
Bilinear Scoring Function Search for
Knowledge Graph Learning

Yongqi Zhang ,Member, IEEE, Quanming Yao,Member, IEEE, and James T. Kwok , Fellow, IEEE

Abstract—Learning embeddings for entities and relations in knowledge graph (KG) have benefitedmany downstream tasks. In recent years,

scoring functions, the crux of KG learning, have been human designed tomeasure the plausibility of triples and capture different kinds of

relations in KGs. However, as relations exhibit intricate patterns that are hard to infer before training, none of them consistently perform the

best on benchmark tasks. In this paper, inspired by the recent success of automatedmachine learning (AutoML), we search bilinear scoring

functions for different KG tasks through the AutoML techniques. However, it is non-trivial to explore domain-specific information here.We first

set up a search space for AutoBLMbyanalyzing existing scoring functions. Then, we propose a progressive algorithm (AutoBLM) and an

evolutionary algorithm (AutoBLM+), which are further accelerated by filter and predictor to deal with the domain-specific properties for KG

learning. Finally, we perform extensive experiments on benchmarks in KG completion,multi-hop query, and entity classification tasks.

Empirical results show that the searched scoring functions are KGdependent, new to the literature, and outperform the existing scoring

functions. AutoBLM+ is better thanAutoBLMas the evolutionary algorithm can flexibly explore better structures in the same budget.

Index Terms—Automated machine learning, graph embedding, knowledge graph, neural architecture search

Ç

1 INTRODUCTION

THE knowledge graph (KG) [1], [2], [3] is a graph in which
the nodes represent entities, the edges are the relations

between entities, and the facts are represented by triples of
the form (head entity, relation, tail entity) (or ðh; r; tÞ in short).
The KG has been found useful in a lot of data mining and
machine learning applications and tasks, including question
answering [4], product recommendation [5], knowledge
graph completion [6], [7], multi-hop query [4], [8], and
entity classification [9].

In a KG, plausibility of a fact ðh; r; tÞ is given by fðh; r; tÞ,
where f is the scoring function. Existing f’s are custom-
designed by human experts, and can be categorized into the
following three families: (i) translational distance models
(TDMs) [10], [11], [12], [13], which model the relation
embeddings as translations from the head entity embedding
to the tail entity embedding; (ii) bilinear model (BLMs) [6],
[7], [14], [15], [16], [17], [18], [19], which model the interac-
tion between entities and relations by a bilinear product

between the entity and relation embeddings; and (iii) neural
network models (NNMs) [20], [21], [22], [23], [24], which
use neural networks to capture the interaction. The scoring
function can significantly impact KG learning perfor-
mance [2], [3], [25]. Most TDMs are less expressive and have
poor empirical performance [3], [26]. NNMs are powerful
but have large numbers of parameters and may overfit the
training triples. In comparison, BLMs aremore advantageous
in that they are easily customized to be expressive, have lin-
ear complexities w.r.t. the numbers of entities/relations/
dimensions, and have state-of-the-art performance [18].
While a number of BLMs have been proposed, the best BLM
is often dataset-specific.

Recently, automated machine learning (AutoML) [27],
[28] has demonstrated its power in many machine learning
tasks such as hyperparameter optimization (HPO) [29] and
neural architecture search (NAS) [30], [31], [32]. The models
discovered have better performance than those designed by
humans, and the amount of human effort required is signifi-
cantly reduced. Inspired by its success, we propose in this
paper the use of AutoML for the design of KG-dependent
scoring functions. To achieve this, one has to pay careful
consideration to the three main components in an AutoML
algorithm: (i) search space, which identifies important prop-
erties of the learning models to search; (ii) search algorithm,
which ensures that finding a good model in this space is
efficient; and (iii) evaluation method, which offers feed-
backs to the search algorithm.

In this paper, we make the following contributions in
achieving these goals:

� We design a search space of scoring functions, which
includes all the existing BLMs. We further analyze
properties of this search space, and provide conditions
for a candidate scoring function to be expressive,
degenerate, and equivalent to another.

� Yongqi Zhang is with 4Paradigm Inc. Beijing 100085, China.
E-mail: zhangyongqi@4paradigm.com.

� Quanming Yao is with the Department of Electronic Engineering, Tsinghua
University, Beijing 100190, China, and also with 4Paradigm Inc. Beijing,
China. E-mail: qyaoaa@connect.ust.hk.

� James T. Kwok is with the Department of Computer Science, Hong Kong
University of Science and Technology, Hong Kong, China.
E-mail: jamesk@cse.ust.hk.

Manuscript received 29 June 2021; revised 25 Feb. 2022; accepted 3 Mar. 2022.
Date of publication 7 Mar. 2022; date of current version 6 Jan. 2023.
This work was supported in part by National Key Research and Development
Plan under Grant 2021YFE0205700, in part by Chinese National Natural Sci-
ence Foundation Projects under Grant 61961160704, and in part by the Sci-
ence and Technology Development Fund of Macau Project under Grant 0070/
2020/AMJ.
(Corresponding author: Quanming Yao.)
Recommended for acceptance by J. Li.
Digital Object Identifier no. 10.1109/TPAMI.2022.3157321

1458 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

0162-8828 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2085-7418
https://orcid.org/0000-0003-2085-7418
https://orcid.org/0000-0003-2085-7418
https://orcid.org/0000-0003-2085-7418
https://orcid.org/0000-0003-2085-7418
https://orcid.org/0000-0002-4828-8248
https://orcid.org/0000-0002-4828-8248
https://orcid.org/0000-0002-4828-8248
https://orcid.org/0000-0002-4828-8248
https://orcid.org/0000-0002-4828-8248
mailto:zhangyongqi@4paradigm.com
mailto:qyaoaa@connect.ust.hk
mailto:jamesk@cse.ust.hk

� To explore the above search space properties and
reduce the computation cost in evaluation, we
design a filter to remove degenerate and equivalent
structures, and a performance predictor with specifi-
cally-designed symmetry-related features (SRF) to
select promising structures.

� We customize a progressive algorithm (AutoBLM)
and an evolutionary algorithm (AutoBLM+) that,
together with the filter and performance predictor,
allow flexible exploration of new BLMs.

Extensive experiments are performed on the tasks of KG
completion, multi-hop query and entity classification. The
results demonstrate that the models obtained by AutoBLM
and AutoBLM+ outperform the start-of-the-art human-
designed scoring functions. In addition, we show that the
customized progressive and evolutionary algorithms are
much less expensive than popular search algorithms (ran-
dom search, Bayesian optimization and reinforcement learn-
ing) in finding a good scoring function.

Differences with the Conference Version.Compared to the
preliminary version published in ICDE 2020 [33], we have
made the following important extensions:

1) Theory. We add new analysis to the designed search
space based on bilinear models. We theoretically
prove when the candidates in the search space can
be expressive (Section 3.2), degenerate (Section 3.4.1)
and equivalent structures (Section 3.4.2).

2) Algorithm. We extend the search algorithm with the
evolutionary algorithm (Section 4.4), i.e., AutoBLM+.
The evolutionary strategy in Algorithm 4 can explore
better in the search space, and can also leverage the
filter and predictor to deal with the domain-specific
properties.

3) Tasks. We extend AutoBLM and AutoBLM+ to two
new tasks, namely, multi-hop query (Section 5.2) and
entity classification in (Section 5.3). We show that the
search problem can be well adopted to these new sce-
narios, and achieve good empirical performance.

4) Ablation Study. We conduct more experiments on the
performance (Section 5.1.2 and 5.1.3) and analysis (Sec-
tion 5.1.4) of the new search algorithm, analysis on the
influence of K (Section 5.1.7), and the problem of
parameter sharing (Section 5.1.8) to analyze the
design schemes in the search space and search
algorithm.

Notations. In this paper, vectors are denoted by lowercase
boldface, and matrix by uppercase boldface. The important
notations are listed in Table 1.

2 BACKGROUND AND RELATED WORKS

2.1 Scoring Functions for Knowledge Graph (KG)

A knowledge graph (KG) can be represented by a third-
order tensor G 2 RjEj�jRj�jEj, in which Ghrt ¼ 1 if the corre-
sponding triple ðh; r; tÞ exists in the KG, and 0 otherwise.
The scoring function fðh; r; tÞ : E � R� E ! R measures
plausibility of the triple ðh; r; tÞ. As introduced in Section 1,
it is desirable for a scoring function to be able to represent
any of the symmetric, anti-symmetric, general asymmetric
and inverse KG relations in Table 2.

Definition 1 (Expressiveness [14], [34], [35]). A scoring
function is fully expressive if for any KG G and the corre-
sponding tensor G 2 RjEj�jRj�jEj, one can find an instantia-
tion f of the scoring function such that fðh; r; tÞ ¼ Ghrt,
8h; t 2 E; r 2 R.

Not all scoring functions are fully expressive. For exam-
ple, consider a KG with two people A, B, and a relation
“OlderThan”. Obviously, we can have either (A, OlderThan,
B) or (B, OlderThan, A), but not both. The scoring function
fðh; r; tÞ ¼ hhh; rr; tti ¼

Pd
i¼1 hiriti, where hh; rr; tt are d-dimen-

sional embeddings of h; r and t, respectively, cannot be fully
expressive since fðh; r; tÞ ¼ fðt; r; hÞ.

On the other hand, while expressiveness indicates the
ability of f to fit a given KG, it may not generalize well
when inference on different KGs. As real-world KGs can be
very sparse [1], [3], a scoring function with a large amount
of trainable parameters may overfit the training triples.
Hence, it is also desirable that the scoring function has only
a manageable number of parameters.

In the following, we review the three main types of scor-
ing functions, namely, translational distance model (TDM),
neural network model (NNM), and biLinear model (BLM).
As will be seen, many TDMs (such as TransE [10] and
TransH [11]) cannot model the symmetric relations well [3],
[36]. Neural network models, though fully expressive, have
large numbers of parameters. This not only prevents the
model from generalizing well on unobserved triples in a
sparse KG, but also increases the training and inference
costs [18], [21], [24]. In comparison, BLMs (except DistMult)
can model all relation pattens in Table 2 and are fully
expressive. Besides, these models (except RESCAL and
TuckER) have moderate complexities (with the number of
parameters linear in jEj; jRj and d). Therefore, we consider
BLM as a better choice, and it will be our focus in this paper.

TABLE 1
Notations Used in the Paper

E;R;S set of entities, relations, triples
jEj; jRj; jSj number of entities, relations, triples
ðh; r; tÞ triple of head entity, relation and tail entity
hh; rr; tt embeddings of h, r, and t
fðh; r; tÞ scoring function for triple ðh; r; tÞ
Rd;Cd;Hd d-dimensional real/complex/hypercomplex space
RRðrrÞ 2Rd�d square matrix based on relation embedding rr
haa; bb; cci triple product :¼

Pd
i¼1 aibici ¼ aa>diag bbð Þcc

kvvk1 ‘1-norm of vector vv
ReðvvÞ real part of complex vector vv 2 Cd

�vv conjugate of complex vector vv 2 Cd

TABLE 2
Popular Properties in KG Relations

property examples in WN18/FB15 k constraint on f

symmetry isSimilarTo, spouseOf fðt; r; hÞ¼fðh; r; tÞ
anti-symmetry ancestorOf, isPartOf fðt; r; hÞ¼�fðh; r; tÞ
general asymmetry locatedIn, profession fðt; r; hÞ 6¼fðh; r; tÞ
inverse hypernym, hyponym fðt; r; hÞ¼fðh; r;0 tÞ

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1459

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

Translational Distance Model (TDM). Inspired by anal-
ogy results in word embeddings [37], scoring functions in
TDM take the relation r as a translation from h to t. The
most representative TDM is TransE [10], with fðh; r; tÞ ¼
�ktt� ðhhþ rrÞk1. In order to handle one-to-many, many-to-
one and many-to-many relations, TransH [11] and TransR
[12] introduce additional vectors/matrices to map the enti-
ties to a relation-specific hyperplane. The more recent
RotatE [13] treats the relations as rotations in a complex-val-
ued space: fðh; r; tÞ ¼ �ktt� hh� rrk1, where hh; rr; tt 2 Cd and
� is the Hermitian product [14]. As discussed in [34], most
TDMs are not fully expressive. For example, TransE and
TransH cannot model symmetric relations.

Neural Network Model (NNM). NNMs take the entity
and relation embeddings as input, and output a probability
for the triple ðh; r; tÞ using a neural network. Earlier works
are based on multilayer perceptrons [20] and neural tensor
networks [38]. More recently, ConvE [21] uses the convolu-
tional network to capture interactions among embedding
dimensions. By sampling relational paths [39] from the KG,
RSN [22] and Interstellar [40] use the recurrent network [41]
to recurrently combine the head entity and relation with a
step-wise scoring function. As the KG is a graph, R-
GCN [23] and CompGCN [24] use the graph convolution
network [9] to aggregate entity-relation compositions layer
by layer. Representations at the final layer are then used to
compute the scores. Because of the use of an additional neu-
ral network, NNM requires more parameters and has larger
model complexity.

BiLinear Model (BLM). BLMs model the KG relation as
a bilinear product between entity embeddings. For example,
RESCAL [6] defines f as: fðh; r; tÞ ¼ hh>RRðrrÞtt, where hh; tt 2
Rd, and RRðrrÞ 2 Rd�d. To avoid overfitting, DistMult [7]
requires RRðrrÞ to be diagonal, and fðh; r; tÞ reduces to a triple
product: fðh; r; tÞ ¼ hh>diag rrð Þtt ¼ hh; rr; tth i. However, it can
only model symmetric relations. To capture anti-symmetric
relations, ComplEx [14] uses complex-valued embeddings
hh; rr; tt 2 Cd with fðh; r; tÞ ¼ Re hh>diag rrð Þ�tt

� �
¼ Re hh� rr� �ttð Þ,

where � is the Hermitian product in complex space [14].
HolE [15] uses the circular correlation instead of the dot
product, but is shown to be equivalent to ComplEx [42].

Analogy [16] decomposes the head embedding hh into a
real part ĥh 2 Rd̂ and a complex part hh 2 Cd. Relation embed-
ding rr (resp. tail embedding tt) is similarly decomposed into
a real part r̂r (resp. t̂t) and a complex part rr (resp. tt). f is then
written as: fðh; r; tÞ ¼ hĥh; r̂r; t̂ti þRe hh� rr� �ttð Þ, which can be
regarded as a combination of DistMult and ComplEx. To
simultaneously model the forward triplet ðh; r; tÞ and its

inverse ðt; r;0 hÞ, SimplE [17] / CP [18] similarly splits the
embeddings to a forward part (ĥh; r̂r; t̂t 2 Rd) and a backward
part (hh; rr; tt 2 Rd): fðh; r; tÞ ¼ hĥh; r̂r; tti þ htt; rr; ĥhi. To allow
more interactions among embedding dimensions, the recent
QuatE [19] uses embeddings in the hypercomplex space
(hh; rr; tt 2 Hd) to model fðh; r; tÞ ¼ hh� rr� tt where � is the
Hamilton product. By using the Tucker decomposition [43],
TuckER [35] proposes a generalized bilinear model and
introduces more parameters in the core tensor W 2 Rd�d�d:
fðh; r; tÞ ¼ W �1 hh�2 rr�3 tt, where �i is the tensor product
along the ith mode. A summary of these BLMs is in Table 3.

2.2 Common Learning Tasks in KG

2.2.1 KG Completion

KG is naturally incomplete [1], and KG completion is a rep-
resentative task in KG learning [3], [6], [7], [10], [14], [17],
[21]. Scores on the observed triples are maximized, while
those on the non-observed triplets are minimized. After
training, new triples can be added to the KG by entity pre-
diction with either a missing head entity ð?; r; tÞ or a missing
tail entity ðh; r; ?Þ [3]. For each kind of query, we enumerate
all the entities e 2 E and compute the corresponding scores
fðe; r; tÞ or fðh; r; eÞ. Entities with larger scores are more
likely to be true facts. Most of the models in Section 2.1 can
be directly used for KG completion.

2.2.2 Multi-Hop Query

In KG completion, we predict queries ðh; r; ?Þ with length
one, i.e., 1-hop query. In practice, there can be multi-hop
queries with lengths larger than one [3], [8], [39]. For exam-
ple, one may want to predict “who is the sister of Tony’s moth-
er”. To solve this problem, we need to solve the length-2
query problem ð?; sister �mother; TonyÞ with the relation
composition operator �.

Given the KG G ¼ fE;R;Sg, let ’r, corresponding to the
relation r 2 R, be a binary function E � E 7! fTrue; Falseg.
The multi-hop query is defined as follows.

Definition 2 (Multi-hop query [4], [8]). The multi-hop
query ðe0; r1 � r2 � _s � rL; e?Þ with length L > 1 is defined as
9e1 _seL�1; e? : ’r1ðe0; e1Þ^’r2ðe1; e2Þ^ _s^’rLðeL�1; e?Þ where ^
is the conjunction operation, e0 is the starting entity, e? is the
entity to predict, and e1 _seL�1 are intermediate entities that con-
nect the conjunctions.

Similar to KG completion, plausibility of a query ðe0; r1 �
r2 � _s � rL; eLÞ is measured by a scoring function [8], [39]:

TABLE 3
The Representative BLM Scoring Functions. For Each Scoring Function We Show the Definitions, Expressiveness in Definition 1,

the Ability to Model All Common Relation Patterns in Table 2 (“RP” for Short), and the Number of Parameters

scoring function definition expressiveness RP # parameters

RESCAL [6] hh>RRðrrÞtt √ √ O jEjdþ jRjd2ð Þ
DistMult [7] hhh; rr; tti � � OðjEjdþ jRjdÞ
ComplEx [14]/HolE [15] Re hh� rr� �ttð Þ √ √ O jEjdþ jRjdð Þ
Analogy [16] hĥh; r̂r; t̂ti + Re hh� rr� �ttð Þ √ √ O jEjdþ jRjdð Þ
SimplE [17]/CP [18] hĥh; r̂r; tti + hhh; rr; t̂ti √ √ O jEjdþ jRjdð Þ
QuatE [19] hh� rr� tt √ √ O jEjdþ jRjdð Þ
TuckER [35] W �1 hh�2 rr�3 tt √ √ O jEjdþ jRjdþ d3ð Þ

1460 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

fðe0; r1 � r2 � _s � rL; eLÞ ¼ ee>0 RRðr1Þ � � �RRðrLÞeeL; (1)

whereRRðriÞ is a relation-specificmatrix of the ith relation. The
key is on how to model the composition of relations in the
embedding space. Based on TransE [10], TransE-Comp [39]
models the composition operator as addition, and defines
the scoring function as fðe0; r1 � � � � � rL; eLÞ ¼ �keeL � ðee0 þ
rr1 þ � � � þ rrLÞk1. Diag-Comp [39] uses the multiplication
operator in DistMult [7] to define fðe0; r1 � � � � � rL; eLÞ ¼
ee>0 DDrr1 � � �DDrrLeeL, where DDrri ¼ diag rrið Þ. Following RESCAL
[6], GQE [8] performs the compositionwith a product of rela-
tional matrices fRRðr1Þ; . . . ; RRðrLÞg, as: fðe0; r1 � � � � � rL; eLÞ ¼
ee>0 RRðr1Þ � � �RRðrLÞeeL. More recently, Query2box [4] models the
composition of relations as a projection of box embeddings
and defines an entity-to-box distance tomeasure the score.

2.2.3 Entity Classification

Entity classification aims at predicting the labels of the unla-
beled entities. Since the labeled entities are few, a common
approach is to use a graph convolutional network (GCN) [9],
[44] to aggregate neighborhood information. The GCN oper-
ates on the local neighborhoods of each entity and aggregates
the representations layer-by-layer as:

ee‘þ1i ¼ s WW‘
0ee

‘
i þ

X
j:ði;r;jÞ2Stra

WW‘ee‘j

0
@

1
A;

where Stra contains all the training triples, s is the activation
function, ee‘i ; ee

‘
j are the layer-‘ representations of i and the

neighboring entities j, respectively, and WW‘
0;WW

‘ 2 Rd�d are
weighting matrices sharing across different entities in the
‘th layer.

GCN does not encode relations in edges. To alleviate this
problem, R-GCN [23] and CompGCN [24] encode relation r
and entity j together by a composition function f:

ee‘þ1i ¼ s WW‘
0ee

‘
i þ

X
ðr;jÞ:ði;r;jÞ2Stra

WW‘fðee‘j; rr‘Þ

0
@

1
A;

where rr‘ is the representation of relation r at the ‘th layer. The
composition function fðee‘j; rr‘Þ can significantly impact perfor-
mance [24]. R-GCN uses the composition operator in
RESCAL [6], and defines fðee‘j; rr‘Þ ¼ RR‘

ðrÞee
‘
j, where RR‘

ðrÞ is a
relation-specific weighting matrix in the ‘th layer.
CompGCN, following TransE [10], DistMult [7] and HolE
[15], defines three operators: subtraction fðee‘j; rr‘Þ ¼ ee‘j � rr‘,
multiplication fðee‘j; rr‘Þ ¼ ee‘j � rr‘ where� is the element-wise
product, and circular correlation fðee‘j; rr‘Þ ¼ ee‘j?rr

‘ where
½aa?bb	k ¼

Pd
i¼1 aibkþi�1 mod d.

2.3 Automated Machine Learning (AutoML)

Recently, automated machine learning (AutoML) [27], [28]
has demonstrated its advantages in the design of better
machine learning models. AutoML is often formulated as a
bi-level optimization problem [45], in which model parame-
ters are updated from the training data in the inner loop,
while hyper-parameters are tuned from the validation data
in the outer loop. There are three important components in
AutoML [27], [28], [46]:

1) Search space: This identifies important properties of
the learning models to search. The search space
should be large enough to cover most manually-
designed models, while specific enough to ensure
that the search will not be too expensive.

2) Search algorithm: A search algorithm is used to search
for good solutions in the designed space. Unlike con-
vex optimization problems, there is no universally
efficient optimization tool.

3) Evaluation: Since the search aims at improving per-
formance, evaluation is needed to offer feedbacks to
the search algorithm. The evaluation procedure
should be fast and the signal should be accurate.

2.3.1 Neural Architecture Search (NAS)

Recently, a variety of NAS algorithms have been developed
to facilitate efficient search of deep networks [28], [30], [32].
They can generally be divided into model-based approach
and sample-based approach [27]. Themodel-based approach
builds a surrogate model for all candidates in the search
space, and selects candidates with promising performance
usingmethods such as Bayesian optimization [29], reinforce-
ment learning [30], [47], and gradient descent [31], [48]. It
requires evaluating a large number of architectures for train-
ing the surrogate model or requires a differentiable objective
w.r.t. the architecture. The sample-based approach is more
flexible and explores new structures in the search space by
using heuristics such as progressive algorithm [49] and evo-
lutionary algorithm [50].

As for evaluation, parameter-sharing [31], [47], [48]
allows faster architecture evaluation by combining archi-
tectures in the whole search space with the same set of
parameters. However, the obtained results can be sensitive
to initialization, which hinders reproducibility. On the
other hand, stand-alone methods [30], [49], [50] train and
evaluate the different models separately. They are slower
but more reliable. To improve its efficiency, a predictor
can be used to select promising architectures [49] before it
is fully trained.

3 AUTOMATED BILINEAR MODEL

In the last decade, KG learning has been improvingwith new
scoring function designs. However, as different KGs may
have different properties, it is unclear how a proper scoring
function can be designed for a particular KG. This raises the
question: Can we automatically design a scoring function for a
given KG? To address this question, we first provide a unified
view of BLMs, and then formulate the design of scoring func-
tion as an AutoML problem: AutoBLM (“automated bilinear
model”).

3.1 A Unified View of BLM

Recall from Section 2.1 that a BLM may operate in the real/
complex/hypercomplex space. To write the different BLMs
in the same form, we first unify them to the same represen-
tation space. The idea is to partition each of the embeddings
hh; rr; tt to K ¼ 4 equal-sized chunks, as hh ¼ ½hh1; . . . ; hh4	; rr ¼
½rr1; . . . ; rr4	 and tt ¼ ½tt1; . . . ; tt4	. The BLM is then written in
terms of fhhhi; rrj; ttkigi;j;k2f1;...;4g.

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1461

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

� DistMult [7], which uses fðh; r; tÞ ¼ hh; rr; tth i. We sim-
ply split hh 2 Rd (and analogously rr and tt) into 4
parts as fhh1; hh2; hh3; hh4g, where hhi 2 Rd=4 for i ¼ 1; 2;
3; 4. Obviously,

hh; rr; tth i
¼ hh1; rr1; tt1h i þ hh2; rr2; tt2h i þ hh3; rr3; tt3h i þ hh4; rr4; tt4h i:

� SimplE [17] /CP [18],which uses fðh; r; tÞ ¼ hĥh; r̂r; tti þ
htt; rr; ĥhi. We split ĥh 2 Rd (and analogously r̂r and t̂t) into
2 parts as fhh1; hh2g (where hh1; hh2 2 Rd=2), and similarly
hh as fhh3; hh4g (and analogously rr and tt). Then,

hĥh; r̂r; tti þ htt; rr; ĥhi
¼ hh1; rr1; tt3h i þ hh2; rr2; tt4h i þ hh3; rr3; tt1h i þ hh4; rr4; tt2h i:

� ComplEx [14] / HolE [15], which uses fðh; r; tÞ ¼
Reðhh� rr� �ttÞ, where hh; rr;�tt are complex-valued.
Recall that any complex vector vv 2 Cd is of the form
vvr þ ivvi, where vvr 2 Rd is the real part and vvi 2 Rd is
the imaginary part. Thus,

Reðhh� rr� �ttÞ ¼ hhhr; rrr; ttri þ hhhi; rrr; ttii
þ hhhr; rri; ttii � hhhi; rri; ttri: (2)

We split hhr 2 Rd (and analogously rrr and ttr) into 2
parts fhh1; hh2g (where hh1; hh2 2 Rd=2), and similarly
hhi ¼ fhh3; hh4g (and analogously rri and tti). Then,

Reðhh� rr� �ttÞ

¼ hhh1;rr1;tt1iþhhh2;rr2;tt2ið Þþ hhh3;rr1;tt3iþhhh4;rr2;tt4ið Þ

þ hhh1;rr3;tt3iþhhh2;rr4;tt4ið Þ� hhh3;rr3;tt1i�hhh4;rr4;tt2ið Þ:

� Analogy [16], which uses fðh; r; tÞ ¼ hĥh; r̂r; t̂ti þ
Re hh� rr� �ttð Þ. We split ĥh 2 Rd (and analogously r̂r and
t̂t) into 2 parts fhh1; hh2g (where hh1; hh2 2 Rd=2), and simi-
larly hh 2 Cd=2 (and analogously rr and tt) into 2 parts
fhh3; hh4g (where hh3; hh4 2 Rd=2). Then,

hĥh; r̂r; t̂ti þ Re hh� rr� �ttð Þ
¼ hh1; rr1; tt1h i þ hh2; rr2; tt2h i þ hh3; rr3; tt3h i þ hh3; rr4; tt4h i
þ hh4; rr3; tt4h i � hh4; rr4; tt3h i:

� QuatE [19], which uses fðh; r; tÞ ¼ hh� rr� tt. Recall
that any hypercomplex vector vv 2 Hd is of the form
vv1 þ ivv2 þ jvv3 þ kvv4, where vv1; vv2; vv3; vv4 2 Rd. Thus,

hh� rr� tt

¼ hh1; rr1; tt1h i � hh1; rr2; tt2h i � hh1; rr3; tt3h i � hh1; rr4; tt4h i
þ hh2; rr2; tt1h i þ hh2; rr1; tt2h i þ hh2; rr4; tt3h i � hh2; rr3; tt4h i
þ hh3; rr3; tt1h i � hh3; rr4; tt2h i þ hh3; rr1; tt3h i þ hh3; rr2; tt4h i
þ hh4; rr4; tt1h i þ hh4; rr3; tt2h i � hh4; rr2; tt3h i þ hh4; rr1; tt4h i:

As hhhi; rrk; ttji ¼ hh>i diag rrkð Þttj, all the above BLMs can be
written in the form of a bilinear function

hh>RRðrrÞtt; (3)

where1 hh ¼ ½hh>1 ; . . . ; hh>4 	
>; tt ¼ ½tt1; _s; tt4	 2 Rd, and RRðrrÞ 2 Rd�d

is a matrix with 4� 4 blocks, each block being either
00;
diag rr1ð Þ; _s, or
diag rr4ð Þ. Fig. 1 shows graphically the RRðrrÞ
for the BLMs considered.

3.2 Unified Bilinear Model

Using the above unified representation, the design of BLM
becomes designing RRðrrÞ in (3).

Definition 3 (Unified BiLinear Model). The desired scoring
function is of the form

fAAðh; r; tÞ ¼
XK
i;j¼1

signðAijÞ hhi; rrjAijj; ttj

D E
; (4)

where

AA 2 f0;
1; . . . ;
KgK�K (5)

is called the structure matrix. Here, we define rr0 � 00, and
signð0Þ ¼ 0.

It can be easily seen that this covers all the BLMs in Sec-
tion 3.1 when K ¼ 4. Let gKðAA; rrÞ be a matrix with K �K
blocks, with its ði; jÞ-th block:

½gKðAA; rrÞ	ij ¼ signðAijÞ � diagðrrjAijjÞ: (6)

The form in (4) can be written more compactly as

fAAðh; r; tÞ ¼ hh>gKðAA; rrÞtt: (7)

A graphical illustration is shown in Fig. 2.
The following Proposition gives a necessary and suffi-

cient condition for the BLM with scoring function in (7) to
be fully expressive. The proof is in Appendix A.1.

Fig. 1. The forms of RRðrrÞ for representative BLMs (best viewed in color). Different colors correspond to different parts of ½rr1; rr2; rr3; rr4	 (red for rr1, blue
for rr2, yellow for rr3, gray for rr4). Solid lines mean positive values, while dashed lines mean negative values. The empty parts have value zero.

1. With a slight abuse of notations, we still use d to denote the
dimensionality after this transformation.

1462 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

Proposition 1. Let

C � frr 2 RK j rr 6¼ 00;

r½i	 2 f0;
1; . . . ;
Kg; i ¼ 1; . . . ; Kg: (8)

Given an AA in (5), the bilinear model with scoring function (7)
is fully expressive if

1) 9r̂r 2 C such that gKðAA; r̂rÞ is symmetric (i.e.,
gKðAA; r̂rÞ> ¼ gKðAA; r̂rÞ), and

2) 9�rr 2 C such that gKðAA; �rrÞ is skew-symmtric (i.e.,
gKðAA; �rrÞ> ¼ �gKðAA; �rrÞ).

Table 4 shows examples of r̂r and �rr for the existing BLMs
(ComplEx, HolE, Analogy, SimplE, CP, and QuatE), thus
justifying that they are fully expressive.

3.3 Searching for BLMs

Using the family of unified BLMs inDefinition 3 as the search
space A for structure matrix AA, the search for a good data-
specific BLM can be formulated as the following AutoML
problem.

Definition 4 (Bilinear Model Search (AutoBLM)). Let
F ðPP ;AAÞ be a KG embedding model (where PP includes the
entity embedding matrix EE and relation embedding matrix RR,
and AA is the structure matrix) and MðF;SÞ be the performance
measurement of F on triples S (the higher the better). The
AutoBLM problem is formulated as:

AA� 2 ArgmaxAA2AM F ðPP �;AAÞ;Svalð Þ (9)

s.t. PP � ¼ argmaxPPM F ðPP ;AAÞ;Strað Þ; (10)

where

A ¼ fAA ¼ ½Aij	 2 RK�K

j Aij 2 f0;
1; . . . ;
Kg 8i; j ¼ 1; . . . ; Kg; (11)

contains all the possible choices of AA, Stra is the training set,
and Sval is the validation set.

As a bi-level optimization problem,we first train themodel
to obtainPP � (convergedmodel parameters) on the training set
Stra by (10), and then search for a betterAA (and consequently a
better relation matrix gKðAA; rrÞ) based on its performance M
on the validation set Sval in (9). Note that the objectives in (9)
and (10) are non-convex, and the search space is large (with
ð2K þ 1ÞK

2
candidates, as can be seen from (5)). Thus, solving

(10) can be expensive and challenging.

3.4 Degenerate and Equivalent Structures

In this section, we introduce properties specific to the pro-
posed search space A. A careful exploitation of these would
be key to an efficient search.

3.4.1 Degenerate Structures

Obviously, not all structure matrices in (5) are equally good.
For example, if all the nonzero blocks in gKðAA; rrÞ are in the
first column, fAA will be zero for all head embeddings with
hh1 ¼ 00. These structures should be avoided.

Definition 5 (Degenerate structure).Matrix AA is degenerate
if (i) there exists hh 6¼ 0 such that hh>gKðAA; rrÞtt ¼ 0; 8rr; tt; or (ii)
there exists rr 6¼ 0 such that hh>gKðAA; rrÞtt ¼ 0; 8hh; tt.

With a degenerate AA, the triple ðh; r; tÞ is always non-
plausible for every nonzero head embedding hh or relation
embedding rr, which limits expressiveness of the scoring
function. The following Proposition shows that it is easy to
check whether AA is degenerate. Its proof is in Appendix A.2.

Proposition 2. AA is not degenerate if and only if rankðAAÞ ¼ K
and f1; . . . ; Kg fjAijj : i; j ¼ 1; . . . ; Kg.

SinceK is very small (which is equal to 4 here), the above
conditions are inexpensive to check. Hence, we can effi-
ciently filter out degenerate AA’s and avoid wasting time in
training and evaluating these structures.

3.4.2 Equivalence

In general, two different AA’s can have the same performance
(as measured by F in Definition 4). This is captured in the
following notion of equivalence. If a group of AA’s are equiv-
alent, we only need to evaluate one of them.

Definition 6 (Equivalence). Let PP � ¼ argmaxPPMðF ðPP ;AAÞ;
SÞ and PP 0

� ¼ argmaxPP 0MðF ðP 0P 0;AA0Þ;SÞ. If AA 6¼ AA0 but
M F ðPP �;AAÞ;Sð Þ¼M F ðPP 0�;AA0Þ;S

� �
for all S, then AA is

equivalent to AA0 (denoted AA � AA0).

The following Proposition shows several conditions for
two structures to be equivalent. Its proof is in Appendix A.3.
Examples are shown in Fig. 3.

Proposition 3. Given an AA in (5), construct FFAA 2 RK�K2
such

that ½FFAA	jAijj;ði�1ÞKþj ¼ signðAijÞ if jAijj 2 f1; . . . ; Kg, and 0

otherwise.2 Two structure matrices AA and AA0 are equivalent if
any one of the following conditions is satisfied.

(i) Permuting rows and columns: There exists a permuta-
tion matrix PP 2 f0; 1gK�K such that AA0 ¼ PP>AAPP.

Fig. 2. A graphical illustration of the proposed form of fAAðh; r; tÞ.

TABLE 4
Example r̂r (Resp. �rr) for the Two Conditions in Proposition 1

model r̂r �rr

ComplEx/HolE [1,2,0,0] [0,0,3,4]
Analogy [1,2,3,0] [0,0,0,4]
SimplE/CP [1,2,1,2] ½1; 2;�1;�2	
QuatE [1,0,0,0] [0,2,3,4]

2. Intuitively, in FFAA, the indexes of nonzero values in its jAijj-th row
indicate positions of elements in AAwhose absolute values are jAijj.

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1463

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

(ii) Permuting values: There exists a permutation matrix
PP 2 f0; 1gK�K such that FFAA0 ¼ PPFFAA;

(iii) Flipping signs: There exists a sign vector ss 2 f
1gK
such that ½FFAA0 	i;� ¼ si � ½FFAA	i;�; 8i ¼ 1; . . . ; K.

There areK! possible permutationmatrices for conditions
(i) and (ii), and 2K possible sign vectors for condition (iii).
Hence, one has to check a total of ðK!Þ22K combinations.

4 SEARCH ALGORITHM

In this section, we design efficient algorithms to search for
the structure matrix AA in (5). As discussed in Section 2.3.1,
the model-based approach requires a proper surrogate
model for such a complex space. Thus, we will focus on the
sample-based approach, particularly on the progressive
algorithm and evolutionary algorithm. To search efficiently,
one needs to (i) ensure that each new AA is neither degener-
ate nor equivalent to an already-explored structure; and (ii)
the scoring function fAAðh; r; tÞ obtained from the new AA is
likely to have high performance. These can be achieved by
designing an efficient filter (Section 4.1) and performance
predictor (Section 4.2). Then, we introduce two search algo-
rithms: progressive search (Section 4.3) and evolutionary
algorithm (Section 4.4).

4.1 Filtering Degenerate and Equivalent Structures

Algorithm 1 shows the filtering procedure. First, step 2
removes degenerate structure matrices by using the condi-
tions in Proposition 2. Step 3 then generates a set of ðK!Þ22K
structures that are equivalent to AA (Proposition 3). AA is fil-
tered out if any of its equivalent structures appears in the
set H containing structure matrices that have already been
explored. As K is small, this filtering cost is very low com-
pared with the cost of model training in (10).

Algorithm 1. Filtering degenerate and equivalent struc-
ture matrices. The output is “False” if the input structure
matrix AA is to be filtered out.

Input: AA: aK �K structure matrix,H: a set of structures.
1: initialization:QðAA;HÞ ¼ True.
2: if detðAAÞ ¼ 0 or f1; . . . ;Kg 6 fjAijj : i; j ¼ 1; . . . ;Kg,

thenQðAA;HÞ ¼ False.
3: generate a set of equivalent structures fAA0 :AA0 �AAg by

enumerating permutation matrices PP ’s and sign vectors ss’s.
4: forAA0 in fAA0 : AA0 � AAgdo
5: if AA0 2 H, thenQðAA;HÞ ¼ False, and exit the loop.
6: end for
7: returnQðAA;HÞ.

4.2 Performance Predictor

After collecting N structures in H, we construct a predictor
P to estimate the goodness of each AA. As mentioned in Sec-
tion 2.3, search efficiency depends heavily on how to evalu-
ate the candidate models.

A highly efficient approach is parameter sharing, as is
popularly used in one-shot neural architecture search
(NAS) [31], [47]. However, parameter sharing can be prob-
lematic when used to predict the performance of scoring
functions. Consider the following two AA’s: (i) AA1 is a 4� 4
matrix of all þ1’s, and so fAA1

ðh; r; tÞ ¼
P4

i;j¼1hhhi; rr1; ttji, and
(ii) AA2 is a 4� 4 matrix of all �1’s, and so fAA2

ðh; r; tÞ ¼
�
P4

i;j¼1hhhi; rr1; ttji ¼ �fAA1
ðh; r; tÞ. When parameter sharing

is used, it is likely that the performance predictor will output
different scores forAA1 andAA2. However, from Proposition 3,
by setting ss ¼ ½�1;�1;�1;�1	 in condition (iii), we have
AA1 � AA2 and thus they indeed have the same performance.
This problem will also be empirically demonstrated in Sec-
tion 5.1.8. Hence, instead, we train and evaluate the models
separately as in the stand-aloneNAS evaluation [30], [49].

Algorithm 2. Construction of the symmetry-related
feature (SRF) vectors.

Input: structure matrix AA.
1: initialization: aa;bb :¼ 00.
2: for rr 2 C do
3: if rr 6¼ 00 then
4: x ¼

��fi : ri¼0g
��;

5: y ¼
��fj > 0 : ri¼j or ri¼�jg

��;
// for symmetric case

6: if gKðAA; rrÞ�gKðAA; rrÞ>¼0 then aðx;yÞ ¼1;
// for skew-symmetric case

7: if gKðAA; rrÞþgKðAA; rrÞ>¼0 then bðx;yÞ ¼1;
8: end if
9: end for
10: return ½vecðaaÞ; vecðbbÞ	.

Recall from Section 2.1 that it is desirable for the scoring
function to be fully expressive. Proposition 1 shows that this
requires looking for a r̂r 2 C such that gKðAA; r̂rÞ is symmetric
and a �rr 2 C such that gKðAA; �rrÞ is skew-symmetric. This moti-
vates us to examine each of the ð2 K þ 1ÞK � 1rr’s in C
(defined in (8)) and see whether it leads to a symmetric or
skew-symmetric gKðAA; rrÞ. However, directly using all these
ð2 K þ 1ÞK � 1 choices as features to a performance predic-
tor can be computationally expensive. Instead, empirically

Fig. 3. Illustration of RRðrrÞ for Analogy (Fig. 3a) and three example equiva-
lent structures based on the conditions in Proposition 3. Fig. 3b per-
mutes the index [1,2,3,4] of rows and columns in AA to [3,4,1,2]; Fig. 3c
permutes the values [1,2,3,4] in AA to [3,4,1,2]; Fig. 3d flips the signs of
values [1,2,3,4] in AA to ½�1; 2;�3; 4	.

1464 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

we find that the following two features can be used to group
the scoring functions: (i) number of zeros in rr: jfi 2
f1; . . . ; Kg : ri ¼ 0gj; and (ii) number of nonzero absolute
values in rr: jfj > 0 : ri ¼ j or ri ¼ �j; i 2 f1; . . . ; Kggj. The
possible choices is reduced toKðK þ 1Þ=2 (groups of scoring
functions). We keep two symmetry-related feature (SRF) as aa
and bb. If gKðAA; rrÞ is symmetric (resp. skew-symmetric) for
any rr in C, the entry in aa (resp. bb) corresponding to rr is set to
1. The construction process is also shown in Algorithm 2.
Finally, the SRF vector is composed with vecðaaÞ and vecðbbÞ,
which vectorize the values in aa and bb, and fed as input to a
two-layerMLP for performance prediction.

Algorithm 3. Progressive search algorithm (AutoBLM).

Input: I: number of top structures; N : number of generated
structures; P : number of structures selected by P; b0: number of
nonzero elements in initial structures; filter Q and performance
predictor P.
1: initialization: b :¼ b0, create a candidate setHb ¼ ;;
2: foreach AAðbÞ 2 fAAðbÞg do
3: ifQðAAðbÞ;HbÞ from Algorithm 1 is true

thenHb Hb [fAAðbÞg;
4: if jHbj ¼ I, break loop;
5: end for
6: train and evaluate all AAðbÞ’s inHb;
7: add AAðbÞ’s to T b and record the performance in Yb;
8: update predictor P with records in ðT b;YbÞ.
9: repeat
10: b :¼ bþ 1;
11: Hb ¼ ;;
12: repeat
13: randomly select a top-I structure AAb�1 2 T b�1;
14: randomly generate ib; jb; kb 2 f1; . . . ;Kg, sb 2 f
1g,

and form AAðbÞ with f
AAðbÞ fAAb�1 þ sb hhib ; rrkb ; ttjb

� �
;

15: ifQðAAðbÞ;Hb [T bÞ from Algorithm 1 is true
thenHb Hb [fAAðbÞg;

16: until Hb
�� �� ¼ N

17: select top-P AAðbÞ’s inHb based on the predictor P;
18: train embeddings and evaluate the performance ofAAðbÞ’s;
19: add AAðbÞ’s in T b and record the performance in Yb;
20: update the predictor (the following commented out)

P with (T ¼ T b0 [_s [T b, Y ¼ Yb0 [_s [Yb);
21: untilbudget is exhausted or b ¼ K2;
22: select the top-I structures in T based on performance in
Y to form the set I .

23: return I .

4.3 Progressive Algorithm

To explore the search space A in (11), the simplest approach
is by direct sampling. However, it can be expensive as the
space is large. Note from (4) that the complexity of fAAðh; r; tÞ
is controlled by the number of nonzero elements in AA.
Inspired by [49], we propose in this section a progressive
algorithm that starts withAA’s having only a few nonzero ele-
ments, and then gradually expands the search space by
allowingmore nonzeros.

The procedure, which is called AutoBLM, is in Algo-
rithm 3. Let AAðbÞ be an AA with b nonzero elements, and the
corresponding BLM be f

AAðbÞ . In step 1, we initialize b to
some b0 and create an empty candidate set Hb. As AA’s with

fewer than K nonzero elements are degenerate (Proposi-
tion 2), we use b0 ¼ K. We first sample positions of b0 non-
zero elements, and then randomly assign them values in
f
1;
2; . . . ;
Kg. The other entries are set to zero.

Steps 2-5 filter away degenerate and equivalent struc-
tures. The number of nonzero elements b is then increased by
1 (step 10). For each such b, steps 12-16 greedily select a top-
performing structure (evaluated based on the mean recipro-
cal rank (MRR) [3] performance on Sval) in T b�1, and gener-
ateN candidates. All the candidates are checked by the filter
Q (Section 4.1) to avoid degenerate or equivalent solutions.
Next, the predictor P in Section 4.2 selects the top-P AAðbÞ’s,
which are then trained and evaluated in step 18. The training
data for P is collected with the recorded structures and per-
formance in ðT ;YÞ at step 20. Finally, the top-I structures in
T evaluated by the corresponding performance in Y are
returned.

Algorithm 4.Evolutionary search algorithm. (AutoBLM+).

Input:I: number of top structures; N : number of generated
structures; P : number of structures selected by P; b0:
number of nonzero elements in initial structures; filter
Q, and performance predictor P.

1: initialization: I ¼ ;;
2: foreach AA 2 fAAðb0Þgdo
3: ifQðAA; IÞ from Algorithm 1 is true then I I [AAf g;
4: if jI j ¼ I, break loop;
5: end for
6: train and evaluate all AA’s in I ;
7: add AA’s to T and record the performance in Y;
8: repeat
9: update predictor P with records in ðT ;YÞ.
10: repeat
11: H ¼ ;;
12: mutation: sample AA 2 I and mutate to AAnew; or
13: crossover: sample AAðaÞ; AAðbÞ 2I , and use crossover to

generate AAnew;
14: ifQðAAnew;H[T Þ is true by Algorithm 1,

thenH H[AAnewf g;
15: untiljHj ¼ N ;
16: select top-P structuresAA inH based on the the predictorP;
17: for each top-P structure AAdo
18: train embeddings and evaluate the performance of AA;
19: survive: update I with AA if AA is better than the worst

structure in I ;
20: end for
21: add AA’s in T and record the performance in Y;
22: untilbudget is exhausted;
23: return I .

4.4 Evolutionary Algorithm

While progressive search can be efficient, it may not fully
explore the search space and can lead to sub-optimal solu-
tions [51]. The progressive search can only generate struc-
tures from fewer non-zero elements to more ones. Thus, it
can not visit and adjust the structures with fewer non-
zero elements when b is increased. To address these prob-
lems, we consider in this section the use of evolutionary
algorithms [52].

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1465

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

The procedure, which is called AutoBLM+, is in Algo-
rithm 4. As in Algorithm 3, we start with structures having
b0 ¼ K nonzero elements. Steps 2-7 initializes a set I of I
non-degenerate and non-equivalent structures. The main
difference with Algorithm 3 is in steps 9-16, in which new
structures are generated by mutation and crossover. For a
given structure AA, mutation changes the value of each entry
to another one in f0;
1; . . . ;
Kg with a small probability
pm. For crossover, given two structures AAðaÞ and AAðbÞ, each
entry of the new structure has equal probabilities to be
selected from the corresponding entries in AAðaÞ or AAðbÞ. After
mutation or crossover, we check if the newly generated AAnew

has to be filtered out. AfterN structures are collected, we use
the performance predictor P in Section 4.2 to select the top-P
structures. These are then trained and evaluated for actual
performance. Finally, structures in I with performance
worse than the newly evaluated ones are replaced (step 19).

5 EXPERIMENTS

In this section, experiments are performed on a number of
KG tasks. Algorithm 5 shows the general procedure for
each task. First, we find a good hyper-parameter setting to
train and evaluate different structures (steps 2-6). Based on
the observation that the performance ranking of scoring
functions is consistent across different d’s (details are in
Appendix C), we set d to a smaller value (64) to reduce
model training time. The search algorithm is then used to
obtain the set I of top-I structures (step 8). Finally, the
hyper-parameters are fine-tuned with a larger d, and the
best structure selected (steps 10-14). Experiments are run on
a RTX 2080Ti GPU with 11 GB memory. All algorithms are
implemented in python [53].

Algorithm 5. Experimental procedure for each KG task.
Here, HP denotes the hyper-parameters fh; �;m; dg.
1: // stage 1: configure hyper-parameters for scoring function search.
2: for i ¼ 1; . . . ; 10 do
3: fix d ¼ 64, randomly select hi2 ½0; 1	, �i2½10�5; 10�1	 and

mi 2 f256; 512; 1024g;
4: train SimplEwithHPi ¼ fhi; �i;mi; dg, and evaluate the

validation MRR;
5: end for
6: select the best hyper-parameter setting �HP 2 fHPig10i¼1;
7: // stage 2: search scoring function
8: using hyper-parameter setting �HP , obtain the set I of

top-I structures from Algorithm 3 or Algorithm 4;
9: // stage 3: fine-tune the obtained scoring function
10: forj ¼ 1; . . . ; 50 (j ¼ 1; . . . ; 10 for YAGO3-10)do
11: randomly select a structure AAj 2 I ;
12: randomly select hj 2 ½0; 1	, �j 2 ½10�5; 10�1	,

mj 2 f256; 512; 1024g, and dj 2 f256; 512; 1024; 2048g;
13: train the KG learning model with structure AAj and

hyper-parameter settingHPj ¼ fhj; �j;mj; djg
14: end for
15: select the best structure fAA�; HP �g 2 fAAj;HPjg50j¼1.

5.1 Knowledge Graph (KG) Completion

In this section, we perform experiments on KG completion
as introduced in Section 2.2.1. we use the full multi-class

log-loss [18], which is more robust and has better perfor-
mance than negative sampling [18], [33].

5.1.1 Setup

Datasets. Experiments are performed on the following popu-
lar benchmark datasets: WN18, FB15 k, WN18RR, FB15k237,
YAGO3-10, ogbl-biokg and ogbl-wikikg2 (Table 5). WN18
and FB15 k are introduced in [10].WN18 is a subset of the lexi-
cal database WordNet [54], while FB15 k is a subset of the
Freebase KG [55] for human knowledge. WN18RR [21] and
FB15k237 [56] are obtained by removing the near-duplicates
and inverse-duplicate relations from WN18 and FB15 k.
YAGO3-10 is created by [21], and is a subset of the semantic
KG YAGO [57], which unifies WordNet and Wikipedia. The
ogbl-biokg and ogbl-wikikg2 datasets are from the open
graph benchmark (OGB) [58], which contains realistic and
large-scale datasets for graph learning. The ogbl-biokg dataset
is a biological KG describing interactions among proteins,
drugs, side effects and functions. The ogbl-wikikg2 dataset is
extracted from the Wikidata knowledge base [59] describing
relations among entities inWikipedia.

Baselines. For AutoBLM and AutoBLM+, we select the
structure for evaluation from the set returned byAlgorithm 3
or 4 based on theMRR performance on the validation set.

For WN18, FB15 k, WN18RR, FB15k237, YAGO3-10,
AutoBLM and AutoBLM+ are compared with the following
popular human-designed KG embedding models3: (i) TDM,
including TransH [11], RotatE [13] and PairE [61]; (ii) NNM,
includingConvE [21], RSN [22] andCompGCN [24]; (iii) BLM,
including TuckER [35], Quat [19], DistMult [7], ComplEx [14],
HolE [15], Analogy [16] SimplE [17], and CP [18]. We do not
comparewithNASE [62] as its code is not publicly available.

For ogbl-biokg and ogbl-wikikg2 [58], we compare with
the models reported in the OGB leaderboard4, namely,
TransE [10], RotatE, PairE, DistMult, and ComplEx.

Performance Measures. The learned fAAðh; r; tÞ is evalu-
ated in the context of link prediction. Following [3], [7],
[14], [16], [17], [21], for each triple ðh; r; tÞ, we first take
ð?; r; tÞ as the query and obtain the filtered rank on the head

rankh ¼ e 2 E : fðe; r; tÞ � fðh; r; tÞð Þ^
ðe; r; tÞ =2 Stra [Sval [Ststð Þ

� �����
����þ 1; (12)

TABLE 5
Statistics of the KG Completion Datasets

number of samples

data set #entity #relation training validation testing

WN18 [10] 40,943 18 141,442 5,000 5,000
FB15k [10] 14,951 1,345 484,142 50,000 59,071
WN18RR [21] 40,943 11 86,835 3,034 3,134
FB15k237 [56] 14,541 237 272,115 17,535 20,466
YAGO3-10 [60] 123,188 37 1,079,040 5,000 5,000

ogbl-biokg 94 k 51 4,763 k 163 k 163 k
ogbl-wikikg2 2500 k 535 16,109 k 429 k 598 k

3. Obtained from https://github.com/thunlp/OpenKE and
https://github.com/Sujit-O/pykg2vec

4. https://ogb.stanford.edu/docs/leader_linkprop/

1466 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

https://github.com/thunlp/OpenKE
https://github.com/Sujit-O/pykg2vec
https://ogb.stanford.edu/docs/leader_linkprop/

where Stra;Sval;Stst are the training, validation, and test
sets, respectively. Next we take ðh; r; ?Þ as the query and
obtain the filtered rank on the tail

rankt¼ e 2 E : fðh; r; eÞ � fðh; r; tÞð Þ^
ðh; r; eÞ =2 Stra [Sval [Ststð Þ

� �����
����þ1: (13)

The following metrics are computed from both the head and
tail ranks on all triples: (i) Mean reciprocal ranking (MRR):

MRR ¼ 1

2jSj
X
ðh;r;tÞ2S

1

rankh
þ 1

rankt

	

;

and (ii) H@k: ratio of ranks no larger than k, i.e.,

H@k ¼ 1

2jSj
X
ðh;r;tÞ2S

Iðrankh � kÞ þ Iðrankt � kÞð Þ;

where IðaÞ ¼ 1 if a is true, otherwise 0. The larger the MRR
or H@k, the better is the embedding. Other metrics for the
completion task [63], [64] can also be adopted here.

For ogbl-biokg and ogbl-wikikg2 [58], we only use the
MRR as the H@k is not reported by the baselines in the OGB
leaderboard.

Hyper-parameters. The search algorithms have the fol-
lowing hyper-parameters: (i) N : number of candidates gen-
erated after filtering; (ii) P : number of scoring functions
selected by the predictor; (iii) I: number of top structures
selected in Algorithm 3 (step 13), or the number of struc-
tures survived in I in Algorithm 4; and (iv) b0: number of
nonzero elements in the initial set. Unless otherwise speci-
fied, we use N ¼ 128, P ¼ 8, I ¼ 8 and b0 ¼ K. For the evo-
lutionary algorithm, the mutation and crossover operations
are selected with equal probabilities. When mutation is
selected, the value of each entry has a mutation probability
of pm ¼ 2=K2. A budget is used to terminate the algorithm.
This is set to 256 structures on WN18, FB15 k, WN18RR,

FB15k-237, 128 on YAGO3-10, 64 on ogbl-biokg, and 32 on
ogbl-wikikg2.

We follow [14], [18] to use Adagrad [65] as optimizer.
The Adagrad hyper-parameters are selected from the fol-
lowing ranges: learning rate h in ½0; 1	, ‘2-penalty � in
½10�5; 10�1	, batch size m in f256; 512; 1024g, and dimension
d in f64; 256; 512; 1024; 2048g.

5.1.2 Results on WN18, FB15k, WN18RR, FB15k237,

YAGO3-10

Performance. Table 6 shows the testing results on WN18,
FB15 k, WN18RR, FB15k237, and YAGO3-10. As can be
seen, there is no clear winner among the baselines. On the
other hand, AutoBLM performs consistently well. It outper-
forms the baselines on FB15 k, WN18RR, FB15k237 and
YAGO3-10, and is the first runner-up on WN18. AutoBLM+
further improves AutoBLM on FB15 k, WN18RR, FB15k237
and YAGO3-10.

Learning curves. Fig. 4 shows the learning curves of rep-
resentative models in each type of scoring functions, includ-
ing: RotatE in TDM; ConvE and CompGCN in NNM; and
DistMult, SimplE/CP, ComplEx/HolE, Analogy, QuatE
and the proposed AutoBLM/AutoBLM+ in BLM. As can be
seen, NNMs are much slower and inferior than BLMs. On
the other hand, AutoBLM+ has better performance and
comparable time as the other BLMs.

Data-dependent BLM structure. Fig. 5 shows the BLMs
obtained by AutoBLM and AutoBLM+. As can be seen, they
are different from the human-designed BLMs in Fig. 1 and are
also different from each other. To demonstrate that these
data-dependent structures also have different accuracies on
the same dataset, we take the BLM obtained by AutoBLM (or
AutoBLM+) on a source dataset and then evaluate it on a dif-
ferent target dataset. Table 7 shows the testingMRRs obtained
(the trends for H@1 andH@10 are similar). As can be seen, the
different BLMs performdifferently on the same dataset, again
confirming the need for data-dependent structures.

TABLE 6
Testing Performance of MRR, H@1 and H@10 on KGCompletion. The Best Model is Highlighted in Bold and the Second Best is

Underlined. “–” Means That Results are Not Reported in Those Papers or Their Code on That data/metric is Not Available. CompGCN
Uses the Entire KG in Each Iteration and So Runs Out of Memory on the Larger Data Sets ofWN18, FB15 k and YAGO3-10

WN18 FB15 k WN18RR FB15k237 YAGO3-10

model MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

(TDM) TransH 0.521 — 94.5 0.452 — 76.6 0.186 — 45.1 0.233 — 40.1 — — —
RotatE 0.949 94.4 95.9 0.797 74.6 88.4 0.476 42.8 57.1 0.338 24.1 53.3 0.488 39.6 66.3
PairE — — — 0.811 76.5 89.6 — — — 0.351 25.6 54.4 — — —

(NNM) ConvE 0.942 93.5 95.5 0.745 67.0 87.3 0.46 39. 48. 0.316 23.9 49.1 0.52 45. 66.
RSN 0.94 92.2 95.3 — — — — — — 0.28 20.2 45.3 — — —

Interstellar — — — — — — 0.48 44.0 54.8 0.32 23.3 50.8 0.51 42.4 66.4
CompGCN — — — — — — 0.479 44.3 54.6 0.355 26.4 53.5 — — —

(BLM) TuckER 0.953 94.9 95.8 0.795 74.1 89.2 0.470 44.3 52.6 0.358 26.6 54.4 — — —
DistMult 0.821 71.7 95.2 0.775 71.4 87.2 0.443 40.4 50.7 0.352 25.9 54.6 0.552 47.1 68.9

SimplE/CP 0.950 94.5 95.9 0.826 79.4 90.1 0.462 42.4 55.1 0.350 26.0 54.4 0.565 49.1 71.0
HolE/ComplEx 0.951 94.5 95.7 0.831 79.6 90.5 0.471 43.0 55.1 0.345 25.3 54.1 0.563 49.0 70.7

Analogy 0.950 94.6 95.7 0.816 78.0 89.8 0.467 42.9 55.4 0.348 25.6 54.7 0.557 48.5 70.4
QuatE 0.950 94.5 95.9 0.782 71.1 90.0 0.488 43.8 58.2 0.348 24.8 55.0 0.556 47.4 70.4

AutoBLM 0.952 94.7 96.1 0.853 82.1 91.0 0.490 45.1 56.7 0.360 26.7 55.2 0.571 50.1 71.5
AutoBLM+ 0.952 94.7 96.1 0.861 83.2 91.3 0.492 45.2 56.7 0.364 27.0 55.3 0.577 50.2 71.5

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1467

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

5.1.3 Results on Ogbl-Biokg and ogbl-Wikikg2

Table 8 shows the testing MRRs of the baselines (as reported
in the OGB leaderboard), the BLMs obtained by AutoBLM
and AutoBLM+. As can be seen, AutoBLM and AutoBLM+
achieve significant gains on the testingMRR on both datasets,
even though fewer model parameters are needed for
AutoBLM+. The searched structures are provided in Figure 13
inAppendix D.

5.1.4 Ablation Study 1: Search Algorithm Selection

First, we study the following search algorithm choices.

(i) Random, which samples each element of AA indepen-
dently and uniformly from f0;
1; . . . ;
Kg;

(ii) Bayes, which selects each element of AA from
f0;
1; . . . ;
Kg by performing hyperparameter
optimization using the Tree Parzen estimator [66]
and Gaussian mixture model (GMM);

(iii) Reinforce, which generates the K2 elements in AA by
using a LSTM [41] recurrently as in NAS-Net [30].
The LSTM is optimized with REINFORCE [67];

(iv) AutoBLM (no Filter, no Predictor, b0¼1) with initial
b0 ¼ 1;

(v) AutoBLM+ (no Filter, no Predictor, b0¼1) with initial
b0 ¼ 1.

For a fair comparison, we do not use the filter and perfor-
mance predictor in the proposed AutoBLM and AutoBLM+
here. All structures selected by each of the above algorithms
are trained and evaluated with the same hyper-parameter
settings in step 6 of Algorithm 5. Each algorithm evaluates a
total of 256 structures.

Fig. 6 shows the mean validation MRR of the top I ¼ 8
structuresw.r.t. clock time during the search process. As can be
seen, AutoBLM (no Filter, no Predictor, b0¼1) and AutoBLM+
(no Filter, no Predictor, b0¼1) outperform the rest at the later
stages. They have poor initial performance as they start with
structures having few nonzero elements, which can be degen-
erate. Thiswill be further demonstrated in the next section.

5.1.5 Ablation Study 2: Effectiveness of the Filter

Structures with more nonzero elements are more likely to
satisfy the two conditions in Proposition 2, and thus less

Fig. 4. Convergence of the testing MRR versus running time on the KG completion task.

Fig. 5. Graphical illustration of the BLMs obtained by AutoBLM (top) and AutoBLM+ (bottom) on the KG completion task (Section 5.1.2). Different col-
ors correspond to different parts of ½rr1(red), rr2(blue), rr3(yellow), rr4(gray)]. Solid lines mean positive values, while dashed lines mean negative values.
The empty parts have value zero.

1468 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

likely to be degenerate. Hence, the filter is expected to be
particularly useful when there are few nonzero elements in
the structure. In this experiment, we demonstrate this by
comparing AutoBLM/AutoBLM+ with and without the fil-
ter. The performance predictor is always enabled.

Fig. 7 shows the mean validation MRR of the top I ¼ 8
structures w.r.t. clock time. As expected, when the filter is
not used, using a larger b0 will be more likely to have non-
degenerate structures and thus better performance, espe-
cially at the initial stages. When the filter is used, the perfor-
mance of both b0 settings are improved. In particular, with
b0 ¼ 4, the initial search space is simpler and leads to better
performance.

5.1.6 Ablation Study 3: Performance Predictor

In this experiment, we compare the following AutoBLM/
AutoBLM+ variants: (i) AutoBLM (no-predictor) and
AutoBLM+ (no-predictor), which simply randomly select P
structures for evaluation (in step 17 of Algorithm 3 and step
16 of Algorithm 4, respectively); (ii) AutoBLM (Predictor
+SRF) and AutoBLM+ (Predictor+SRF), using the proposed
SRF (in Section 4.2) as input features to the performance pre-
dictor; and (iii) AutoBLM (Predictor+1hot) and AutoBLM+
(Predictor+1hot), which map each of the K2 entries in AA
(with values in f0;
1; . . . ;
Kg) to a simple (2K þ 1)-dimen-
sional one-hot vector, and then use these as features to the
performance predictor. The resultant feature vector is thus
K2ð2K þ 1Þ-dimensional, which is much longer than the
KðK þ 1Þ-dimensional SRF representation.

Fig. 8 shows the mean validation MRR of the top I ¼ 8
structures w.r.t. clock time. As can be seen, the use of per-
formance predictor improves the results over AutoBLM
(no-Predictor) and AutoBLM+ (no-Predictor). The SRF fea-
tures also perform better than the one-hot features, as the
one-hot features are higher-dimensional and more difficult
to learn. Besides, we observe that AutoBLM+ performs bet-
ter than AutoBLM, as it can more flexibly explore the search
space. Thus, in the remaining ablation studies, we will only
focus on AutoBLM+.

5.1.7 Ablation Study 4: VaryingK

As K increases, the search space, which has a size of ð2K þ
1ÞK

2
(Section 3.3), increases dramatically. Moreover, the

SRF also needs to enumerate a lot more (K2Kþ1) vectors in C.
In this experiment, we demonstrate the dependence onK by
running AutoBLM+ with K ¼ 3; 4; 5. To ensure that d is
divisible by K, we set d ¼ 60. Fig. 9 shows the top-8 mean
MRR performance on the validation set of the searchedmod-
els versus clock time. As can be seen, the best performance

TABLE 8
Testing MRR and Number of Parameters on Ogbl-Biokg and
ogbl-Wikikg2. the Best Performance is Indicated in Boldface

ogbl-biokg ogbl-wikikg2

model MRR # params MRR # params

TransE 0.745 188 M 0.426 1251 M
RotatE 0.799 188 M 0.433 1250 M
PairE 0.816 188 M 0.521 500 M
DistMult 0.804 188 M 0.373 1250 M
ComplEx 0.810 188 M 0.403 1250 M

AutoBLM 0.828 188 M 0.532 500 M
AutoBLM+ 0.831 94 M 0.546 500 M

Fig. 6. Comparison of different search algorithms.

Fig. 7. Comparison of the effect of filter.

TABLE 7
Testing MRR on Applying the BLMs Obtained From a Source

Dataset (row) to a Target Dataset (column). Bold Numbers Indi-
cate the Best Performance Each Dataset for the Models
Searched by AutoBLM and AutoBLM+ Respectively

WN18 FB15 k WN18RR FB15k237 YAGO3-10

AutoBLM

WN18 0.952 0.841 0.473 0.349 0.561
FB15 k 0.950 0.853 0.470 0.350 0.563
WN18RR 0.951 0.833 0.490 0.345 0.568
FB15k237 0.894 0.781 0.462 0.360 0.565
YAGO3-10 0.885 0.835 0.466 0.352 0.571

AutoBLM+

WN18 0.952 0.848 0.482 0.350 0.564
FB15 k 0.951 0.861 0.479 0.352 0.563
WN18RR 0.947 0.841 0.492 0.347 0.551
FB15k237 0.860 0.821 0.463 0.364 0.546
YAGO3-10 0.951 0.833 0.469 0.345 0.577

Fig. 8. Effectiveness of the performance predictor.

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1469

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

attained by different K’s are similar. However, K ¼ 5 runs
slower.

Table 9 shows the running time of the filter, performance
predictor (with SRF features), training and evaluation in
Algorithm 4 with different K’s. As can be seen, the costs of
filter and performance predictor increase a lot withK, while
the model training and evaluation time are relatively stable
for differentK’s.

5.1.8 Ablation Study 5: Analysis of Parameter Sharing

As mentioned in Section 4.2, parameter sharing may not reli-
ably predict the model performance. To demonstrate this, we
empirically compare the parameter-sharing approach, which
shares parameter PP ¼ fEE;RRg (where EE 2 Rd�jEj is the entity
embedding matrix and RR 2 Rd�jRj is the relation embedding
matrix in Section 2.1) and the stand-alone approach, which
trains each model separately. For parameter sharing, we ran-
domly sample aAA in each training iteration from the set of top
candidate structures (Hb in Algorithm 3 orH in Algorithm 4),
and then update parameter PP . After one training epoch, the
sampled structures are evaluated. After 500 training epochs,
the top-100 AA’s are output. For the stand-alone approach, the
100AA’s are separately trained and evaluated.

Fig. 10 shows the MRR estimated by parameter-sharing
versus the true MRR obtained by individual model training.
As can be seen, structures that have high estimated MRRs
(by parameter sharing) do not truly have highMRRs. Indeed,
the Spearman’s rank correlation coefficient5 between the two
sets of MRRs is negative (�0:2686 on WN18RR and �0:2451
on FB15k237). This demonstrates that the one-shot approach,
though faster, cannot find good structures.

5.2 Multi-Hop Query

In this section, we perform experiment onmulti-hop query as
introduced in Section 2.2.2. The entity and relation embed-
dings are optimized by maximizing the scores on positive
queries andminimizing the scores on negative queries, which
are generated by replacing eL with an incorrect entity. On
evaluation, we rank the scores of queries ðe0; r1 � r2 � _s �
rL; eLÞ of all eL 2 E to obtain the ranking of ground truth
entities.

5.2.1 Setup

Following [4], we use the FB15 k and FB15k237 datasets in
Table 5. Evaluation is based on two-hop (2p) and three-hop
(3p) queries. Interested readers are referred to [4] for a more

detailed description on query generation. For FB15 k, there
are 273,710 queries in the training set, 8,000 non-overlap-
ping queries in the validation and testing sets. For
FB15k237, there are 143,689 training queries, and 5,000
queries for validation and testing. The setting of the search
algorithms’ hyper-parameters are the same as in Section 5.1.
For the learning hyper-parameters, we search the dimen-
sion d 2 f32; 64g, and the other hyper-parameters are the
same as those in Section 5.1. We use the MRR performance
on the validation set to search for structures as well as
hyper-parameters. For performance evaluation, we fol-
low [4], [8], and use the testing Hit@3 and MRR.

We compare with the following baselines: (i) TransE-
Comp [39] (based on TransE); (ii) Diag-Comp [39] (based on
DistMult); (iii) GQE [8], which uses a d� d trainable matrix
RRðrÞ for composition, and can be regarded as a composition
based on RESCAL [6]; and (iv) Q2B [4], which is a recently
proposed box embedding method.

5.2.2 Results

Results are shown in Table 10. As can be seen, among the
baselines, TransE-Comp, Diag-Comp and GQE are inferior to
Q2B. This shows that the general scoring functions cannot be
directly applied to model the complex interactions in multi-
hop queries. On the other hand, AutoBLM and AutoBLM+
have better performance as they can adapt to the different
tasks with different matrices gKðAA; rrÞ. The obtained struc-
tures can be found inAppendixD.

5.3 Entity Classification

In this section, we perform experiment on entity classifica-
tion as introduced in Section 2.2.3.

5.3.1 Setup

After aggregation for L layers, representation eeL at the last
layer is transformed by a multi-layer perception (MLP) to

Fig. 9. Comparison of differentK values.

TABLE 9
Running Time (In Minutes) of Different Components

in Algorithm 4

dataset K filter performance predictor train evaluate

WN18RR 3 0.04 1 1217 152
4 1.4 23 1231 156
5 90 276 1252 161

FB15k237 3 0.04 1 714 178
4 1.5 22 721 181
5 91 283 728 186

Fig. 10. MRRs of structures as estimated by the parameter-sharing
approach and stand-alone approach.

5. https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_
coefficient

1470 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

eeoi ¼MLP ðeeLi Þ 2 RC , where d is the intermediate layer
dimension, and is the number of classes. The parameters,
including embeddings of entities, relations, WW‘

0, WW
‘’s and

the MLP, are optimized by minimizing the cross-entropy
loss on the labeled entities: L ¼ �

P
i2B

PC
c¼1 yic ln e

o
ic, where

B is the set of labeled entities, yic 2 f0; 1g indicates whether
the ith entity belongs to class c, and eoic is the cth dimension
of eeoi .

Three graph datasets are used (Table 11): AIFB, an affilia-
tion graph; MUTAG, a bioinformatics graph; and BGS, a
geological graph. More details can be found in [68]. All enti-
ties do not have attributes. The entities’ and relations’ train-
able embeddings are used as input to the GCN.

The following fivemodels are compared: (i) GCN [9], with
fðee‘j; rr‘Þ ¼ ee‘j, does not leverage relations of the edges; (ii) R-
GCN [23], with fðee‘j; rr‘Þ ¼ RR‘

ðrÞee
‘
j; (iii) CompGCN [24] with

fðee‘j; rr‘Þ ¼ ee‘j (-/*/
?) rr‘, in which the operator (subtraction/

multiplication/circular correlation as discussed in Sec-
tion 2.2.3) is chosen based on 5-fold cross-validation; (iv)
AutoBLM; and (v) AutoBLM+. oth AutoBLM and AutoBLM
+ use the searched structureAA to form fðee‘j; rr‘Þ ¼ gKðAA; rr‘Þee‘j.

Setting of the hyper-parameters are the same as in Sec-
tion 5.1. As for the learning hyper-parameters, we search the
embedding dimension d from f12; 20; 32; 48g, learning rate
from ½10�5; 10�1	 with Adam as the optimizer [69]. For the
GCN structure, the hidden size is the same as the embedding
dimension, the dropout rate for each layer is from [0,0.5]. We
search for 50 hyper-parameter settings for each dataset based
on the 5-fold classification accuracy.

For performance evaluation, we use the testing accuracy.
Each model runs 5 times, and then the average testing accu-
racy reported.

5.3.2 Results

Table 12 shows the average testing accuracies. Among the
baselines, R-GCN is slightly better than CompGCN on the
AIFB dataset, but worse on the other two sparser datasets.

By searching the composition operators, AutoBLM and
AutoBLM+ outperform all the baseline methods. AutoBLM
+ is better than AutoBLM since it can find better structures
with the same budget by the evolutionary algorithm. The
structures obtained are in Appendix D.

6 CONCLUSION

In this paper, we proposeAutoBLMandAutoBLM+, the algo-
rithms to automatically design and discover better scoring
functions for KG learning. By analyzing the limitations of
existing scoring functions, we setup the problem as searching
relationalmatrix for BLMs. InAutoBLM,we use a progressive
search algorithmwhich is enhanced by a filter and a predictor
with domain-specific knowledge, to search in such a space.
Due to the limitation of progressive search, we further design
an evolutionary algorithm, enhanced by the same filter and
predictor, called AutoBLM+. AutoBLM and AutoBLM+ can
efficiently design scoring functions that outperform existing
ones on tasks including KG completion, multi-hop query and
entity classification from the large search space. Comparing
AutoBLM with AutoBLM+, AutoBLM+ can design better
scoring functionswith the same budget.

ACKNOWLEDGMENTS

The code is public available at https://github.com/AutoML-
Research/AutoSF.

REFERENCES

[1] A. Singhal, “Introducing the knowledge graph: Things, not
strings,”Official Google blog, vol. 48, no. 1–4, p. 2, 2012.

[2] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proc. IEEE,
vol. 104, no. 1, pp. 11–33, 2016.

[3] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph
embedding: A survey of approaches and applications,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 12, pp. 2724–2743, Dec. 2017.

[4] H. Ren, W. Hu, and J. Leskovec, “Query2box: Reasoning over
knowledge graphs in vector space using box embeddings,” in
Proc. Int. Conf. Learn. Representations, 2020.

[5] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proc. 22nd
ACMSIGKDD Int. Conf. Knowl. Discov.DataMining, 2016, pp. 353–362.

[6] M. Nickel, V. Tresp, and H. Kriegel, “A three-way model for col-
lective learning on multi-relational data,” in Proc. Int. Conf. Mach.
Learn., 2011, vol. 11, pp. 809–816.

[7] B. Yang, W. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in
Proc. Int. Conf. Learn. Representations, 2015.

[8] W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec,
“Embedding logical queries on knowledge graphs,” in Proc. Neu-
ral Inf. Process. Syst., 2018, pp. 2026–2037.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2017.

TABLE 10
Testing Performance of H@3 and MRR on Multi-Hop Query

Task. Results of ? ’s are Copied from [4]

FB15 K FB15K237

2p 3p 2p 3p

H@3 MRR H@3 MRR H@3 MRR H@3 MRR

TransE-Comp [39] 27.3 . 264 15.8 . 153 19.4 . 177 14.0 . 134
Diag-Comp [39] 32.2 . 309 27.5 . 266 19.1 . 187 15.5 . 147
GQE [8]? 34.6 . 320 25.0 . 222 21.3 . 193 15.5 . 145
Q2B [4]? 41.3 . 373 30.3 . 274 24.0 . 225 18.6 . 173
AutoBLM 41.5 . 402 29.1 . 283 23.6 . 232 18.2 . 180
AutoBLM+ 43.2 . 415 30.7 . 293 24.9 . 248 19.9 . 196

TABLE 11
Data Sets Used in Entity Classification. Sparsity is

Computed as#edges/ð#entity2 �#relationÞ

dataset #entity #relation #edges #train #test #classes sparsity

AIFB 8,285 45 29,043 140 36 4 9.4e-6
MUTAG 23,644 23 74,227 272 68 2 5.7e-6
BGS 333,845 103 916,199 117 29 2 8.0e-8

TABLE 12
Classification Accuracies (In %) on Entity Classification Task.

Values Marked “*” are Copied from [24]

dataset AIFB MUTAG BGS

GCN 86.67 68.83 73.79
R-GCN 92.78 74.12 82.97
CompGCN 90.6� 85.3� 84.14
AutoBLM 95.55 85.00 84.83
AutoBLM+ 96.66 85.88 86.17

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1471

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakh-
nenko, “Translating embeddings for modeling multi-relational
data,” in Proc. Neural Inf. Process. Syst., 2013, pp. 2787–2795.

[11] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in Proc. AAAI Conf.
Artif. Intell., 2014, vol. 14, pp. 1112–1119.

[12] M. Fan, Q. Zhou, E. Chang, and T. F. Zheng, “Transition-based
knowledge graph embedding with relational mapping proper-
ties,” in Proc. 28th Pacific Asia Conf. Lang., Inf. Comput., 2014,
pp. 328–337.

[13] Z. Sun, Z. Deng, J. Nie, and J. Tang, “RotatE: Knowledge graph
embedding by relational rotation in complex space,” in Proc. Int.
Conf. Learn. Representations, 2019.

[14] T. Trouillon, C. Dance, E. Gaussier, J. Welbl, S. Riedel, and G. Bou-
chard, “Knowledge graph completion via complex tensor
factorization,” JMLR, vol. 18, no. 1, pp. 4735–4772, 2017.

[15] M. Nickel, L. Rosasco, and T. Poggio, “Holographic embeddings
of knowledge graphs,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 1955–1961.

[16] H. Liu, Y. Wu, and Y. Yang, “Analogical inference for multi-rela-
tional embeddings,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2168–2178.

[17] M. Kazemi and D. Poole, “SimplE embedding for link prediction in
knowledge graphs,” inNeural Inf. Process. Syst., 2018, pp. 4289–4300.

[18] T. Lacroix, N. Usunier, and G. Obozinski, “Canonical tensor
decomposition for knowledge base completion,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 2863–2872.

[19] S. Zhang, Y. Tay, L. Yao, and Q. Liu, “Quaternion knowledge
graph embedding,” Neural Inf. Process. Syst., 2019, pp. 2735–2745.

[20] X. Dong et al., “Knowledge vault: A web-scale approach to proba-
bilistic knowledge fusion,” in Proc. 20th ACM SIGKDD Int. Conf.
Know. Discov. Data Mining, 2014, pp. 601–610.

[21] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel,
“Convolutional 2D knowledge graph embeddings,” in Proc. AAAI
Conf. Artif. Intell., 2017, pp. 1811–1818.

[22] L. Guo, Z. Sun, and W. Hu, “Learning to exploit long-term rela-
tional dependencies in knowledge graphs,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 2505–2514.

[23] M. Schlichtkrull et al., “Modeling relational data with graph con-
volutional networks,” in Proc. Euro. Semantic web Conf., 2018,
pp. 593–607.

[24] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-
based multi-relational graph convolutional networks,” in Proc.
Int. Conf. Learn. Representations, 2020.

[25] Y. Lin, X. Han, R. Xie, Z. Liu, andM. Sun, “Knowledge representa-
tion learning: A quantitative review,” 2018, arXiv:1812.10901 .

[26] Y. Wang, R. Daniel, G. Rainer, B. Samuel, and M. Christian, “On
evaluating embedding models for knowledge base completion,”
in Proc. 4th Workshop Representation Learn. NLP, 2019, pp. 104–112.

[27] Q. Yao and M. Wang, “Taking human out of learning applica-
tions: A survey on automated machine learning,” 2018, arXiv:
1810.13306.

[28] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automated
Machine Learning: Methods, Systems, Challenges. New York:
Springer, 2018.

[29] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine
learning,” in Proc. Neural Inf. Process. Syst., 2015, pp. 2962–2970.

[30] B. Zoph and Q. Le, “Neural architecture search with reinforce-
ment learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[31] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable archi-
tecture search,” in Proc. Int. Conf. Learn. Representations, 2019.

[32] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture
search: A survey,” JMLR, vol. 20, no. 55, pp. 1–21, 2019.

[33] Y. Zhang, Q. Yao, W. Dai, and L. Chen, “AutoSF: Searching scor-
ing functions for knowledge graph embedding,” in Proc. 36th Int.
Conf. Data Eng., 2020, pp. 433–444.

[34] Y. Wang, R. Gemulla, and H. Li, “On multi-relational link predic-
tion with bilinear models,” in Proc. AAAI Conf. Artif. Intell., 2017,
pp. 4227–4234.

[35] I. Bala�zevi�c, C. Allen, and T. M. Hospedales, “Tucker: Tensor fac-
torization for knowledge graph completion,” in Proc. Conf. Empiri-
cal Methods Natural Lang. Process., 2019, pp. 5185–5194.

[36] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition and applications,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514,
Feb. 2022.

[37] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[38] R. Socher, D. Chen, C. Manning, and A. Ng, “Reasoning with neu-
ral tensor networks for knowledge base completion,” in Proc. Neu-
ral Inf. Process. Syst., 2013, pp. 926–934.

[39] K. Guu, J. Miller, and P. Liang, “Traversing knowledge graphs in
vector space,” in Proc. Conf. Empirical Methods Natural Lang. Pro-
cess., 2015, pp. 318–327.

[40] Y. Zhang, Q. Yao, and L. Chen, “Interstellar: Searching recurrent
architecture for knowledge graph embedding,” Neural Inf. Process.
Syst., vol. 33, pp. 10030–10040, 2020.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[42] K. Hayashi and M. Shimbo, “On the equivalence of holographic
and complex embeddings for link prediction,” in Proc. Assoc. Com-
put. Linguistics, 2017, vol. 2, pp. 554–559.

[43] L. R. Tucker, “Somemathematical notes on three-mode factor ana-
lysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[44] J. Gilmer, S. S. Schoenholz, P. F. Riley, R. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 1263–1272.

[45] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel opti-
mization,”Ann.Operations Res., vol. 153, no. 1, pp. 235–256, 2007.

[46] G. Bender, P. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 549–558.

[47] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 4095–4104.

[48] Q. Yao, J. Xu, W. Tu, and Z. Zhu, “Efficient neural architecture
search via proximal iterations,” in Proc. AAAI Conf. Artif. Intell.,
2020, pp. 6664–6671.

[49] C. Liu et al., “Progressive neural architecture search,” in Proc. IEEE
Eur. Conf. Comput. Vis., 2018, pp. 19–34.

[50] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” in Proc. AAAI Conf.
Artif. Intell., 2019, vol. 33, pp. 4780–4789.

[51] J. A. Tropp, “Greed is good: Algorithmic results for sparse approx-
imation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242,
Oct. 2004.

[52] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. London,
U.K.: Oxford Univ. Press, 1996.

[53] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
Int. Conf. Learn. Representations, 2017.

[54] G. A. Miller, “WordNet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[55] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,
“Freebase: A collaboratively created graph database for structur-
ing human knowledge,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2008, pp. 1247–1250.

[56] K. Toutanova and D. Chen, “Observed versus latent features for
knowledge base and text inference,” in Proc. 3rd Workshop Contin-
uous Vector Space Models Compositionality, 2015, pp. 57–66.

[57] F. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic
knowledge,” inProc. 16th Int. Conf.WorldWideWeb, 2007, pp. 697–706.

[58] W. Hu et al., “Open graph benchmark: Datasets for machine learning
on graphs,”Neural Inf. Process. Syst., vol. 33, pp. 22 118–22 133, 2020.

[59] D. Vrande�ci�c and M. Kr€otzsch, “Wikidata: A free collaborative
knowledgebase,” Commun. ACM, vol. 57, no. 10, pp. 78–85, 2014.

[60] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowl-
edge base from multilingual wikipedias,” in Proc. 7th Biennial
Conf. Innov. Data Syst. Res., 2013.

[61] L. Chao, J. He, T. Wang, and W. Chu, “Pairre: Knowledge graph
embeddings via paired relation vectors,” in Proc. Assoc. Comput.
Linguistics, 2021, pp. 4360–4369.

[62] X. Kou, B. Luo, H. Hu, and Y. Zhang, “Nase: Learning knowl-
edge graph embedding for link prediction via neural architec-
ture search,” in Proc. 29th ACM Int. Conf. Inf. Know. Manage.,
2020, pp. 2089–2092.

[63] Y. Wang, D. Ruffinelli, R. Gemulla, S. Broscheit, and C. Meilicke,
“On evaluating embedding models for knowledge base com-
pletion,” in Proc. RepL4NLP-2019, 2019, pp. 104–112.

[64] P. Tabacof and L. Costabello, “Probability calibration for knowl-
edge graph embedding models,” in Proc. Int. Conf. Learn. Represen-
tations, 2019.

1472 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

[65] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn.
Res., vol. 12, pp. 2121–2159, 2011.

[66] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. K�egl, “Algorithms for
hyper-parameter optimization,” in Proc. Neural Inf. Process. Syst.,
2011, pp. 2546–2554.

[67] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Mach. Learn. J., vol. 8,
no. 3-4, pp. 229–256, 1992.

[68] P. Ristoski and H. Paulheim, “Rdf2vec: Rdf graph embeddings for
data mining,” in Proc. Int. Semantic Web Conf., 2016, pp. 498–514.

[69] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2015.

[70] R. A. Horn and C. R. Johnson, Matrix Analysisbibpunc. Cam-
bridge, U.K.: Cambridge Univ. Press, 2012.

[71] A. Rossi, D. Firmani, A. Matinata, P. Merialdo, and D. Barbosa,
“Knowledge graph embedding for link prediction: A comparative
analysis,” ACM Trans. Knowl. Discov. Data, vol. 15, no. 2, pp. 1–49,
2021.

Yongqi Zhang (Member, IEEE) received the
bachelor’s degree from Shanghai Jiao Tong Uni-
versity in 2015, and the PhD degree from the
Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Tech-
nology in 2020. He is currently a senior researcher
with 4Paradigm. He has authored or coauthored
five top-tier conference/journal papers as first-
author, including NeurIPS, ACL, WebConf, ICDE,
and VLDB-J. His research interests include knowl-
edge graph embedding, automated machine

learning, and graph learning. He was a program committee for AAAI
2020–2022, IJCAI 2020–2022, CIKM 2021, KDD 2022, and ICML 2022,
and a reviewer of TKDE and NEUNET.

Quanming Yao (Member, IEEE) is currently a ten-
ure-track assistant professor with the Department of
Electronic Engineering, Tsinghua University. Before
that, he spent three years from a researcher to a
senior scientist with 4Paradigm INC, where he set
up and led the company’s machine learning
research team. His current research interests
include automated machine learning (AutoML) and
neural architecture search (NAS). He was the recei-
pient of the Wunwen Jun Prize of Excellence Youth
of Artificial Intelligence (issued by CAAI), runner up

of Ph.D. Research Excellence Award (School of Engineering, HKUST), and
winner of Google Fellowship (in machine learning). He was an area chair of
ICLR 2022, IJCAI 2021, and ACML 2021, a senior program committee of
IJCAI 2020 andAAAI 2020–2021, and a guest editor of IEEE TPAMI AutoML
special issue in 2019.

James T. Kwok (Fellow, IEEE) received the PhD
degree in computer science from The Hong Kong
University of Science and Technology in 1996. He
is currently a professor with the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology. His
research interests include machine learning, deep
learning, and artificial intelligence. He was the
recipient of the IEEE Outstanding 2004 Paper
Award and Second Class Award in Natural Scien-
ces by the Ministry of Education, China, in 2008.

He is an associate editor of IEEE Transactions on Neural Networks and
Learning Systems, Neural Networks, Neurocomputing, Artificial Intelli-
gence Journal, International Journal of Data Science and Analytics, an
editorial boardmember of Machine Learning, boardmember, and the vice
president for Publications of Asia Pacific Neural Network Society. He was/
is also a senior area chairs or area chairs of main machine learning or AI
conferences, including NIPS, ICML, ICLR, IJCAI, AAAI, and ECML.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ETAL.: BILINEAR SCORING FUNCTION SEARCH FOR KNOWLEDGE GRAPH LEARNING 1473

Authorized licensed use limited to: Tsinghua University. Downloaded on April 17,2023 at 03:01:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

