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ABSTRACT

Under certain circumstances, advanced neural video codecs can surpass the most
complex traditional codecs in their rate-distortion (RD) performance. One of the
main reasons for the high performance of existing neural video codecs is the use
of the entropy model, which can provide more accurate probability distribution
estimations for compressing the latents. This also implies the rigorous require-
ment that entropy models running on different platforms should use consistent
distribution estimations. However, in cross-platform scenarios, entropy models
running on different platforms usually yield inconsistent probability distribution
estimations due to floating point computation errors that are platform-dependent,
which can cause the decoding side to fail in correctly decoding the compressed bit-
stream sent by the encoding side. In this paper, we propose a cross-platform video
compression framework based on codebooks, which avoids autoregressive entropy
modeling and achieves video compression by transmitting the index sequence of
the codebooks. Moreover, instead of using optical flow for context alignment, we
propose to use the conditional cross-attention module to obtain the context be-
tween frames. Due to the absence of autoregressive modeling and optical flow
alignment, we can design an extremely minimalist framework that can greatly
benefit computational efficiency. Importantly, our framework no longer contains
any distribution estimation modules for entropy modeling, and thus computations
across platforms are not necessarily consistent. Experimental results show that our
method can outperform the traditional H.265 (medium) even without any entropy
constraints, while achieving the cross-platform property intrinsically.

1 INTRODUCTION

In recent years, neural network-based video codecs have attracted much attention in academia and
industry. The rate-distortion (RD) performance of the latest neural video codecs (NVCs) has ex-
ceeded that of state-of-the-art traditional video codecs (e.g., H.266/VTM) to some extent (Bross
et al., 2021; Wang et al., 2023; Li et al., 2023; 2022). An important reason why these NVCs are able
to achieve high performance is the use of the entropy model, which improves the metrics by mod-
eling the temporal redundancy information in the previous frame and the spatial correlation within
the current frame, thus reducing the redundancy information in the compression process (Lu et al.,
2019; Agustsson et al., 2020; Li et al., 2021a; 2022; 2023; Lin et al., 2020; Rippel et al., 2021; Wang
et al., 2023; Zou et al., 2022; Xiang et al., 2022; Yang et al., 2020; Dosovitskiy et al., 2015; Ranjan
& Black, 2017; Sun et al., 2018; Hui et al., 2018; Wang et al., 2023; Liu et al., 2022; Yang et al.,
2023; Yang & Mandt, 2022; Kwan et al., 2023; Salman Ali et al., 2023).

However, designing a cross-platform NVC that can be applied in practice still faces a serious chal-
lenge. In cross-platform scenarios, most entropy model-based video codecs face non-deterministic
computational problems, such as the incorrect reconstruction in Fig. 1. The non-deterministic com-
putational problem is a common problem caused by floating point operations on different hardware
or software platforms, because floating point errors on different platforms obey different distribu-
tions. As initially defined by Ballé et al. (2019), the non-determinism problem in cross-platform
scenarios cannot be avoided when arithmetic coding is used for data compression. The principle is
that different platforms introduce different systematic errors in the entropy modeling (Ballé et al.,
2016; 2018; Li et al., 2022; Wang et al., 2023; Li et al., 2023). Specifically, as shown in Fig. 1,
we separate the conventional neural compression pipeline into encoder and decoder sides. At the
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Figure 1: When the encoder and decoder run in cross-platform scenarios, the decoder will recon-
struct an incorrect image on account of floating point math.

encoder side, the hyperprior is handled by the entropy model to obtain the estimated distribution of
the latents, thus compressing the latents into the bitstream with a high compression ratio. At the
encoding end of Platform A, the systematic error e that follows the distribution p1 is introduced by
the entropy model, which will introduce another systematic error e ∼ p2 in the decoding end of Plat-
form B. For the same hyperprior, computations at different ends yield slightly different estimates of
the probability distribution, which results in the inability to recover the latent from the compressed
bitstream completely and correctly using arithmetic decoding. Finally, it will lead to reconstruction
errors, as shown in the bottom right image of Fig. 1.

Existing methods address non-deterministic problems mainly through quantization techniques, i.e.,
replacing uncertain floating point calculations with deterministic integer calculations (Ballé et al.,
2019; Sun et al., 2021; Koyuncu et al., 2022; He et al., 2022). Nevertheless, all these methods require
data calibration, which makes it complicated to deploy. Moreover, current neural network frame-
works (e.g., Pytorch and TensorFlow) cannot support full-int computation, and thus custom imple-
mented modules are necessary. There is also another solution to ensure data consistency between
different platforms by transmitting calibration information, which yields a significant performance
degradation if the systematic errors across different platforms are very large (Tian et al., 2023).

In this paper, we propose a codebook-based video compression framework by encoding video as in-
dex sequences of codebooks. Since no distribution estimation is required, there is no cross-platform
problem theoretically. When we receive the correct index sequences on any decoding side, the
decoding process is simplified to a codebook-based reconstruction problem.

Specifically, to achieve more effective information compensation, we design different codebooks for
intra-frame (i.e., keyframe) and inter-frame (i.e., predicted frame) compression. For keyframes, we
rely only on spatial redundancy information for image compression, with the codebook focusing on
image reconstruction. For predicted frames, we use the reconstructed latents of the previous frame
as the reference. Then, the required bitstream is reduced by another codebook that emphasizes in-
formation compensation. In order to better compress the predicted frames, we use a context model
based on cross-attention to achieve the integration of latents from multiple frames. The computa-
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tional complexity of the attention layer is reduced with a window-based strategy. Furthermore, the
entropy model-based video compression frameworks accomplish different compression ratios by
trading off between rate and distortion. In contrast, we achieve control over different bitrates and
distortions by modifying the size of the codebooks.

Our proposed framework has several advantages over existing neural video codecs.

• We have addressed the cross-platform problem completely, as probability distribution estimation
is no longer present in our method.

• We propose a cross-attention-based context model for temporal redundancy and spatial redundancy
fusing. Due to the absence of autoregressive modeling and optical flow alignment, our proposed
framework is extremely minimalist, which can greatly benefit computational efficiency.

2 RELATED WORK

2.1 CROSS-PLATFORM PROBLEM IN VIDEO COMPRESSION

The problem of computational inconsistency of image compression models in cross-platform sce-
narios was first identified by Ballé et al. (2019). They analyzed the reasons why other insensitive
methods cannot avoid this common problem, since most encoding and decoding algorithms use
arithmetic coding for data compression (Duda, 2009; Witten et al., 1987; Howard & Vitter, 1994;
Cui et al., 2021; Guo et al., 2021). Consequently, to avoid floating point math in cross-platform,
they proposed an integer-arithmetic-only network designed for learning-based image compression.
A more complex entropy model, which is based on a Gaussian Mixed entropy model (GMM) and
context modeling, was quantified by Koyuncu et al. (2022). He et al. (2022) used post-training
quantization (PTQ) to train an integer-arithmetic-only model, thus enabling a general quantization
technique for image compression. Existing methods are very similar to general model quantifica-
tion techniques, classified as post-training quantization (PTQ, (Nagel et al., 2019; 2020; Li et al.,
2021b)) and quantization-aware training (QAT, (Jacob et al., 2018; Esser et al., 2019; Bhalgat et al.,
2020; Krishnamoorthi, 2018; Sun et al., 2021)). Tian et al. (2023) proposed calibration information
transmitting (CIT) strategy, which encodes the error-prone entropy parameter coordinates into the
auxiliary bitstream, to achieve consistency between the encoder and decoder.

2.2 NEURAL VIDEO COMPRESSION

DVC initially replaces all the components in the traditional hybrid video codec with an end-to-end
neural network (Lu et al., 2019). DVC-Pro employs a more efficient network for residual/motion
compression and the corresponding refinement network (Lu et al., 2020). To better handle the case
of content loss and dramatic motion, Agustsson et al. (2020) proposed a scale-space flow that ex-
tends the optical flow-based estimation to 3D transformation. Hu et al. (2020) used multi-resolution
instead of single-resolution compression of motion vectors to optimize rate-distortion.

Derived from the residual coding, DCVC employs contextual coding to compensate for the short-
comings of residual coding (Li et al., 2021a). Mentzer et al. (2022) proposed transformer-based
temporal models for explicit motion estimation, warping, and residual coding. AlphaVC intro-
duces various techniques to improve the rate-distortion performance, such as conditional I-frame
and pixel-to-feature motion prediction (Shi et al., 2022). Li et al. (2022) used multiple modules,
such as learnable quantization and parallel entropy model, to greatly improve the performance sur-
passing the latest VTM codec. MobileCodec is the first-ever inter-frame neural video decoder to
run in real-time on a commercial mobile phone, regardless of the cross-platform considerations (Le
et al., 2022).

2.3 VECTOR QUANTIZATION

Most of the existing works of Vector Quantization (VQ) focus on image representation and genera-
tion. Van Den Oord et al. (2017) proposed the Vector Quantized Variational Autoencoder (VQVAE),
a method for learning a discrete representation of an image. Esser et al. (2021) used an encoder-
decoder structure to train a quantizer that embeds images into compact sequences using discrete
tokens from the learned codebook.
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Figure 2: Our method is categorized into keyframes and predicted frames. We propose a cross-
attention-based context model for temporal redundancy and spatial redundancy fusing. Due to the
absence of autoregressive modeling and optical flow alignment, our proposed framework is mini-
malist. Keyframes and predicted frames depend on different codebooks for vector quantization.

Some research focuses on the compression of images using VQ. Duan et al. (2023) proposed a
hierarchical quantized VAE for coarse-to-fine image compression that narrows the gap between
image compression and generation. Kang et al. (2022) obtained the image residual through a three-
way autoregressive model and used VQ-VAE as an entropy model for distribution estimation to
achieve image compression. Without an entropy model, Zhu et al. (2022) proposed a multi-stage
multi-codebook method for image compression.

3 PROPOSED METHOD

Our framework is designed accordingly for keyframes xt and predicted frames xt+1, as shown in
Fig. 2. Usually, we encode and decode the video in a group of pictures (GOP), the first frame within
each GOP is the keyframe, and the other frames are predicted frames.

For keyframes, we use codebook-based methods for image compression (Zhu et al., 2022). While,
for the more important predicted frames in video compression, we propose a cross-attention-based
context model for temporal redundancy and spatial redundancy fusing, which no longer relies on
optical flow alignment and autoregressive modeling. Window-based attention is presented to reduce
the computation effort. Specifically, the context encoder integrates the reference latents ŷt with the
current latents yt+1 to obtain the context information yctx

t+1, while the context decoder recovers the
reconstructed latents ŷt+1 from the reference latents ŷt and the quantized context ŷctx

t+1.

It is notable that we use the same encoder and decoder in the keyframes and predicted frames to
ensure the consistency of the reference latents. Benefiting from the cross-attention interaction, the
reference latents and current latents are not necessarily well aligned, and thus registration based on
optical flow could be omitted.

3.1 FRAMEWORK OVERVIEW

As shown in Fig. 2, our model contains three primary symmetric components, encoder and decoder,
context encoder and context decoder, and vector quantizer and vector dequantizer.

Image encoder and decoder. For an input frame x ∈ RH×W×3, we obtain the latents y using y =
E(x) ∈ Rh×w×nc , where (H,W ) is the image resolution, and (h,w, nc) represents the dimensions
of latents. Then, y is quantized to ŷ by vector quantization. For the quantized latents ŷ, we decode
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the reconstructed image x̂ by using x̂ = D(ŷ) ∈ RH×W×3. E(·) is the image encoder and D(·) is
the image decoder for both keyframes and predicted frames.

Vector quantization and dequantization. We transform latents y to the codebook index sequence
s ∈ Rh×w, where sij ∈ {0, ...,K−1} is the index from a learnable codebook Z ∈ RK×nc through
quantization method, where K is the codebook size, and i, j are the element indices. It performs
element-wise quantization Q(·) of each spatial code yij ∈ Rnc onto the nearest codebook index
k ∈ {0, ...,K − 1} to obtain the index by

sij = Q(yij ,Z) = argmin
k

∥∥∥yij −Zk
∥∥∥
2
. (1)

More precisely, the latents y is represented by a sequence of indices s from the codebook Z by
Q(·), which is denoted as vector quantizer in Fig. 2.

Symmetric with the vector quantizer, we recover the quantized latents ŷ from the sequence of in-
dices s by dequantization method deQ(·), replacing each index sij with their corresponding code-
book words Zsij , which is formulated as

ŷij = deQ(sij ,Z) = Zsij ∈ Rnc . (2)

Specifically, the sequence of indices s is reconstructed to the quantized latents ŷ by deQ(·), which
is shown by vector dequantizer in Fig. 2.
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Figure 3: The context model architecture based on
cross-attention layer. The structure of the cross-
attention layer is described in detail, as well as
the sliding window and padding & sliding window
strategies that need to be used in it.

Context encoder and decoder. Conditioned
by the reference latents ŷt, the current latents
yt+1 is transformed into a context latents yctx

t+1
by the contextual encoder ctxE(·) as

yctx
t+1 = ctxE(yt+1, ŷt). (3)

The current quantized latents ŷt+1 is parsed by
contextual decoder ctxD(·), conditioned on the
same reference latents ŷt, which is given by

ŷt+1 = ctxD(ŷctx
t+1, ŷt). (4)

3.2 CROSS-ATTENTION-BASED
CONTEXT MODEL

Different from existing methods that use en-
tropy modeling and arithmetic coding to trans-
mit latents, we compress video by transmit-
ting the sequence of indices from the codebook.
To make the latents represented by the code-
book more informative and efficient, we em-
ploy a context model to integrate temporal re-
dundancy (i.e., redundancy between current la-
tents yt+1 and reference latents ŷt) and spa-
tial redundancy (i.e., redundancy between the
neighborhoods of current latents yt+1). The in-
tegrated latents are identified as yctx

t+1.

Specifically, as shown in Fig. 3, our context en-
coder is composed of the cross-attention layer
and the resblock layer. Through the cross-attention layer, we encode the temporal redundancy con-
tained in the reference latents ŷt, and then encode the spatial redundancy of the current latents yt+1

through the local convolution of the resblock layer. Moreover, this process is repeated twice to
achieve more sufficient context fusion.
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Similar to the context encoder, the context decoder follows the same structure to combine the quan-
tized context latents ŷctx

t+1 and reference latents ŷt to obtain the quantized latents ŷt+1 of the current
frame.

Cross-attention (CA). Instead of using optical flow for context alignment, we propose to use the
conditional cross-attention module to obtain the context information between frames. Specifically,
the cross-attention takes the reference latents as the key and value while using the current latents as
query, which no longer requires pixel-level context alignment. Due to the absence of autoregressive
modeling and optical flow alignment, our framework is extremely minimalist which can greatly
benefit computational efficiency.

Window-based cross-attention (WCA). The global cross-attention of the context model is com-
putationally unaffordable for video compression with high resolution. We use window attention in
the context model to alleviate this problem, as visualized in Fig. 3. Specifically, we first partition
the current latents into non-overlapping small windows using the sliding window method, with a
window size of ssw. To encode the motion information between the reference frame and the cur-
rent frame, we partition the reference latents into partially overlapping windows using a padding &
sliding window method, with a window size of spsw = ssw + 2× sp. Here, sp is the padding size.

3.3 MULTI-STAGE MULTI-CODEBOOK VECTOR QUANTIZATION
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Figure 4: The multi-stage multi-codebook VQ ar-
chitecture improves the reconstruction capability
through successive compensation of codebooks at
each stage. Multiple codebooks enhance the VQ
representation at each stage.

The core problem addressed by classical VQ-
GAN and VQVAE is the discrete representation
of an image, which is implemented in the form
of the single-stage single-codebook VQ. To ob-
tain high-quality reconstructed images without
significantly increasing the size of the code-
book and the number of indices that need to
be transmitted, Zhu et al. (2022) proposed a
multi-stage multi-codebook VQ method. De-
rived from Zhu et al. (2022), we also employ a
multi-stage multi-codebook hierarchy for latent
compression of video. Specifically, as shown
in Fig. 4, the input latent y is downsampled
to obtain the latent yd, which is then quantized
by the first multi-codebook vector quantization
layer (MCVQ) to obtain the quantized latent
ŷd. Since the first MCVQ layer focuses on re-
constructing the low-frequency signals, we use
the next downsample and MCVQ layer to quan-
tize the high-frequency residual y′ between yd

and ŷd to obtain ŷ′
d. We use the combina-

tion of downsampling and MCVQ three times
to achieve progressive compensation from low
frequency to high frequency. In addition, the
low-frequency signals in an image require more
bitstreams to encode than the high-frequency
signals (Duan et al., 2023). Based on this prin-
ciple, we use downsampling between different
stages to achieve the spatial dimensionality de-
crease from low to high frequencies to reduce
the number of indices, and gradually reduce the
size of the codebook at each stage to minimize
the bitlength of a single index.

While decoding, we reconstruct the quantized latents ŷ from high-frequency latents ŷ′′
d to low-

frequency latents ŷd by progressively upsampling the quantized latents of the next level (e.g., ŷ′′
d )

and compensating the quantized latents of the previous level by addition (e.g., ŷ′′ + ŷ′
d).
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For the MCVQ layer, as shown at the bottom of Fig. 4, we first split the input latents z in channel
dimension to get z1 and z2. Then we quantize and inverse quantize z1 and z2 using codebooks Z1

and Z2 to obtain ẑ1 and ẑ2, respectively. Finally, ẑ1 and ẑ2 are combined in the channel dimension
by merge to obtain the quantized latents ẑ.

3.4 IMPLEMENTATION DETAILS

Image encoder and decoder. For both keyframes and predicted frames, we use the same image
encoder E(·) and image decoder D(·) to transform between image x ∈ RH×W×3 and latents y ∈
Rh×w×nc . In our experiments, we work with h = H

8 , w = W
8 , and nc = 128.

Window-based cross-attention. Instead of using optical flow for context alignment, we propose
to use the conditional cross-attention module to obtain the context information between frames.
Finally, window-based cross-attention is used to reduce the computational effort, since attention is
only considered within local windows. We set the sliding window size ssw of query to 4, and the
padding size sp to 2. Then the sliding window size spsw of key and value will be 4 + 2× 2 = 8.

Codebook settings. As shown in Fig. 4, the multi-stage multi-codebook vector quantization struc-
ture that we use in both keyframes and predicted frames employs a three-stage MCVQ and uses two
codebooks during every stage of MCVQ.

Existing methods typically achieve different compression ratios by trading off loss weights between
bitrate and distortion (Xiang et al., 2022; Li et al., 2022; 2021a; Lu et al., 2019). In contrast, we
achieve different bitrates by modulating the codebook sizes used in the predicted frames. Specifi-
cally, we use a group of three parameters to specify different codebook sizes in multi-stage multi-
codebook vector quantization. The codebook sizes for keyframes are specified as {8192, 2048, 512},
which are maintained constant at different compression ratios. While for predicted frames, we
use three different groups of codebook sizes to achieve different video compression ratios as
{8192, 2048, 512}, {64, 2048, 512} and {8, 2048, 512}.

Optimization Loss. Distortion loss L is optimized throughout the training process, where d(·)
represents the mean square error or MS-SSIM; m is the GOP size used for training, where all frames
are treated as predicted frames except the first frame, which is treated as a keyframe.

L =

m∑
t=0

d(xt − x̂t)︸ ︷︷ ︸
distortion

(5)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use Vimeo-90k dataset (Xue et al., 2019) for training, which contains 89800 video
clips with the resolution of 448 × 256. The videos are randomly cropped into 256 × 256 patches.
The training GOP size m is set to 7 for each clip of Vimeo-90k containing 7 frames. We evaluate our
model using UVG (Mercat et al., 2020), HEVC Class B, and MCL-JCV (Wang et al., 2016) datasets,
which both have a resolution of 1920 × 1080 (1080P). The images are cropped to 1920 × 1024 by
center cropping to ensure that the input image shape is divisible by 128.

Baselines. Neural network-based methods commonly rely on engineering optimizations to replace
some modules with integer networks to achieve cross-platform capability. There are also methods
that achieve cross-platform consistency by transferring calibration information through plug-ins.
Conventional video codecs, including H.264, and H.265, are the only video codecs that can be
practically used cross-platform. Different from other neural network-based methods, our algorithm
is designed to avoid cross-platform problems. Therefore the conventional codecs H.264 and H.265
in FFmpeg are used as the anchor with medium preset.

Metric. We evaluate the performance of all models using common metrics including PSNR and
MS-SSIM (Wang et al., 2004).
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Figure 5: Rate-distortion performance on UVG, HEVC-B, and MCL-JCV datasets.

Table 1: BD-rate calculated by SSIM and PSNR on test datasets with the anchor H.265 (medium).
SSIM-BPP PSNR-BPP

H.264 H.265 Ours-w-WCA H.264 H.265 Ours-w-WCA
UVG +21.2 % 0 % -43.7 % +63.7 % 0 % -23.7 %

HEVC-B +18.4 % 0 % -38.2 % +41.5 % 0 % -5.2 %
MCL-JCV +19.9 % 0 % -19.1 % +49.3 % 0 % +23.7 %
Average +19.8 % 0 % -33.7 % +51.5 % 0 % -1.7 %

Test conditions. We test each video for 96 frames with GOP size 12 for H.264 and H.265, same
in (Tian et al., 2023; Li et al., 2021a). For our model, we use GOP size 32 for testing. The exper-
iments are conducted in cross-platform scenarios, where the videos are encoded with an NVIDIA
Tesla V100 machine and decoded with an NVIDIA Tesla P40 machine. Since the existing neural
video codecs cannot achieve cross-platform decoding directly, we only compare our method with
the conventional codecs.

4.2 RESULTS

Rate-distortion performance. In Fig. 5, we plot the rate-distortion of our method and the base-
line methods. Our method improves significantly over H.265 across different datasets in terms of
SSIM. For PSNR, we outperform H.265 on UVG and HEVC-B datasets, but not on MCL-JCV. To
analyze the reasons for the performance degradation on MCL-JCV, we show one of the videos with
little variation and high redundancy in the Appendix, Section B. For videos with high redundancy,
our method uses a fixed number of indices for video compression which results in performance
degradation.

As shown in Table 1, we evaluate quantitative metric with BD-rate (Bjontegaard, 2001) computed
from PSNR-BPP and SSIM-BPP, respectively. Our method achieves an average of 33.7% bitrate
saving in terms of SSIM, while the improvement on PSNR is limited, with an average of 1.7%
bitrate saving compared to H.265. Notably, our method achieves 23.7% bitrate saving on the UVG
dataset with evident motion.

Cross-platform results. To verify the cross-platform capability, we encode the video at V100
using our model. On the decoding end, we compare the decoding results obtained from V100
and P40, respectively. We calculate the BD-rate for both decoders when decoding the bitstreams
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Table 2: BD-rate calculated on different platforms by SSIM and PSNR on UVG dataset.
SSIM-BPP PSNR-BPP

Encoder V100 V100 V100 V100
Decoder V100 P40 V100 P40

UVG 0 % 0 % 0 % 0 %

Table 3: Model complexity and BD-rate. All models are tested with 1080P video on V100.
Context Encoding Decoding SSIM PSNR

Params MACs time time time BD-rate BD-rate
Resblock-based 53.438M 2.221T 3.2ms 102.2ms 219.5ms 0% 0%

CA-based-64 53.408M 2.219T 74.2ms 242.9ms 290.2ms -40.8% -48.0%
WCA-based-4 53.408M 2.233T 13.0ms 122.4ms 229.3ms -40.7 % -49.0 %
light-decoder 46.162M 0.740T 13.1ms 122.2ms 35.8ms -23.7 % -37.4 %

that are originally encoded by V100, which is shown in Table 2. These error-free results are a solid
demonstration of the cross-platform capabilities of our method. We also conduct experiments on the
decoding side running at more platforms, which is shown in the Appendix, Section C.

4.3 ABLATION STUDIES

Window-based cross-attention. Since the CA-based model will lead to out-of-memory, we use
the WCA-based model with window size 64 as an alternative comparison option. We implement
Resblock-based, CA-based-64, and WCA-based-4 models, where CA-based-64 is the WCA method
with window size 64 and WCA-based-4 is our proposed model. Experimental results in the last
two columns of Table 3 show that our proposed WCA-based method can deliver bitrate saving of
approximately 40% over the Resblock-based model in terms of SSIM. More visualization results are
provided in the Appendix, Section D.

Decoding efficiency. Table 3 shows the complexity comparison of the models in the number of
parameters, MACs (multiply-accumulate operations), context model time, encoding time, and de-
coding time (including context model time). All our models are tested on a server with an NVIDIA
Tesla V100 GPU. Our proposed method saves 82.5% of context modeling time when similar perfor-
mance is obtained using the WCA-based methods with different window sizes. It is worth noting that
our light-decoder model, with fewer parameters, can decode 1080P video in real-time on V100 and
still outperform H.265, as demonstrated in the last row of Table 3. We provide further visualization
in the Appendix, Section D and Section E.

5 CONCLUSIONS

In this work, we present a video compression framework based on codebooks. Our method models
temporal and spatial redundancy using a WCA-based context model, which avoids autoregressive
modeling and optical flow alignment. The absence of the entropy model for probability distribution
estimation makes our approach inherently effective across platforms, which is crucial for practical
applications of neural video codecs. Our method outperforms H.265 in terms of SSIM on multiple
datasets, and achieves better PSNR results than H.265 on the UVG and HEVC-B datasets. Our work
provides valuable insights into the development of neural video codecs.

Our proposed method for compressing videos to a sequence of indices of the codebook has some
limitations. Specifically, our method does not currently impose any constraints on the entropy,
which can result in the model delivering constant bitstreams for different videos. As a result, when
compressing videos with high redundancy, as demonstrated in the Appendix, Section B, our method
may perform poorly. Consequently, we will consider designing entropy constraints for the indices
of different videos to achieve content-based adaptive compression in future work.
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Figure 6: Image encoder/decoder architecture.

Table 4: Comparison of BPP for the same video in the same reconstructed PSNR condition.
videoSRC30 H.265 Ours-with-WCA

PSNR 37.589 37.483
BPP 0.033 0.054

A NETWORK

Image encoder and decoder. For both keyframes and predicted frames, we use the same im-
age encoder E(·) and image decoder D(·) to transform between image x ∈ RH×W×3 and latents
y ∈ Rh×w×nc . The network architectures are shown in Fig. 6. In addition, we show the model
architecture of light decoder.

Context encoder and decoder. Instead of using optical flow for context alignment, we propose
to use the conditional cross-attention module to obtain the context information between frames.
Specifically, for more efficient computation and sufficient context information fusing, we design the
WCA-based context model with the architecture shown in Fig. 7. The architecture of the WCA layer
is shown in Fig. 3. The number of heads is 8, and the dimension of each head is 16.

Vector quantization and dequantization. Derived from Zhu et al. (2022), we also employ a multi-
stage multi-codebook hierarchy to vector quantization of the latent. More details about the architec-
ture of multi-stage multi-codebook VQ can be found in (Zhu et al., 2022).

B VISUALIZATION OF SAMPLE VIDEO OF MCL-JCV

As shown in Figure. 8, we select a typical video sequence in the MCL-JCV dataset, in which the
small target (i.e., the bird in the video) undergoes a slight motion. Our method uses a fixed number
of indices for video compression, which inevitably wastes indices in videos with high redundancy,
resulting in higher bitrates for the same reconstruction quality, as shown in Table 4.
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MCL-JCV videoSRC30
Figure 8: A sequence of frames sampled from video videoSRC30 of the MCL-JCV dataset, which
has high redundancy.
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Figure 9: Rate-distortion of our method under different decoding platforms on the UVG dataset.

Table 5: BD-rate calculated on different platforms by SSIM and PSNR on UVG dataset.
SSIM-BPP PSNR-BPP

Decoder V100 V100 P40 P40 V100 V100 P40 P40
precision FP32 FP16 FP32 FP16 FP32 FP16 FP32 FP16

UVG 0 % +0.9 % 0 % +0.9 % 0 % +4.2 % 0 % +3.9 %

C CROSS-PLATFORM ALATION

To verify the cross-platform capability, we encode the video at V100 using our model, which runs
with FP32 precision (i.e., single-precision floating point format). On the decoding side, we chose
V100 and P40 to decode using FP32 and FP16 (i.e., half-precision floating point format), respec-
tively. In Fig. 9, we plot the rate-distortion of our method under different decoding platforms. For
our cross-platform settings, the difference between FP32 and FP16 is very large, and our method is
still able to reconstruct all frames correctly, which further demonstrates the cross-platform capabil-
ity of our approach. Compared to the FP32 decoding results on V100, we calculate the BD-rate of
the decoding results under other conditions, which is shown in Table 5.

It is worth noting that the decrease in BD-rate when decoding with FP16 precision, compared to
decoding with FP32 precision, is attributed to our model being trained at FP32 precision. This
difference in BD-rate is not a cross-platform discrepancy but rather a result of the disparity in com-
putational accuracy between FP16 and FP32.

D WINDOW-BASED CROSS-ATTENTION ABLATION

In Fig. 10, we show the performance of our method when the context model is based on different
approaches. It can be seen that our proposed WCA-based context model can bring significant im-
provement compared to the Resblock-based context model. It is worth noting that a light-decoder
model with fewer parameters can decode 1080P video in real-time on V100 and still outperform
H.265.

E RATE-DISTORTION CURVES FOR DIFFERENT GOP SIZES.

Larger GOP. Our approach uses a WCA-based context model for context fusion, which allows us
to employ a larger GOP for compression. We evaluate the UVG dataset at different GOP sizes.
The rate-distortion curves are shown in Fig. 11. It has been observed that the model’s performance
demonstrates a noteworthy enhancement as the GOP size is elevated from 7 to 32. However, there
seems to be no substantial alteration in the model’s performance as the GOP size is further increased
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Figure 10: Rate-distortion of different context models on UVG dataset.

Figure 11: Rate-distortion for different GOP sizes on UVG dataset.

from 32 to 96. Table 6 displays the BD-rate for various GOP sizes, with a GOP size of 32 as the
baseline.

F MORE PERFORMANCE COMPARISON.

To further demonstrate the effectiveness of our method, we conduct experiments on additional
datasets, including HEVC Class C (480P), D (240P), and E (720P). Beyond PSNR and MS-SSIM,
we introduced the perceptual evaluation (Andersson et al., 2020) metric LPIPS (Zhang et al., 2018)
as a supplementary experiment. In addition, we compare the performance of different GOP sizes
(e.g., 12 and 32), which are commonly used in present methods (Li et al., 2021a; Lu et al., 2019;
Li et al., 2022; Tian et al., 2023; Li et al., 2023; Sheng et al., 2022). Furthermore, for H.264 and
H.265, we analyze the impact brought by quality control parameters (e.g., qp and crf ). The detailed
FFMPEG settings are shown in the Appendix, Section G.

Table 6: BD-rate for different GOP sizes on UVG dataset.
GOP size 7 12 24 32 48 96

SSIM-BPP +21.9% +9.0 % +0.9 % 0 % -0.2 % +0.5%
PSNR-BPP +32.4% +12.3 % +1.9 % 0 % -1.3 % -1.8 %
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Figure 12: Rate-distortion comparison using PSNR as the metric.

Figure 13: Rate-distortion comparison using MS-SSIM as the metric. Our model is fine-tuned for
MS-SSIM.
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Table 7: The detailed settings of x264 and x265.
x264-CRF x265-CRF
ffmpeg ffmpeg
-pix fmt yuv420p -pix fmt yuv420p
-s widthxheight -s widthxheight
-i input file name -i input file name
-c:v libx264 -c:v libx265
-tune zerolatency -tune zerolatency
-preset medium -preset medium
-x264-params -x265-params
"crf=qp:keyint=gop:verbose=1" "crf=qp:keyint=gop:verbose=1"
output video file name output video file name

x264-QP x265-QP
ffmpeg ffmpeg
-pix fmt yuv420p -pix fmt yuv420p
-s widthxheight -s widthxheight
-i input file name -i input file name
-c:v libx264 -c:v libx265
-tune zerolatency -tune zerolatency
-preset medium -preset medium
-x264-params -x265-params
"qp=qp:keyint=gop:verbose=1" "qp=qp:keyint=gop:verbose=1"
output video file name output video file name

G FFMPEG SETTINGS.

In our experiments, the conventional codecs H.264 and H.265 in FFmpeg are used as the anchor with
medium preset. In current methods(Lu et al., 2019; Li et al., 2021a; 2022), qp and crf are commonly
used for compressing video with quality control, while it is known that crf can often achieve the
maximum compression efficiency 1. Therefore, we provide separate configurations for experiments
using qp and crf. The detailed settings of x264 and x265 are shown in Table 7.

1https://trac.ffmpeg.org/wiki/Encode/H.264
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Figure 14: Rate-distortion comparison using LPIPS as the metric. Our model is fine-tuned for
LPIPS.
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