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Abstract
We introduce a set of polynomial learning prob-
lems that are equivariant to the non-compact
group SL(2,R). SL(2,R) consists of area-
preserving linear transformations, and captures
the symmetries of a variety of polynomial-based
problems not previously studied in the machine
learning community, such as verifying positivity
(for e.g. sum-of-squares optimization) and mini-
mization. While compact groups admit many ar-
chitectural building blocks, such as group convo-
lutions, non-compact groups do not fit within this
paradigm and are therefore more challenging. We
consider several equivariance-based learning ap-
proaches for solving polynomial problems, includ-
ing both data augmentation and a fully SL(2,R)-
equivariant architecture for solving polynomial
problems. In experiments, we broadly demon-
strate that machine learning provides a promis-
ing alternative to traditional SDP-based baselines,
achieving tenfold speedups while retaining high
accuracy. Surprisingly, the most successful ap-
proaches incorporate only a well-conditioned sub-
set of SL(2,R), rather than the entire group. This
provides a rare example of a symmetric problem
where data augmentation outperforms full equiv-
ariance, and provides interesting lessons for other
problems with non-compact symmetries.

1. Introduction
In recent years, there has been an explosion of learning
problems on non-traditional data types: 3D vision applica-
tions often consider point clouds as input, partial differential
equation (PDE) data involves time-evolution of functions
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over irregularly shaped domains, and diverse inputs ranging
from social networks to molecules are represented as graphs,
often embedded in 3D space. Especially valuable among
these (often) scientific problems are those for which output
correctness can be verified efficiently; this is the case for e.g.
modeling catalysts, where a candidate conformation can be
confirmed with a few DFT steps (Chanussot et al., 2021).1

In this work, we introduce a new family of non-traditional
inputs, ubiquitous in mathematics and engineering: polyno-
mials. Primitives such as minimizing a polynomial or certi-
fying its positivity via a sum of squares decomposition have
attracted attention due to their direct applications in opera-
tions research and control theory (Henrion & Garulli, 2005).
Polynomial inputs are particularly well-suited to SL(2,R)-
equivariance because they lie in its finite-dimensional irre-
ducible representations. As a result, it is possible to achieve
exact equivariance to area-preserving linear transformations
— subject only to numerical error from finite precision, and
not to Monte Carlo integral approximations as in much pre-
vious work (Finzi et al., 2020). Therefore, we extend the
equivariance research program for unusual input data to
datasets of polynomials, taking into account the inherent
symmetries of polynomial-based problems.

As shown in Figure 1, the minimizer of a polynomial tran-
forms equivariantly with respect to linear transformations of
the input variables, while the minimum value itself is invari-
ant. The general linear group, however, is noncompact. Un-
fortunately, existing techniques are largely tailored towards
compact groups. There are several difficulties unique to non-
compact groups, which arise due to the following essential
fact: a non-compact groupG does not have a finite, invariant
(Haar) measure. For compact groups, it is nearly always
assumed in prior work that all datapoints in a given orbit are
equally likely. In contrast, any non-trivial probability distri-
bution over X is not necessarily the same as gX for g ∈ G
when G is non-compact. Therefore, data augmentation
induces a distribution shift. In this sense, non-compact
equivariance is linked to the notion of “extrinsic equivari-
ance” Wang et al. (2022), in which group transformations
change the support of the data distribution. Further chal-
lenges associated with the ill-conditioning of matrices in our
polynomial task are discussed in Appendix D. In response

1Further inspirational examples are mentioned in Appendix A.
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Figure 1: The action of SL(2,R) on polynomials. Each
plot is the result of applying some g ∈ SL(2,R) to a particu-
lar degree 6 bivariate polynomial, stretching or compressing
the polynomial along each coordinate axis. The local min-
ima are marked in red, and the global minimum in blue.
While the minimum value is invariant, the minimizer trans-
forms equivariantly under SL(2,R) .

to these challenges, we also consider the compact subgroup
SO(2,R), and data augmentation over well-conditioned
subsets of SL(2,R).

1.1. Our Contributions

In this work, our main contributions are twofold. First, we
propose the application of machine learning methods to cer-
tain polynomial problems of interest to the optimization and
control communities. To the best of our knowledge, this is
the first application of machine learning to these problems.
We demonstrate the potential for significant speedups over
existing solvers for high-degree inputs, even with simple,
fully-connected architectures. Second, we contextualize this
problem through the lens of symmetries. We first build a
universal SL(2,R) -equivariant architecture suited to the
non-compact input and output symmetries of polynomial
tasks. However, we find that it is better to use data aug-
mentation with respect to only well-conditioned elements
of SL(2,R). We hope our explorations provide a thought-
provoking contribution to the broader equivariance litera-
ture, as a detailed case study of a non-compact group. By
closely evaluating the behavior of equivariance with respect
to a non-compact group on a concrete, richly-understood
application problem, we provide a cautionary note on the
incorporation of non-compact symmetries, and an invitation
to lean more heavily on data augmentation in such cases.

2. Task: Sum-of-squares Certificate of
Polynomial Nonnegativity

We first motivate the consideration of polynomial inputs
with an important SL(2,R)-equivariant polynomial prob-
lem in the sum-of-squares literature, which will be our main
focus: positivity verification.

One method to prove that a polynomial is nonnega-
tive is by the following semidefinite programming (SDP)
method (Parrilo, 2000). Define the d−lift as x⃗[d] =(
yd xyd−1 · · · xd

)T
. For A ∈ SL(2,R), define the

induced matrix A[d] as the (d + 1) × (d + 1) matrix for
which (Ax⃗)[d] = A[d]x⃗[d] (Parrilo & Jadbabaie, 2008).

Suppose p(x⃗) = x⃗[d]
T

Qx⃗[d] for some positive semidefinite
(PSD) (d+1)× (d+1) symmetric matrixQ. Then the right
hand side quadratic form is nonnegative by definition of
PSD. The equality implies p is nonnegative for all x and y.
The problem of finding such a Q is traditionally relegated to
a convex optimization interior point solver. One convenient
formulation given to a solver is f(p) = (argmax log detQ
such that p(x⃗) = x⃗[d]

T

Qx⃗[d] and Q ⪰ 0), because this
objective finds the analytic center of the feasible region.
The optimizer f(p) = Q∗ satisfies the equivariance property
f(p(Ax⃗)) = A[d]T f(p(x⃗))A[d].

This application is especially well-suited for machine learn-
ing, because we often only care if there exists some PSD Q.
If the model predicts any Q satisfying p(x⃗) = x⃗[d]

T

Qx⃗[d]

and Q ⪰ 0, then p is automatically nonnegative; it is simple
to validate this “machine-learned” certificate of nonnega-
tivity. This could accelerate the search for sum of squares
certificates in any of the problems mentioned in the intro-
duction and Appendix A, because SDP solvers are only
effective for moderate dimension (Mittelmann, 2003).

3. SL(2,R)-Equivariance for Polynomials
Now, we define key terms and concepts that will be used
throughout the paper. The group SL(2,R) consists of 2×2
real-valued matrices of determinant 1. A group G acts on
a set X if g(hx) = (gh)x and ex = x. In this case, the
orbit of x0 ∈ X is {gx0|g ∈ G}. A representation of G
is a vector space V and a map ρ : G → GL(V ) satisfying
ρ(g1)ρ(g2) = ρ(g1g2) for all g1, g2 ∈ G. An irreducible
representation, or irrep, is a representation for which there
does not exist a subspace W ⊆ V satisfying ρ(g)w ∈ W
for all g ∈ G,w ∈ W . An equivariant map is a map
f : V1 → V2 between representations (V1, ρ1) and (V2, ρ2)
satisfying f(ρ1(g)v1) = ρ2(g)f(v1) ∀ g ∈ G, v1 ∈ V1.

A reducible representation V3 may be decomposed into a
direct sum of irreps V1 and V2. When V3 is itself a tensor
product of irreps, this is known as the Clebsch-Gordan de-
composition. The relation V3 ≃ V1⊕V2 means that there ex-
ists an invertible, equivariant, linear map T : V3 → V1⊕V2.

The condition number κ of a matrix M is given by the
ratio of its maximum to its minimum singluar values. A
homogeneous polynomial, or form, is one in which every
term has the same degree. We work with homogeneous
polynomials in two real variables, or binary forms. Let
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Figure 2: Our SL(2,R)-equivariant layer. The color in-
dicates the irrep vector space of a given activation. The
inputs to the layer live in the finite-dimensional irreps of
SL(2,R), corresponding to homogeneous polynomials of
different degrees. The nonlinear layer takes all pairwise
tensor products of these inputs, and the resultant matrices
are decomposed back into elements of the irreps using the
Clebsch-Gordan decomposition (T ). The equivariant linear
layer recombines elements within each irrep’s vector space
separately. Finally, we apply an MLP to the invariants. The
outputs of the layer again reside in the irrep vector spaces,
and so we can compose several layers of this form.

V (d) denote the vector space of binary forms of degree d.
The action of g ∈ SL(2,R) ⊂ R2×2 on a binary form p is
defined in Section 3.1 and shown in Figure 1.

3.1. Representation Theory of SL(2)

All finite-dimensional irreps of SL(2,R) are given by
V (d), which is (d + 1)-dimensional, for d ∈ Z+. Let
p ∈ V (d), and define the corresponding action on V (d),
ρd, by ρd(g)p(x⃗) = p(g−1x⃗). These polynomial representa-
tions constitute all of SL(2,R)’s finite-dimensional irreps.

Given two irreps, V (d1) and V (d2), the tensor product de-
composes as V (d1)⊗ V (d2) ≃

⊕min(d1,d2)
n=0 V (d1 + d2 −

2n). The linear map verifying this isomorphism is an in-
vertible, equivariant map we call T , which is the Clebsch-
Gordan decomposition for SL(2,R) (Bohning & von Both-
mer, 2010). Let p(x1, y1) ∈ V (d1) and q(x2, y2) ∈ V (d2).
The d1 + d2 − 2n component of T (p⊗ q) is given by the
classical nth order transvectant:

ψn(p, q) =

((
∂2

∂x1∂y2
− ∂2

∂x2∂y1

)n

p · q
)∣∣∣∣x=x1=x2

y=y1=y2

3.2. Description of Equivariant Architecture

Each layer includes a nonlinear operation and a linear opera-
tion, which are described in Figure 2. The inputs to our poly-

Model Name Description
mlp-aug-rots MLP with rotation augmentations
mlp-aug-a-b MLP with augmentations by g[d],

where a ≤ κ(g) ≤ b
so2net-aug-a-b SO(2) equivariant network, with

data augmented by g[d] as above
so2net SO(2) equivariant architecture
sl2net SL(2,R) equivariant architecture
MLP fully connected architecture

Table 1: Model names and meanings.

nomial network are conveniently already elements of the
finite-dimensional irreps of SL(2,R): each input channel
has a list of polynomials p0 ∈ V (0), p2 ∈ V (2), . . . , pd ∈
V (d). After composing these layers, it remains only to
specialize the last layer to a given application.

Last layer The inputs to the last layer L are elements of the
irreducible representation spaces, but the outputs may live in
a reducible representation space V : L :

⊕d
n=0 V (d) → V

for some reducible representation V . The decomposition
of V into irreps dictates the structure of an equivariant last
layer; see Appendix B.1 for details. For the positivity verifi-
cation task, we furthermore are able to design the last layer
so that the output Q for input p satisfies p = x⃗[d]

T

Qx[d].

The resultant equivariant architecture is universal, the proof
of which follows from Bogatskiy et al. (2020) and is sum-
marized in Appendix B.4. Note that, while one could hope
to use invariant polynomials instead, a complete list of al-
gebraically independent invariants is known only for low
degrees (Popoviciu Draisma, 2014).

We also define an SO(2)-equivariant architecture (using
more standard tools for compact groups); see Appendix
B.3.

4. Experiments
Since there do not yet exist standardized benchmarks for
these tasks, we design (and plan to release) our own tasks
and datasets for polynomial minimization and positivity
verification. Here we restrict our attention to the more
interesting positivity verification problem, and defer an ex-
ploration of polynomial minimization to Appendix C. To
generate synthetic data, we sample degree 6 polynomials p
from a rotation-invariant distribution, and solve f(p) from
Section 2 with an interior point method (ApS, 2022).

We compare several instantiations of equivariant learning,
summarized in Table 1. Of note is the use of random
SL(2,R) augmentations, with carefully controlled condi-
tion numbers, at train time. Dataset and experimental details,
as well as equivariance tests, are included in Appendix C.
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Degree 8 10 12 14
NMSE 6.0e-5 2.9e-5 2.3e-5 1.1e-5
MLP 0.082 0.17 0.22 0.29

Mosek (ApS, 2022) 17.50 12.35 13.27 12.35

Table 2: Runtimes (min) on a single CPU for 5,000 exam-
ples of specified input degree, and normalized mean-squared
error (NMSE) of the trained networks on unseen data.

Timing comparison: network vs solver The primary impe-
tus for turning to machine learning is to find faster ways of
solving polynomial problems in practice. We compare the
runtime of the traditional solves with that of a trained MLP.
The MLP is about two orders of magnitude faster, while still
very accurate, as reported in Table 2. These results provide
strong motivation for applying machine learning to this task.

Comparison of equivariance and augmentation for out-
of-distributional generalization In Figure 3, we report the
test errors for each of the models. In addition to the original
test dataset, we also evaluated increasingly ill-conditioned
SL(2,R)-augmentations of the test set. The leftmost points
are the test errors on the original test dataset.

On the untransformed test set, training an MLP with aug-
mentations close to rotations yields the best results, followed
by the so2net. An advantage of the so2net is that it has about
half as many parameters (see Appendix C.1). Using high
condition numbers for the training augmentation of an MLP
increases the test error of the untransformed dataset, validat-
ing our earlier assertions about distribution shifts induced by
highly non-unitary matrices. Some models have analogous
behaviour when they encounter distribution shifts in the test
set: the MLP, MLP augmented with rotations, and so2nets
share a similar trend that the test error increases as the test
distribution undergoes greater transformation.

101 103 105
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mlp-aug-rots
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so2net-aug-3-5
so2net-aug-5-7
so2net

Figure 3: Test errors. The test dataset is transformed by
random A ∈ SL(2,R). The average value of the condition
numbers of A[d] (d=6) is labeled on the x-axis. Error bars
are one standard deviation over 4 independent runs.

5. Conclusion
In this work, we demonstrated for the first time the potential
of machine learning for polynomial problems, particularly

with equivariant learning techniques. An MLP with augmen-
tations works best if the test and training distributions are
similar, while the sl2net may only be useful to generalize
very far beyond the original distribution.

As future work, it would be useful to apply a network trained
on low degree to approximate high degree results, analogous
to how graph neural networks apply to graphs with arbitrary
number of vertices. Changing the polynomial basis we use
may provide the sl2net more stability in training, while
exploring polynomials in more variables or approaches to
incorporate GL(2,R) may be interesting as well. Other
application areas of an SL(2,R) equivariant architecture
may also be of interest, e.g. classifying image silhouttes.
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A. Related Work
Broad application of machine learning The purview of machine learning has expanded far beyond its original wheelhouse
of image and language domains, impacting diverse fields across science and algorithms (Pfau et al., 2020; Jumper et al.,
2021). In scientific domains like PDE time-stepping and molecular dynamics, productive lines of work have arisen around
learning to regress unknown parameters or forward-step in time — problems which are solvable by existing methods but
could ideally be sped-up using large training datasets. In many such applications, machine learning has successfully provided
a learnable model order reduction: given data generated by a high-accuracy, computationally expensive method, such as
simulations based on density functional theory (DFT) for molecular dynamics or custom solvers for PDEs (Batzner et al.,
2022; Han et al., 2018), a neural net is trained to approximate these costly solutions on a dataset of interest. Especially
valuable are problems for which, one a solution has been found, its correctness can be verified efficiently; this is the case for
e.g. modeling catalysts, where a candidate output conformation can be confirmed with a few DFT steps (Chanussot et al.,
2021).

Equivariant Learning In other contexts of structured inputs, it is now relatively common practice to adapt neural
architectures to the invariances of the input and output data types: neural networks for graph classification are invariant to
permutation of the input nodes (Maron et al., 2019), for example, while architectures for point clouds are usually agnostic
to translation, rotation, and permutation (Thomas et al., 2018; Anderson et al., 2019). Across these domains and many
others, the incorporation of such problem-specific group symmetries into neural architectures has proven essential, lending
greater sample efficiency as well as generalization to all of the appropriate symmetry transformations of the training data in
both theory and practice (Cohen & Welling, 2016; Elesedy & Zaidi, 2021). A standardized toolkit has arisen for designing
these “equivariant” architectures across wide families of groups, typically considering linear layers and nonlinear layers
separately (Esteves, 2020). Group convolution provides one widespread method for building learnable linear equivariant
layers, extending the translational convolution of traditional CNNs to more general transformations (Cohen & Welling,
2016). Indeed, such methods are readily applicable to any compact group. As an equivariant nonlinearity, a simple pointwise
non-linearity often suffices for simple group transformations, while more elaborate nonlinearities based on tensor products
are available for more complex group representations (Cohen et al., 2018; Kondor et al., 2018; Thomas et al., 2018).

Architectures enforcing equivariance to compact Lie groups abound in both theory and practice, often focusing on SO(3)
as it arises widely in practice. To name just a few, (Cohen et al., 2018) enforces spherical equivariance using real-space
nonlinearities, while (Kondor et al., 2018) uses the tensor product nonlinearity. Several architectures designed for rotation-
equivariant point cloud inputs also use tensor product nonlinearities (Thomas et al., 2018; Anderson et al., 2019). Methods
for more general Lie groups based on Monte Carlo approximations of convolution integrals include Finzi et al. (2020) and
MacDonald et al. (2021), while Finzi et al. (2021) presents a computational method for solving for an equivariant linear
layer of an arbitrary Lie group. Since SL(2,R) is a noncompact group, forming invariants by group averaging is impossible.
As discovered in (Bogatskiy et al., 2020), if every layer activation lives in a finite-dimensional representation space, then
averaging over the group is unnecessary. Our fully equvariant SL(2,R) architecture can be viewed as a specialization
of their insightful Lorentz group architecture. The exposition simplifies dramatically because our binary form inputs
lie precisely in the group’s finite-dimensional irreps. Note that our application area (and therefore the output layer) and
empirical findings are distinct. Related to higher-level analyses of equivariances that induce distribution shift, Wang et al.
(2022) coin the term “extrinsic” equivariance, and note that it can improve performance; in other settings, however (Wang
et al., 2023), this kind of equivariance is not advantageous. Finally, Gerken et al. (2022) provides one other empirical
example where augmentation outperforms equivariance, although they observe this phenomenon only for invariant tasks
with respect to the compact group of rotations, whereas we work with a task equivariant to a non-compact group, and
therefore hypothesize that the underlying mechanisms are quite different.

Polynomial problems Polynomials are ubiquitous in mathematics and engineering. Primitives such as minimizing a
polynomial (Parrilo & Sturmfels, 2003; Jiang, 2013; Passy & Wilde, 1967; Nie, 2013; Shor, 1998) or certifying its positivity
via a sum of squares decomposition (Lasserre, 2009; Prestel & Delzell, 2013; Parrilo, 2000), have attracted attention due to
not only their abstract beauty, but also their direct applications to diverse problems ranging from operations research to
control theory (Henrion & Garulli, 2005; Tedrake et al., 2010). Examples include certifying the stability of a dynamical
system with a Lyapunov function, robot path planning, and designing nonlinear controllers (Ahmadi & Majumdar, 2016).
There exist classical methods (ApS, 2022) for solving the resulting semidefinite program. Our polynomial nonnegativity
task would be one way to accelerate the search for sum of squares certificates in any such problem because SDP solvers are
only effective when the dimensions are not too large (Mittelmann, 2003). For global polynomial minimization, a comparison
of abstract approaches, including sum of squares-based methods, are given in (Parrilo & Sturmfels, 2003). Methods such
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as grid refinement and cutting plane algorithms can be used for a number of similar applications (Hettich & Kortanek,
1993), but the result is not certifiably feasible. One could check the feasibility by finding a certificate with our polynomial
nonnegativity task.

B. Technical Background and Details
B.1. Details of SL(2,R)-equivariant architecture

Nonlinearity We first compute pi ⊗ pj for 0 ≤ i, j ≤ d within each channel. Decompose these tensor products using the
linear map T from Section 3.1 to get T (pi ⊗ pj), which is a list of polynomials of degree at most i+ j.

Learned linear layer After applying the Clebsch-Gordan decomposition T , we have a collection of polynomials ranging
from degree 0 to degree 2d. Gather all resulting polynomials of degree k resulting from any tensor product across any
channel into the vector of polynomials v. Let #k be the number of such polynomials, and c the number of output channels.
W is a c×#k learnable matrix. Then, Wv are the inputs of degree k for the next layer.

Last layer Schur’s Lemma then describes how to preserve equivariance, based on the decomposition of V into irreps.
Because L is linear and invertible, we first compute L−1 given we know the decomposition of V into irreps. By linearity we
only need to compute L−1 on a basis of V . Then we use the inverse of this transformation for L.

For the positivity verification task, we only need to design the last layer. Let v be a list of forms of degrees 0, . . . , d. Let
L :

⊕d
n=0 V (d) → Sd be the last layer of the architecture. If L is equivariant and L(v) = a⊗ b is rank one, we must have

L(A[0]T v0, . . . , A
[2d]T v2d) = (A[d]TL(v)A[d]) = (A[d]T (a ⊗ b)A[d]) = (A[d]T a) ⊗ (A[d]T b) = (A[d]T ⊗ A[d]T )(a ⊗ b).

ThereforeLmust be a map from irreps to the tensor product representation space. We proceed to calculateL via the procedure
in Section 3.2. Let ei be the standard ith basis vector of Rd. The matrices 1

2 (ei ⊗ ej + ej ⊗ ei) are a basis for the space Sd.
We can interpret ei and ej as monomials of degree d. Then define L−1 : 1

2 (ei⊗ej+ej⊗ei) 7→
1
2 (T (ei⊗ej)+T (ej⊗ei)),

with T from Section 3.1. Finally, we guarantee that our output Q satisfies p = x⃗[d]
T

Qx[d] by requiring that the degree 2d
input to L is the original polynomial p.

B.2. Scale homogeneity and a comparison between SO(2) equivariance and SL(2) equivariance

In this work, we have evaluated both SL(2) and SO(2) equivariant architectures. Usually, for an SL(2)-equivariant problem,
SL(2) equivariance is naturally much stronger than O(2) equivariance. However, the polynomial positivity verification
problem explored in Section 4 has the additional structure that it is not only equivariant, but also 1-scale homogeneous:
if homogeneous polynomial p(x⃗) has verifier matrix M of maximal determinant, then cp(x⃗) has verifier matrix cM of
maximal determinant. (Similarly, polynomial minimization is also 1-homogeneous, although it is SL(2)-invariant, not
equivariant.) The first implication of this structural property is that we may enforce it via data normalization, as discussed
below:

Data normalization If a function f is 1-homogeneous, and one has an approximating function g, it is possible to make g
1-homogeneous via the following procedure:

g̃(x) := ∥x∥g
( x

∥x∥

)
Indeed, this is the normalization we employ in all of our experiments, as data normalization (having all inputs roughly of the
same scale) is a widespread and important technique to achieve good neural network performance during training. However,
it is important to note that even if g is SL(2)-equivariant, g̃ may not be. If A ∈ SL(2), then

g̃(Ax) = ∥Ax∥g
( Ax

∥Ax∥

)
?
= A ◦ g̃(x) = A ◦

[
∥x∥g

( x

∥x∥

)]
= ∥x∥g

( Ax
∥x∥

)
However, ∥Ax∥ ≠ ∥x∥ in general; the uncertain equality does not hold unless g is already 1-homogeneous.

Even if one could parametrize the space of functions that are both SL(2)-equivariance and 1-homogeneous, one then might
also reasonably ask whether SL(2) and SO(2) equivariance are actually that different, since scale equivariance implies
that all interesting behavior in the function to be learned is captured by its behavior on the unit ball. In this section, we
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expound upon the distinctions between SO(2) equivariance and SL(2) equivariance, even for scale-equivariant functions.
Importantly, for our equivariant problem of polynomial positivity verification, the two notions are distinct — this is proven
in the following proposition. Therefore, although the normalization procedure we employ slightly breaks equivariance
(when there is no normalization), capturing both properties at once is a promising future direction. Moreover, as shown in
subsequent plots, our architecture still captures equivariance better than other architectures.

We begin with the following example, which is our only example in which the two notions coincide. However, as explained
below, it is a trivial case.

Proposition B.1 (O(n) and SL(n) invariance are equivalent for scale-invariant problems). Let f : Rn → R be a scale-
invariant function, i.e. f(cx) = cf(x), and assume both O(n) and SL(n) act on Rn. We assume G acts orthogonally. Then
f is SL(n)-invariant if and only if it is O(n)-invariant.

Proof. The statement follows from the simple fact that a function that is both scale-invariant and O(n)-invariant must be
constant. This is because O(n)-invariance implies that f(x) depends only on ∥x∥, while scale invariance implies that f(x)
depends only on x

∥x∥ .

The above example is not very satisfying, however. In the next proposition, we prove that SO(2) and SL(2) equivariance
are distinct for the polynomial positivity problem considered in the main text – even when considering 1-homogeneous
functions via input normalization. Consider the type of input representation relevant for the maximum determinant problem,
composed with data normalization: p 7→ A[d]p

∥A[d]p∥ . The following proposition states that this is not equivalent to an SO(2)

transformation of p.

Proposition B.2 (SO(2) equivariance is not equivalent to SL(2) equivariance and scale homogeneity). There exist p and
there exists some element A ∈ SL(2) such that there is no rotation R ∈ SO(2) satisfying

A[d]p

∥A[d]p∥
= R[d]p.

This proposition is somewhat counterintuitive. If A is n× n, then for every x ∈ Rn, there exists an orthogonal matrix R
depending on R and x such that Ax

∥Ax∥ = Rx. The reason this case is different is because even though induced matrices are
size (d+ 1)× (d+ 1), they only have 4 degrees of freedom. This idea is formalized below.

Proof. Suppose for the sake of contradiction that for allA ∈ SL(2), there is some rotationR ∈ SO(2) and α ∈ R satisfying

A[d]p

∥A[d]p∥
= R[d]p.

Left-multiplying both sides by R[d]T , we obtain

R[d]T A[d]p

∥A[d]p∥
= R[d]TR[d]p.

Let M [d] = 1
∥A[d]p∥R

T [d]

A[d]. Such an M exists because (RTA)[d] = RT [d]

A[d] as the induced matrix map is a homomor-
phism, and the map is homogeneous. So the condition is equivalent to p(M−1x) = p(x). For a generic p, it seems natural
that there are only finitely many M such that p(M−1x) = p(x). In general, this is a system of d+ 1 degree d polynomial
equations with 4 variables. For this proposition, however, we only need to show this system has finitely many solutions for a
particular p.

In particular, we argue that if p = x2d + y2d, then there are only finitely many M . The terms other than x2d + y2d of
(ax+by)2d+(ex+fy)2d would need to vanish. A generic coefficient in the expansion is a constant times aib2d−i+e2d−if i.
Any term with even i and 2d− i would have no solution over the reals unless ab = 0 and cd = 0. The first and last expansion
terms give us that a2d + e2d = 1 and b2d + f2d = 1. If for instance a = b = 0, then e = ±1 and f = ±1. There are only
finitely many cases of which variables are zero to consider.
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There exists some A ∈ SL(2,R) such that MA−1 is not a multiple of an orthogonal matrix for any of these finite number

of M . The matrix
(
r 0
0 R

)
is in SL(2,R) for every x ∈ R. We will choose A so that A−1 is of this form. If M = QR is

the QR decomposition of M , and R =

(
u v
0 w

)
, then compute −u

v for every M . Let x be much larger than any of these

values. Then MA−1 scales vectors arbitrarily large and so is not orthogonal.

Remark B.3. As a result of the above proposition, SO(2) and SL(2) equivariance are not equivalent for positivity verification.
This is because representations of SL(2,R) capture a richer variety of transformations than induced matrices of O(2), even
after normalization.

Although the proposition above proves that normalization and SO(2)-equivariance together still do not suffice to capture
SL(2)-equivariance, the following reasoning still captures why we might expect SO(2)-equivariance to perform well.
To approximate the SL(2)-equivariant, 1-homogeneous function f on an input x, first normalize x, and then input it to
an SO(2)-equivariant architecture, and finally re-scale by ∥x∥. (More precisely, the SO(2) input representation in the
architecture is merely the subrepresentation of the original SL(2) input representation.) Although this technique is not
SL(2)-equivariant, by the previous proposition, it still captures equivariance.

B.3. SO(2) equivariant architecture

The main development for the so2net was making such a network compatible with the input and output types required for
the tasks. The input for all tasks was a binary homogeneous polynomial of degree d.

Input layer The first layer maps the input to elements of the representation spaces of SO(2). We map the homogeneous
polynomial in (x, y) to a homogeneous polynomial in (cos θ, sin θ) and then compute its Fourier coefficients.

Nonlinearity In the case of SO(2), the tensor product simplifies immensely. Because the elements of the representation
spaces of degrees j and k are scalars, their tensor product is simply their product that lives in the representation space of
order j + k.

Learned linear layer We are free to add arbitrary linear combinations of scalars that live in the same representation spaces.
These weights are learned parameters. Furthermore, we learn an MLP to apply to each set of invariants (Fourier modes of
order 0). We send the results of this layer into either another nonlinear layer or into the final layer.

Final layer The final layer is output dependent. In the case of an invariant problem, the final layer should return an element
of the representation space of order 0. For the problem of Section 2, we convert these Fourier modes into a sequence of
irreps of SL(2,R) and apply the final layer used for the sl2net. We convert a channel of Fourier modes to an ordinary binary
form as follows. Every Fourier term of the form a cos(kθ) + b sin(kθ) corresponds to a homogeneous polynomial in cos(θ)
and sin(θ) of degree k. If k < d, where d is the degree of the binary form that we need, we multiply by the necessary power
of 1 = cos2(θ) + sin2(θ) to lift to a form of degree d. Then we reverse-substitute (x, y) for (cos θ, sin θ). This can be used
as input for the last layer of the sl2net.

B.4. Universality

The construction of sl2net and so2net satisfy the requirements of Theorem D.1 of (Bogatskiy et al., 2020), which implies
that any equivariant map for our tasks can be uniformly approximated by these networks. (This is expected because sl2net
and so2net are in some sense special cases of their construction.) The important features of such networks are that they
compute iterated tensor products of representations and they have non-polynomial activations of group invariants. The idea
for universality is to show that a basis of invariant and equivariant polynomials can be generated. They argue how repeatedly
taking tensor products yields this required basis.

C. Experiments
C.1. Experimental Setup

All experiments were run on Nvidia Volta V100 GPUs, using the AdaM optimizer with learning rate 3 · 10−4. Roughly,
training on a single GPU took 15-30 minutes for each MLP, 1.5-2.5 hours for each SL2Net, and 2.5-6 hours for each SO2Net.
For runs with data augmentation, augmentations were performed using 10, 000 presaved 2× 2 SL(2) matrices (and their
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Architecture Hyperparameters Parameters
MLP hidden layers 100-1000 (dimension 100, then 1000) 117,816

SL2Net 5 layers, 50 channels, max internal deg. 12, invariant MLP 10-10 887,771
SO2Net 3 layers, 10 channels, max internal deg. 12, invariant MLP 10-10 58,110

Table 3: Architecture hyperparameters for the max determinant experiment. For multi-layer perceptron (MLP) architectures,
“x-y” indicates x hidden units, followed by y hidden units, etc.

Architecture Hyperparameters Parameters
MLP hidden layers 100-1000 (dimension 100, then 1000) 104,901

SL2Net 3 layers, 20 channels, max internal deg. 12, invariant MLP 10-10 163,628
SO2Net 3 layers, 10 channels, max internal deg. 12, invariant MLP 10-10 48,930

Table 4: Architecture hyperparameters for the minimization experiment. For multi-layer perceptron (MLP) architectures,
“x-y” indicates x hidden units, followed by y hidden units, etc.

induced versions) with condition numbers in the specified range. Details of the distribution from which these matrices were
generated, as well as from which the random augmentations were applied in our test error plots, can be found in the code.

Positivity Verification Setup Random positive degree d forms were generated as follows. A real Wigner matrix A of
dimensions (d + 1) × (d + 1) is sampled. Each entry is an independently and identically distributed random normal
variable with mean 0 and variance 1. Then p = x⃗[d]

T

(ATA+ 10−8I)x⃗[d]. The identity perturbation is added to ensure strict
positivity. The maximum determinant Gram matrix was computed with (ApS, 2022). We used 5, 000 training examples, 500
validation examples, and 500 test examples.

Experiments were trained for 700 epochs across 4 random seeds. We used the hyperparameters shown in Table 3, which
were chosen heuristically by comparing validation errors across a small number (< 20) of runs.

Minimization Setup For the purpose of computing the minimum of an inhomogeneous polynomial, the polynomial was
generated as follows. Let m be sampled from a standard normal distribution. Let (x0, y0) each be the result of sampling
independently from a standard normal and taking the absolute value. If a, b are sampled independently from a uniform
distribution on [0, 1], then let (x1, y1) = ((2a− 1)x0, (2b− 1)y0). Then multiply a collection of polynomials from the five
quadratics in {((x± x0)

2 + (y ± y0)
2), ((x− x1)

2 + (y − y1)
2)} to get a degree d− 2 polynomial. Add together every

product from this collection that has degree d− 2 to get the polynomial p and then return p · ((x− x1)
2 + (y − y1)

2) +m.
The minimum of this polynomial is guaranteed to be m and occur at (x1, y1). After expanding the resulting polynomial, we
can separate the polynomial into binary forms of degrees 0, . . . , d and input all forms simultaneously into the first layer of
the neural network. We used 5, 000 training examples, 100 validation examples, and 100 test examples.

Experiments were trained for 400 epochs across 2 random seeds. We used the hyperparameters shown in Table 4 which
were chosen heuristically by comparing validation errors across a small number (< 20) of runs.

Normalization As noted in the previous section, we normalize input polynomials via p 7→ p
∥p∥ , where ∥p∥ is equal to the

L2 norm of the polynomial’s coefficients, in a monomial basis. Since our problems are 1-homogeneous, we rescale the
outputs via ∥p∥. This is done for all architectures we compare; therefore, all methods are scale equivariant (or in particular,
1-homogeneous) during training and validation.

C.2. Polynomial Minimization

In this section, we repeat our experiments for an alternative SL(2)-equivariant problem: polynomial minimization. If a
bivariate polynomial (not necessarily homogeneous) has a unique minimum, then that global minimum is invariant to any
invertible change of coordinates, including SL(2,R) . The SL(2,R)-equivariant architecture is amenable to this problem
by the following adaptations.

• The input to the first layer is a sequence of forms of different degrees. The degree k form are all the terms of degree k
of the original polynomial.

• The last layer returns an element of the degree 0 representation space – an invariant scalar.
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Figure 4: Equivariance errors for different architectures on the polynomial minimization problem, averaged over two random
seeds with a standard-deviation error bar.
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Figure 5: Normalized test errors for different architectures on the polynomial minimization problem, averaged over two
random seeds with a standard-deviation error bar.
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The changes to so2net are analogous:

• The input to the network is a sequence of forms of different degrees. We implement this as several input channels.
We interpret each as a polynomial in cos(θ) and sin(θ) and compute the Fourier transform. We zero-pad the Fourier
coefficients so that all channels have the same number of Fourier coefficients, and this collection of channels is the
input to the first nonlinear layer.

• The output returns the 0th Fourier mode of the last layer, again an invariant scalar.

We again compare various architectures for applying machine learning to this problem. As shown in Figure 4, the
SL2-equivariant architecture is far more equivariant than any other architecture at low condition numbers, but has high
equivariance error at higher condition numbers. We discuss possible reasons for this at the end of this section. However, as
shown in Figure 5, the so2 and sl2 equivariant architectures have an advantage over an unaugmented MLP only for very
ill-conditioned SL(2) transformations. Moreover, MLPs with SL(2)-augmentations perform the best in terms of test error,
and this seems to be the best choice for this problem.

C.3. Equivariance Tests for Positivity Verification

Equivariance Error The equivariance error of the models in Table 1 after transformation of the input by random
A ∈ SL(2,R) with average condition number of A[d] given on the horizontal axis are reported in Figure 6. The equivariance
error was calculated as

∥A[d′]TN (p)A[d′] −N (A[d]p)∥
∥A[d′]T yA[d′]∥

,

averaged over all p in the test set (here, y is the correct minimum for input p).

As shown, the sl2net architecture had the highest degree of equivariance at lower transformation levels, but diverges along
with other models for high condition numbers. Almost all of the MLPs also learned some level of equivariance. Controlling
network normalization for the equivariant nets is an important direction for future work.
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Figure 6: Equivariance errors

Impact of architecture In Figure 7, we also study the impact of the equivariant architecture hyperparameters on the
equivariance error of the network. We find that the higher degree the internal irreps, the further the equivariance error is
from numerical precision. In the following section, we hypothesize an explanation for this behavior.
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Figure 7: The impact of the SL(2)-equivariant architecture on equivariance error. Architectures with either channles in
{10, 30, 50}, layers in {3, 4, 5}, and maximum internal irrep degree stored in {8, 10, 12} (indicated by mx-8, mx-10,
etc) are trained for a short time (30 epochs). The log equivariance error is then averaged across all architectures with the
same maximum internal degree. As shown, architectures with a lower internal degree tend to be more equivariant. Another
takeaway is that the variation in equivariance due to the other hyperparameters other than maximum irrep degree is minimal
– changing the maximum irrep degree has the biggest affect on equivariance.

D. Conditioning considerations
D.1. Induced condition number study

First, we demonstrate in Figure 8 the exponential relationship between the condition number (denoted by κ) of A and
that of A[d]. Each line is a randomly generated matrix A ∈ SL(2), and demonstrates a linear relationship between d and
log(κ(A[d]). This is likely a relationship that one can prove, but we defer such a theorem to future work.
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Figure 8: The condition number of A[d] as a function of d for 10 randomly generated matrices A ∈ SL(2). Here, each
colored line corresponds to a different sampled matrix.

D.2. What those induced condition numbers mean for us

Past work on noncompact Lie groups has largely focused on how to design linear equivariant layers, but not much on the
practical difficulties that arise from working with a group of non-orthogonal matrices. Here, we expound upon some of
these difficulties, in the hopes that it may be useful for future practitioners working with groups which are not subgroups of
the orthogonal group.

13



Learning Polynomial Problems with SL(2)-Equivariance

Unlike elements of an orthogonal group, the elements of SL(2,R) can be arbitrarily poorly conditioned. As shown in the
previous subsection, Appendix D.1, even if A ∈ SL(2,R) has a moderate condition number (e.g. less than 10), A[10] may
have a condition number several orders of magnitude larger. This affects various aspects of training and testing. First, when
A[d] is poorly conditioned, it means that computed values of p(Ax) and therefore M(p(Ax)) may be untrustworthy. This
means that there is a limit to how much data augmentation can be done, and how reasonable it is to test on transformed
datasets.

Our architecture is designed to be fully equivariant. This means that it should handle arbitrary transformations of the
input data. When testing equivariance of our model, it is apparent that the errors from poorly conditioned transformations
compound with more Clebsch-Gordan layers and higher irrep degrees. High degree polynomials in the monomial basis are
poorly conditioned, and low degree polynomials may have numerical issues when we repeatedly multiply them together.
This means there is a practical limitation with how big the networks can be before the internal computations become unstable.
This is consistent with Figure 7 from the previous section: networks with higher degree internal irrep activations are slighty
less equivariant then those with lower degrees, as the architecture — by nature of its very equivariance — is constrained to
apply an ill-conditioned matrix to its internal activations, as a result of the representation matrix applied to the input.

One could hope to choose a different basis for each vector space of homogeneous polynomials, such that the resultant
induced representation is better-conditioned. This is an open problem for future work, and indeed may not always be
possible for the entire group, as shown in the following general theorem about non-unitary representations.

Proposition D.1. Let G be a group, and p : G → GL(V ) a representation of G with associated n-dimensional vector
space of V . A basis change U ∈ O(n) of V induces a mapping2 from p to p′, where p′(g)x = Up(g)UTx. Then, there is no
basis change of p under which maxg∈G κ(p(g)) changes.

Proof. We wish to find a basis for the vector space V corresponding to a representation p such that maxg∈G κ(p(g))
is as small as possible. A basis change here corresponds to the mapping p(g) 7→ Up(g)UT . Therefore, want to solve:
minU∈O(n) maxg∈G κ(Up(g)U

T ). If Im(p(g)) contains O(n), then for any U ∈ O(n), we can define h as the preimage
of U : p(h) = U . Then, Up(g)UT = p(hgh−1), so maxg∈G κ(Up(g)U

T ) = maxg∈G κ(p(g)) is independent of U . This
implies that no basis is better than any other basis — at least from a worst-case perspective.

Remark D.2. The standard, two-dimensional (irreducible) representation of SL(2) satisfies the criterion of Proposition D.1,
as SL(2) contains SO(2). Therefore, there is no basis under which this representation is better-conditioned – at least, in a
worst-case sense over SL(2).

In spite of Proposition D.1, there is still reason to believe a basis may exist that performs well in practice. First, the
condition that O(n) ⊆ Im(p(g)) is restrictive; for representations like the induced representations A[d] of G = SL(2,R)
for d > 2, this does not hold. (Consider just that there are on the order of n free parameters for elements in O(n) but only
4 for elements of SL(2,R).) Moreover, perhaps we do not care about the metric maxg∈G κ(p(g)), but rather something
distributional: Eg∼µκ(p(g)). In this case, we could hope to find a basis change that is better-conditioned on high-probability
group elements.

Finally, one practical consideration to do with SL(2)-equivariance and conditioning is the loss function. Although the
L2 norm is unchanged under orthogonal transformations — so that loss functions are often themselves invariant – the L2

norm is changed by non-unitary representations, and therefore not invariant under our non-unitary SL(2) representations.
As shown below, for the positivity verification problem, the normalized loss function we use in our experiments may be
distorted by a factor of up to κ2. This means that, when we query the loss of an equivariant model on an SL(2)-transformed
datapoint, the loss may vary in accordance with the condition number of the transformation.

Proposition D.3 (Variation of Loss Along Orbits). Let p be a homogeneous bivariate polynomial. Let M(p) be the true
solution to the problem in Section 2. Let N (p) be the equivariant neural network prediction. Then

ϵ1 ≤ ∥N (p)−M(p)∥Fro
∥M(p)∥Fro

≤ ϵ2 =⇒ ϵ1
κ2

≤ ∥N (gp)−M(gp)∥Fro
∥M(gp)∥Fro

≤ κ2ϵ2, (1)

where κ is the condition number of g[d].
2We overload terminology somewhat, and refer to this as a basis change of the representation itself.
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Proof. We calculate directly

∥N (gp)−M(gp)∥
∥M(gp)∥

=
∥g[d](N (p)−M(p))g[d]

T ∥
∥g[d]M(p)g[d]T ∥

=
∥(g[d] ⊗ g[d])vec(N (p)−M(p))∥

∥(g[d] ⊗ g[d])vec(M(p))∥

≤ σmax(g
[d])2∥vec(N (p)−M(p))∥

σmin(g[d])2∥vec(M(p))∥
≤ κ2ϵ2.

(2)

The lower bound is shown by taking the minimum singular value in the numerator and maximum in the denominator.
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