows consistent gains on downstream evaluation, including higher 5-shot MMLU accuracy, which
evidences the effectiveness of our reward and state designs.

The main contributions of this work are two fold.
1. We propose a actor-critic based online data mixing approach that explicitly models intra

domain interactions. Our central novelty is a gradient alignment reward that measures how
updates from one domain accelerate progress on others, so the policy prioritizes domains

Under review as a conference paper at ICLR 2026

that most benefit the whole corpus. Treating the LLM under training as the environment,
we design a compact state that captures its evolving status and conditions the policy on the
current dynamics. AC-ODM steers the pretraining process towards faster convergence and
better generalization.

2. We improve the efficiency and practicality of online data mixing with two complementary
modes. The non proxy mode enables end to end adaptive mixing with negligible per step
overhead. The proxy mode learns a policy with a 410M parameter proxy and transfers
the actor to a 1B target model, which accelerates convergence and strengthens downstream
generalization. On Pythia 1B pretraining over The Pile and SlimPajama, AC-ODM-410M
reaches the optimal validation perplexity of ODM using 71% and 65% fewer steps, respec-
tively. It delivers a 27.5% relative improvement in zero shot MMLU accuracy, a 2.23x
higher pass@1 on HumanEval, and an average +3.44% accuracy gain across five addi-
tional benchmarks, and it maintains the fastest pretraining convergence on LLaMA3 style
architectures.

2 AC-ODM

In this section, we present actor critic online data mixing (AC-ODM) for efficient and adaptive
pretraining of large language models.

2.1 PROBLEM FORMULATION

Let D = {D1,..., Dy} be a corpus composed of k domains for language model pretraining. We
seek domain weights on the probability simplex o € A¥ C R*. Training batches are produced by
first sampling a domain according to the domain wise distribution « and then sampling uniformly
within that domain, namely B ~ UNIF(D;). This induces the instance wise distribution P, £

Zf: 1 ;- UNIF(D;). Offline data mixing fixes P, before training, while online data mixing updates
P, at every iteration. Our objective is to adapt P, online with negligible wall clock overhead.

2.2 ADAPTING ACTOR CRITIC TO ONLINE DATA MIXING

We cast online data mixing as a Markov decision process and adopt the deep deterministic policy
gradient framework. As illustrated in Figure the LLM defines the environment with state s*. The
agent executes action a® = y(s?) that updates the domain weights o and therefore specifies P,. At
eachstep ¢t € {1,...,T}, the state aggregates observable training signals of the LLM, including the
number of samples per domain n = {n; }_,, the iteration index ¢, the per domain loss (65, B) =
{;(0ar, Bi)}¥_, and its difference with the previous step Al(0xr, B) = {Al;(0ar, Bi)}r_,, as well
as the Ly norm of selected LLM layer weights ||w||2 and the step to step change ||Aw||2. The agent
maximizes the expected return]E[ZtT:O v'rt] by adjusting af — a!*!, training the LLM on the
sampled batch, and observing the next state s‘™1. Since both the state and the action are continuous,
DDPG is a suitable optimizer.

Formally, the agent environment tuple is defined as follows. The state is st =
(n,t,0(0rr, B), Al(Orr, B), ||wll2, | Awl|2). The action is a* = [at,...,at]. The reward vector
isrt = [rf,...,rl]. The deterministic policy is g, : s — a’™l.

2.3 DESIGNING THE REWARD FUNCTION

Efficient and stable convergence requires a reward that values examples which accelerate learn-
ing in other domains while avoiding over concentration on a few domains. Inspired by DoGE
Fan et al| (2024), we set the reward for domain i to its gradient alignment score W; =
(VEi(On1), 22 ey VUi (Onr)), where VE;(61) is the stochastic gradient for B;. This score mea-
sures how much learning from domain ¢ supports progress on the rest of the corpus. We denote
W = [Wi,...,Wy] and assign ! = W}. To smooth the signal, we maintain an exponential moving
t
average with importance correction #f = &7 4 (1 —¢) # where division by P/ ! discourages

over sampling already frequent domains.

Under review as a conference paper at ICLR 2026

Reward R: alignment matrix W*
7 State i, 1,€ 6y, B),2¢(8Y, B), [l 130T

DDPG Environment
Actor Critic
Update
<) () LLM model
NoE 7y eyt ¥
Update 64 ety Update 6. Q gradient M
v gradient N v !
Gradient a ! LLM Model
NN BN £(6u)
a= u(s) N\ AN
Softlupdate Softiupdate ! -
ul(si+1) II
S . n
<7 Train the model
]l;]g(;a(t;emo del use dataset B
Storei(s‘, at,rt, st T T t+1 g+l
BA ’ GC
o |
"l‘ 1 h

Policy pg, (s"): s* - a'*t
H =_ _ e Action: at*1,
ﬂ = = ﬁ \—' Sample batch B according to P t+1

Figure 2: Overview of AC-ODM. At iteration ¢, the policy pg, takes the environment state s’ from
the current LLM and outputs an action a! that adjusts the domain weights to o;. A batch B is
then sampled according to the instance wise distribution P,. The loss gradient VL(6?,, B) and the
gradient alignment matrix W? are computed with respect to the model f(#,;) to update 6, and to
produce the reward 7¢. The transition to s‘™1 is recorded and the tuple (s!,at,rt, s*1) is stored in
the replay buffer. The actor and critic parameters 64 and 6o are updated from N samples drawn
from the buffer. After T" steps, the learned online policy can be used directly in the non proxy mode
or transferred from a proxy LLM to a target LLM in the proxy mode.

Computing W can be expensive for large models and many domains due to memory traffic for
gradients. AC-ODM mitigates this by allowing the policy to be learned once with a proxy LLM and
then executed without reward computation during target model pretraining. In this way, the heavy
part of reward estimation is confined to the proxy stage.

2.4 MODEL UPDATE

Each iteration updates three parameter sets: the LLM 6, the critic 8¢, and the actor 6 4.

Updating 0. Given a! and the induced weights of, we sample B according to P, and compute the
per domain losses and gradients. The proxy model is then updated with a loss reweighting factor «:

Ot 200 —n' > alVE(0hy).
1€[k]

Updating 0c and 6 4. Let the critic be Qg (s, a) and the actor be g, (s). We compute 7t = W*
and the next state s'T! = (n!*1, t -1, £(04T, B), A¢(64F, B), w2, ||Awt+1|\2), then store
(st,at,rt, s*1) in the replay buffer For mini batch samples {(s7,a’,77, s7+1)}_,, the temporal

d1fference target is) . .
yi =1 +7Qoc (57 po, (s711)).

j=1

The critic minimizes

Z — Qo (87 aj))Q.

The actor ascends the policy gradlent

VeAJN ZVGA,UHA aQé)c(S a)|

a=pio , (s7)"

We follow DDPG and maintain target networks for stability.

Under review as a conference paper at ICLR 2026

2.5 MOoDES oF AC-ODM

AC-ODM supports two operational modes that trade a small increase in wall clock time for stronger
generalization.

Algorithm 1 AC-ODM in the non proxy mode

REQUIRE: D = {Dy,...,Dg} grouped data

REQUIRE: 69, target LLM weights, 0 4 actor weights, f¢ critic weights

REQUIRE: VL;(6%,) stochastic gradient of B; at step ¢

REQUIRE: Hyperparameters: total steps T, step size n*, target update coefficient 7, discount factor

~
1: Initialize K = |D|,setr? = 0foralli € {1,..., K}, initialize critic Qp,,, actor yp ,, and LLM
weights 69,))
2: Copy target networks 8¢ < 0¢, 04 < 04
3: Initialize replay buffer B, perform warm up to obtain the initial state s° =
(n,0,€(03,, B), ALOY;, B), [|w°]2, [[Aw|2)

4: fort =0toT — 1do

5: Choose action a’ = pg, (s*) and map to domain weights o’

6: Sample batch B' = {B!,..., Bi.} according to P, £ Y-X o . UNIF(D;)

7: Compute VL;(6%,) for all i € [K| and the alignment vector W*

8 Update the LLM: 64! — 0%, —) -5 ol VLi(0%,)

9: Setr! «+ W!
10: Form the next state s'™! = (n**1, ¢t + 1, £(04F", B), ALO4H, B), w2, |Aw!|2)
11: Store (s*,af,rt,s"*1) in B
12: Sample {(s7,a, 77, s7T1)} | from B
13: Compute y; = 17 + Q4. (s, pg, (s711))
14: Update critic by minimizing L = + Z;\le (y; — Qoo (57, aj))2
15 Update actor via Vg, J ~ + E;\Ll Voo, (8)VaQo. (87, a) ’a*ue (s9)

_ _ _ YA

16: Soft update targets: 04 < 704 + (1 — 7)04, 0c + 70c + (1 — 7)0¢
17: end for
18: return actor pg,

Non proxy mode. The actor and critic are trained jointly with the target LLM from scratch. This
mode adds negligible per step overhead and yields fast convergence.

Proxy mode. The actor and critic are first trained with a smaller trainable proxy LLM using the
same domains. The learned actor is then transferred to guide sampling for the target LLM. Re-
ward computation and critic updates are performed only in the proxy stage, which reduces overhead
during target pretraining and often produces stronger downstream performance.

Algorithm 2 AC-ODM in the proxy mode

REQUIRE: Proxy LLM initialization 0(]{47pmxy, target LLM initialization G(J)VI,tgt’ actor 6 4, critic

0c, domains D

1: Proxy stage: Train the actor and critic with the proxy LLM using Algorithm[Tjon D, obtain the
trained actor pg,

2: Transfer: Freeze the actor and remove reward computation

3: Target stage: For steps ¢ = 0 to T}z — 1, sample batches for the target LLM with o = 15 N (st),
update 6y gt With the reweighted loss, and refresh the state s'*! as in Algorithm [1| without
updating the actor or critic

4: return target LLM trained under the transferred actor policy

3 EXPERIMENTAL SETUP

We describe datasets, model training protocols, baseline configurations, and evaluation criteria. For
the actor and critic networks, we also detail the state design and reward design. All experiments are

Under review as a conference paper at ICLR 2026

run on a single machine with an Intel(R) Xeon(R) Platinum 8468 CPU and 8 NVIDIA H800 GPUs
with 80 GB memory each.

LLM training We use The Pile |Gao et al.| (2020), an open source corpus of 825 GB from 22
diverse sources such as YouTube Subtitles, GitHub, and Wikipedia. In addition, we pretrain on
SlimPajama [Soboleva et al.| (2023)), a seven domain corpus containing 672B tokens at a smaller
scale. Models are decoder only Transformers implemented with a modified GPT NeoX library
Black et al.| (2022). Unless noted otherwise, configurations follow Pythia |Biderman et al. (2023))
and we train a 1 billion parameter model. Each GPU processes a micro batch of 8 sequences. We
use gradient accumulation across 8 GPUs with accumulation step 18, which yields an effective batch
size of 1152 samples. For each batch, we first draw 10 percent per domain to expose the policy to
intra domain relationships while preserving exploration and exploitation. The sequence length is
1024 with sequence packing Roberts et al.|(2022). Training runs for 41,667 steps, corresponding to
50 billion tokens. During the first 833 warmup steps we replace AC driven weights with The Pile
domain weights perturbed by Gaussian noise sampled from N (0,0.02).

AC training The actor and critic share the same warmup and main training schedules as the LLM,
with cosine decay learning rate starting at 0.01 and decaying to 0.001. During warmup, we train the
actor and critic from the replay buffer 3. To initialize the actor, we use the LLM warmup domain
weights as soft labels, namely the noisy The Pile weights, and optimize with mean squared error.
For the critic, we initialize labels as (1 + +)r? and optimize with mean squared error. During main
training, each iteration samples 256 tuples from 3, dispatches 32 tuples per GPU, and uses gradient
accumulation of 1, which gives an effective batch size of 256. Architectural details for Pythia 1B
and the AC networks are in Appendix

Reward and State setting For the state features in Pythia 1B, the term |w||2 is computed on a
subset of layers. We use the first Transformer layer together with all layers whose indices are even.
This selection reduces computation time with negligible loss of fidelity. To balance efficiency and
efficacy in reward computation, we restrict the calculation to a subset of parameters. Specifically,
for Pythia 1B we use the final feedforward blocks of Transformer layers 12, 14, and 16, which
together contain 50,331,648 parameters. This choice reduces memory traffic while preserving a
faithful proxy for reward estimation. Ablations in Appendix [B|show that when only three layers are
used this selection is optimal.

Baselines We compare against the original The Pile domain weights |Gao et al.| (2020)), referred
to as The Pile Weights, and against domain weights from ODM and DoReMi computed with a 50k
tokenizer |Albalak et al.| (2023). All baselines are trained under the same hardware and training
budgets for fairness.

Evaluation We report validation and test perplexity averaged over all domains. For downstream
generalization, we evaluate on MMLU Hendrycks et al.|(2021) with zero shot and five shot settings
and on HumanEval (Chen et al.| (2021) with pass@1. These protocols are applied to models pre-
trained on The Pile and to models pretrained on SlimPajama under the same training recipe unless
noted otherwise. In addition, for models pretrained on The Pile, we evaluate zero shot accuracy on
five representative tasks that probe commonsense and scientific reasoning, namely COPA |Roem-
mele et al.| (2011)), SciQ [Welbl et al.|(2017), LogiQA [Liu et al.| (2020), PIQA [Bisk et al.|(2020), and
WinoGrande Sakaguchi et al.| (2021). Together, these evaluations measure both language modeling
quality and transfer to diverse downstream tasks.

4 FINDINGS AND DISCUSSION

4.1 MAIN RESULTS

Figure [Ia]shows results on The Pile: AC-ODM-410M, which trains a 1B target with a policy learned
from a 410M proxy, reaches the ODM optimal validation perplexity with 71% fewer steps and, at
41,667 steps, achieves lower perplexity than TPW, ODM, and AC-ODM by 20.7%, 16.4%, and
13.1%. SlimPajama in Figure [3a exhibits the same pattern, where AC-ODM-410M requires 65%
fewer steps than ODM and 73% fewer than the uniform baseline to reach its best perplexity and at

Under review as a conference paper at ICLR 2026

s The Pile Weights ODM
” 28 DoReMi-50k s AC-ODM
. . mwss DoGE-10k s AC-ODM-410M
Uniform Baseline
20 DoReMi-50k 23
DoGE-10k z
”
R =
18 ODM 218
= AC-ODM GQ:
5 —— AC-ODM-410M z
=16 “ g13
2
=
S 8
14 730, FastePye — — — S | I |
12 62% Faster 3 Nkl
& & N ™ é\) < -
é"q" & Q°° ¢ o & m‘&) &
S ¥ & &
10 A &e“ & &
0 10000 20000 30000 40000 e& &
Training Step C <
(a) (b)

Figure 3: Results on SlimPajama with Pythia 1B. (a) Validation perplexity during pretraining.
AC-ODM and AC-ODM-410M converge faster than static and online baselines. AC-ODM-410M
reaches the best perplexity of ODM in substantially fewer steps and yields lower perplexity at a fixed
budget, consistent with the annotations. (b) Test perplexity averaged over domains and reported
per domain. AC-ODM-410M attains the best average perplexity and is competitive or best across
individual domains.

41,667 steps improves perplexity by 16.5% over uniform and 11.6% over the best online baseline.
Overall, the proxy mode yields the strongest performance on both corpora, while the non proxy
mode consistently improves over static and online baselines with negligible per step overhead.

AC-ODM’s reward favors domains whose updates generalize to others, enabling the policy to exploit
shared structure. On The Pile, Figure f] shows that AC-ODM-410M attains the best average test
perplexity and leads in most domains, improving by at least 20% over ODM in 17 of 22 domains,
while AC-ODM is best or near best elsewhere; gains are most pronounced in small and medium
domains, and remain notable in the largest ones, indicating that the learned policy balances within
domain learning with cross domain transfer. On SlimPajama, Figure [3b] reports that AC-ODM-
410M achieves the lowest average perplexity and is competitive or best across all seven domains,
with smaller margins than on The Pile due to fewer domains and reduced opportunities for cross
domain interactions. Together these results suggest that AC-ODM is particularly advantageous for
large, finely partitioned corpora, while still improving convergence and final perplexity on smaller

or coarser domain collections.
25

we= The Pile Weights ODM
DoReMi-50k L AC-ODM
L —DoGE-10k e AC-ODM-410M
Z1s
=3
5
ﬂ-
a*? S RO S o® &
&
13 & & \“' \ @‘ N \ \ \ \ .3’ \“’ \"' \“ *
PG oy o & > & (9) > Y & N S & &) & A\ O Q
6@“" qé@ < ,,Q‘é r & &3) $ (Qsa & -»@ ¥ & Qo,e \&a n°°§ &‘& oF é\&o Y.‘.p p #4» sb‘;; &‘\ @96
S S &S 3 F & & ¥ & & S ¥ & &
& Qf" S & Q;’e\' < & 0.00 \".& ‘-.‘Q"' §’ < N "et- 33) < &8 > <
&S & <° SIS A R VN & &N
kG N S & & o]

Figure 4: Test perplexity on average and on 22 individual domains of The Pile. The horizontal axis
lists domain names with the corresponding proportion of tokens in the training set.

Table [T] summarizes results on MMLU and HumanEval. AC-ODM-410M improves over ODM
by 27.5% and 23.9% on zero shot and five shot MMLU, and achieves a 2.23x higher pass@1
on HumanEval. Figure [Tb{b) complements these findings with additional zero shot evaluations on

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of downstream tasks on MMLU and HumanEval. Acc denotes accuracy.

Algorithm MMLU 0 shot (Acc) MMLU 5 shot (Acc) HumanEval (pass@1)
TPW 0.20664 0.27469 0.14119
DoReMi-50k 0.21862 0.27887 0.14215
ODM 0.23514 0.28416 0.32510
AC-ODM 0.25146 0.29868 0.60256
AC-ODM-410M 0.29980 0.35215 0.72644

COPA, SciQ, LogiQA, PIQA, and WinoGrande using the same The Pile pretrained checkpoints.
The proxy mode consistently attains the highest accuracy across all five tasks, with large margins
on COPA, SciQ, and PIQA, and steady gains on LogiQA and WinoGrande. The non proxy mode
also improves reliably over ODM and TPW, which indicates that conditioning data mixing on the
evolving training state is beneficial even without the proxy stage.

Across tasks in Figure @kb), AC-ODM tracks 2
the proxy mode closely while adding negligi-
ble per step overhead, which makes it appealing
when wall clock constraints dominate. AC-ODM-
410M, which transfers the actor learned with a
smaller proxy LLM, yields the strongest down-
stream performance, reflecting the value of learn-
ing the policy with explicit reward signals before
guiding the target LLM. Complete per task com-

parisons with all baselines are provided in Ap- 65% FteP g — —e o == .
1 53% Faster g = m = o —— 4
pendix [C| "

\ me=The Pile Weights
ODM
AC-ODM
e AC-ODM-410M
(From Pythia-410M)

20

o

16

Validation Perplexity

14.4% Better

8.4% Better

4.2 GENERALIZATION 10

TO LLAMA STYLE ARCHITECTURES 0 10000 20000 30000 40000

Training Step

To assess whether AC'ODM .extends beyond Figure 5: Validation perplexity during LLaMA
Pythia, we repeat the pretraining study on a (9B pretraining on The Pile. We compare The
LLaMA style decoder only Transformer |[Dubey| pije Weights, ODM, AC-ODM, and AC-ODM-

et al| (2024) with 0.9B parameters. As shown in 410M, where the latter transfers an actor learned
Figure[5| AC-ODM improves the training dynam- ith a 410M Pythia proxy

ics of this modern architecture in the same way as

for Pythia. The proxy mode remains the strongest:

it reaches a target validation perplexity with substantially fewer steps and achieves lower perplexity
at a fixed budget. In particular, the annotations in Figure [5|indicate that AC-ODM-410M reduces the
steps required to match a common perplexity level by about 65% relative to The Pile Weights and
by about 53% relative to AC-ODM, and at the 41,667 step budget it improves perplexity by 14.4%
over The Pile Weights and by 8.4% over AC-ODM.

The portability of the learned policy is noteworthy. The red curve in Figure 5] uses an actor trained
once with a 410M Pythia proxy and then applied without modification to guide LLaMA pretraining.
The resulting gains demonstrate that our state representation and reward are architecture agnostic
and that the actor learned on one family can effectively guide another family with similar decoder
only structure. This cross model transfer, together with the strong performance of the non proxy
mode, supports the conclusion that AC-ODM is effective for modern LLMs and can generalize
across closely related architectures.

4.3 COMPUTATIONAL COST

We compare the compute required by AC-ODM and ODM to train a 1B LLM to the validation
perplexity achieved by ODM under identical hardware. Direct AC-ODM adds only 0.4% per step
overhead (2.48 vs. 2.47 s) but reduces steps by 31.95% (41667 — 28356), giving a 1.46x end to
end speedup. In the proxy mode, the actor—critic is learned on a smaller proxy and then transferred
to the 1B target, which then needs only 28.82% of the ODM steps (41667 — 12500 or 12010).

Under review as a conference paper at ICLR 2026

Table 2: Model size and computational cost during pretraining. The columns AC, LLM, and
AC+LLM denote the parameter counts of the actor—critic networks, the language model, and
the combined system. For proxy configurations, the rows labeled AC-ODM(160M) and AC-
ODM(410M) report the steps used to converge the actor—critic on the proxy, while the rows labeled
AC-ODM(1B) report the steps taken by the 1B target to match the ODM perplexity.

Algorithm AC LLM AC+LLM Time per step (s) Steps Speedup ratio
ODM 0 1B 1B 2.47 41667 Ix
AC-ODM 17.32M 1B 1.02B 2.48 28356 1.46x
AC-ODM(160M) 17.32M 160M 177.32M 0.65 28690 2.08x
AC-ODM(1B) 17.32M 1B 1.02B 2.48 12500)
AC-ODM(410M) 17.32M 410M 427.32M 1.41 28690 1.47x
AC-ODM(1B) 17.32M 1B 1.02B 2.48 12010)

Counting the proxy stage, the overall speedup is 2.08 x with a 160M proxy and 1.47x with a 410M
proxy. Although the larger proxy increases pretraining cost, the stronger policy it learns amortizes
over larger targets, making the proxy mode increasingly attractive at scale.

4.4 SUBEFFECT OF PROXY MODEL SIZE

16

Figure [6] compares a 1B target trained with sam-

—— AC-ODM-70M
pling policies learned from 70M, 160M, and —— AC.ODM

410M proxy LLMs against joint training with 15 AC-ODM-160M
AC-ODM. The proxies attain training losses of —— AC-ODM-410M

[
'S

2.8, 2.65, and 2.48, with validation perplexi-
ties 20.3, 15.5, and 12.1, respectively. Policies
from 160M and 410M consistently outperform
joint AC-ODM, indicating that a prelearned actor
adapts from the first step, whereas an online ac-
tor is still converging. The 70M proxy performs
worst, suggesting insufficient capacity to learn
a transferable policy. The 160M proxy nearly
matches the 410M proxy, especially early in train- 1

ing, likely because the 1B target limits headroom. 0 10000 20000 30000 40000
We expect the gap to widen for larger targets and Training Step

leave a systematic study of proxy-target scaling
for future work.

Validation Perplexity
] by

—
juny

Figure 6: Validation perplexity for a 1B target
using policies learned with proxy LLMs of dif-
ferent sizes (average over 22 Pile domains).

5 CONCLUSION

We presented AC-ODM, an actor and critic online data mixing method that treats LLM pretraining
as reinforcement learning and optimizes a gradient alignment reward to capture intra domain inter-
actions. Both the non proxy and proxy modes are effective, with the proxy mode strongest. On The
Pile and SlimPajama, a 410M proxy policy enables a 1B target to reach the ODM optimum in 71%
and 65% fewer steps, and at 41,667 steps lowers perplexity relative to TPW, ODM, and AC-ODM
by 20.7%, 16.4%, and 13.1%, with only 0.4% per step overhead. Downstream, AC-ODM-410M
improves zero shot and five shot MMLU by 27.5% and 23.9%, achieves a 2.23x higher pass@1
on HumanEval, and yields an average +3.44% accuracy gain across COPA, SciQ, LogiQA, PIQA,
and WinoGrande. On a LLaMA style 0.9B model, AC-ODM maintains the fastest convergence, and
an actor learned on a 410M Pythia proxy transfers effectively to LLaMA, indicating cross model
portability. These results suggest AC-ODM is especially beneficial for large and finely partitioned
corpora.

Under review as a conference paper at ICLR 2026

REFERENCES

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing
for language model pre-training, 2023. URL https://arxiv.org/abs/2312.02406/

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models,
2024. URL https://arxiv.org/abs/2402.16827.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-
armed bandit problem, 2002.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
pp. 74327439, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivan-
shu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b: An
open-source autoregressive language model, 2022. URL https://arxiv.org/abs/2204.
06745.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kath-
leen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.
URLhttps://arxiv.org/abs/2112.06905.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Simin Fan, Matteo Pagliardini, and Martin Jaggi. DoGE: Domain reweighting with generalization
estimation, 2024. URL https://arxiv.org/abs/2310.15393.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020. URL https://arxiv.org/
abs/2101.00027.

10

https://arxiv.org/abs/2312.02406
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2310.15393
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

R. C. St. John and N. R. Draper. D-optimality for regression designs: A review. Technometrics, 17
(1):15-23, 1975. doi: 10.1080/00401706.1975.10489266.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.
URLhttps://arxiv.org/abs/2107.06499.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiga: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bu-
lian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan Lee,
Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma,
Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and
data with t 5x and segio, 2022. URL https://arxiv.org/abs/2203.171809.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In AAAI spring symposium: logical formaliza-
tions of commonsense reasoning, pp. 90-95, 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. Slimpajama: A 627b token cleaned and dedu-
plicated version of redpajama. https://www.cerebras.net/blog/
slimpajama—-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
June 2023. URL |https://huggingface.co/datasets/cerebras/
SlimPajama-627B.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning, 2023. URL https://arxiv.org/
abs/2206.14486.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning, 2024. URL https://arxiv.org/abs/2310.
06694.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang,
Quoc V. Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining, 2023a. URL https://arxiv.org/abs/2305.10429|

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling, 2023b. URL https://arxiv.org/abs/2302.03169.

11

https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2203.17189
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2302.03169

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of selected layers used for reward computation.

Block indexes Perplexity

12,14, 16 13.0655
14,15, 16 13.0682
6,8, 10 13.0709
1,2,3 13.0701

Table 4: Zero shot accuracy on downstream tasks using The Pile pretrained 1B models. AVG is the
macro average across tasks.

Task TPW DoReMi-50k DoGE-10k ODM AC-ODM AC-ODM-410M
MMLU 0.27469 0.27887 0.27955 0.28416 0.29868 0.35215
COPA 0.54800 0.62000 0.64800 0.68000 0.69800 0.72000
SciQ 0.62000 0.63800 0.66400 0.68900 0.70200 0.73000
LogiQA 0.23810 0.24580 0.27650 0.30720 0.30110 0.32260
PIQA 0.60330 0.61670 0.62000 0.68330 0.69670 0.72000
WinoGrande 0.50930 0.52630 0.53200 0.59650 0.58300 0.63380
AVG 0.50374 0.52936 0.54810 0.59120 0.59616 0.62528

A APPENDIX

A.1 LLM MODEL CONFIGURATION

We adopt the sequence length of 1024 and employ a 16-layer Transformers architecture with a
hidden size of 2048 and 16 attention heads. Rotary positional embedding Su et al.| (2023)) is incor-
porated. We leverage FlashAttention Dao et al.| (2022)), which optimizes memory access and reduces
computation overhead, to improve training efficiency. The model is trained using Adam optimizer
Kingma & Bal(2017). The learning rate undergoes a linear warm-up for 833 iterations, gradually
increasing from a minimum of 2.5e-5 to a peak of 2.5e-4, followed by a cosine decay back to 2.5e-5.
We utilize the GPT-NeoX-20B tokenizer Black et al.|(2022) for text processing.

A.2 AC NETWORKS CONFIGURATION

For both the actor and the critic, we employ a fully connected 6-layer neural network with 1024
neurons per hidden layer. Except for the output layer, each layer is followed by layer normalization
and a ReLLU activation. In the actor, the output layer is further processed by the softmax activation
function, while in the critic, the output layer is post-processed by the identity activation function.

B APPENDIX

The results show that using later Transformer blocks yields the best proxy for reward computation:
selecting layers 12,14,16 attains the lowest perplexity, slightly outperforming contiguous later layers
14,15,16 and clearly matching or exceeding mid and early layer choices. Although the absolute
differences are small, they are consistent, suggesting that mid-to-late representations provide a more
informative signal while confirming that AC-ODM is robust to the exact layer subset. These findings
support our default choice of 12,14,16.

C APPENDIX

Analysis. AC-ODM-410M achieves the highest accuracy on every task and the best average
(0.62528), improving over ODM by an absolute +0.0341 and a relative +5.8%. Gains are con-
sistent across commonsense and reasoning benchmarks, with the largest jump on MMLU. The non

12

Under review as a conference paper at ICLR 2026

Table 5: Ablation study of state components used by AC-ODM. Removing any component degrades
performance; “Impr.” is the relative change in perplexity compared with using all components.

Status of state Perplexity Impr.
All components 13.0655 -
w/o n: number of samples per domain 13.1203 —0.419%
wi/o t: iteration step 13.0958 —0.232%
w/o £(0r, B): per-domain losses 13.8992 —6.38%
w/o Al(0yr, B): change of per-domain losses 13.5470 —3.69%
w/o ||lw||2: L? norm of selected layer weights 139115 —6.48%
w/o ||Aw||2: L? norm change of selected layers ~ 13.4254 —2.75%

proxy AC-ODM also improves over ODM on average but trails the proxy mode, underscoring the
benefit of learning the policy with a proxy model before guiding the target LLM.

D APPENDIX

Analysis. All six features contribute to policy quality. Removing per-domain losses ¢(6,;, B) or
the weight norm ||w||> causes the largest degradations (~6.4%), indicating that absolute training
signal and model-scale dynamics are critical for the actor. The change-of-loss term Af(6ys, B) is
also important (—3.69%), while the count of seen samples n and the step index ¢ provide smaller
but nontrivial gains. Overall, the full state offers the best perplexity and each component carries
compleme

E EVOLUTION OF DOMAIN WEIGHTS DURING TRAINING

Figure [7TaH7d] illustrate the evolution of domain weights across 22 distinct domains in The Pile
dataset during training 1B Pythia model under AC-ODM algorithm. AC-ODM initializes from the
original domain weights of The Pile and undergoes dynamic updates during the warmup phase. After
approximately 15,000 training steps, the domain weights stabilize. Afterward, minor fluctuations are
observed, which correspond to the evolving state of the LLM. The adaptive nature of AC-ODM’s
domain weight generation during this critical phase allows it to better align with the evolving model
state, thereby facilitating faster reductions in both training loss and perplexity compared to prior
methods.

Both AC-ODM and ODM algorithms eventually converge to stable domain weights. However, AC-
ODM exhibits more substantial adjustments in domain weights during the first third of training,
while ODM |Albalak et al.| (2023) stabilizes after only the first fifth of the total training steps. No-
tably, even after reaching stability, AC-ODM continues to experience slight fluctuations in domain
weights, enabling dynamic adaptation to evolving LLM state. In contrast, domain weights in ODM
remain nearly constant in the later stages of training, indicating a lack of flexibility in response to
parameter updates in later stage.

A comparison of domains with the large magnitudes of increases or decreases in weights across Fig-
ure [7aH7d] reveals consistent patterns. Regardless of the token proportion, domains characterized by
high-quality and general-purpose texts tend to experience weight increases during training. Exam-
ples include HackerNews in Figure Gutenberg (PG-19) and BookCorpus?2 in Figure Stack-
Exchange and USPTO Backgrounds in Figure and Book3 in Figure In contrast, domains
containing noisier texts or highly domain-specific contents exhibit significant weight reductions,
such as Enron Emails in Figure [/7af DM Mathematics and Wikipedia (en) in Figure Github and
FreeLaw in Figure[/c| and PubMed Central in Figure|/d} These observations align with human intu-
itive expectations: during LLM pretraining, data domains rich in high-quality, generalizable content
are more effective at driving model convergence in the early stages of training.

13

Under review as a conference paper at ICLR 2026

imgs/a.png imgs/b.png
(a) (b)
imgs/c.png imgs/d.png
(© (d)
imgs/e.png
14

Under review as a conference paper at ICLR 2026

Table 6: Zero-shot accuracy of AC-ODMs among different groups in MMLU.

Algorithm | STEM Social Sciences Humanities Other Average

AC-ODM 0.24213 0.30433 0.25381 0.24626 0.25146
AC-ODM-410M | 0.28219 0.38231 0.29908 0.28924 0.29980

F ANALYSIS OF RESULTS OF MMLU TASKS

We evaluate the performance of AC-ODM across four domain-specific groups in the MMLU bench-
mark, along with the overall average accuracy. As shown in Table 6} AC-ODM achieves better
accuracy in the Social Sciences group, achieving approximately 21% higher than average. This in-
dicates that AC-ODM effectively adapts to domain shifts in this group, likely benefiting from the
alignment between Social Sciences content and the training distribution in The Pile. In contrast,
AC-ODM underperforms in the STEM and Other groups, where accuracy falls slightly below the
overall average. The Humanities group yields performance close to the average. These observa-
tions suggest that AC-ODM facilitates the LLM’s ability to better acquire and generalize semantic
patterns related to humanities and social science domains from The Pile.

Compared to the direct application of AC-ODM, the proxy-based AC-ODM-410M variant consis-
tently improves performance across all groups, yielding an overall 19% increase in average accuracy.
The most notable gains occur in the Social Sciences and Other groups, with improvements of 26%
and 17%, respectively. These results indicate that AC-ODM trained on a 410M-parameter proxy
model can effectively capture the underlying domain relationships present in The Pile, which are
transferable to larger models and particularly beneficial for tasks involving humanities, social sci-
ences, and general knowledge. However, the relatively limited gains in STEM-related domains also
suggest that AC-ODM pays less attention to exploring domain-specific features relevant to science
and engineering. This limitation may stem from the relatively low proportion of STEM-related
content in The Pile dataset itself, which we would like to investigate in the future.

Figure [§]illustrates the task-level accuracy of AC-ODMs across different groups within the MMLU
benchmark. In the STEM group, AC-ODMs achieve strong performance on tasks such as Electrical
Engineering and Computer Security. Within the Social Sciences group, notable improvements are
observed in US Foreign Policy, Professional Psychology, High School Psychology, and Economet-
rics. For the Humanities group, AC-ODMs perform well on World Religions, Logical Fallacies, and
Jurisprudence. In the Other group, tasks such as Marketing, Human Aging, College Medicine, and
Clinical Knowledge benefit significantly from AC-ODMs. These results suggest that AC-ODM’s
domain weight optimization strategy effectively guides the LLMs to acquire semantic information
associated with general-purpose knowledge domains.

Compared to AC-ODM, the proxy-based AC-ODM-410M consistently improves performance
across all tasks. Notably, for particularly challenging tasks such as High School Statistics, Elemen-
tary Mathematics, and Management, AC-ODM-410M achieves non-zero accuracy where AC-ODM
fails completely (0% accuracy). These findings highlight that the use of a well-trained proxy model
during training enables AC-ODM to capture meaningful domain relationships, ultimately enhanc-
ing LLM performance. Proxy-based training allows the model to better infer the latent structure of
domain-specific knowledge while fulfilling difficult tasks, thereby leading to more effective adapta-
tion and improved generalization.

15

Under review as a conference paper at ICLR 2026

imgs/mmlu-a.png

(a)

imgs/mmlu—-b.png

(b)

16

	Introduction
	AC-ODM
	Problem formulation
	Adapting actor critic to online data mixing
	Designing the reward function
	Model update
	Modes of AC-ODM

	Experimental Setup
	Findings and discussion
	Main results
	Generalization to LLaMA style architectures
	Computational cost
	subEffect of proxy model size

	Conclusion
	Appendix
	LLM Model Configuration
	AC Networks Configuration

	Appendix
	Appendix
	Appendix
	Evolution of Domain Weights During Training
	Analysis of Results of MMLU Tasks

