
HyperInvariances: Amortizing Invariance Learning

Ruchika Chavhan 1 Henry Gouk 1 Jan Stühmer 2 Timothy Hospedales 1 2

Abstract

Providing invariances in a given learning task con-
veys a key inductive bias that can lead to sample-
efficient learning and good generalisation, if cor-
rectly specified. However, the ideal invariances
for many problems of interest are often not known,
which has led both to a body of engineering lore
as well as attempts to provide frameworks for
invariance learning. However, invariance learn-
ing is expensive and data intensive for popular
neural architectures. We introduce the notion of
amortizing invariance learning. In an up-front
learning phase, we learn a low-dimensional mani-
fold of feature extractors spanning invariance to
different transformations using a hyper-network.
Then, for any problem of interest, both model
and invariance learning are rapid and efficient by
fitting a low-dimensional invariance descriptor
an output head. Empirically, this framework can
identify appropriate invariances in different down-
stream tasks and lead to comparable or better test
performance than conventional approaches. Our
HyperInvariance framework is also theoretically
appealing as it enables generalisation-bounds that
provide an interesting new operating point in the
trade-off between model fit and complexity.

1. Introduction
Exploiting symmetries is crucial to the success of many
intelligent systems. Convolutional neural networks most
famously provide automatic translation equivariance, which
improves learning for a large set of problems where this
is an appropriate assumption. Symmetries can be seen as
an example of inductive bias, which constrains the search
space, or hypothesis class, of a learner. When well matched
to the problem at hand, this leads to improvements in learn-

*Equal contribution 1School of Informatics, University of Ed-
inburgh 2Samsung AI Research, Cambridge. Correspondence to:
Ruchika Chavhan <r.chavhan@sms.ed.ac.uk>.

Published at the ICML 2022 Workshop on Spurious Correlations,
Invariance, and Stability. Baltimore, Maryland, USA. Copyright
2022 by the author(s).

ing speed and generalisation and robustness to spurious
correlations (Geirhos et al., 2020).

The importance of symmetries and invariances has led to re-
search on architectures to enforce specific inductive biases’,
such as rotation and scale equivariance (Worrall et al., 2017;
Worrall & Welling, 2019) (cf: translation). However, for
many problems the ideal invariances are not known a-priori.
This has led to a growing body of work on providing the
ability to learn invariances, for example, by MAP learning
(Benton et al., 2020), marginal-likelihood learning (Immer
et al., 2022) and meta-learning (Zhou et al., 2021) (finding
a common invariance that works well for a given problem
family). Perhaps the most popular way to imbue general
architectures with particular invariances is using data aug-
mentation. Optimising for the same output under a given
transformation leads to invariance to that transformation
(Benton et al., 2020). However, while flexible and simple to
implement, this is extremely costly and data intensive.

In a distinct body of work, research has identified a set of
augmentations (and hence implicitly invariances) which are
widely useful in representation learning for many popular
tasks in computer vision (Cubuk et al., 2019). In the ex-
plosively growing field of self-supervised learning, this is
exemplified by the suite of augmentations used by popular
learners such as SimCLR (Chen et al., 2020), which have
been analysed in terms of the resulting invariances (Erics-
son et al., 2021). However, while these augmentation suites
are effective for many problems, they are not ideal for all
problems (Ericsson et al., 2021; Xiao et al., 2021). For exam-
ple, while object recognition may prefer rotation invariance,
dense prediction may prefer rotation equivariance.

In this paper we explore the idea of amortising invariance
learning. In an up-front step, we aim to train a feature extrac-
tor that compactly encodes a range of possible invariances.
More specifically, we parameterize the feature extractor in
terms of a hypernetwork (Ha et al., 2017), which is condi-
tioned on an invariance descriptor. This HyperInvariance
architecture thus defines a low-dimensional manifold of fea-
ture extractors defined by hypernetwork inputs, with points
on the manifold corresponding to different invariance prop-
erties. In a task-specific step, we take this frozen (hyper)
feature extractor and learn a new prediction head as well
as the hypernetwork inputs, which correspond to choice of



HyperInvariances: Amortizing Invariance Learning

invariance for this task. In practice this framework means
that new tasks can be solved – including both model and
invariance learning – quickly, data-efficiently, and with few
learnable parameters. Because invariances are selected out
of a low-dimensional set, they can be chosen very efficiently
compared to existing approaches that train general neural ar-
chitectures for invariances from scratch (Raghu et al., 2021;
Immer et al., 2022; Zhou et al., 2021).

From a learning-theoretic point of view, HyperInvariance
is also appealing. Generalisation bounds guarantee testing
error in terms of empirical risk (training error) plus model
complexity. Standard frameworks provide different trade
offs between these terms. Flexible deep models provide
a good train fit, but poor model complexity, while shal-
low models provide a weaker train fit, but limited model
complexity. HyperInvariance provides an interesting new
operating point. By squeezing a rich and relevant variety
of feature extractors into a low-dimensional space of hyper-
network inputs, we can provide an improved training fit with
limited additional model complexity.

2. Related Work
Invariance Learning Invariances have been created by
mean embeddings (Lyle et al., 2020) and learned by MAP
(Benton et al., 2020), marginal likelihood (Immer et al.,
2022), or meta learning (Zhou et al., 2021; Cubuk et al.,
2019; Raghu et al., 2021) – where gradients from the vali-
dation set are backpropagated to update the invariances or
augmentation distributions. These mostly aim to learn task-
specific symmetries, except (Zhou et al., 2021) who learn
symmetries for a given family of tasks. All these approaches
are highly data and compute intensive due to the substantial
effort required to train such symmetries into general purpose
architectures. Our HyperInvariance framework amortises
the cost of invariance learning so that it is quick and cheap
to learn task-specific invariances downstream.

Invariances in Self Supervision Self-supervised meth-
ods (Jing & Tian, 2021; Ericsson et al., 2022) often rely on
contrastive augmentations (Chen et al., 2020). Their success
has been interpreted as engendering invariances (Ericsson
et al., 2021; Wang & Isola; Purushwalkam Shiva Prakash &
Gupta, 2020) through these augmentations, which in turn
provide good inductive bias for downstream tasks. While
self-supervision sometimes aspires to providing a single
general purpose feature suited for all tasks in the guise of
foundation models (Bommasani et al., 2021), studies have
shown that different augmentations (invariances) are suited
for different downstream tasks, with no single feature being
optimal for all tasks. This leads to the tedious need to pro-
duce and combine an ensemble of features (Xiao et al., 2021;
Ericsson et al., 2021), or task-specific self-supervised pre-
training (Raghu et al., 2021), which is extremely costly. Our

HyperInvariance breaths new life into the notion of general
purpose features by defining a parametric feature extractor
that spans an easily accessible range of invariances.

3. Methodology
Pre-train We begin by considering a set of pre-training
tasks Ttrain with dissimilar invariance requirements. Let the
dataset corresponding to task t be Dt = {xt

i, y
t
i}

nt
i=1, where

nt is the number of samples per-task. Let fθ and Φtrain =
{ϕt}t∈Ttrain be the shared feature extractor and task-specific
decoder weights for training tasks respectively. Predictions
for a task t is given by ŷt = ⟨ϕt, fθ(x

t)⟩.

During pre-training the invariance descriptor it for each task
is assumed observed. This is a vector i ∈ [0, 1]K over K
possible transformations, where ik = 1 and ik = 0 indicate
invariance and sensitivity to the kth factor respectively.

We employ hypernetworks to generate weights for the given
encoder given the desired invariance descriptor it. In this
setup, we use a hypernetwork which is shared between all
training tasks to generate weights for the encoder to satisfy
task-specific invariance requirements.

The hypernetwork h, parametrized by W generates weights
for the encoder given a invariance hyper-parameter it for
task t as θ = hW (it). Thus, predictions for task t are

ŷt = ⟨ϕt, fh(it)(x
t)⟩ (1)

In the pre-training stage, the hypernetwork and the corre-
sponding task-specific parameters are updated to optimize
the loss of the training tasks.

W ⋆,Φ⋆
train = arg min

W,Φtrain

1

|Ttrain|
∑

t∈Ttrain

1

nt

nt∑
j=1

L(ŷtj , ytj)

(2)

Downstream We next consider a set of downstream tasks
Ttest, that can be solved optimally with different invariance
requirements which are unknown to us. We denote the
training data available for a downstream task t′ ∈ Ttest
as Dt′ = {xt′

i , y
t′

i }
nt′
i=1. In the downstream task training

stage, we employ the optimal hypernetwork learned from
the pre-training stage to make predictions for the test-tasks.
For a downstream task t′, let ŷt

′
= ⟨ϕt, fh⋆(it)(x

t′)⟩ be
the predicted output given a invariance hyper-parameter it.
Subsequently, we evaluate the optimal invariance hyper-
parameters and prediction heads Φtest by minimzing the
task-specific loss of the training set,

i⋆t ,Φ
⋆
test = arg min

it,Φtest

1

|Ttest|
∑

t′∈Ttest

1

nt′

nt′∑
j=1

L(ŷt
′

j , y
t′

j ). (3)

Continuous vs Discrete Invariances Estimates This
setup provides the option of (i) using continuous invariance



HyperInvariances: Amortizing Invariance Learning

estimates i∗t and Φ∗
t directly, or (ii) discretizing invariance

estimates, ĩ∗ = round(i∗t ), before re-learning Φ. The latter
may provide an advantage if i∗t can be stuck in a local
minima, and also provides a learning theoretic advantage.

Theoretical Analysis We provide some theoretical analy-
sis into the potential of our approach to overfit when applied
to novel downstream tasks not seen during pre-training in
the theorem below.

Theorem 3.1. For 1-Lipschitz loss function, L, ff for all ϕ
we have that ∥ϕ∥ ≤ B and ∥fϕ(x)∥ ≤ X , the following
holds with probability 1− δ

Ext,yt [L(ŷt, yt)] ≤ 1

nt

nt∑
j=1

L(ŷtj , ytj)+
2XB
√
nt

+3

√
ln(|I|/δ)

2nt
,

where I = {0, 1}d is the space of possible invariance hy-
perparameters.

The proof is in the appendix. This theorem demonstrates
that the overfitting behaviour of our approach when applied
to novel tasks scales similarly to conventional linear models
(i.e., 2XB√

n
), but due to the more flexible feature extractor we

have a potential to obtain a much better fit on the training
data, and therefore a better guarantee on test error. In con-
trast, formal analysis of the overfitting behaviour of deep
neural networks cannot obtain as tight bounds, instead de-
pending exponentially on the depth of the network due to
the product of norms of the weights in each layer (Bartlett
et al., 2017; Golowich et al., 2018; Long & Sedghi, 2020).

4. Experiments and Results
We conduct synthetic and real-world learning experiments.

Synthetic experiments: Firstly, we perform a set of sim-
ple experiments consisting of hand-designed tasks with
distinct invariance requirements trained jointly in a multi-
task learning setup. Pre-Train: We consider color and
rotation invariance on a Colored-Rotated MNIST dataset,
which is generated by randomly coloring one of the RGB
channels of grayscale Rotated MNIST images. In our
experiments, Rotated MNIST is generated by rotating
MNIST images by randomly selecting an angle from the set
{−90,−60,−30, 0, 30, 60, 90}. We consider three tasks:
(i) digit prediction, (ii) rotation prediction and (iii) color
prediction. In this setup, digit prediction is ideally color and
rotation invariant, while rotation angle prediction is rotation-
sensitive and color-invariant and color prediction is rotation-
invariant and color-sensitive. Following the convention of
assigning invariance descriptors, we assign the invariance
hyper-parameters to be i = [1, 1], i = [1, 0] and i = [0, 1]
for digit, color, and rotation prediction respectively. We use
Augerino (Benton et al., 2020) augmentations to teach the
invariances corresponding to each hyper-parameter setting.

Digit Prediction Rotation Prediction
N i⋆ AI⋆ Ai⋆ AMTL i⋆ AI⋆ Ai⋆ AMTL

10 [61, 65] 27.5 33.3 22.8 [35, 75] 52.9 55.8 45.7
20 [60, 74] 41.9 42.1 35.2 [ 6, 88] 72.1 74.4 70.0
50 [63, 80] 47.9 49.2 46.7 [2, 93] 77.8 81.1 74.1
100 [65, 86] 51.3 52.5 47.0 [ 0 , 86] 79.7 84.4 76.3
200 [72, 91] 51.5 54.2 48.0 [ 0, 90] 85.3 86.9 83.0

Table 1. Digit and Rotation prediction on ColoredRotated-
KMNIST. i∗: estimated invariance strength (%) to (rotation, color).
AI∗ , Ai∗ : HyperInvariance accuracy (%) with binarized and conti-
nous invariance respectively. AMTL Multi-task baseline accuracy.

Task HyperSimCLR Competitors
i⋆ AI⋆ Ai⋆ SimCLR Ventral-SimCLR Dorsal-SimCLR

300W [46, 59] 74.0 84.0 45.0 51.0 82.0
CIFAR10 [99, 96] 76.9 78.4 78.6 68.4 50.5

Table 2. Quantitative results for two downstream tasks after
SimCLR-ResNet18 training on STL10: CIFAR recognition (accu-
racy, %) and 300W landmark detection (R2, %). Our HyperSim-
CLR outperforms regular SimCLR (Chen et al., 2020) on 300W,
and Dorsal/Ventral SimCLRs (Ericsson et al., 2021) on both.

With these tasks, we learn a hypernet derived feature encoder
and distinct readout heads (Eqs. 1 and 2). Downstream: As
a downstream task, we consider digit prediction and rotation
prediction on a new domain of Colored-Rotated KMNIST,
generated in the same way as the pre-training dataset to
examine if the HyperInvariance model can learn appropri-
ate invariances with limited data. Here the (hyper) feature
extractor is frozen, and a new readout head and hyperpa-
rameters (Eq 3) are learned. Competitor: For a baseline we
do multi-task learning (MTL) among source tasks with a
conventional shared feature extractor, and learn a new head
for the downstream task.

Contrastive Learning experiment: We next evaluate our
HyperInvariance framework with a real-world contrastive
learning experiment, taking SimCLR (Chen et al., 2020) as
a representative state of the art learner to build upon. To de-
fine a set of invariances of interest, we borrow from Ericsson
et al. (2021) who extract two subsets of SimCLR augmen-
tations denoted dorsal and ventral. Ericsson et al. (2021)
showed that contrastive models trained to maximize simi-
larity between images and their dorsal/ventral augmented
counterparts learn representations invariant to correspond-
ing transformations. Pre-train: We instantiate our frame-
work with SimCLR (hereafter referred to as HyperSimCLR)
and a ResNet18 architecture and train on STL-10 (Coates
et al., 2011). During training, we assign invariance hyper-
parameters as i = [1, 1], i = [1, 0] and i = [0, 1] for default,
ventral and dorsal augmentations respectively. For every
i, the hypernetwork is trained to optimize the contrastive
loss for an image and the counterpart with augmentation
corresponding to i. Downstream Given the learned frozen
HyperSimCLR-ResNet18 feature, we train linear readout



HyperInvariances: Amortizing Invariance Learning

Figure 1. Left: Measured invariances (to rotation and color) of hypernet features as a function of invariance hyperparameter - MNIST ex-
periment. Middle: Measured invariance (to dorsal and ventral transforms) of HyperSimCLR-ResNet18 feature extractor as a function of in-
variance hyperparameter - STL10. Right: Train loss for digit and rotation prediction vs invariance hyperparameter - STL10/HyperSimCLR.

and hyperparameters for new tasks. For recognition we eval-
uate CIFAR10 classification, and for regression, we evaluate
300W facial interest point detection (Sagonas et al., 2016).

4.1. Results

With the experiment setup above, we aim to answer the
following three research questions:

Does the HyperNetwork learn to generate invariant fea-
tures? To examine if the hypernetwork has learned fea-
tures that are provide a specified invariance, we measure
invariance by evaluating the cosine similarity between im-
ages and their augmented versions when providing different
hypernetwork inputs. Figure 1(left) reports the invariance to
rotation and color in the synthetic multi-task experiment. At
each x-coordinate we pass [i, 1− i] to the hypernetwork to
interpolate between rotation and color invariance. The trend
shows that invariances broadly vary between minimum and
maximum as a function of hyperparameter i. Figure 1(mid-
dle) performs the corresponding evaluation for dorsal and
ventral augmentations in the SimCLR-ResNet18 experiment.
Again we see that measured invariance is a near monotonic
function of the hyperparameter. These results show that the
hypernet can synthesize features with a desired invariance
for both shallow and deep CNNs, and that both supervised
multi-task and self-supervised pre-training can be used.

Can the preferred invariance of a downstream task be
identified? Given our pre-trained hypernet (on MNIST
and STL10 respectively) we study downstream tasks (KM-
NIST and CIFAR, 300W respectively) by learning a linear
readout and invariance hyperparameters. First, for the syn-
thetic experiment, we solve downstream KMNIST with a
variety of invariance parameters, interpolating along [i, 1]
(color invariance). We report the training loss for digit pre-
diction and color prediction. The results in Figure 1(right)
show that loss is a clean monotonic function of the corre-
sponding invariance: Digit prediction is best with maximum
color invariance; color prediction is obviously best with
minimum color invariance. Both curves are quite smooth,

so we expect optimising loss wrt the invariance parameter
(x-axis) will discover a good invariance parameter.

Next we check if we can optimise downstream tasks wrt pre-
ferred invariance parameter (Eq. 3). The results for synthetic
digit prediction and color prediction are shown in Table 1
for N training samples per class. Inspecting Table 1 for
digit prediction, we see that invariances are tending towards
[1, 1] (and always round to [1, 1]) correctly identifying that
digit prediction should be both color and rotation invariant.
For rotation prediction in Table 1, invariances are tending
towards [0, 1] (and always round to [0, 1]) confirming that
color prediction should be only rotation invariant.

Quantitative results: For the synthetic experiment results
in Table 1 shows that (i) HyperInvariance outperforms the
multi-task baseline in accuracy, especially at low samples
per class – demonstrating the benefit of the correctly discov-
ered invariance as an inductive bias. (ii) Discretizing the
invariances usually performs only slightly worse (AI∗ vs
Ai∗ ), while providing theoretical benefits.

For the HyperSimCLR experiment in Table 2, we can see
that for CIFAR-10: (i) Our HyperSimCLR selects both
dorsal and ventral invariance (ii) it performs similarly to
regular SimCLR baseline and both outperform the dorsal-
and ventral-alone baselines. Meanwhile for 300W: (i) Hy-
perSimCLR clearly outperforms regular SimCLR thanks to
the ability to tune invariances to a moderate amount with a
small preference for Dorsal invariances, and even slightly
outperforms DorsalSimCLR which was previously best at
this task. Overall, this solves the problem in (Ericsson et al.,
2021) where specific choice of dorsal, ventral, or regular
SimCLR had to be made on a per-problem basis. A single
HyperSimCLR feature can support different tasks through
amortised invariance learning.

4.2. Discussion

We have shown that multiple invariances can be pre-learned
by a single (hyper) feature extractor. This enables down-



HyperInvariances: Amortizing Invariance Learning

stream tasks to easily select a useful invariance. This pro-
vides an interesting new avenue of study for general purpose
features suited for diverse downstream tasks.

Acknowledgements
R.C. was supported by Samsung AI Research, Cambridge.

References
Bartlett, P. L. and Mendelson, S. Rademacher and gaussian

complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 2002.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. Advances
in neural information processing systems, 2017.

Benton, G. W., Finzi, M., Izmailov, P., and Wilson, A. G.
Learning invariances in neural networks. In Advances in
Neural Information Processing Systems, 2020.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International Conference on Machine
Learning, 2020.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In AISTATS,
2011.

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. EEE / CVF Computer Vision and Pattern
Recognition Conference, 2019.

Ericsson, L., Gouk, H., and Hospedales, T. M. Why do
self-supervised models transfer? investigating the impact
of invariance on downstream tasks. CoRR, 2021.

Ericsson, L., Gouk, H., Loy, C. C., and Hospedales, T. M.
Self-supervised representation learning: Introduction, ad-
vances and challenges. IEEE Signal Processing Maga-
zine, 2022.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2020.

Golowich, N., Rakhlin, A., and Shamir, O. Size-independent
sample complexity of neural networks. In Conference On
Learning Theory, pp. 297–299. PMLR, 2018.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In
International Conference on Learning Representations,
2017.

Immer, A., van der Ouderaa, T. F., Fortuin, V., Rätsch, G.,
and van der Wilk, M. Invariance learning in deep neu-
ral networks with differentiable laplace approximations.
arXiv, 2022.

Jing, L. and Tian, Y. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Transactions
on Pattern Analysis & Machine Intelligence, 2021.

Long, P. M. and Sedghi, H. Generalization bounds for
deep convolutional neural networks. In International
Conference on Learning Representations, 2020.

Lyle, C., van der Wilk, M., Kwiatkowska, M., Gal, Y., and
Bloem-Reddy, B. On the benefits of invariance in neural
networks. arXiv, 2020.

Purushwalkam Shiva Prakash, S. and Gupta, A. Demysti-
fying contrastive self-supervised learning: Invariances,
augmentations and dataset biases. Advances in Neural
Information Processing Systems, 2020.

Raghu, A., Lorraine, J., Kornblith, S., McDermott, M., and
Duvenaud, D. K. Meta-learning to improve pre-training.
Advances in Neural Information Processing Systems, 34,
2021.

Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou,
S., and Pantic, M. 300 faces in-the-wild challenge:
database and results. Image and Vision Computing, 2016.

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere supplementary material.

Worrall, D. and Welling, M. Deep scale-spaces: Equivari-
ance over scale. Advances in Neural Information Process-
ing Systems, 2019.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. Harmonic networks: Deep translation
and rotation equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2017.

Xiao, T., Wang, X., Efros, A. A., and Darrell, T. What
should not be contrastive in contrastive learning. In Inter-
national Conference on Learning Representations, 2021.

Zhou, A., Knowles, T., and Finn, C. Meta-learning symme-
tries by reparameterization. In International Conference
on Learning Representations, 2021.



HyperInvariances: Amortizing Invariance Learning

A. Additional Discussion On Theory
We can contrast the result in Theorem 3.1 with the corresponding result for standard approaches.

The corresponding result for the popular protocol of linear readout from a fixed feature would reduce the third term in the
right-hand side of the bound by eliminating the dependence on |I|. However, it would also worsen the empirical risk (first
term, RHS). This is illustrated in Table 3 where we also show the train performance for HyperInvariance and the MTL
baseline – HyperInvariance provides a clearly better training fit.

Meanwhile, the corresponding result for the other popular protocol of fine-tuning the whole feature extractor would improve
the first empirical risk term in the bound, but introduce an exploding complexity term in the bound. In particular, the
second term of the bound would be proportional to a product of norms of the weight matrices in each layer, thus scaling
exponentially with the depth of the network. See, e.g., Golowich et al. (2018) for a demonstration of this in the framework
of Rademacher complexity-based analysis.

This is why we describe HyperInvariance as providing an interesting new theoretical operating point between two popular
protocols.

Connection to Empirical Results With regard to the discretization operation, our current experiments report binary
discretization of the continuously estimated invariance parameter, which works well in the synthetic experiments and
CIFAR-10. We remark that our framework and Theorem are compatible with any quantization strength, for example ternary
or higher. This may provide a better tradeoff between empirical performance + theoretical guarantees for benchmarks like
300W, where the strong results for our continuous model (Ai∗) in Tab 2 suggest that a moderate amount of invariance is
preferred.

A.1. Proof of Theorem 3.1

Proof. There is a one-to-one mapping between elements of the finite set of invariance hyperparameters and potential feature
extractors, implying that there is also a finite number, |I|, of potential feature extractors for a novel task. For a linear model
coupled with a pre-selected feature extractor, one can apply the standard generalisation bound for linear models based on
(empirical) Rademacher complexity (Bartlett & Mendelson, 2002) to obtain, with probability 1− δ,

Ext,yt [L(ŷt, yt)] ≤ 1

nt

nt∑
j=1

L(ŷtj , ytj) +
2XB
√
nt

+ 3

√
ln(1/δ)
2nt

.

Our result follows from using the union bound to optimise over the choice of feature extractor.

B. Additional Details
B.1. Synthetic experiments

Hypernetwork: For the multi-task learning experiments, we fix fθ to be a single convolution layer with 16 filters of kernel
size 5 × 5. This convolution is performed with a stride of 2 and is followed by batch normalization and ReLU before
passing the features to the task-specific heads. The hypernetwork is designed as a two-layer network generates weights for
the convolution layer given binary invariance descriptors . We design the hypernetwork such that w1 ∈ Rk×dh , b1 ∈ Rdh ,
w2 ∈ Rdh×dout and b2 ∈ Rdout . Here, we choose dh = 40 and subsequently dout = 1200 which is equal to the total number of
weights of the convolution layer. For colored and rotated MNIST images, the output of the hypernetwork is further resized
as 3× 16× 5× 5.

Training Details: For digit prediction, color predictions, and rotation prediction the output cardinality of the task-specific
prediction heads is 10, 3, and 7 respectively. During the pre-training stage, the hypernetwork and the task-specific weights
are trained for 200 epochs with the Adam optimizer with a learning rate of 5e−4 along with a cosine annealing learning
rate scheduler. During the downstream task learning stage, the invariance hyper-parameters and task-specific decoders are
trained with the Adam optimizer with the same learning rate as above.



HyperInvariances: Amortizing Invariance Learning

Digit Prediction Rotation Prediction
N i⋆ Atrain

i⋆ Ai⋆ Atrain
MTL AMTL i⋆ Atrain

i⋆
Ai⋆ Atrain

MTL AMTL

10 [61, 65] 98.2 33.3 59.8 22.8 [35, 75] 100.0 55.8 55.8 45.7
20 [60, 74] 98.1 42.1 71.6 35.2 [ 6, 88] 100.0 74.3 74.4 70.0
50 [63, 80] 95.7 49.2 73.2 46.7 [2, 93] 97.1 81.1 81.1 74.1
100 [65, 86] 87.7 52.5 64.5 47.0 [ 0 , 86] 84.4 79.7 84.4 76.3
200 [72, 91] 82.3 54.2 72.9 48.0 [ 0, 90] 92.5 86.9 86.9 83.0

Table 3. Digit and Rotation prediction on ColoredRotated-KMNIST. i∗: estimated % invariance to (rotation, color). Atrain
i⋆ : HyperInvariance

train accuracy with continuous invariance, Ai∗ : HyperInvariance test accuracy with continuous invariance. Atrain
MTL: Multi-task baseline

train accuracy. AMTL Multi-task baseline test accuracy.

B.2. Hyper-SimCLR

Hypernetwork: For contrastive learning experiments, the hypernetwork is trained to generate the parameters of the
convolution layers of the Resnet18 model. Unlike the synthetic experiments, the hypernetwork generates kernels for
multiple convolution layers of the Resnet18 model. For SimCLR experiments with two types of invariances (k = 2), the
hypernetwork is designed as a two layer-network with and dh = 64 such that w1 ∈ R2×64 and b1 ∈ R64. However, to
generate a convolution layer with parameters denoted by {θl}18l=1 of the Resnet18 architecture, we learn a separate set of
{wl

2, b
l
2}18l=1 such that θl = wl

2
T
(σ(wT

1 i) + b1) + bl2. We direct the readers to (Ha et al., 2017) for more details on the
hypernetwork architecture that generates all convolution kernels for Resnet18.

Augmentations: In this section of the appendix, we provide details about the augmentation policies used to train Hyper-
SimCLR (Ericsson et al., 2021). Ventral augmentation is a set of spatial transformations including random resized crop and
random horizonal flip. Dorsal augmentation is a set of appearance changing augmentations consisting random grayscaling,
random color jitter and gaussian blurring. Finally, the default augmentations is a combination of both ventral and dorsal
augmentations.

Datasets: We pretrain the Hyper-SimCLR model on the unlabeled split of the STL-10 dataset consisting of 100000 images
with each image is of size 96× 96. We resize these images to 224× 224 to match the image size of the downstream tasks.
To evaluate the Hyper-SimCLR model on downstream tasks, we perform experiments on 300W landmark detection and
CIFAR-10 image classification. On 300W use only the indoor sets where we use 40% of the images to form a test set. For
CIFAR-10, 80 % of the labeled data available is used for learning invariances.

Training details: During the pre-trainig stage, the hypernetwork is trained for 200 epochs with the Adam optimizer with a
learning rate of 3e−4, and weight decay coefficient of 1e−4 along with a cosine annealing learning rate scheduler. During
the fine-tuning stage, the invariance hyper-parameters and corresponding task-specific prediction heads are trained for 100
epochs with the Adam optimizer using a learning rate of 3e−4 with a multi-step learning rate scheduler that decays the
learning rate of each parameter group by γ = 0.1 after every 10 epochs. In this stage, we apply weight decay coefficient of
8e−4 only to the parameters of the linear readout layers.


