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Expanded Convolutional Neural Network Based Look-Up Tables
for High Efficient Single-Image Super-Resolution

Anonymous Author(s)
∗

ABSTRACT
Advancedmobile computing has led to a surge in the need for practi-

cal super-resolution (SR) techniques. The look-up table (LUT) based

SR-LUT has pioneered a new avenue of research without needing

hardware acceleration. Nevertheless, all preceding methods that

drew inspiration from the SR-LUT framework invariably resort

to interpolation and rotation techniques for diminishing the LUT

size, thereby prolonging the inference time and contradicting the

original objective of efficient SR. Recently, a study named EC-LUT

proposed an expanded convolution method to avoid interpolation

operations. However, the performance of EC-LUT regarding SR

quality and LUT volume is unsatisfactory. To address these limita-

tions, this paper proposes a novel expanded convolutional neural

network (ECNN). Specifically, we further extend feature fusion to

the feature channel dimension to enhance mapping ability. In ad-

dition, our approach reduces the number of single indexed pixels

to just one, eliminating the need for rotation tricks and dramati-

cally reducing the LUT size from the MB level to the KB level, thus

improving cache hit rates. By leveraging these improvements, we

can stack expanded convolutional layers to form an ECNN, with

each layer convertible to LUTs during inference. Experiments show

that our method improves the overall performance of the upper

limit of LUT based methods. For example, under comparable SR

quality conditions, our model achieves state-of-the-art performance

in speed and LUT volume.

CCS CONCEPTS
• Computing methodologies → Computational photography.
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1 INTRODUCTION
Single-image super-resolution (SISR) aims to recover a high-resolution

(HR) image with high-frequency image details from a single low-

resolution (LR) image. Early methods for SR were based on interpo-

lation and sparse coding, such as nearest neighbor, bilinear, bicubic
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Figure 1: Illustration of PSNR on Set14 benchmark dataset for
×4 SR,model size and runtimewhichmeasured by generating
1280 × 720 image. We compare our methods (red) with com-
mon interpolation based methods (black), prior LUT-based
methods (blue) and deep learning basedmethods (green). Our
models offer superior SR quality, faster inference, or smaller
LUT volume compared to comparable LUT-based methods.

[9], and A+ [27]. Interpolation-based SR methods often produce

vague results. Sparse encoding methods, however, suffer from slow

inference speeds. Recently, deep learning-based SR methods [11,

25, 17, 28] have achieved significant performance improvements.

However, these methods have dramatically increased computa-

tional costs and even require large amounts of memory, hindering

their practical applications on resource-limited edge devices like

smartphones and smartwatches.

Look-up table (LUT) based methods store the outputs of com-

plex computations in a LUT, which can be directly retrieved with-

out recomputing when needed. The low computational cost and

hardware-independent characteristics of LUT make it suitable for

implementing efficient SR methods. However, obtaining a LUT re-

quires enumerating the input values, which leads to an exponential

growth of the LUT size with the increase of the index pixel number.

When using a single pixel index, the LUT size is usually at the KB

level. When using two pixel indices, the LUT size grows to the MB

level. Although sampling techniques can be used to reduce the LUT

size, on one hand, sampling techniques are limited in their ability

to increase the index pixel number, typically only allowing for up

to four indices. On the other hand, interpolation is required at the

inference stage after sampling, which increases the computational

costs. Cascading methods can make the LUT size grow linearly

with the receptive field (RF) size, but these methods still remain

1
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within the confines of the SR-LUT [8] framework and still require

interpolation and rotation techniques.

Recently, a novel study [30] proposed an expanded convolution

method to improve LUT-based SR methods’ inference speed. By

expanding the output window size in the spatial dimension thereby

increasing the RF, using merely two pixels as indices, the perfor-

mance outperforms SR-LUT that employs four pixels as indices.

Meanwhile, due to avoidance of interpolation operations, it was

much faster than SR-LUT. However, we found some problems in

EC-LUT. First, the method still used rotation techniques without

conferring any significant advantage. Second, it still used two pixels

as indices, resulting in a LUT size of 9MB, which requires more stor-

age space and reduces the cache hit rate. Finally, a bigger problem

was that the expanded operation was performed in the HR space,

significantly increasing the computational burden.

To address these issues, in this paper, we further improve the

expanded convolution (EC) and generalize it to more common cases.

At the same time, we completely abandon the SR-LUT framework

and directly use EC as a vanilla convolution to build an expanded

convolutional neural network (ECNN). Specifically, based on the

previous version of EC, we further extend the expanded operation

to the channel dimension while reducing the input window size to

1 × 1. Now, the input of EC is a single value, and the output size is

𝑘𝑠 × 𝑘𝑠 × 𝑐ℎ𝑜𝑢𝑡 , where 𝑘𝑠 denotes equivalent kernel size and 𝑐ℎ𝑜𝑢𝑡
denotes the number of output channels. This is exactly opposite to

the vanilla convolution. In this way, the LUT size becomes:

2
𝑏1 × 𝑘𝑠 × 𝑘𝑠 × 𝑐ℎ𝑜𝑢𝑡 × 𝑏2 bit (1)

where 𝑏1 denotes bit width of feature map, 𝑏2 denotes bit width of

the value stored in LUT. We no longer need sampling, interpolation

operations and rotation techniques while improving the cache hit

rate. Moreover, we perform the EC operation in the LR space and

transform to the HR space by directly splitting each value of the

input features into 𝑟 × 𝑟 values. Finally, we aggregate these values

along the channel axis to compress them back to the original low-

dimensional RGB space. In summary, our contributions can be

summarized as follows:

• We propose ECNN, a novel LUT-based approach for SR

task. By reducing the number of single indexed pixels to

just one, ECNN eliminates the interpolation and rotation

tricks, thereby reducing the LUT size and breaking the

inference speed bottleneck of the SR-LUT series methods.

• We further extend feature fusion to the feature channel

dimension to enhance mapping ability. The smaller LUT

size and multi-channel processing capability enable us to

stack EC layers to construct ECNN, which significantly

improves SR quality.

• Extensive experiments show that our method improves the

overall performance of the upper limit of LUT based meth-

ods. For example, under comparable SR quality conditions,

our model achieves state-of-the-art performance in terms

of speed and LUT volume.

2 RELATEDWORK
2.1 Traditional Super-Resolution
Interpolation-based methods are widely used, such as nearest-

neighbor interpolation, bilinear interpolation, and bicubic [9] inter-

polation. These methods obtain SR results by taking the weighted

average of pixels near the target location. Interpolation-based meth-

ods are simple and efficient. However, they only consider positional

information and do not fully consider the arrangement of different

pixel values, so they cannot effectively recover high-frequency sig-

nals. Sparse coding-based methods [27] infer HR images by learning

the sparse representation of patches. However, computing sparse

representations significantly increases inference time.

2.2 Deep Neural Network Based
Super-Resolution

Deep neural networks (DNNs) have revolutionized the field of SR

with their powerful fitting capabilities. Since the pioneering work

of Dong et al. with SRCNN [5], the landscape of SISR has been en-

riched by a plethora of innovative models, each introducing novel

architectural features and learning strategies [1, 6, 10, 11, 25, 13,

14, 15, 23]. The trend towards increasingly complex models [17, 28,

33] has led to significant performance gains. This is exemplified

by the introduction of residual learning strategies and attention

mechanisms [22, 32], which have become integral components of

modern SR frameworks. The EDSR [17] and RDN [33] models, for

instance, employ extensive residual blocks and have set new bench-

marks in terms of image quality. Despite these advancements, the

deployment of such models on edge devices remains a challenge

due to their computational intensity and memory requirements.

Techniques like quantization and pruning offer some relief by com-

pressing the models without a substantial loss in performance.

However, the need for specialized hardware like GPUs, DSPs, or

NPUs for efficient inference underscores the gap between research

prototypes and real-world applicability. Overall, while DNNs have

significantly pushed the boundaries of SISR, the quest for practi-

cal, deployable solutions that balance performance with efficiency

continues to be a driving force in the field.

2.3 LUT Based Super-Resolution
Look-up tables (LUTs) do not require special hardware implemen-

tation and only need some extra storage space to accelerate algo-

rithm running speed by trading space for time. Jo et al. [8] were

the first to apply LUTs to SR tasks and proposed SR-LUT. SR-LUT

trains an SR network and then finds an equivalent LUT. The LUT

replaces the complex DNN in the inference phase, significantly

reducing the computational burden and making SR-LUT more prac-

tical. Subsequently, Li et al. [16] proposed MuLUT, which improved

SR performance by using multiple LUTs to enlarge the receptive

field (RF). Ma et al. [20] developed SP-LUT with a similar idea, us-

ing multiple cascaded LUTs to enlarge the RF. Note that SP-LUT

quantized the intermediate features to 4 bits by using two parallel

branches of MSB and LSB, thereby avoiding the interpolation oper-

ation. Meanwhile, they also discarded the rotation operation. This

was an important attempt to break out of the SR-LUT framework.

However, each module in SP-LUT only enlarges the RF by a small

2
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Figure 2: Comparison of EC-LUT [30] and our ECNN method. The figure is illustrated for ×2 SR (𝑟 = 2). (a) The overview of
EC-LUT. EC-LUT establishes the connection between LR and HR images using a single expanded convolution layer, while
still retaining the rotation techniques of the SR-LUT series of methods. (b) Our ECNN architecture. The proposed ECNN is
composed entirely of expanded convolution layers. The details of the EC layer within ECNN are depicted for hidden layers
with four channels.

part in the horizontal or vertical direction, and the method leads to

the need to stack many modules to enlarge the RF, which seriously

affects efficiency. Liu et al. [19] proposed an RC module, which

significantly enlarged the RF and improved SR performance with

only a little extra storage. However, RCLUT followed the SR-LUT

framework, so it had no advantage in inference time. Recently, Yin

et al. [30] introduced an expanded convolution method that in-

creases the RF by expanding the output window size in the spatial

dimension rather than the input window size. This novel approach

has piqued our interest. Nonetheless, the performance of EC-LUT

in terms of SR quality and LUT volume remains unsatisfactory.

3 METHOD
Figure 2 shows the overall workflow of ECNN and its differences

from the EC-LUT [30] method. EC-LUT enlarged the RF by ex-

panding the output window size of convolution in the spatial di-

mension, thereby maintaining the SR quality without interpolation

and gaining an advantage in inference speed. To completely avoid

the negative effects of interpolation and rotation operations, we

improved the expanded convolution (EC) by further extending the

expansion to the channel dimension and reducing the number of

single indexed pixels to just one. Now, EC looks like an inverted

vanilla convolution, which generates multiple output values from a

single input value. The output values are placed in the correspond-

ing positions and in-place addition is performed. To enhance the

mapping ability, we construct an ECNN by connecting multiple EC

layers.

3.1 Expanded Convolution
Conventional convolution operations compute the product of each

pixel in an image with the corresponding elements of a filter in its

neighborhood, followed by a summation to produce the convolu-

tion output. EC-LUT introduces an EC method that feeds pixels

within the convolution input window into a neural network, which

then outputs 𝑛 ×𝑚 values arranged into an output window. Each

element of the output window is then added to the corresponding

pixel in the output image. In other words, during the convolution

process, data is read from the input image by the sliding input

window and written into the output image by the output window

(in-place addition operation). In EC, enlarging both the input and

output windows can increase the RF. However, the size of the LUT

is exponentially related to the input window size and linearly re-

lated to the output window size. Therefore, EC-LUT reduces the

LUT size by enlarging the output window and shrinking the input

window, whereas other LUT-based methods reduce the LUT size by

sampling the LUT. Notably, the sampled LUT requires interpolation

techniques during the inference stage to fill in missing dictionary

values, significantly increasing computational complexity. It is pre-

cisely because interpolation is not needed that EC-LUT achieves

faster inference speeds.

Following the concept of EC-LUT, we further reduce the EC

input window to the size of a single pixel. At this point, the size

of the LUT is significantly reduced from GB or MB levels to KB

levels. The subsequent challenge is how to improve SR quality.

Previous studies have improved SR quality by cascading multiple

LUTs. However, we observed that even when cascading multiple

3
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Figure 3: Details of sub-network in the EC layer.

LUTs and employing different branches to process the input image

separately, these methods are merely mapping one feature plane

to another. In contrast, CNN networks first map the input image

to a high-dimensional latent space and perform feature extraction

in that space. Inspired by this, this paper further extends the EC

feature fusion operation from the spatial dimension to the channel

dimension. Furthermore, given the presence of multiple channels,

it is logical to stack multiple EC layers to form an ECNN.

Figure 3 shows the details of sub-network in the EC layer. The

sub-network consists of three 1 × 1 convolutions and two ReLU

activation functions. To shorten training time, the hidden layer

channel count of the sub-network is set to 64. The EC layer can be

formally described as:

X(𝑖, 𝑗, 𝑐) = Φ𝜃 (F𝑖𝑛 (𝑖, 𝑗, 𝑐)),

F𝑜𝑢𝑡 (𝑖, 𝑗, 𝑐) =
∑︁
𝑥∈𝜒

𝑥 (𝑖, 𝑗, 𝑐) (2)

where (𝑖, 𝑗, 𝑐) is the pixel index in the feature map, F𝑖𝑛 (𝑖, 𝑗, 𝑐) rep-
resents the input window at location (𝑖, 𝑗, 𝑐), X represents the cor-

responding three-dimensional sliding output window, Φ represents

the learnable sub-network, 𝜃 represents the parameters of Φ, F𝑜𝑢𝑡
represents the final output feature obtained at the target position,

and 𝜒 denotes the sliding window sets that cover the target position.

3.2 ECNN Architecture
As shown in Figure 2, EC can be applied as a regular convolution

operation. Hence, our ECNN model consists solely of EC layers,

and it extracts the feature maps in the LR space to lower the compu-

tational burden. Then, the model appends an up-sampling module

at the final stage of the network to enhance the resolution. Further-

more, inspired by VGG [24], instead of using a single large-scale

RC module to expand the receptive field as in RCLUT, we stack

several 3 × 3 EC layers to increase efficiency.

The first layer of ECNN is responsible for ascending the input

channel from 𝑐ℎ𝑖𝑛 to 𝑐ℎ𝑚𝑖𝑑 . The intermediate hidden layers use a 3×
3 EC layer with input and output channels of 𝑐ℎ𝑚𝑖𝑑 . Previous LUT-

based SRmethods have used multiple branches to enhance mapping

capabilities, but the ends of these branches are always merged

together. In other words, when these branches are considered as a

whole, they always map one plane to another plane. However, on

a single feature plane, the information contained in local patches

is limited. ECNN uses multiple channels, which contain richer

information in local patches, resulting in higher SR quality.

The final layer of ECNN is an up-sampling module, which di-

rectly splits each value of the input features into 𝑟 × 𝑟 values by
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Figure 4: After the convergence of the ECNN-L6C6 network
without quantization nodes, the histogram of the output data
for each layer on the Set5 dataset.

non-linear mapping, as shown in Figure 2. Finally aggregates them

along the channel axis to compress back to the low-dimensional

RGB space. Actually, this procedure can also be viewed as setting

the output window size of the EC layer to 𝑟 × 𝑟 , and then when

reordering the output, there is no overlap in the spatial dimension,

and only overlap in the channel dimension.

It should be noted that another major distinction between ECNN

and the SR-LUT framework is ECNN’s ability to simultaneously

process all three RGB channels. When there are ample channels

in the feature maps extracted within the network, sharing a single

set of extracted features for all three RGB channels can reduce

computational requirements by approximately one-third, thereby

further accelerating inference speed. However, when there are

fewer intermediate feature channels, this shared feature approach

may fail to adequately represent the information of all three RGB

channels, compromising SR quality. This study continues to employ

the approach of channel separation.

3.3 Quantization
Converting a neural network into a LUT necessitates computing

the output values for all possible input values. These input values

serve as indices for the LUT, with the corresponding output values

stored at those indices. In the case of SR-LUT, the input is a LR

image with a data bit-width of 8 bits, thus obviating the need for

quantization operations. However, when cascading multiple LUTs,

the intermediate feature tensors act as inputs to the hidden layers,

which typically utilize 32-bit floating-point data during training.

As shown in Equation 1, the LUT size is exponentially related to

the input value’s bit-width, it becomes necessary to quantize the

feature maps.
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Figure 5: The various stages of transferring EC layer to LUT.
(a) Normal training. (b) Fine-tuning with quantization node.
(c) Zero cost post-training quantization. Traverse the input
of the sub-network and store the 12 bits quantized value in
LUT. (d) Replacing sub-network with LUT during test phase.

Previous studies, such as SP-LUT, directly incorporate quan-

tization nodes into the training process. However, feature maps

produced by randomly initialized neural networks span a wide

numerical range, and the truncation functions used in quantization

nodes can impede gradient propagation. Experiments have demon-

strated that this approach fails to achieve optimal performance.

Alternatives like MuLUT and RCLUT employ Tanh or Sigmoid

activation functions to map feature maps to a finite range. How-

ever, these methods still affect the model’s convergence rate. To

address this issue, we analyzed the results of standard network

training, excluding quantization nodes. As illustrated in Figure 4,

we observed that in a normally trained network, the output value

range of each layer falls within [−1, 1]. Therefore, truncating the
data to [−1, 1] will no longer hinder gradient propagation. Based
on this finding, we propose decoupling quantization from model

training, as depicted in Figure 5. The model is first trained normally,

and upon convergence, quantization nodes are introduced for fine-

tuning to ensure the model’s performance remains unaffected. This

fine-tuning process is referred to as quantization-aware training

(QAT).

The computation of the quantization node can be formulated as

follows:

𝑠 = 2
𝑏−1 − 1,

𝑍 = 𝑐𝑙𝑎𝑚𝑝 (𝑟𝑜𝑢𝑛𝑑 (𝑥 · 𝑠),−𝑠, 𝑠),

𝑦 =
𝑍

𝑠

(3)

where 𝑠 is the scaling factor, which is determined by the quan-

tization bit number 𝑏, 𝑥 is the input floating-point number, 𝑍 is

the integer after quantization, and 𝑦 is the output of quantization

node. We attempted to quantize the feature maps to 4 bits, but this

resulted in a drastic performance drop, so we eventually opted for

8 bits quantization.

Note that QAT is performed on the input (LUT index) of the

sub-network in the EC layer, whereas the output (values stored in

LUT) of the sub-network remains a floating-point number prior

to the in-place addition operation. In order to further reduce the

LUT volume, the values stored in LUT were further quantified,

but this step was postponed until after fine-tuning. For this step,

experiments indicate that post-training quantization (PTQ) can be

conducted directly, and quantization above 12 bits hardly affects

performance. Thus, we quantize it to 12 bits at the LUT generation

stage. It is worth noting that our PTQ does not require any statistical

data about the model, which means that this step of quantization is

zero-burden.

4 EXPERIMENT
4.1 Implementation Details
Datasets and Metrics.We use the DIV2K dataset [26] for training.

This dataset has 800 images for training, 100 for validation, and 100

for testing. In addition, there are five commonly used benchmark

test datasets, namely Set5 [3], Set14 [31], B100 [2], Urban100 [7],

and Mang109 [21]. We report our results on these five datasets and

compare them with previous studies. The quantitative evaluation

metrics are PSNR (peak signal-to-noise ratio) on the Y channel of

YCbCr space and structural similarity index (SSIM) [29]. In addition,

We evaluate the computation efficiency by recording and presenting

the rumtime of generating 1280 × 720 output images on mobile

devices. To be consistent with previous studies, according to [17, 33],

we use Matlab’s imresize function to perform bicubic interpolation

on HR images to obtain LR images.

Training Details. The sub-network within the EC layer uses

a total of 3 grouped 1 × 1 convolution layers, with the number

of groups set to 𝑐ℎ𝑖𝑛 , and the number of hidden layer channels

set to 64 × 𝑐ℎ𝑖𝑛 , where 𝑐ℎ𝑖𝑛 denotes the input channels of the EC

layer. The sub-network in the up-sampling module of the last layer

of ECNN adopt the same settings. We use Adam optimizer [12]

with an initial learning rate of 1 × 10
−4

for a total of 20000 epochs,

halving the learning rate every 4000 epochs. The loss function is

mean-squared error (MSE). We randomly crop the LR image into

patches of size 48× 48with a mini-batch size of 16 and augment the

data by random rotation and flipping. We train the ECNN model

with Pytorch [4] on Nvidia 2080Ti GPU.

4.2 Quantitative Comparison
We compared ECNN with other SR methods, including three com-

mon interpolation methods (nearest neighbor, bilinear, bicubic [9]),

five LUT-basedmethods (SR-LUT [8], EC-LUT [30],MuLUT [16], SP-

LUT [20], RCLUT [19]), and three neural network-based methods

(FSRCNN [6], CARN-M [1], RRDB [28]). To compare the evaluation

metrics of different dimensions more clearly, we implemented three

different complexities of ECNN: ECNN-L4C4, ECNN-L6C6, ECNN-

L8C8, where the number after ’L’ indicates the number of EC layers,

and the number after ’C’ indicates the number of channels in the

hidden layer.
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Table 1: Quantitative comparisons with other SR methods on 5 benchmark datasets for 𝑟 = 4. The best values of LUT-based
methods are shown in bold and the second-best values are shown in underline. Size denotes the storage space or the parameter
number of each model. Runtime is measured on a MEIZU 16s smartphone for generating 1280 × 720 output images. ♯ indicates
that no runtime code was provided, and the runtime comes from their original paper.

Method Runtime Size Set5 Set14 B100 Urban100 Manga109

Nearest 9ms - 26.25/0.7372 24.65/0.6529 25.03/0.6293 22.17/0.6154 23.45/0.7414

Bilinear 20ms - 27.55/0.7884 25.42/0.6792 25.54/0.6460 22.69/0.6346 24.21/0.7666

Bicubic 97ms - 28.42/0.8101 26.00/0.7023 25.96/0.6672 23.14/0.6574 24.91/0.7871

SR-LUT [8] 94ms 1.274MB 29.82/0.8478 27.01/0.7355 26.53/0.6953 24.02/0.6990 26.80/0.8380

EC-LUT-V [30] 41ms 9MB 29.91/0.8461 27.14/0.7419 26.61/0.7019 23.98/0.6977 26.96/0.8362

EC-LUT-S [30] 257ms 11.466MB 30.35/0.8592 27.45/0.7484 26.77/0.7062 24.28/0.7101 27.39/0.8466

SP-LUT [20] 365ms 5.5MB 30.01/0.8516 27.21/0.7427 26.67/0.7019 24.12/0.7058 27.00/0.8430

MuLUT
♯
[16] 253ms 4.062MB 30.60/0.8653 27.60/0.7541 26.86/0.7110 24.46/0.7194 27.90/0.8633

RCLUT
♯
[19] 232ms 1.513MB 30.72/0.8677 27.67/0.7577 26.95/0.7145 24.57/0.7253 28.05/0.8655

ECNN-L4C4 (Ours) 31ms 198.773KB 29.99/0.8524 27.19/0.7443 26.67/0.7034 24.06/0.7053 27.07/0.8460

ECNN-L6C6 (Ours) 61ms 661.236KB 30.75/0.8683 27.70/0.7583 26.96/0.7144 24.58/0.7271 28.12/0.8668

ECNN-L8C8 (Ours) 119ms 1.543MB 31.06/0.8753 27.91/0.7631 27.08/0.7180 24.82/0.7364 28.59/0.8762
FSRCNN [6] 371ms 12K 30.71/0.8656 27.60/0.7543 26.96/0.7129 24.61/0.7263 27.91/0.8587

CARN-M [1] 4955ms 412K 31.82/0.8898 28.29/0.7747 27.42/0.7305 25.62/0.7694 29.85/0.8993

RRDB [28] 31717ms 16698K 32.68/0.8999 28.88/0.7891 27.82/0.7444 27.02/0.8146 31.57/0.9185

The quantitative comparison results are shown in Table 1. The

results indicate that among the LUT-based SRmethods, ECNN-L8C8

achieved the highest PSNR and SSIM quality. Compared with the

earliest method SR-LUT, ECNN-L8C8 improved PSNR by 1.22dB on

the Set5 dataset, and was close to SR-LUT regarding running time

and LUT size. It is worth noting that the lower complexity ECNN-

L6C6 surpassed all previous LUT-based methods across metrics,

except for running slower than EC-LUT-V, thus demonstrating the

superiority of ECNN. Compared with ECNN-L8C8, ECNN-L6C6

compromised only a small part of SR quality, but gained twice the

running speed, showing better overall performance. Among all the

LUT-based methods, ECNN-L4C4 had the shortest running time,

yet experienced a more significant decrease in SR quality.

Overall, the single LUT size of ECNN is at the KB level. ECNN-

L4C4 and ECNN-L6C6 even have a total LUT size of less than 1MB.

This reduced LUT size not only minimizes storage space utilization

but also enables the KB-level LUT to be seamlessly loaded into the

L1 cache, greatly enhancing the cache hit rate and subsequently

improving inference speed. Moreover, despite having a smaller RF,

ECNN-L6C6 and ECNN-L8C8 exhibit superior SR quality compared

to RCLUT, demonstrating the superiority of a multi-channel ap-

proach. Additionally, all of our methods have faster inference speed

than RCLUT, indicating that the strategy of utilizing multiple small-

sized convolution modules instead of a single large-sized one is

indeed effective.

4.3 Qualitative Comparison
Figure 6 presents a visual comparison of several LUT-based SR

methods with the ground truth (GT). Since RCLUT did not provide

a trained model, its results are omitted from the figure. Overall,

ECNN-L8C8 achieved a considerable quality improvement, and the

Table 2: Ablation study onquantization strategy. QATdenotes
the proposed fine-tune strategy (quantization of LUT indices).
PTQ represents the quantization of data stored in LUT. DQ
denotes direct quantization without fine-tune.

Method QAT PTQ DQ Set5 Set14 B100 Urban100 Manga109

L4C4

30.02 27.23 26.68 24.10 27.14

✓ 30.01 27.21 26.67 24.09 27.10

✓ ✓ 29.99 27.19 26.67 24.06 27.07

✓ ✓ 29.97 27.20 26.65 24.07 27.11

L6C6

30.76 27.72 26.97 24.60 28.16

✓ 30.75 27.70 26.96 24.59 28.12

✓ ✓ 30.75 27.70 26.96 24.58 28.12

✓ ✓ 30.69 27.66 26.93 24.52 27.99

L8C8

31.08 27.93 27.09 24.84 28.64

✓ 31.07 27.91 27.08 24.82 28.59

✓ ✓ 31.06 27.91 27.08 24.82 28.59

✓ ✓ 30.71 27.69 26.93 24.55 28.09

SR results were clearly sharper than other methods. While ECNN-

L6C6 exhibited a slight reduction in SR quality, it still outperformed

other methods.

Specifically, comparing the first row, only ECNN-L6C6 and ECNN-

L8C8 produced a good transition at the circular arc in the lower left

corner of the mirror, while all other methods produced jagged edges.

In the second and third rows, all other methods produced oblique

stripe-like artifacts, whereas ECNN-L6C6 and ECNN-L8C8 effec-

tively suppressed such artifacts. In the fourth row, there are two

obvious black lines in the picture, which other methods restored as

wavy lines, and there are also some reverse stripes in the middle.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Expanded Convolutional Neural Network Based Look-Up Tables for High Efficient Single-Image Super-Resolution Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

SR-LUT EC-LUT SP-LUT MuLUT Ours-L6C6 Ours-L8C8 GT

Figure 6: Visual comparison for ×4 SR on benchmark datasets. The results indicate that ECNN-L6C6 and ECNN-L8C8 exhibit
significant visual improvements, including fewer artifacts and jagged edges, as well as sharper edges.

Our ECNN-L8C8 restored the lines effectively. In the last row, the

white highlight on the edge of the clothes, ECNN generated a sharp

edge, whereas other methods produced jagged edges. These results

show that ECNN can better restore the high-frequency details of

the image, while suppressing artifacts, and produce better visual

effects.

4.4 Ablation Study
The effectiveness of proposed quantization strategy. We con-

ducted ablation experiments on ECNN models with different com-

plexities under various quantization strategies. The experimental

results in Table 2 demonstrate the effectiveness of the quantization

strategy proposed in this paper from two perspectives. Firstly, af-

ter undergoing both the QAT and PTQ stages (our strategy), the

performance degradation of the three models is minimal, virtually

negligible. Secondly, directly incorporating quantization nodes dur-

ing the training process (a strategy employed in previous studies)

has a minimal impact on the ECNN-L4C4 model, whereas the per-

formance degradation of the ECNN-L8C8 model is significant. This

indicates that when there are a large number of cascaded LUTs,

the DQ strategy fails to achieve optimal performance, whereas our

strategy remains effective regardless.

Table 3: Ablation study on the runtime performance of EC-
NNs with and without PTQ.

ECNN-L4C4 ECNN-L6C6 ECNN-L8C8

PTQ w/o PTQ PTQ w/o PTQ PTQ w/o PTQ

31ms 32ms 61ms 70ms 119ms 134ms

Table 4: Ablation study on different bit width quantization
for LUT, where Float32 indicates no quantization, and other
numbers denote the number of bits used for quantization.We
choose 12 bits as the optimal setting considering performance
and LUT size.

Bit Size Set5 Set14 B100 Urban100 Manga109

8 1.029MB 29.94 27.19 26.48 24.38 27.84

9 1.157MB 30.64 27.65 26.83 24.67 28.35

10 1.286MB 30.99 27.86 27.04 24.80 28.55

11 1.415MB 31.04 27.89 27.06 24.81 28.57

12 (Ours) 1.543MB 31.06 27.91 27.08 24.82 28.59

Float32 4.116MB 31.07 27.91 27.08 24.82 28.59
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Figure 7: Visualization of learned feature maps for vanilla
CNN and ECNN.

The impact of PTQ quantization bit width. Although using

16-bit low-precision floating-point numbers as the storage format

for LUT data is acceptable, as demonstrated by SP-LUT, fixed-point

numbers still excel in computational efficiency. Therefore, it re-

mains necessary to quantize this portion of data to further enhance

performance. According to Table 3, PTQ effectively offers accel-

eration. Meanwhile, as shown in Table 4, when quantized to 12

bits, the model performance hardly suffers any decrease. But as the

quantization level is reduced below 10 bits, the model performance

experiences a significant drop. Notably, when quantized to 8 bits,

the PSNR decreases by 1.13dB on the Set5 dataset. To balance both

LUT size and SR quality, we opted to quantize to 12 bits.

4.5 Comparison with Vanilla CNN
To compare the performance difference between the proposed

ECNN and the ordinary convolutional neural network, experiments

were conducted under the same conditions of layer number, channel

number and equivalent convolution kernel size. As shown in Table

5, the three ECNN models with different complexities all surpassed

the ordinary CNN network in PSNR quality. This is because the

ordinary convolution operation is simply a linear mapping that

multiplies the weights and inputs and then sums them up, and

its nonlinear mapping ability depends on the nonlinear activation

function. ECNN first performs nonlinear mapping on the input

data and then sums them up, which can approximate a more ab-

stract representation of the latent knowledge. This is similar to the

idea of Network In Network [18]. As shown in Figure 7, compared

with vanilla CNN, ECNN extracts more high-frequency signals in

both the first and last layers. This explains why ECNN models

Table 5: Comparison of efficiency between vanilla CNN and
ECNN. Both have consistent equivalent RF, as well as the
same number of convolutional layers and hidden layer chan-
nels.

Method Set5 Set14 B100 Urban100 Manga109

Vanilla-L4C4 29.19 26.57 26.33 23.55 25.67

ECNN-L4C4 29.99 27.19 26.67 24.06 27.07

Vanilla-L6C6 29.41 26.70 26.42 23.66 25.84

ECNN-L6C6 30.75 27.7 26.96 24.58 28.12

Vanilla-L8C8 29.44 26.73 26.43 23.68 25.86

ECNN-L8C8 31.06 27.91 27.08 24.82 28.59

with the same complexity perform better than vanilla CNNs. In

addition, ECNN converted to LUT completely avoids multiplica-

tion and floating-point operations, and has more advantages in

computational efficiency than ordinary convolution.

5 CONCLUSION
In this paper, we propose the complete expanded convolution,

which can be used to build ECNN models like vanilla convolution.

After the ECNN training, we add quantization nodes to fine-tune

the model and generate the equivalent LUT for inference stage

acceleration. Our method only uses a single value as an index,

which greatly reduces the size of each LUT and increases the cache

hit rate. More importantly, we do not need the interpolation and

rotation operations, which significantly improves the inference

speed. In addition, ECNN increases the receptive field and enhances

the mapping ability by using multi-channel multi-layer convolu-

tion, significantly improving SR quality. Experiments show that

our models offer superior SR quality, faster inference, or smaller

LUT volume compared to comparable LUT-based methods. In the

future, we will explore arbitrary-scale SR methods based on ECNN

to improve the practicality of ECNN further.
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