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ABSTRACT
Graph Neural Networks (GNNs) have achieved remarkable suc-
cess in various real-world applications. However, GNNs may be
trained on undesirable graph data, which can degrade their perfor-
mance and reliability. To enable trained GNNs to efficiently unlearn
unwanted data, a desirable solution is retraining-based graph un-
learning, which partitions the training graph into subgraphs and
trains sub-models on them, allowing fast unlearning through partial
retraining. However, the graph partition process causes informa-
tion loss in the training graph, resulting in the low model utility of
sub-GNN models. In this paper, we propose GraphRevoker, a novel
graph unlearning framework that better maintains the model utility
of unlearnable GNNs. Specifically, we preserve the graph property
with graph property-aware sharding and effectively aggregate the
sub-GNN models for prediction with graph contrastive sub-model
aggregation. We conduct extensive experiments to demonstrate the
superiority of our proposed approach.

CCS CONCEPTS
• Computing methodologies→Machine learning; •Mathe-
matics of computing→ Graph algorithms.
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1 INTRODUCTION
As one of the crucial data representations, graphs are used to de-
scribe data with complex relations between objects. Recently, Graph
Neural Networks (GNNs) have achieved remarkable success in
learning from graph data in various real-world applications.

Despite the aforementioned success of GNNs, the concerns about
undesirable data posing detrimental effects on GNNs are rising. For
instance,malicious data [6, 11], low-quality data [9, 24], and sensitive
data [5, 7] are threatening GNNs’ safety, prediction performance,
and compliance to "the right to be forgotten" (as shown in Fig. 1),
which necessities the development of graph unlearning.

To efficiently remove the effect of undesirable data from trained
GNN models, recent years have witnessed two separate lines of
research: 1) approximate unlearning and 2) retraining-based un-
learning. Approximate unlearning relies on directly manipulat-
ing the model parameters to erase the effects of unwanted data
points [8, 27], which sacrifices the reliability of the removal, as
discussed in previous literatures [2, 22]. On the other hand, retrain-
ing approaches partition the training graph into small subgraphs
and train disjoint sub-models on them, allowing the model owner
only to retrain a small sub-model to remove the effect of some
bad data. Despite their desirable security properties [2, 22], these

Figure 1: An example of graphunlearning in a social network.

unlearning approaches may destroy the graph structure and la-
bel semantic during the partitioning process, degrading the model
utility of sub-model GNNs.

In this work, our research objective revolves around 1) preserv-
ing the desirable property of retraining-based unlearning and 2)
significantly improving the model utility of sub-GNNmodels in this
paradigm. To achieve this goal, we systematically review the limita-
tions of prior works in graph unlearning (as discussed in Section 3),
and then introduce a novel graph unlearning framework, namely
GraphRevoker, equipped with graph property-aware sharding and
graph contrastive sub-model aggregation. Our contributions can be
summarized as follows: 1) We propose the graph property-aware
sharding module to preserve the sub-GNN models’ prediction per-
formance by keeping the structural and semantic properties in the
training graph. 2) To effectively leverage the disjoint sub-models
for prediction, we propose the graph contrastive sub-model aggrega-
tion module, a lightweight GNN ensemble network, empowered by
local-local structural reconstruction and local-global contrastive
learning. 3) Extensive experiments are conducted to illustrate the
model utility and unlearning efficiency of the proposed method.

2 PROBLEM FORMULATION
Notations. In general, a graph can be denoted as G = (V, E),
whereV = {𝑢1, · · · , 𝑢𝑁 } denotes the node set, and the edge set E
is represented by adjacencymatrix𝑨. We define the diagonal degree
matrix 𝑫 as 𝑫𝑖,𝑖 = 𝑑𝑒𝑔(𝑢𝑖 ) =

∑𝑁
𝑗=1 𝑨𝑖, 𝑗 . For node classification, the

labels of nodes can be represented as Y = [𝑦1, · · · , 𝑦𝑁 ], in which
𝑦𝑖 ∈ {ℓ1, · · · , ℓ𝐶 } denotes the 𝐶 different categories.
Problem Definition. With the concerns on malicious and low-
quality graph data, given a trained GNN model F𝜽 , the goal of
graph unlearning is to eliminate the impact of an undesirable subset
of training data D− from F𝜽 while preserving its model utility.
Specifically, in the context of node classification, the undesirable
subset with size 𝑡 can be represented as a set of undesirable nodes
D− = {𝑣 𝑗1 , · · · , 𝑣 𝑗𝑡 } ⊂ V .

Since undesirable knowledge from D− has been encoded into
the parameters of F𝜽 , retraining-based graph unlearning aims to
obtain an unlearned GNN model F𝜽 ′

𝑢
, which is equivalent to the

GNN model F𝜽 ′
𝑟
that has never been trained on D− . This definition
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Table 1: Characteristics of different unlearning frameworks.

Aspect
Method Approximate[8, 27] Retraining-based

SISA[2] GraphEraser[7] Ours
Accurate Removal ✗ ✓ ✓ ✓

Structural Preservation ✓ ✗ ✓ ✓

Semantic Preservation ✓ ✓ ✗ ✓

Effective Ensemble N/A ✗ ✗ ✓

of graph unlearning can be formalized as follows:

Retraining: G data removal−−−−−−−−−−→ G/D− retrain−−−−−→ F𝜽 ′
𝑟
;

Unlearning: G train−−−−→ F𝜽
unlearn(D− )
−−−−−−−−−−−→ F𝜽 ′

𝑢
,

where F𝜽 ′
𝑢
and F𝜽 ′

𝑟
are expected to be equivalent.

In graph unlearning, we also aim to achieve two goals: 1) Model
Utility: After unlearning data points D− , the latest model F𝜽 ′

𝑢

should have comparable performance in comparison with retrained
model F𝜽 ′

𝑟
; 2) Unlearning Efficiency: Compared to retraining from

scratch, the unlearning process is expected to be more efficient.

3 RELATEDWORK
In this section, we briefly review the state-of-the-art approaches in
graph unlearning, and further discuss their limitations compared
with our proposed framework. Additional related works can be
found in Section A.4.
Approximate Unlearning. To avoid the costly retraining process
when unlearning undesirable data, approximate approaches directly
manipulate the parameters of GNNs, and alleviate the impact of the
unwanted data. For instance, GIF [27] develops a novel graph influ-
ence function tailored to GNNs and updates the parameters with
the gradients from the influence function, while GNNDelete [8]
inserts a trainable delete operator between each GNN layer and
optimizing the parameters of the delete operator to achieve un-
learning. However, recent literature [2, 22] finds these methods
do not guarantee the accurate removal of the deleted data, which
necessitates the existence of retraining in unlearning frameworks.
Efficient Retraining. Regarding both accurate removal and un-
learning efficiency, SISA [2] has introduced the retraining-based
paradigm, randomly partitioning the training graph into small sub-
graphs, thereby training sub-models on them. Thus, exact data im-
pact removal can be achieved by only retraining a sub-model. Later
on, GraphEraser [7] adapts the SISA [2] paradigm to the context of
graphs by introducing a clustering-based partitioning strategy and
learnable sub-model aggregation, enhancing the model prediction
performance while still allowing efficient and exact unlearning.

Despite the desirable removal guarantee, retraining-based graph
unlearning still faces challenges in sub-optimal model utility, due
to the graph structural loss in the partition stage. It is true that
clustering-based partitions [7] provide a remedy for this issue, but
cluster-based partitions tend to put nodes with the same label into
one subgraph, sacrificing the semantic balance between different
submodels. In addition, the lack of expressive sub-GNN aggregators
also deteriorates the model utility problem in retraining approaches.

To this end, we propose GraphRevoker, which achieves efficient
and accurate data removal, while preserving both the structural
and semantic information in the graph partition phase. We also
introduce a powerful contrastive learning empowered aggregation
module to ensemble the subgraph GNNs. The advantages of our
proposed model can be seen in Table. 1.

4 PROPOSED METHOD
To endow GNNs with efficient and exact unlearning capability,
GraphRevoker follows the widely adopted SISA framework, which
mainly contains three stages: 1) subgraph partition, 2) isolated
training, and 3) sub-model aggregation, as shown in Fig. 2. In both
partitioning and aggregation stages, we introduce innovative de-
signs to preserve the model utility of the framework. After the
aforementioned steps, we can apply GraphRevoker to make pre-
dictions by aggregating all the predictions from subgraph GNN
models, or efficiently unlearn data points by partially retraining
the affected sub-models.

4.1 Graph Property-Aware Sharding
To preserve model utility and unlearning efficiency in the partition
phase, we first formulate the unlearning goals in Section 2 into
three reachable optimization objectives, and then solve them with
an effective neural framework to give desirable graph partitions.
In comparison to previous random [2] and clustering-based [7]
partition methods, our framework preserves both graph structure
and label semantics, resulting in stronger sub-GNN models.
Unlearning Time. The efficiency of retraining-based unlearn-
ing mainly depends on the time cost of retraining correspond-
ing sub-models, which relies on two key factors: 1) the proba-
bility of retraining a specific sub-model and 2) the time cost of
retraining that sub-model. Clearly, the first factor relates to the
number of nodes in a subgraph, and the second factor lies behind
the cost of message-passing, which is proportional to the number
of edges [34]. Let 𝑆 denote the number of partitioned subgraphs,
and P = {V1, · · · ,V𝑆 } denotes node partition results, satisfying
∀V𝑖 ∈ V and ∀𝑖 ≠ 𝑗,V𝑖 ∩V𝑗 = ∅. We propose the unlearning time
objective as the expectation of retraining time as follows:

L𝑡𝑖𝑚𝑒 =

𝑆∑︁
𝑖=1

𝑃𝑟 (V𝑖 ) · Cost(V𝑖 ) ≈
𝑆∑︁
𝑖=1

|V𝑖 |
|V| |E𝑖 |. (1)

Graph Structure Preservation. Edges that connect nodes in dif-
ferent subgraphs are inevitably removed during the partition phase.
However, to maintain the model utility of sub-GNNs, preserving
the original graph’s structure is crucial. Prior works in graph un-
learning [5, 7] achieve structural preservation by using balanced
K-Means [7] or balanced Label Propagation [5] in an unsupervised
setting, which cannot directly protect the graph structure. To ad-
dress this issue, we propose a principled and supervised objective to
quantize the structural loss in the graph partitions, namely the nor-
malized edge-cut (𝑁𝑐𝑢𝑡 ) objective, counting the number of dropped
edges between different subgraphs as follows:

L𝑠𝑡𝑟𝑢𝑐𝑡 = 𝑁𝑐𝑢𝑡 (G1,G2, · · · ,G𝑆 ) =
𝑆∑︁

𝑘=1

𝑐𝑢𝑡 (G𝑘 , Ḡ𝑘 )∑
𝑢𝑖 ∈G𝑘

𝑑𝑒𝑔(𝑢𝑖 )
, (2)

where 𝑐𝑢𝑡 (G𝑘 , Ḡ𝑘 ) denotes the edges between subgraph G𝑘 and
the remaining part of the training graph.
Label Semantic Preservation. Besides the structural destruction
in the partition phase, the label distribution of the training graph is
also perturbed, which may result in biased and less generalizable
subgraph models. This phenomenon is more severe in clustering-
based partitions [5, 7], which tend to assign nodes with similar
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Figure 2: Illustration of the proposed framework.

labels into one subgraph. To overcome this problem, we propose an
objective to capture the richness of label semantics in each subgraph
with the entropy of its label distribution.

Let 𝑐ℓ𝑗 (V𝑖 ) = |{𝑢𝑘 |𝑢𝑘 ∈ V𝑖 ,Y𝑘 = ℓ𝑗 }| denote the number of
nodes annotated with label ℓ𝑗 in the 𝑖-th shard. We have the dis-
crete label distribution 𝒅 (V𝑖 ) for the 𝑖-th subgraph, where 𝑃𝑟 (ℓ𝑖 ) =
𝑐ℓ𝑖 (V𝑖 )
|V𝑖 | . Therefore, we propose the entropy-based semantic preser-

vation objective as follows:

L𝑠𝑒𝑚 =
1
𝑆

𝑆∑︁
𝑖=1

Entropy [𝒅 (V𝑖 )] =
1
𝑆

𝑆∑︁
𝑖=1

𝐶∑︁
𝑗=1

− log[
𝑐ℓ𝑗 (V𝑖 )
|V𝑖 |

]
𝑐ℓ𝑗 (V𝑖 )
|V𝑖 |

.

(3)
Differentiable Graph Partition Framework. To partition the
training graph G into disjoint subgraphs while minimizing objec-
tives Eqs. (1) - (3), the main challenge lies behind optimization. As
graph partition is a combinatorial optimization problem and cannot
be solved in polynomial time, we relax the graph partition into a
continuous form and solve it with a neural network.

To make graph partitioning continuous, we represent the parti-
tion result with a soft node assignment matrix 𝑷 ∈ R𝑁×𝑆 , where
𝑷𝑖, 𝑗 ∈ [0, 1] and ∑

𝑷𝑖,: = 1. The node assignment matrix can be
computed with a graph partition network𝜓 parameterized with 𝜽𝜓 ,
which contains GNN layers and a softmax output layer, transform-
ing the node representations into the assignment matrix. Therefore,
we can learn how to give effective graph partitions by training
network𝜓 with the following loss function:

L𝑝𝑎𝑟𝑡 = L𝑡𝑖𝑚𝑒 + L𝑠𝑡𝑟𝑢𝑐𝑡 + L𝑠𝑒𝑚 + 1
2
𝛾 ∥𝜽𝜓 ∥2

2, (4)

s.t. L𝑡𝑖𝑚𝑒 =
1
|V|

𝑆∑︁
𝑖=1

(1𝑇 𝑷:,𝑖 )
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[(𝑷:,𝑖𝑷
𝑇
:,𝑖 ) ⊙ 𝑨], (5)

L𝑠𝑡𝑟𝑢𝑐𝑡 =
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[𝑷 · 𝑑𝑖𝑎𝑔−1 (1𝑇𝑫𝑷 )] (1 − 𝑷𝑇 ) ⊙ 𝑨, (6)

L𝑠𝑒𝑚 =
1
𝑆

𝑆∑︁
𝑖=1

𝐶∑︁
𝑗=1

−𝑙𝑜𝑔
(
𝑷𝑇:,𝑖𝒀:, 𝑗

𝑷𝑇:,𝑖1

)
𝑷𝑇:,𝑖𝒀:, 𝑗

𝑷𝑇:,𝑖1
, (7)

where 1 denotes 1-valued column vector, and 𝒀 ∈ {0, 1} |V |×𝐶 de-
notes the one-hot label matrix. After training 𝜓 on the training
graph with L𝑝𝑎𝑟𝑡 , we can use this network to infer desirable parti-
tions. Please refer to Section A.3 in our supplementary material for
further explanations of the partition loss function.

4.2 Graph Contrastive Sub-model Aggregation
After acquiring the subgraph partition P = {V1, · · · ,V𝑆 }, we can
train 𝑆 isolated submodels F𝜽1 , · · · , F𝜽𝑆 on these disjoint subgraphs.
Thus, unlearning can be efficiently achieved by only retraining a
single sub-model affected by unwanted data. However, unlearn-
ing efficiency is not the only goal of retraining-based unlearning,
and another challenge lies behind the difficulty of leveraging the
weak sub-models to obtain an accurate prediction. Though previ-
ous works have explored some straightforward solutions, including
mean averaging [2], weighted averaging [7], and attention mech-
anism [5], it is still an open question on how to utilize the graph
structures in the sub-model aggregation phase.

In this work, we develop a contrastive learning framework to
learn an effective aggregator to ensemble the weak sub-GNN mod-
els. The aggregator only contains a few parameters and can be
trained efficiently with only a small subset of training nodes, namely
U = {𝑢 𝑗1 , · · · , 𝑢 𝑗𝑀 } ⊂ V, |U| ≪ |V|.
Attentive Fusion. When making predictions with the trained sub-
models, every sub-model F𝜃𝑖 (·) generates a node embedding matrix
𝑬𝑖 ∈ R |U |×𝑑 , where row vector 𝒆𝑖𝑢 represents the embedding of
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node 𝑢 ∈ U. Towards a better global prediction, we first align
embeddings from different feature spaces with a learnable linear
projection, and then fuse all the embeddings with an attention
mechanism. Let 𝑬 ∈ R |V |×𝑑 denote the fused embedding matrix,
and 𝒆𝑢 denote a row vector in 𝑬 , we define the attentive fusion as
follows:

𝛼𝑖𝑢 =
exp(𝒘𝑇 ReLU(𝑾𝑖𝒆𝑖𝑢 + 𝒃𝑖 ))∑𝑆
𝑗=1 exp(𝒘𝑇 ReLU(𝑾𝑗 𝒆

𝑗
𝑢 + 𝒃 𝑗 ))

; 𝒆𝑢 =
1
𝑆

𝑆∑︁
𝑖=1

𝛼𝑖𝑢𝒆
𝑖
𝑢 , (8)

where {𝑾1, · · · ,𝑾𝑆 }, {𝒃1, · · · , 𝒃𝑆 } and𝒘 are trainable parameters,
and 𝛼𝑖𝑢 is the attention score for sub-model 𝑖 and node 𝑢.
Local-global Contrastive Loss. In unlearning frameworks based
on partial retraining, the output from sub-models contains local
knowledge of subgraphs in G, while the aggregation result is ex-
pected to incorporate a full knowledge of G. Inspired by previous
Graph Contrastive Learning (GCL) approaches [26, 35], we find it
natural to leverage the local views of a node to enhance its global
aggregation result 𝒆𝑢 .

Specifically, we regard the fully aggregated embedding 𝒆𝑢 as
a global view of node 𝑢, while we generate a local view �̃�𝑢 by
randomly deactivating some sub-model attention scores in Eq. (8)
(i.e., �̃�𝑢 = 𝑆

∥𝒎∥1

∑𝑆
𝑖=1 𝒎𝑖𝛼

𝑖
𝑢𝒆

𝑖
𝑢 , where 𝒎 is a random 0-1 mask).

Thus, two different views of the same node (𝒆𝑢 , �̃�𝑢 ) are expected
to be close, and the representation from another random node
𝑣 ≠ 𝑢 should be pulled apart. The local-global contrastive loss is
formulated with the InfoNCE objective as follows:

L𝑐𝑜𝑛𝑡𝑟𝑎 =
1
|U|

∑︁
𝑢∈U

L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 (𝒆𝑢 , �̃�𝑢 ), (9)

L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 (𝒆𝑢 , �̃�𝑢 ) = − log
𝑒𝜙 (�̄�𝑢 ,�̃�𝑢 )/𝜏 + 𝑒𝜙 (�̄�𝑢 ,𝒆𝑣 )/𝜏 + 𝑒𝜙 (𝒆𝑢 ,�̃�𝑣 )/𝜏

𝑒𝜙 (𝒆𝑢 ,�̃�𝑢 )/𝜏
,

(10)

where 𝜙 (·, ·) denotes the cosine similarity function, and 𝜏 denotes
the softmax temperature. This formulation not only considers both
inter-view negative pairs (𝒆𝑢 , 𝒆𝑣) and intra-view negative pairs
(𝒆𝑢 , �̃�𝑣), but also requires zero external data augmentation, resulting
in expressive representations and efficient computations.
Local-local Reconstruction Loss. In graph partitioning and iso-
lated training, the links between subgraphs are dropped to ensure
each node’s impact only exists in one sub-model, which allows
unlearning by only retraining one specific sub-model. Nevertheless,
the dropped edges could include useful structural information of
training graph G. To address this problem, we propose the local-
local reconstruction loss to restore the knowledge of the previously
ignored edges as follows:

L𝑟𝑒𝑐𝑜𝑛 =
1
|U|

∑︁
𝑢∈U

max{𝜙 (𝒆𝑢 , 𝒆𝑣+ ) − 𝜙 (𝒆𝑢 , 𝒆𝑣− ) + 1, 0}, (11)

where the positive sample 𝒆𝑣+ is sampled from the neighbors of 𝑢
in other subgraphs, and the negative sample 𝒆𝑣− does not have any
connection with 𝑢.
Optimization. Our aggregation module learns to fuse sub-GNN
models by minimizing the following training objective:

L𝑎𝑔𝑔𝑟 = L𝑐𝑙𝑠 + L𝑐𝑜𝑛𝑡𝑟𝑎 + L𝑟𝑒𝑐𝑜𝑛 + 1
2
𝛾 ′ | |𝚯| |22, (12)

Table 2: The comparison results of model utility in F1-score.
Datasets Methods GAT GCN SAGE APPNP JKNet

Cora

Retrain 83.95±0.67 84.46±0.51 82.84±0.73 83.66±0.71 84.52±0.54
SISA 67.47±4.43 55.02±1.06 58.82±4.87 66.64±4.61 68.21±4.30
GraphEraser 75.70±0.33 71.27±2.99 72.10±0.58 68.84±2.56 69.94±3.12
GraphRevoker 76.94±1.17 78.75±0.47 75.94±1.39 72.95±0.61 70.90±1.79

Citeseer

Retrain 73.37±0.83 72.94±0.63 73.17±0.75 71.04±0.83 73.24±1.01
SISA 55.90±5.28 69.01±3.33 63.32±4.72 62.99±5.31 65.32±4.58
GraphEraser 60.53±5.10 69.59±1.39 67.16±1.85 68.36±3.21 68.71±2.20
GraphRevoker 70.27±0.80 72.79±1.04 69.35±1.42 70.09±1.67 70.62±1.45

LastFM Asia

Retrain 85.29±0.53 84.40±0.73 82.18±0.34 83.66±0.71 85.36±0.46
SISA 75.77±0.44 75.46±0.52 74.42±0.61 76.06±0.35 75.67±0.38
GraphEraser 68.12±2.10 64.77±0.96 64.52±1.91 71.55±0.90 69.87±0.77
GraphRevoker 76.43±0.93 76.60±0.63 75.14±0.62 77.56±0.71 76.20±0.77

Flickr

Retrain 49.36±0.64 49.93±0.51 49.41±1.39 48.50±0.80 49.61±1.67
SISA 42.81±0.86 46.01±1.24 46.92±1.24 46.72±1.02 44.38±0.95
GraphEraser 43.82±1.68 46.42±1.10 47.52±0.62 45.96±1.66 44.32±1.55
GraphRevoker 45.19±1.42 48.35±0.63 48.09±0.11 47.36±0.82 46.16±1.33

Table 3: The comparison results of the time-cost of unlearn-
ing the undesirable data points (D−) (unit: second[s]).

Unlearned
Nodes Datastets Methods GAT GCN SAGE APPNP JKNet

0.5%

Cora

Retrain 30.71 24.93 17.55 26.26 24.42
SISA 7.79 5.04 5.43 5.74 6.41
GraphEraser 10.37 7.77 6.40 8.52 8.55
GraphRevoker 4.72 4.65 3.10 4.23 4.88

Citeseer

Retrain 36.56 30.73 18.80 29.20 32.10
SISA 9.52 7.30 4.80 7.57 6.16
GraphEraser 16.39 10.51 9.89 12.90 12.70
GraphRevoker 6.25 6.05 3.85 5.32 5.87

LastFM Asia

Retrain 106.86 88.57 73.96 96.63 100.31
SISA 31.59 46.33 30.58 55.04 51.81
GraphEraser 35.51 46.95 36.50 50.18 52.84
GraphRevoker 12.64 29.49 16.46 28.57 27.99

Flickr

Retrain 177.11 138.67 108.06 155.04 151.35
SISA 139.68 110.88 72.29 123.16 115.53
GraphEraser 152.04 120.76 87.86 130.22 127.81
GraphRevoker 57.37 53.69 22.75 41.74 55.11

where 𝚯 denotes the trainable parameters of the linear projection
and attention mechanism. After unlearning each data point, the
aggregation module must be retrained to ensure an accurate re-
moval. Fortunately, we find this module needs 10 to 20 epochs to
be trained, only introducing a small computational overhead.

5 EXPERIMENT
Datasets. We evaluate GraphRevoker on four real-world graph
datasets, including Cora [31], Citeseer [31], LastFM-Asia [20], and
Flickr [32]. For the first three datasets, we randomly divide nodes
into train/val/test sets with a 0.7/0.2/0.1 ratio. For Flickr, we use the
pre-defined dataset splits in PyG. More implementation details and
additional experiments are presented in Section A.1 and Section A.2.
Model Performance.We have evaluated all the unlearning frame-
works on the inductive node classification task. The model utility
and unlearning efficiency results can be found in Tables. 2 - 3, and
we draw the following conclusions: 1) GraphRevoker witnessed the
state-of-the-art model performance among all the three efficient
unlearning frameworks in both model utility and unlearning effi-
ciency; 2) Despite the strong model utility of Retrain, its efficiency
is far worse than efficient unlearning approaches, which is unac-
ceptable in large-scale settings; 3) The propose GraphRevoker even
outperforms SISA in efficiency evaluations, which can be attributed
to our retraining-time-aware design in the partition module and
our parallelized sub-model retraining implementations.

6 CONCLUSION
Graph unlearning, which involves removing the impact of undesir-
able data points from trained GNNs, is significant in various real-
world scenarios. In this work, we propose a novel graph unlearning
framework, which fully unleashes the potential of retraining-based



Graph Unlearning with Efficient Partial Retraining WWW ’24, May 13–17, 2024, Singapore, Singapore.

unlearning in graphs and GNNs to achieve accurate, model utility
preserving, and efficient unlearning. To alleviate the model degra-
dation attributed to the partition and isolated training process, we
introduce two main contributions: a neural graph partition network
and a graph contrastive sub-model ensemble module. In our future
works, we plan to explore the effectiveness of GraphRevoker on
more settings and downstream tasks in graph mining.
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A SUPPLEMENTARY MATERIAL
A.1 Evaluation Settings

Table 4: Dataset statistics.
Dataset # Nodes # Edges # Classes Type
Cora [31] 2,708 5,429 7 Citation

Citeseer [31] 3,327 4,732 6 Citation
LastFM-Asia [20] 7,264 55,612 18 Social Network

Flickr [32] 89,250 899,756 7 Web Image

A.1.1 Dataset Statistics. We evaluate GraphRevoker on four real-
world graph datasets from various origins, including Cora, Citeseer,
LastFM-Asia, and Flickr, which are widely used to evaluate the
performance of GNN models. The statistic of the datasets is shown
in Table. 4.

A.1.2 General Settings. We selectGAT [23],GCN [17], SAGE [15],
APPNP [12], and JKNet [29] as our base models to evaluate the un-
learning frameworks. All the GNNmodels except JKNet include two
message-passing layers and an MLP classifier, and all the JKNets
contain three message-passing layers. The embedding size for GNN
models is set to 64. The partition module is optimized with an
AdamW optimizer with lr=1e-3 and weight_decay=1e-5. Specifi-
cally, the partition network 𝜓 is trained in 10 to 30 epochs until
convergence, and weights for L𝑡𝑖𝑚𝑒 and L𝑠𝑒𝑚 are both set to 1e-3.
The aggregation module is optimized with an AdamW optimizer
with lr=0.01 and weight_decay=1e-5. The weights for both auxiliary
loss functions in aggregator training (L𝑐𝑜𝑛𝑡𝑟𝑎 andL𝑟𝑒𝑐𝑜𝑛) are set to
1e-4. For compared baselines (SISA and GraphEraser), we followed
their official implementations and settings, and carefully tuned their
hyperparameters based on their suggested hyperparameter search
space (e.g., the learning rate of the aggregator).

A.1.3 Model Utility Settings. For all unlearning methods except
Retrain, the number of shards is fixed to 20. Each experiment is
conducted 10 times, and we report both the average and standard
deviation of the results. All the GNN models are trained for 100
epochs except on the Flickr dataset, where we train the GNN mod-
els for 20 epochs in SISA, GraphEraser and our GraphRevoker to
avoid over-fitting. For the number of samples to train the learnable
aggregator (|U|), we follow the settings of GraphEraser, which se-
lects 1000 samples in datasets with small or medium sizes (Cora,
Citerseer and LastFM Asia), and selected 10% of the training nodes
in larger datasets (Flickr).

A.1.4 Unlearning Efficiency Settings. We randomly select 0.5%
nodes from the node-setV as the undesirable data points D− , and
report the total time cost, including retraining sub-models affected
by undesirable data points and reconstructing the aggregator. The
settings of GNN models and the aggregator are the same as we
mentioned in Section A.1.2. With a single RTX 3090 GPU, 112×
Intel Xeon Gold 6238R CPU cores, and 10 sub-processes, we run
the experiments and present the unlearning efficiency in Table. 3.

A.2 Additional Experiments
A.2.1 Unlearning Power. We verify the unlearning power of
GraphRevoker by enabling models affected by low-quality data
points to regain their utility through unlearning undesirable data
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Figure 3: The unlearning power of our proposed framework.
This figure shows the F1-score (%) on Cora and Citeseer of
the original model, the model affected by low-quality data,
and the model unlearned the low-quality data.

points. In a real-world setting, low-quality data (e.g., outdated user-
item interactions in recommendations) can be regarded as data
points with noisy labels, so here we adopt the random attack [10, 19]
to inject 100 nodes with wrong labels on Cora and Citeseer. We
follow their settings and add 10 random edges for each injected
node. In Figure. 3, we show the F1-score of the original GNNmodels
and models affected by noisy data in (a), (b), (d), and (e), and then
we unlearn the injected negative data points with GraphRevoker
and record the model utility in (c) and (f). As illustrated in Figure. 3,
we can find that the GNN models poisoned by low-quality data
suffer a dramatic performance decrease, and after unlearning the
injected noisy data points, the model utility could be partly regained.
Though the model utility cannot be fully recovered as the noisy
data also degrades the graph sharding module, our proposed graph
unlearning framework could efficiently unlearn undesirable data,
and the recovered model utility is comparable.

Table 5: Ablation study for the partition module.
Datasets Design GAT GCN APPNP

F1-Score Time F1-Score Time F1-Score Time

Cora

GraphRevoker 76.94±1.17 4.72 77.66±1.60 4.65 75.35±1.31 4.23
w/o L𝑠𝑒𝑚 71.99±1.60 4.77 73.82±0.68 4.6 69.54±1.26 4.16
w/o L𝑡𝑖𝑚𝑒 75.89±1.21 4.92 75.70±1.73 4.73 71.85±1.63 4.3
w/o L𝑡𝑖𝑚𝑒 + L𝑠𝑒𝑚 70.94±1.50 5.07 71.66±0.82 4.93 72.64±1.75 4.47

Flickr

GraphRevoker 45.19±1.42 57.37 48.35±0.63 53.69 47.36±0.82 41.74
w/o L𝑠𝑒𝑚 44.46±0.33 57.94 47.64±1.11 52.23 46.68±1.01 40.48
w/o L𝑡𝑖𝑚𝑒 44.54±0.89 58.44 48.00±1.20 54.91 47.19±0.88 42.54
w/o L𝑡𝑖𝑚𝑒 + L𝑠𝑒𝑚 44.09±0.36 59.98 47.88±0.91 55.22 46.09±1.39 44.41

Table 6: Ablation study for the aggregation module.
Datasets Design GAT GCN APPNP

Cora

GraphRevoker 76.94±1.17 78.75±0.47 74.27±1.16
w/o L𝑐𝑜𝑛𝑡𝑟𝑎 76.03±1.02 78.56±0.90 73.75±1.41
w/o L𝑟𝑒𝑐𝑜𝑛 75.70±1.50 78.34±1.21 74.13±0.31
w/o L𝑐𝑜𝑛𝑡𝑟𝑎 + L𝑟𝑒𝑐𝑜𝑛 74.91±2.19 78.15±1.06 73.39±1.19

Flickr

GraphRevoker 45.19±1.42 48.35±0.63 47.36±0.82
w/o L𝑐𝑜𝑛𝑡𝑟𝑎 44.21±0.72 47.97±0.49 47.12±0.83
w/o L𝑟𝑒𝑐𝑜𝑛 44.48±1.55 48.20±0.82 47.00±1.27
w/o L𝑐𝑜𝑛𝑡𝑟𝑎 + L𝑟𝑒𝑐𝑜𝑛 43.86±1.20 47.47±1.07 46.30±1.15

A.2.2 Ablation Study. As shown in Tables 5-6, we present the
performance of GraphRevoker with different designs of training
objectives in both partition and aggregation modules. We find that
ablating any part of our design will result in a model performance
drop. This illustrates the effectiveness of different components in
our proposed GraphRevoker framework.
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A.3 Explanations of the Partition Loss Function
In Section 4.1, we directly present the loss function L𝑝𝑎𝑟𝑡 of the
differentiable graph partition framework in Eq. (4) to Eq. (7) w.r.t.
the soft node assignment matrix 𝑷 . However, it is still unclear why
Eq. (5) to Eq. (7) based on 𝑷 are sufficient to represent the concepts
(e.g., edge cuts, node counts, etc.) in Eq. (1) to Eq. (3). In this section,
we supplement the derivation details of the partition training ob-
jective, illustrating the intuition behind the computations in Eq. (5)
to Eq. (7).

The general idea of understanding the soft node assignment
matrix 𝑷 is to interpret it from a probabilistic perspective. Specifi-
cally, 𝑷𝑖, 𝑗 denotes the probability of assigning node 𝑢𝑖 to subgraph
V𝑗 , so we can estimate the expectation of the number of nodes,
number of edges, and edge cuts in each subgraph. When inferring
actual graph partitions with trained partition network 𝜓 , we di-
rectly assign nodes to the subgraph with the largest probability (i.e.,
assigning node 𝑢𝑖 to subgraph indexed argmax𝑗

(
𝑷𝑖, 𝑗

)
).

A.3.1 TheUnlearning TimeObjective. To compute Eq. (1) with
the soft assignment matrix 𝑷 ∈ R𝑁×𝑆 , the key problem is repre-
senting the number of nodes |V𝑖 | and edges |E𝑖 | in each partitioned
subgraphV𝑖 . It is straightforward to count the nodes in each sub-
graph, which is

E|V𝑖 | =
𝑁∑︁
𝑗=1

𝑷 𝑗,𝑖 × 1 = 1𝑇 𝑷:,𝑖 , (13)

where 1 denotes the 1-valued column vector. To count the edges in
the partitioned subgraph, we have to traverse all the edges (𝑢 𝑗 , 𝑢𝑘 )
in E and compute the expectation as follows:

E|E𝑖 | =
∑︁

(𝑢 𝑗 ,𝑢𝑘 ) ∈E
𝑃𝑟 (𝑢 𝑗 , 𝑢𝑘 ∈ V𝑖 ) × 1 =

∑︁
𝑨 𝑗,𝑘=1

𝑷 𝑗,𝑖𝑷𝑘,𝑖 . (14)

However, computing |E𝑖 | with loop structures is computationally
inefficient, so we further give a vectorized form, which is

E|E𝑖 | =
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[(𝑷:,𝑖𝑷
𝑇
:,𝑖 ) ⊙ 𝑨], (15)

where ⊙ denotes point-wise multiplication, and
∑
𝑟𝑒𝑑𝑢𝑐𝑒 denotes

the reduce-sum operator. Thus, with Eq. (13) and Eq. (15), we can
recover the proposed unlearning time loss in Eq. (5) as follows:

L𝑡𝑖𝑚𝑒 =

𝑆∑︁
𝑖=1

|V𝑖 |
|V| |E𝑖 |

≈ 1
|V|

𝑆∑︁
𝑖=1
E|V𝑖 |E|E𝑖 |

=
1
|V|

𝑆∑︁
𝑖=1

(1𝑇 𝑷:,𝑖 )
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[(𝑷:,𝑖𝑷
𝑇
:,𝑖 ) ⊙ 𝑨] .

A.3.2 The Structure Preservation Objective. The normalized
edge cut objective in Eq. (2) includes the edge cut in the numerator
and the subgraph degree summation in the denominator. First, we
show the computation of the edge cut based on the node assignment

probabilities:

E[𝑐𝑢𝑡 (G𝑖 , Ḡ𝑖 )] =
∑︁

(𝑢 𝑗 ,𝑢𝑘 ) ∈E
𝑃𝑟 (𝑢 𝑗 ∈ V𝑖 )𝑃𝑟 (𝑢𝑘 ∉ V𝑖 ) × 1

=
∑︁

𝑨 𝑗,𝑘=1
𝑷 𝑗,𝑖 (1 − 𝑷𝑘,𝑖 )

=
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[𝑷:,𝑖 (1 − 𝑷:,𝑖 )𝑇 ] ⊙ 𝑨.

(16)

The expected node degree in a subgraph can be computed as
follows:

E


∑︁

𝑢 𝑗 ∈V𝑖

𝑑𝑒𝑔(𝑢 𝑗 )
 =

𝑁∑︁
𝑗=1

𝑷 𝑗,𝑖𝑑𝑒𝑔(𝑢 𝑗 ) = 1𝑇𝑫𝑷:,𝑖 . (17)

Therefore, we can combine previous Eq. (16) and Eq. (17) to recover
the 𝑁𝑐𝑢𝑡 objective in the structure preservation loss as follows:

L𝑠𝑒𝑚 =

𝑆∑︁
𝑘=1

𝑐𝑢𝑡 (G𝑘 , Ḡ𝑘 )∑
𝑢𝑖 ∈G𝑘

𝑑𝑒𝑔(𝑢𝑖 )

≈
𝑆∑︁

𝑘=1

E
[
𝑐𝑢𝑡 (G𝑘 , Ḡ𝑘 )

]
E

[∑
𝑢𝑖 ∈G𝑘

𝑑𝑒𝑔(𝑢𝑖 )
]

=

𝑆∑︁
𝑘=1

∑
𝑟𝑒𝑑𝑢𝑐𝑒 [𝑷:,𝑘 (1 − 𝑷:,𝑘 )𝑇 ] ⊙ 𝑨

1𝑇𝑫𝑷:,𝑘

=
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[
𝑆∑︁

𝑘=1

𝑷:,𝑘 (1 − 𝑷:,𝑘 )𝑇

1𝑇𝑫𝑷:,𝑘

]
⊙ 𝑨

=
∑︁

𝑟𝑒𝑑𝑢𝑐𝑒

[𝑷 · 𝑑𝑖𝑎𝑔−1 (1𝑇𝑫𝑷 )] (1 − 𝑷𝑇 ) ⊙ 𝑨.

A.3.3 The Semantic Preservation Objective. To recover the
semantic preservation loss in Eq. (7), the computation of the number
of nodes |V𝑖 | is shown in Eq. (13). The only problem is counting
the number of nodes annotated with label ℓ𝑗 (i.e., 𝑐ℓ𝑗 (V𝑖 )), which
is computed as follows:

E[𝑐ℓ𝑗 (V𝑖 )] =
∑︁
Y𝑘=ℓ𝑗

𝑷𝑘,𝑖 × 1 =

𝑁∑︁
𝑖=1

𝑷𝑘,𝑖 × 𝒀𝑘,𝑗 = 𝑷𝑇:,𝑘𝒀:, 𝑗 . (18)

Therefore, with Eq. (13) and Eq. (18), we have the following deriva-
tions for the semantic preservation loss in Eq. (7):

L𝑠𝑒𝑚 =
1
𝑆

𝑆∑︁
𝑖=1

𝐶∑︁
𝑗=1

− log[
𝑐ℓ𝑗 (V𝑖 )
|V𝑖 |

]
𝑐ℓ𝑗 (V𝑖 )
|V𝑖 |

≈ 1
𝑆

𝑆∑︁
𝑖=1

𝐶∑︁
𝑗=1

− log[
E[𝑐ℓ𝑗 (V𝑖 )]
E|V𝑖 |

]
E[𝑐ℓ𝑗 (V𝑖 )]
E|V𝑖 |

=
1
𝑆

𝑆∑︁
𝑖=1

𝐶∑︁
𝑗=1

−𝑙𝑜𝑔
(
𝑷𝑇:,𝑖𝒀:, 𝑗

𝑷𝑇:,𝑖1

)
𝑷𝑇:,𝑖𝒀:, 𝑗

𝑷𝑇:,𝑖1
.

A.4 Extended Related Works
A.4.1 Machine Unlearning. Machine Unlearning is a novel con-
cept that denotes removing the impact of some undesirable data
points from trained ML models. Pioneering efforts in this domain,
including statistical query unlearning [4] and certified removal [14],
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have provided effective and provable data impact removal solutions
for simple MLmodels (e.g., Logistic Regression). Nevertheless, these
methods cannot be simply adapted to more complex models, such as
Deep Neural Networks (DNNs). To mitigate this, researchers have
introduced approximate unlearning strategies aimed at removing
the effect of adverse data in DNNs, which estimates the influence of
these data on parameters andmanipulates the corresponding param-
eters [13, 25]. In retrospect, approximate unlearning methods only
ensure that the impact of data is alleviated, falling short of achiev-
ing exact data impact removal. To address this problem, Bourtoule
et al. proposed the SISA [2] framework to achieve model-agnostic
and exact unlearning via data partitioning and partial retraining.
Owing to its flexibility and reliable removal guarantee, SISA and its
variants have made great progress in machine unlearning tailored
to image recognition [30] and decision trees [3].

Despite the aforementioned success of machine unlearning ap-
proaches, graph unlearning for graph neural networks (GNNs) is
still a less explored problem. It is also non-trivial to adapt the exist-
ing solutions to the context of graphs and GNNs, since they cannot
address the non-Euclidean and non-i.i.d. nature of graph learning.
In this paper, wemainly focus on the graph unlearning problem, and
provide innovative designs to overcome the limitations in existing
solutions, as discussed in previous Section 3.

A.4.2 Graph Partitioning. Graph partitioning, the process of
splitting a graph into a fixed number of shards, is a prevalent tech-
nique in graph data management. Generally, previous partitioning
techniques strive to balance storage load and inter-server commu-
nication overhead, thereby facilitating the efficient processing of
large-scale graphs stored in distributed systems [1]. These meth-
ods partition the graph into subgraphs with balanced numbers of
nodes and edges to achieve load-balancing, and minimize the edge
cut between subgraphs to lower the communication cost between
different server machines [16, 18, 21, 28, 33]. However, in line with
our discussions in Section 3, such methods may lead to imbalanced
sub-datasets and suboptimal sub-models due to their tendency to
cluster interconnected nodes into the same subgraph. Furthermore,
the conventional metrics of balance in graph partitioning, which
focus solely on nodes or edges, do not account for the multifaceted
nature of balancing the unlearning time of each subgraph GNN
model. As discussed in Section 4.1, the unlearning time is simul-
taneously related to the number of both elements (i.e., nodes and
edges) in each subgraph, highlighting the inadequacy of existing
node-only or edge-only balance metrics. These limitations strongly
underscore the need for a novel and systematic graph partitioning
method, specifically designed for the unique demands of retraining-
dependent graph unlearning.

A.5 Limitations
While this paper represents a significant leap forward in enhancing
model utility within retraining-centric graph unlearning methods,
it is still not without its limitations. Notably, there remains a sub-
stantial utility loss compared with unlearning by retraining from
scratch (as shown in Table. 2), which may impede practical appli-
cations of the proposed GraphRevoker framework. Furthermore,
a more comprehensive evaluation is needed, encompassing both

retraining-based and approximate graph unlearning techniques, to
fully show the effectiveness of the proposed method.

Besides, another concern arises from the potential for informa-
tion leakage during the graph partitioning phase of retraining-based
unlearning methods, such as GraphEraser and our own method.
Since the graph partition results remain unchanged during sub-
model retraining, some residual effects of the undesirable data
could persist in the partitions even after unlearning, potentially
leading to unforeseen consequences. Therefore, a more thorough
theoretical analysis is necessary to ensure the robustness of data
impact removal provided by these methods.
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