
Published as a conference paper at ICLR 2021

DATASET CONDENSATION WITH GRADIENT MATCHING

Bo Zhao, Konda Reddy Mopuri, Hakan Bilen
School of Informatics, The University of Edinburgh
{bo.zhao, kmopuri, hbilen}@ed.ac.uk

ABSTRACT

As the state-of-the-art machine learning methods in many fields rely on larger
datasets, storing datasets and training models on them become significantly more
expensive. This paper proposes a training set synthesis technique for data-efficient
learning, called Dataset Condensation, that learns to condense large dataset into
a small set of informative synthetic samples for training deep neural networks
from scratch. We formulate this goal as a gradient matching problem between the
gradients of deep neural network weights that are trained on the original and our
synthetic data. We rigorously evaluate its performance in several computer vision
benchmarks and demonstrate that it significantly outperforms the state-of-the-art
methods1. Finally we explore the use of our method in continual learning and
neural architecture search and report promising gains when limited memory and
computations are available.

1 INTRODUCTION

Large-scale datasets, comprising millions of samples, are becoming the norm to obtain state-of-
the-art machine learning models in multiple fields including computer vision, natural language pro-
cessing and speech recognition. At such scales, even storing and preprocessing the data becomes
burdensome, and training machine learning models on them demands for specialized equipment and
infrastructure. An effective way to deal with large data is data selection – identifying the most repre-
sentative training samples – that aims at improving data efficiency of machine learning techniques.
While classical data selection methods, also known as coreset construction (Agarwal et al., 2004;
Har-Peled & Mazumdar, 2004; Feldman et al., 2013), focus on clustering problems, recent work
can be found in continual learning (Rebuffi et al., 2017; Toneva et al., 2019; Castro et al., 2018;
Aljundi et al., 2019) and active learning (Sener & Savarese, 2018) where there is typically a fixed
budget in storing and labeling training samples respectively. These methods commonly first define
a criterion for representativeness (e.g. in terms of compactness (Rebuffi et al., 2017; Castro et al.,
2018), diversity (Sener & Savarese, 2018; Aljundi et al., 2019), forgetfulness (Toneva et al., 2019)),
then select the representative samples based on the criterion, finally use the selected small set to
train their model for a downstream task.

Unfortunately, these methods have two shortcomings: they typically rely on i) heuristics (e.g. pick-
ing cluster centers) that does not guarantee any optimal solution for the downstream task (e.g. image
classification), ii) presence of representative samples, which is neither guaranteed. A recent method,
Dataset Distillation (DD) (Wang et al., 2018) goes beyond these limitations by learning a small set
of informative images from large training data. In particular, the authors model the network param-
eters as a function of the synthetic training data and learn them by minimizing the training loss over
the original training data w.r.t. synthetic data. Unlike in the coreset methods, the synthesized data
are directly optimized for the downstream task and thus the success of the method does not rely on
the presence of representative samples.

Inspired from DD (Wang et al., 2018), we focus on learning to synthesize informative samples that
are optimized to train neural networks for downstream tasks and not limited to individual samples
in original dataset. Like DD, our goal is to obtain the highest generalization performance with
a model trained on a small set of synthetic images, ideally comparable performance to that of a
model trained on the original images (see Figure 1(a)). In particular, we investigate the following

1The implementation is available at https://github.com/VICO-UoE/DatasetCondensation.

1

https://github.com/VICO-UoE/DatasetCondensation

Published as a conference paper at ICLR 2021

Backpropagation

Forward passMatching
Loss

Comparable

Large training set

Small synthetic set

CNN

CE
Loss

CE
Loss

Update
synthetic set

Large training set

Small synthetic set

train test

train test

(a) (b)

Figure 1: Dataset Condensation (left) aims to generate a small set of synthetic images that can match the
performance of a network trained on a large image dataset. Our method (right) realizes this goal by learning
a synthetic set such that a deep network trained on it and the large set produces similar gradients w.r.t. its
weights. The synthetic data can later be used to train a network from scratch in a small fraction of the original
computational load. CE denotes Cross-Entropy.

questions. Is it possible to i) compress a large image classification dataset into a small synthetic
set, ii) train an image classification model on the synthetic set that can be further used to classify
real images, iii) learn a single set of synthetic images that can be used to train different neural
network architectures? To this end, we propose a Dataset Condensation method to learn a small set
of “condensed” synthetic samples such that a deep neural network trained on them obtains not only
similar performance but also a close solution to a network trained on the large training data in the
network parameter space. We formulate this goal as a minimization problem between two sets of
gradients of the network parameters that are computed for a training loss over a large fixed training
set and a learnable condensed set (see Figure 1(b)). We show that our method enables effective
learning of synthetic images and neural networks trained on them, outperforms (Wang et al., 2018)
and coreset methods with a wide margin in multiple computer vision benchmarks. In addition,
learning a compact set of synthetic samples also benefits other learning problems when there is
a fixed budget on training images. We show that our method outperforms popular data selection
methods by providing more informative training samples in continual learning. Finally, we explore
a promising use case of our method in neural architecture search, and show that – once our condensed
images are learned – they can be used to train numerous network architectures extremely efficiently.

Our method is related to knowledge distillation (KD) techniques (Hinton et al., 2015; Buciluǎ et al.,
2006; Ba & Caruana, 2014; Romero et al., 2014) that transfer the knowledge in an ensemble of
models to a single one. Unlike KD, we distill knowledge of a large training set into a small synthetic
set. Our method is also related to Generative Adversarial Networks (Goodfellow et al., 2014a; Mirza
& Osindero, 2014; Radford et al., 2015) and Variational AutoEncoders (Kingma & Welling, 2013)
that synthesize high-fidelity samples by capturing the data distribution. In contrast, our goal is to
generate informative samples for training deep neural networks rather than to produce “real-looking”
samples. Finally our method is related to the methods that produce image patches by projecting the
feature activations back to the input pixel space (Zeiler & Fergus, 2014), reconstruct the input image
by matching the feature activations (Mahendran & Vedaldi, 2015), recover private training images
for given training gradients (Zhu et al., 2019; Zhao et al., 2020), synthesize features from semantic
embeddings for zero-shot learning (Sariyildiz & Cinbis, 2019). Our goal is however to synthesize a
set of condensed training images not to recover the original or missing training images.

In the remainder of this paper, we first review the problem of dataset condensation and introduce our
method in section 2, present and analyze our results in several image recognition benchmarks in sec-
tion 3.1, showcase applications in continual learning and network architecture search in section 3.2,
and conclude the paper with remarks for future directions in section 4.

2 METHOD

2.1 DATASET CONDENSATION

Suppose we are given a large dataset consisting of |T | pairs of a training image and its class label
T = {(xi, yi)}||T |i=1 where x ∈ X ⊂ Rd, y ∈ {0, . . . , C − 1}, X is a d-dimensional input space and
C is the number of classes. We wish to learn a differentiable function φ (i.e. deep neural network)

2

Published as a conference paper at ICLR 2021

with parameters θ that correctly predicts labels of previously unseen images, i.e. y = φθ(x). One
can learn the parameters of this function by minimizing an empirical loss term over the training set:

θT = argmin
θ

LT (θ) (1)

where LT (θ) = 1
|T |
∑

(x,y)∈T `(φθ(x), y) , `(·, ·) is a task specific loss (i.e. cross-entropy) and
θT is the minimizer of LT . The generalization performance of the obtained model φθT can be
written as Ex∼PD [`(φθT (x), y)] where PD is the data distribution. Our goal is to generate a small
set of condensed synthetic samples with their labels, S = {(si, yi)}||S|i=1 where s ∈ Rd and y ∈ Y ,
|S| � |T |. Similar to eq. (1), once the condensed set is learned, one can train φ on them as follows

θS = argmin
θ

LS(θ) (2)

where LS(θ) = 1
|S|
∑

(s,y)∈S `(φθ(s), y) and θS is the minimizer of LS . As the synthetic set
S is significantly smaller (2-3 orders of magnitude), we expect the optimization in eq. (2) to be
significantly faster than that in eq. (1). We also wish the generalization performance of φθS to be
close to φθT , i.e. Ex∼PD [`(φθT (x), y)] ' Ex∼PD [`(φθS (x), y)] over the real data distribution PD.

Discussion. The goal of obtaining comparable generalization performance by training on the con-
densed data can be formulated in different ways. One approach, which is proposed in (Wang et al.,
2018) and extended in (Sucholutsky & Schonlau, 2019; Bohdal et al., 2020; Such et al., 2020), is to
pose the parameters θS as a function of the synthetic data S:

S∗ = argmin
S

LT (θS(S)) subject to θS(S) = argmin
θ

LS(θ). (3)

The method aims to find the optimum set of synthetic images S∗ such that the model φθS trained on
them minimizes the training loss over the original data. Optimizing eq. (3) involves a nested loop
optimization and solving the inner loop for θS(S) at each iteration to recover the gradients for S
which requires a computationally expensive procedure – unrolling the recursive computation graph
for S over multiple optimization steps for θ (see (Samuel & Tappen, 2009; Domke, 2012)). Hence,
it does not scale to large models and/or accurate inner-loop optimizers with many steps. Next we
propose an alternative formulation for dataset condensation.

2.2 DATASET CONDENSATION WITH PARAMETER MATCHING

Here we aim to learn S such that the model φθS trained on them achieves not only comparable
generalization performance to φθT but also converges to a similar solution in the parameter space
(i.e. θS ≈ θT). Let φθ be a locally smooth function2, similar weights (θS ≈ θT) imply similar
mappings in a local neighborhood and thus generalization performance, i.e. Ex∼PD [`(φθT (x), y)] '
Ex∼PD [`(φθS (x), y)]. Now we can formulate this goal as

min
S
D(θS ,θT) subject to θS(S) = argmin

θ
LS(θ) (4)

where θT = argminθ LT (θ) and D(·, ·) is a distance function. In a deep neural network, θT
typically depends on its initial values θ0. However, the optimization in eq. (4) aims to obtain an
optimum set of synthetic images only for one model φθT with the initialization θ0, while our actual
goal is to generate samples that can work with a distribution of random initializations Pθ0 . Thus we
modify eq. (4) as follows:

min
S

Eθ0∼Pθ0
[D(θS(θ0),θ

T (θ0))] subject to θS(S) = argmin
θ

LS(θ(θ0)) (5)

where θT = argminθ LT (θ(θ0)). For brevity, we use only θS and θT to indicate θS(θ0) and
θT (θ0) respectively in the next sections. The standard approach to solving eq. (5) employs implicit
differentiation (see (Domke, 2012) for details), which involves solving an inner loop optimization for
θS . As the inner loop optimization θS(S) = argminθ LS(θ) can be computationally expensive in

2Local smoothness is frequently used to obtain explicit first-order local approximations in deep networks
(e.g. see (Rifai et al., 2012; Goodfellow et al., 2014b; Koh & Liang, 2017)).

3

Published as a conference paper at ICLR 2021

case of large-scale models, one can adopt the back-optimization approach in (Domke, 2012) which
re-defines θS as the output of an incomplete optimization:

θS(S) = opt-algθ(LS(θ), ς) (6)

where opt-alg is a specific optimization procedure with a fixed number of steps (ς).

In practice, θT for different initializations can be trained first in an offline stage and then used as
the target parameter vector in eq. (5). However, there are two potential issues by learning to regress
θT as the target vector. First the distance between θT and intermediate values of θS can be too
big in the parameter space with multiple local minima traps along the path and thus it can be too
challenging to reach. Second opt-alg involves a limited number of optimization steps as a trade-
off between speed and accuracy which may not be sufficient to take enough steps for reaching the
optimal solution. These problems are similar to those of (Wang et al., 2018), as they both involve
parameterizing θS with S and θ0.

2.3 DATASET CONDENSATION WITH CURRICULUM GRADIENT MATCHING

Here we propose a curriculum based approach to address the above mentioned challenges. The key
idea is that we wish θS to be close to not only the final θT but also to follow a similar path to θT
throughout the optimization. While this can restrict the optimization dynamics for θ, we argue that
it also enables a more guided optimization and effective use of the incomplete optimizer. We can
now decompose eq. (5) into multiple subproblems:

min
S

Eθ0∼Pθ0
[

T−1∑
t=0

D(θSt ,θ
T
t)] subject to

θSt+1(S) = opt-algθ(LS(θSt), ςS) and θTt+1 = opt-algθ(LT (θTt), ςT)

(7)

where T is the number of iterations, ςS and ςT are the numbers of optimization steps for θS and
θT respectively. In words, we wish to generate a set of condensed samples S such that the network
parameters trained on them (θSt) are similar to the ones trained on the original training set (θTt) at
each iteration t. In our preliminary experiments, we observe that θSt+1, which is parameterized with
S, can successfully track θTt+1 by updating S and minimizing D(θSt ,θ

T
t) close to zero.

In the case of one step gradient descent optimization for opt-alg, the update rule is:

θSt+1 ← θSt − ηθ∇θLS(θSt) and θTt+1 ← θTt − ηθ∇θLT (θTt), (8)

where ηθ is the learning rate. Based on our observation (D(θSt ,θ
T
t) ≈ 0), we simplify the formula-

tion in eq. (7) by replacing θTt with θSt and use θ to denote θS in the rest of the paper:

min
S

Eθ0∼Pθ0
[

T−1∑
t=0

D(∇θLS(θt),∇θLT (θt))]. (9)

We now have a single deep network with parameters θ trained on the synthetic set S which is
optimized such that the distance between the gradients for the loss over the training samples LT
w.r.t. θ and the gradients for the loss over the condensed samples LS w.r.t. θ is minimized. In
words, our goal reduces to matching the gradients for the real and synthetic training loss w.r.t. θ
via updating the condensed samples. This approximation has the key advantage over (Wang et al.,
2018) and eq. (5) that it does not require the expensive unrolling of the recursive computation graph
over the previous parameters {θ0, . . . ,θt−1}. The important consequence is that the optimization is
significantly faster, memory efficient and thus scales up to the state-of-the-art deep neural networks
(e.g. ResNet (He et al., 2016)).

Discussion. The synthetic data contains not only samples but also their labels (s, y) that can be
jointly learned by optimizing eq. (9) in theory. However, their joint optimization is challenging, as
the content of the samples depend on their label and vice-versa. Thus in our experiments we learn
to synthesize images for fixed labels, e.g. one synthetic image per class.

4

Published as a conference paper at ICLR 2021

Algorithm. We depict the optimization details in Alg. 1. At the outer level, it contains a loop over
random weight initializations, as we want to obtain condensed images that can later be used to train
previously unseen models. Once θ is randomly initialized, we use φθ to first compute the loss over
both the training samples (LT), synthetic samples (LS) and their gradients w.r.t. θ, then optimize
the synthetic samples S to match these gradients ∇θLS to ∇θLT by applying ςS gradient descent
steps with learning rate ηS . We use the stochastic gradient descent optimization for both opt-algθ
and opt-algS . Next we train θ on the updated synthetic images by minimizing the loss LS with
learning rate ηθ for ςθ steps. Note that we sample each real and synthetic batch pair from T and
S containing samples from a single class and the synthetic data for each class are separately (or
parallelly) updated at each iteration (t) for the following reasons: i) this reduces memory use at train
time, ii) imitating the mean gradients w.r.t. the data from single class is easier compared to those of
multiple classes. This does not bring any extra computational cost.

Algorithm 1: Dataset condensation with gradient matching
Input: Training set T

1 Required: Randomly initialized set of synthetic samples S for C classes, probability distribution over
randomly initialized weights Pθ0 , deep neural network φθ , number of outer-loop steps K, number of
inner-loop steps T , number of steps for updating weights ςθ and synthetic samples ςS in each inner-loop
step respectively, learning rates for updating weights ηθ and synthetic samples ηS .

2 for k = 0, · · · ,K − 1 do
3 Initialize θ0 ∼ Pθ0
4 for t = 0, · · · , T − 1 do
5 for c = 0, · · · , C − 1 do
6 Sample a minibatch pair BT

c ∼ T and BS
c ∼ S . BT

c and BS
c are of the same class c.

7 Compute LT
c = 1

|BT
c |

∑
(x,y)∈BT

c
`(φθt(x), y) and LS

c = 1
|BS

c |
∑

(s,y)∈BS
c
`(φθt(s), y)

8 Update Sc ← opt-algS(D(∇θLS
c (θt),∇θLT

c (θt)), ςS , ηS)

9 Update θt+1 ← opt-algθ(LS(θt), ςθ, ηθ) . Use the whole S

Output: S

Gradient matching loss. The matching loss D(·, ·) in eq. (9) measures the distance between the
gradients for LS and LT w.r.t. θ. When φθ is a multi-layered neural network, the gradients corre-
spond to a set of learnable 2D (out×in) and 4D (out×in×h×w) weights for each fully connected
(FC) and convolutional layer resp where out, in, h, w are number of output and input channels,
kernel height and width resp. The matching loss can be decomposed into a sum of layerwise losses
as D(∇θLS ,∇θLT) =

∑L
l=1 d(∇θ(l)LS ,∇θ(l)LT) where l is the layer index, L is the number of

layers with weights and

d(A,B) =

out∑
i=1

(
1− Ai· ·Bi·

‖Ai·‖‖Bi·‖

)
(10)

where Ai· and Bi· are flattened vectors of gradients corresponding to each output node i, which is
in dimensional for FC weights and in×h×w dimensional for convolutional weights. In contrast to
(Lopez-Paz et al., 2017; Aljundi et al., 2019; Zhu et al., 2019) that ignore the layer-wise structure by
flattening tensors over all layers to one vector and then computing the distance between two vectors,
we group them for each output node. We found that this is a better distance for gradient matching
(see the supplementary) and enables using a single learning rate across all layers.

3 EXPERIMENTS

3.1 DATASET CONDENSATION

First we evaluate classification performance with the condensed images on four standard benchmark
datasets: digit recognition on MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011) and object
classification on FashionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009). We test
our method using six standard deep network architectures: MLP, ConvNet (Gidaris & Komodakis,
2018), LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan & Zis-
serman, 2014) and ResNet-18 (He et al., 2016). MLP is a multilayer perceptron with two nonlinear
hidden layers, each has 128 units. ConvNet is a commonly used modular architecture in few-shot

5

Published as a conference paper at ICLR 2021

Img/Cls Ratio % Coreset Selection Ours Whole DatasetRandom Herding K-Center Forgetting

MNIST
1 0.017 64.9±3.5 89.2±1.6 89.3±1.5 35.5±5.6 91.7±0.5

99.6±0.010 0.17 95.1±0.9 93.7±0.3 84.4±1.7 68.1±3.3 97.4±0.2
50 0.83 97.9±0.2 94.9±0.2 97.4±0.3 88.2±1.2 98.8±0.2

FashionMNIST
1 0.017 51.4±3.8 67.0±1.9 66.9±1.8 42.0±5.5 70.5±0.6

93.5±0.110 0.17 73.8±0.7 71.1±0.7 54.7±1.5 53.9±2.0 82.3±0.4
50 0.83 82.5±0.7 71.9±0.8 68.3±0.8 55.0±1.1 83.6±0.4

SVHN
1 0.014 14.6±1.6 20.9±1.3 21.0±1.5 12.1±1.7 31.2±1.4

95.4±0.110 0.14 35.1±4.1 50.5±3.3 14.0±1.3 16.8±1.2 76.1±0.6
50 0.7 70.9±0.9 72.6±0.8 20.1±1.4 27.2±1.5 82.3±0.3

CIFAR10
1 0.02 14.4±2.0 21.5±1.2 21.5±1.3 13.5±1.2 28.3±0.5

84.8±0.110 0.2 26.0±1.2 31.6±0.7 14.7±0.9 23.3±1.0 44.9±0.5
50 1 43.4±1.0 40.4±0.6 27.0±1.4 23.3±1.1 53.9±0.5

Table 1: The performance comparison to coreset methods. This table shows the testing accuracies (%) of
different methods on four datasets. ConvNet is used for training and testing. Img/Cls: image(s) per class,
Ratio (%): the ratio of condensed images to whole training set.

learning (Snell et al., 2017; Vinyals et al., 2016; Gidaris & Komodakis, 2018) with D duplicate
blocks, and each block has a convolutional layer with W (3× 3) filters, a normalization layer N , an
activation layerA and a pooling layer P , denoted as [W,N,A, P]×D. The default ConvNet (unless
specified otherwise) includes 3 blocks, each with 128 filters, followed by InstanceNorm (Ulyanov
et al., 2016), ReLU and AvgPooling modules. The final block is followed by a linear classifier.
We use Kaiming initialization (He et al., 2015) for network weights. The synthetic images can be
initialized from Gaussian noise or randomly selected real training images. More details about the
datasets, networks and hyper-parameters can be found in the supplementary.

The pipeline for dataset condensation has two stages: learning the condensed images (denoted as C)
and training classifiers from scratch on them (denoted as T). Note that the model architectures used
in two stages might be different. For the coreset baselines, the coreset is selected in the first stage.
We investigate three settings: 1, 10 and 50 image/class learning, which means that the condensed
set or coreset contains 1, 10 and 50 images per class respectively. Each method is run for 5 times,
and 5 synthetic sets are generated in the first stage; each generated synthetic set is used to train
20 randomly initialized models in the second stage and evaluated on the test set, which amounts
to evaluating 100 models in the second stage. In all experiments, we report the mean and standard
deviation of these 100 testing results.

Baselines. We compare our method to four coreset baselines (Random, Herding, K-Center and
Forgetting) and also to DD (Wang et al., 2018). In Random, the training samples are randomly
selected as the coreset. Herding baseline, which selects closest samples to the cluster center, is based
on (Welling, 2009) and used in (Rebuffi et al., 2017; Castro et al., 2018; Wu et al., 2019; Belouadah
& Popescu, 2020). K-Center (Wolf, 2011; Sener & Savarese, 2018) picks multiple center points
such that the largest distance between a data point and its nearest center is minimized. For Herding
and K-Center, we use models trained on the whole dataset to extract features, compute l2 distance
to centers. Forgetting method (Toneva et al., 2019) selects the training samples which are easy to
forget during training. We do not compare to GSS-Greedy (Aljundi et al., 2019), because it is also
a similarity based greedy algorithm like K-Center, but GSS-Greedy trains an online learning model
to measure the similarity of samples, which is different from general image classification problem.
More detailed comparisons can be found in the supplementary.

Comparison to coreset methods. We first compare our method to the coreset baselines on
MNIST, FashionMNIST, SVHN and CIFAR10 in Table 1 using the default ConvNet in classifi-
cation accuracy. Whole dataset indicates training on the whole original set which serves as an
approximate upper-bound performance. First we observe that our method outperforms all the base-
lines significantly and achieves a comparable result (98.8%) in case of 50 images per class to the
upper bound (99.6%) in MNIST which uses two orders of magnitude more training images per class
(6000). We also obtain promising results in FashionMNIST, however, the gap between our method
and upper bound is bigger in SVHN and CIFAR10 which contain more diverse images with varying
foregrounds and backgrounds. We also observe that, (i) the random selection baseline is competitive
to other coreset methods in 10 and 50 images per class and (ii) herding method is on average the best
coreset technique. We visualize the condensed images produced by our method under 1 image/class
setting in Figure 2. Interestingly they are interpretable and look like “prototypes” of each class.

6

Published as a conference paper at ICLR 2021

Top PantsPulloverDress Coat Sandal ShirtSneaker Bag Boot

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Figure 2: Visualization of condensed 1 im-
age/class with ConvNet for MNIST, Fashion-
MNIST, SVHN and CIFAR10.

C\T MLP ConvNet LeNet AlexNet VGG ResNet

MLP 70.5±1.2 63.9±6.5 77.3±5.8 70.9±11.6 53.2±7.0 80.9±3.6
ConvNet 69.6±1.6 91.7±0.5 85.3±1.8 85.1±3.0 83.4±1.8 90.0±0.8

LeNet 71.0±1.6 90.3±1.2 85.0±1.7 84.7±2.4 80.3±2.7 89.0±0.8
AlexNet 72.1±1.7 87.5±1.6 84.0±2.8 82.7±2.9 81.2±3.0 88.9±1.1

VGG 70.3±1.6 90.1±0.7 83.9±2.7 83.4±3.7 81.7±2.6 89.1±0.9
ResNet 73.6±1.2 91.6±0.5 86.4±1.5 85.4±1.9 83.4±2.4 89.4±0.9

Table 2: Cross-architecture performance in testing accu-
racy (%) for condensed 1 image/class in MNIST.

Dataset Img/Cls DD Ours Whole Dataset

MNIST 1 - 85.0±1.6 99.5±0.010 79.5±8.1 93.9±0.6

CIFAR10 1 - 24.2±0.9 83.1±0.210 36.8±1.2 39.1±1.2

Table 3: Comparison to DD (Wang et al.,
2018) in terms of testing accuracy (%).

Random Herding Ours Early-stopping Whole Dataset

Performance (%) 76.2 76.2 84.5 84.5 85.9
Correlation -0.21 -0.20 0.79 0.42 1.00

Time cost (min) 18.8 18.8 18.8 18.8 8604.3
Storage (imgs) 102 102 102 104 5× 104

Table 4: Neural Architecture Search. Methods are compared
in performance, ranking correlation, time and memory cost.

Comparison to DD (Wang et al., 2018). Unlike the setting in Table 1, DD (Wang et al., 2018)
reports results only for 10 images per class on MNIST and CIFAR10 over LeNet and AlexCifarNet
(a customized AlexNet). We strictly follow the experimental setting in (Wang et al., 2018), use
the same architectures and report our and their original results in Table 3 for a fair comparison.
Our method achieves significantly better performance than DD on both benchmarks; obtains 5%
higher accuracy with only 1 synthetic sample per class than DD with 10 samples per class. In
addition, our method obtains consistent results over multiple runs with a standard deviation of only
0.6% on MNIST, while DD’s performance significantly vary over different runs (8.1%). Finally
our method trains 2 times faster than DD and requires 50% less memory on CIFAR10 experiments.
More detailed runtime and qualitative comparison can be found in the supplementary.

Cross-architecture generalization. Another key advantage of our method is that the condensed
images learned using one architecture can be used to train another unseen one. Here we learn 1 con-
densed image per class for MNIST over a diverse set of networks including MLP, ConvNet (Gidaris
& Komodakis, 2018), LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012), VGG-11 (Si-
monyan & Zisserman, 2014) and ResNet-18 (He et al., 2016) (see Table 2). Once the condensed
sets are synthesized, we train every network on all the sets separately from scratch and evaluate their
cross architecture performance in terms of classification accuracy on the MNIST test set. Table 2
shows that the condensed images, especially the ones that are trained with convolutional networks,
perform well and are thus architecture generic. MLP generated images do not work well for training
convolutional architectures which is possibly due to the mismatch between translation invariance
properties of MLP and convolutional networks. Interestingly, MLP achieves better performance
with convolutional network generated images than the MLP generated ones. The best results are
obtained in most cases with ResNet generated images and ConvNet or ResNet as classifiers which
is inline with their performances when trained on the original dataset.

Number of condensed images. We also study the test performance of a ConvNet trained on them
for MNIST, FashionMNIST, SVHN and CIFAR10 for various number of condensed images per class
in Figure 3 in absolute and relative terms – normalized by its upper-bound. Increasing the number
of condensed images improves the accuracies in all benchmarks and further closes the gap with the
upper-bound performance especially in MNIST and FashionMNIST, while the gap remains larger in
SVHN and CIFAR10. In addition, our method outperforms the coreset method - Herding by a large
margin in all cases.

Activation, normalization & pooling. We also study the effect of various activation (sigmoid,
ReLU (Nair & Hinton, 2010; Zeiler et al., 2013), leaky ReLU (Maas et al., 2013)), pooling (max,
average) and normalization functions (batch (Ioffe & Szegedy, 2015), group (Wu & He, 2018),
layer (Ba et al., 2016), instance norm (Ulyanov et al., 2016)) and have the following observations:
i) leaky ReLU over ReLU and average pooling over max pooling enable learning better condensed
images, as they allow for denser gradient flow; ii) instance normalization obtains better classifica-

7

Published as a conference paper at ICLR 2021

90

95

99
MNIST

90

95

99

Herding
Ours

70

80

FashionMNIST

70

80

90

Herding
Ours

1 10 20 30 40 50
images/class

20

40

60

80

Ab
so

lu
te

 a
cc

ur
ac

y
(%

)
SVHN

20

40

60

80

Herding
Ours

1 10 20 30 40 50
images/class

20

30

40

50

CIFAR10

40

60

Re
la

tiv
e

ac
cu

ra
cy

 (%
)

Herding
Ours

Figure 3: Absolute and relative testing accuracies
for varying the number of condensed images/class for
MNIST, FashionMNIST, SVHN and CIFAR10. The
relative accuracy means the ratio compared to its upper-
bound, i.e. training with the whole dataset.

T1 T2 T3
Training stage

90

91

92

93

94

95

Te
st

in
g

ac
cu

ra
cy

 (%
) 94.3 94.5

94.8
95.2

90.8 90.7

92.4
93.0

Herding w. KD
Ours w. KD
Herding w.o. KD
Ours w.o. KD

Figure 4: Continual learning performance in
accuracy (%). Herding denotes the original
E2E (Castro et al., 2018). T1, T2, T3 are three
learning stages. The performance at each stage is
the mean testing accuracy on all learned tasks.

tion performance than its alternatives when used in the networks that are trained on a small set of
condensed images. We refer to the supplementary for detailed results and discussion.

3.2 APPLICATIONS

Continual Learning First we apply our method to a continual-learning scenario (Rebuffi et al.,
2017; Castro et al., 2018) where new tasks are learned incrementally and the goal is to preserve the
performance on the old tasks while learning the new ones. We build our model on E2E method in
(Castro et al., 2018) that uses a limited budget rehearsal memory (we consider 10 images/class here)
to keep representative samples from the old tasks and knowledge distillation (KD) to regularize the
network’s output w.r.t. to previous predictions. We replace its sample selection mechanism (herding)
with ours such that a set of condensed images are generated and stored in the memory, keep the rest
of the model same and evaluate this model on the task-incremental learning problem on the digit
recognition datasets, SVHN (Netzer et al., 2011), MNIST (LeCun et al., 1998) and USPS (Hull,
1994) in the same order. MNIST and USPS images are reshaped to 32× 32 RGB images.

We compare our method to E2E (Castro et al., 2018), depicted as herding in Figure 4,
with and without KD regularization. The experiment contains 3 incremental training stages
(SVHN→MNIST→USPS) and testing accuracies are computed by averaging over the test sets of
the previous and current tasks after each stage. The desired outcome is to obtain high mean clas-
sification accuracy at T3. The results indicate that the condensed images are more data-efficient
than the ones sampled by herding and thus our method outperforms E2E in both settings, while by a
larger margin (2.3% at T3) when KD is not employed.

Neural Architecture Search. Here we explore the use of our method in a simple neural architec-
ture search (NAS) experiment on CIFAR10 which typically requires expensive training of numerous
architectures multiple times on the whole training set and picking the best performing ones on a val-
idation set. Our goal is to verify that our condensed images can be used to efficiently train multiple
networks to identify the best network. To this end, we construct the search space of 720 ConvNets
as described in Section 3.1 by varying hyper-parameters W , N , A, P , D over an uniform grid (see
supplementary for more details), train them for 100 epochs on three small proxy datasets (10 im-
ages/class) that are obtained with Random sampling, Herding and our method. Note that we train
the condensed images for once only with the default ConvNet architecture and use them to train
all kinds of architectures. We also compare to early-stopping (Li & Talwalkar, 2020) in which the
model is trained on whole training set but with the same number of training iterations as the one
required for the small proxy datasets, in other words, for the same amount of computations.

Table 4 depicts i) the average test performance of the best selected model over 5 runs when trained
on the whole dataset, ii) Spearman’s rank correlation coefficient between the validation accuracies
obtained by training the selected top 10 models on the proxy dataset and whole dataset, iii) time for
training 720 architectures on a NVIDIA GTX1080-Ti GPU, and iv) memory print of the training
images. Our method achieves the highest testing performance (84.5%) and performance correlation
(0.79), meanwhile significantly decreases the the searching time (from 8604.3 to 18.8 minutes)
and storage space (from 5 × 104 to 1 × 102 images) compared to whole-dataset training. The
competitive early-stopping baseline achieves on par performance for the best performing model with

8

Published as a conference paper at ICLR 2021

ours, however, the rank correlation (0.42) of top 10 models is significantly lower than ours (0.79)
which indicates unreliable correlation of performances between early-stopping and whole-dataset
training. Furthermore, early-stopping needs 100 times as many training images as ours needs. Note
that the training time for synthetic images is around 50 minutes (for K = 500) which is one time
off and negligible cost when training thousands even millions of candidate architectures in NAS.

4 CONCLUSION

In this paper, we propose a dataset condensation method that learns to synthesize a small set of
informative images. We show that these images are significantly more data-efficient than the same
number of original images and the ones produced by the previous method, and they are not archi-
tecture dependent, can be used to train different deep networks. Once trained, they can be used
to lower the memory print of datasets and efficiently train numerous networks which are crucial in
continual learning and neural architecture search respectively. For future work, we plan to explore
the use of condensed images in more diverse and thus challenging datasets like ImageNet (Deng
et al., 2009) that contain higher resolution images with larger variations in appearance and pose of
objects, background.

Acknowledgment. This work is funded by China Scholarship Council 201806010331 and the
EPSRC programme grant Visual AI EP/T028572/1. We thank Iain Murray and Oisin Mac Aodha
for their valuable feedback.

REFERENCES

Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approximating extent measures of
points. Journal of the ACM (JACM), 51(4):606–635, 2004.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pp. 11816–
11825, 2019.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural informa-
tion processing systems, pp. 2654–2662, 2014.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Eden Belouadah and Adrian Popescu. Scail: Classifier weights scaling for class incremental learn-
ing. In The IEEE Winter Conference on Applications of Computer Vision, 2020.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. Neural Information Processing Systems Workshop, 2020.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 535–541, 2006.

Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 233–248, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. Ieee, 2009.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318–326, 2012.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca and projective clustering. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, pp. 1434–1453. SIAM, 2013.

9

Published as a conference paper at ICLR 2021

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–
4375, 2018.

Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. arXiv preprint
arXiv:2008.04489, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on
pattern analysis and machine intelligence, 16(5):550–554, 1994.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ArXiv, abs/1502.03167, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1885–
1894. JMLR. org, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Soft-label anonymous gastric x-ray
image distillation. In 2020 IEEE International Conference on Image Processing (ICIP), pp. 305–
309. IEEE, 2020.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, pp. 367–377. PMLR, 2020.

Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
neural networks. In LLD Workshop at Neural Information Processing Systems (NIPS), 2017.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6467–6476, 2017.

10

Published as a conference paper at ICLR 2021

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
work acoustic models. In International conference on machine learning (ICML), 2013.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, and
Anirban Chakraborty. Zero-shot knowledge distillation in deep networks. In Proceedings of the
36th International Conference on Machine Learning, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Salah Rifai, Yoshua Bengio, Yann Dauphin, and Pascal Vincent. A generative process for sampling
contractive auto-encoders. arXiv preprint arXiv:1206.6434, 2012.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Kegan GG Samuel and Marshall F Tappen. Learning optimized map estimates in continuously-
valued mrf models. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.
477–484. IEEE, 2009.

Mert Bulent Sariyildiz and Ramazan Gokberk Cinbis. Gradient matching generative networks for
zero-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2168–2178, 2019.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. ICLR, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pp. 4077–4087, 2017.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Genera-
tive teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data. International Conference on Machine Learning, 2020.

Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distillation.
arXiv preprint arXiv:1910.02551, 2019.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. ICLR, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

11

Published as a conference paper at ICLR 2021

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, 2016.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121–1128. ACM, 2009.

G W Wolf. Facility location: concepts, models, algorithms and case studies. 2011.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 374–382, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Matthew D. Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Mark Z. Mao, Kyeongcheol Yang, Quoc V.
Le, Patrick Nguyen, Andrew W. Senior, Vincent Vanhoucke, Jeffrey Dean, and Geoffrey E. Hin-
ton. On rectified linear units for speech processing. 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 3517–3521, 2013.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated
learning. arXiv preprint arXiv:2009.07999, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural
Information Processing Systems, pp. 14747–14756, 2019.

12

Published as a conference paper at ICLR 2021

A IMPLEMENTATION DETAILS

In this part, we explain the implementation details for the dataset condensation, continual learning
and neural architecture search experiments.

Dataset condensation. The presented experiments involve tuning of six hyperparameters – the
number of outer-loop K and inner-loop steps T , learning rates ηS and number of optimization
steps ςS for the condensed samples, learning rates ηθ and number of optimization steps ςθ for the
model weights. In all experiments, we set K = 1000, ηS = 0.1, ηθ = 0.01, ςS = 1 and employ
Stochastic Gradient Descent (SGD) as the optimizer. The only exception is that we set ηS to 0.01 for
synthesizing data with MLP in cross-architecture experiments (Table 2), as MLP requires a slightly
different treatment. Note that whileK is the maximum number of outer-loop steps, the optimization
can early-stop automatically if it converges before K steps. For the remaining hyperparameters, we
use different sets for 1, 10 and 50 image(s)/class learning. We set T = 1, ςθ = 1 for 1 image/class,
T = 10, ςθ = 50 for 10 images/class, T = 50, ςθ = 10 for 50 images/class learning. Note that when
T = 1, it is not required to update the model parameters (Step 9 in Algorithm 1), as this model is
not further used. For those experiments where more than 10 images/class are synthesized, we set T
to be the same number as the synthetic images per class and ςθ = 500/T , e.g. T = 20, ςθ = 25 for
20 images/class learning. The ablation study on hyper-parameters are given in Appendix B which
shows that our method is not sensitive to varying hyper-parameters.

We do separate-class mini-batch sampling for Step 6 in Algorithm 1. Specifically, we sample a
mini-batch pair BTc and BSc that contain real and synthetic images from the same class c at each
inner iteration. Then, the matching loss for each class is computed with the sampled mini-batch pair
and used to update corresponding synthetic images Sc by back-propogation (Step 7 and 8). This is
repeated separately (or parallelly given enough computational resources) for every class. Training
as such is not slower than using mixed-class batches. Although our method still works well when
we randomly sample the real and synthetic mini-batches with mixed labels, we found that separate-
class strategy is faster to train as matching gradients w.r.t. data from single class is easier compared
to those of multiple classes. In experiments, we randomly sample 256 real images of a class as
a mini-batch to calculate the mean gradient and match it with the mean gradient that is averaged
over all synthetic samples with the same class label. The performance is not sensitive to the size of
real-image mini-batch if it is greater than 64.

In all experiments, we use the standard train/test splits of the datasets – the train/test statistics are
shown in Table T5. We apply data augmentation (crop, scale and rotate) only for experiments
(coreset methods and ours) on MNIST. The only exception is that we also use data augmentation
when compared to DD (Wang et al., 2018) on CIFAR10 with AlexCifarNet, and data augmentation
is also used in (Wang et al., 2018). For initialization of condensed images, we tried both Gaussian
noise and randomly selected real training images, and obtained overall comparable performances in
different settings and datasets. Then, we used Gaussian noise for initialization in experiments.

USPS MNIST FashionMNIST SVHN CIFAR10 CIFAR100

Train 7,291 60,000 60,000 73,257 50,000 50,000
Test 2,007 10,000 10,000 26,032 10,000 10,000

Table T5: Train/test statistics for USPS, MNIST, FashionMNIST, SVHN, CIFAR10 and CIFAR100 datasets.

In the first stage – while training the condensed images –, we use Batch Normalization in the VGG
and ResNet networks. For reliable estimation of the running mean and variance, we sample many
real training data to estimate the running mean and variance and then freeze them ahead of Step
7. In the second stage – while training a deep network on the condensed set –, we replace Batch
Normalization layers with Instance Normalization in VGG and ResNet, due to the fact that the
batch statistics are not reliable when training networks with few condensed images. Another minor
modification that we apply to the standard network ResNet architecture in the first stage is replacing
the strided convolutions where stride = 2 with convolutional layers where stride = 1 coupled with
an average pooling layer. We observe that this change enables more detailed (per pixel) gradients
w.r.t. the condensed images and leads to better condensed images.

Continual learning. In this experiment, we focus on a task-incremental learning on SVHN,
MNIST and USPS with the given order. The three tasks share the same label space, however have

13

Published as a conference paper at ICLR 2021

0.31 0.32 0.33
Proxy Dataset Performance

0.75

0.78

0.80

0.83

0.85

W
ho

le
-d

at
as

et
 P

er
fo

rm
an

ce

Random: Correlation = -0.21

0.34 0.35 0.36 0.37 0.38
Proxy Dataset Performance

0.73

0.75

0.78

0.80

0.83

0.85

Herding: Correlation = -0.20

0.42 0.44 0.46
Proxy Dataset Performance

0.78

0.80

0.82

0.84

0.86
Ours: Correlation = 0.79

0.52 0.54 0.56
Proxy Dataset Performance

0.78

0.80

0.82

0.84

0.86
Early-stopping: Correlation = 0.42

Figure F5: The performance correlation between the training on proxy dataset and whole-dataset. For each
proxy dataset, the best 10 models are selected based on validation set performance. In the figure, each point
represents an architecture.

C\T Sigmoid ReLu LeakyReLu

Sigmoid 86.7±0.7 91.2±0.6 91.2±0.6
ReLu 86.1±0.9 91.7±0.5 91.7±0.5

LeakyReLu 86.3±0.9 91.7±0.5 91.7±0.4

Table T6: Cross-activation experiments in accu-
racy (%) for 1 condensed image/class in MNIST.

C\T None MaxPooling AvgPooling

None 78.7±3.0 80.8±3.5 88.3±1.0
MaxPooling 81.2±2.8 89.5±1.1 91.1±0.6
Avgpooing 81.8±2.9 90.2±0.8 91.7±0.5

Table T7: Cross-pooling experiments in accu-
racy (%) for 1 condensed image/class in MNIST.

significantly different image statistics. The images of the three datasets are reshaped to 32×32 RGB
size for standardization. We use the standard splits for training sets and randomly sample 2,000 test
images for each datasets to obtain a balanced evaluation over three datasets. Thus each model is
tested on a growing test set with 2,000, 4,000 and 6,000 images at the three stages respectively.
We use the default ConvNet in this experiment and set the weight of distillation loss to 1.0 and the
temperature to 2. We run 5,000 and 500 iterations for training and balanced finetuning as in (Castro
et al., 2018) with the learning rates 0.01 and 0.001 respectively. We run 5 experiments and report
the mean and standard variance in Figure 4.

Neural Architecture Search. To construct the searching space of 720 ConvNets, we vary hyper-
parameters W ∈ {32, 64, 128, 256}, D ∈ {1, 2, 3, 4}, N ∈ {None, BatchNorm, LayerNorm,
InstanceNorm, GroupNorm}, A ∈ {Sigmoid, ReLu, LeakyReLu}, P ∈ {None, MaxPooling,
AvgPooling}. We randomly sample 5,000 images from the 50,000 training images in CIFAR10
as the validation set. Every candidate ConvNet is trained with the proxy dataset, and then evalu-
ated on the validation set. These candidate ConvNets are ranked by the validation performance. 10
architectures with top validation accuracies are selected to calculate Spearman’s rank correlation
coefficient, because the best model that we want will come from the top 10 architectures. We train
each ConvNet for 5 times to get averaged validation and testing accuracies.

We visualize the performance correlation for different proxy datasets in Figure F5. Obviously,
the condensed proxy dataset produced by our method achieves the highest performance correlation
(0.79) which significantly higher than early-stopping (0.42). It means our method can produce more
reliable results for NAS.

B FURTHER ANALYSIS

Next we provide additional results on ablative studies over various deep network layers including
activation, pooling and normalization functions and also over depth and width of deep network
architecture. We also study the selection of hyper-parameters and the gradient distance metric. An
additional qualitative analysis on the learned condensed images is also given.

Ablation study on activation functions. Here we study the use of three activation functions –
Sigmoid, ReLU, LeakyReLu (negative slope is set to 0.01) – in two stages, when training condensed
images (denoted as C) and when training a ConvNet from scratch on the learned condensed im-
ages (denoted as T). The experiments are conducted in MNIST dataset for 1 condensed image/class
setting. Table T6 shows that all three activation functions are good for the first stage while gener-
ating good condensed images, however, Sigmoid performs poor in the second stage while learning
a classifier on the condensed images – its testing accuracies are lower than ReLu and LeakyReLu
by around 5%. This suggests that ReLU can provide sufficiently informative gradients for learning
condensed images, though the gradient of ReLU w.r.t. to its input is typically sparse.

14

Published as a conference paper at ICLR 2021

C\T None BatchNorm LayerNorm InstanceNorm GroupNorm

None 79.0±2.2 80.8±2.0 85.8±1.7 90.7±0.7 85.9±1.7
BatchNorm 78.6±2.1 80.7±1.8 85.7±1.6 90.9±0.6 85.9±1.5
LayerNorm 81.2±1.8 78.6±3.0 87.4±1.3 90.7±0.7 87.3±1.4

InstanceNorm 72.9±7.1 56.7±6.5 82.7±5.3 91.7±0.5 84.3±4.2
GroupNorm 79.5±2.1 81.8±2.3 87.3±1.2 91.6±0.5 87.2±1.2

Table T8: Cross-normalization experiments in accuracy (%) for 1 condensed image/class in MNIST.

C\T 1 2 3 4

1 61.3±3.5 78.2±3.0 77.1±4.0 76.4±3.5
2 78.3±2.3 89.0±0.8 91.0±0.6 89.4±0.8
3 81.6±1.5 89.8±0.8 91.7±0.5 90.4±0.6
4 82.5±1.3 89.9±0.8 91.9±0.5 90.6±0.4

Table T9: Cross-depth performance in accuracy
(%) for 1 condensed image/class in MNIST.

C\T 32 64 128 256

32 90.6±0.8 91.4±0.5 91.5±0.5 91.3±0.6
64 91.0±0.8 91.6±0.6 91.8±0.5 91.4±0.6

128 90.8±0.7 91.5±0.6 91.7±0.5 91.2±0.7
256 91.0±0.7 91.6±0.6 91.7±0.5 91.4±0.5

Table T10: Cross-width performance in accuracy
(%) for 1 condensed image/class in MNIST.

Ablation study on pooling functions. Next we investigate the performance of two pooling func-
tions – average pooling and max pooling – also no pooling for 1 image/class dataset condensation
with ConvNet in MNIST in terms of classification accuracy. Table T7 shows that max and average
pooling both perform significantly better than no pooling (None) when they are used in the second
stage. When the condensed samples are trained and tested on models with average pooling, the
best testing accuracy (91.7 ± 0.5%) is obtained, possibly, because average pooling provides more
informative and smooth gradients for the whole image rather than only for its discriminative parts.

Ablation study on normalization functions. Next we study the performance of four normal-
ization options – No normalization, Batch (Ioffe & Szegedy, 2015), Layer (Ba et al., 2016), In-
stance (Ulyanov et al., 2016) and Group Normalization (Wu & He, 2018) (number of groups is set
to be four) – for 1 image/class dataset condensation with ConvNet architecture in MNIST classi-
fication accuracy. Table T8 shows that the normalization layer has little influence for learning the
condensed set, while the choice of normalization layer is important for training networks on the con-
densed set. LayerNorm and GroupNorm have similar performance, and InstanceNorm is the best
choice for training a model on condensed images. BatchNorm obtains lower performance which is
similar to None (no normalization), as it is known to perform poorly when training models on few
condensed samples as also observed in (Wu & He, 2018). Note that Batch Normalization does not
allow for a stable training in the first stage (C); thus we replace its running mean and variance for
each batch with those of randomly sampled real training images.

Ablation study on network depth and width. Here we study the effect of network depth and
width for 1 image/class dataset condensation with ConvNet architecture in MNIST in terms of clas-
sification accuracy. To this end we conduct multiple experiments by varying the depth and width
of the networks that are used to train condensed synthetic images and that are trained to classify
testing data in ConvNet architecture and report the results in Table T9 and Table T10. In Table T9,
we observe that deeper ConvNets with more blocks generate better condensed images that results in
better classification performance when a network is trained on them, while ConvNet with 3 blocks
performs best as classifier. Interestingly, Table T10 shows that the best results are obtained with the
classifier that has 128 filters at each block, while network width (number of filters at each block) in
generation has little overall impact on the final classification performance.

Ablation study on hyper-parameters. Our performance is not sensitive to hyper-parameter se-
lection. The testing accuracy for variousK and T , when learning 10 images/class condensed sets, is
depicted in Figure F6. The results show that the optimum K and T are around similar values across
all datasets. Thus we simply set K to 1000 and T to 10 for all datasets. Similarly, for the remaining
ones including learning rate, weight decay, we use a single set of hyperparameters that are observed
to work well for all datasets and architectures in our preliminary experiments.

Ablation study on gradient distance metric. To prove the effectiveness and robustness of the
proposed distance metric for gradients (or weights), we compare to the traditional ones (Lopez-
Paz et al., 2017; Aljundi et al., 2019; Zhu et al., 2019) which vectorize and concatenate the whole
gradient, GT ,GS ∈ RD, and compute the squared Euclidean distance ‖GT − GS‖2 and the
Cosine distance 1 − cos (GT ,GS), where D is the number of all network parameters. We do 1

15

Published as a conference paper at ICLR 2021

1 2 5 10 20 50
Hyper-parameter: T

40

60

80

100

MNIST
FashionMNIST
SVHN
CIFAR10

50 100 200 500 1000 1500 2000
Hyper-parameter: K

40

50

60

70

80

90

100

Te
st

in
g

ac
cu

ra
cy

 (%
)

MNIST
FashionMNIST
SVHN
CIFAR10

Figure F6: Ablation study on the hyper-parameters K and T when learning 10 images/class condensed sets.

image/class learning experiment on MNIST with different architectures. For simplicity, the synthetic
images are learned and tested on the same architecture in this experiment. Table T11 shows that the
proposed gradient distance metric remarkably outperforms others on complex architectures (e.g.
LeNet, AlexNet, VGG and ResNet) and achieves the best performances in most settings, which
means it is more effective and robust than the traditional ones. Note that we set ηS = 0.1 for
MLP-Euclidean and MLP-Cosine because it works better than ηS = 0.01.

MLP ConvNet LeNet AlexNet VGG ResNet

Euclidean 69.3±0.9 92.7±0.3 65.0±5.1 66.2±5.6 57.1±7.0 68.0±5.2
Cosine 45.2±3.6 69.2±2.7 61.1±8.2 58.3±4.1 55.0±5.0 68.8±7.8
Ours 70.5±1.2 91.7±0.5 85.0±1.7 82.7±2.9 81.7±2.6 89.4±0.9

Table T11: Ablation study on different gradient distance metrics. Obviously, the proposed distance metric is
more effective and robust. Euclidean: squared Euclidean distance, Cosine: Cosine distance.

Further qualitative analysis We first depict the condensed images that are learned on MNIST,
FashionMNIST, SVHN and CIFAR10 datasets in one experiment using the default ConvNet in 10
images/class setting in Figure F7. It is interesting that the 10 images/class results in Figure F7 are
diverse which cover the main variations, while the condensed images for 1 image/class setting (see
Figure 2) look like the “prototype” of each class. For example, in Figure F7 (a), the ten images of
“four” indicate ten different styles. The ten “bag” images in Figure F7 (b) are significantly different
from each other, similarly “wallet” (1st row), “shopping bag” (3rd row), “handbag” (8th row) and
“schoolbag” (10th row). Figure F7 (c) also shows the diverse house numbers with different shapes,
colors and shadows. Besides, different poses of a “horse” have been learned in Figure F7 (d).

C COMPARISON TO MORE BASELINES

Optimal random selection. One interesting and strong baseline is Optimal Random Selection
(ORS) that we implement random selection experiments for 1,000 times and pick the best ones.
Table T12 presents the performance comparison to the selected Top 1000 (all), Top 100 and Top
10 coresets. These optimal coresets are selected by ranking their performance. Obviously, the
condensed set generated by our method surpasses the selected Top 10 of 1000 coresets with a large
margin on all four datasets.

Generative model. We also compare to the popular generative model, namely, Conditional Gener-
ative Adversarial Networks (cGAN) (Mirza & Osindero, 2014). The generator has two blocks which
consists of the Up-sampling (scale factor=2), Convolution (stride=1), BatchNorm and LeakyReLu
layers. The discriminator has three blocks which consists of Convolution (stride=2), BatchNorm and
LeakyReLu layers. In additional to the random noise, we also input the class label as the condition.
We generate 1 and 10 images per class for each dataset with random noise. Table T12 shows that
the images produced by cGAN have similar performances to those randomly selected coresets (i.e.
Top 1000). It is reasonable, because the aim of cGAN is to generate real-look images. In contrast,
our method aims to generate images that can train deep neural networks efficiently.

Analysis of coreset performances We find that K-Center (Wolf, 2011; Sener & Savarese, 2018)
and Forgetting (Toneva et al., 2019) don’t work as well as other general coreset methods, namely

16

Published as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8 9

(a) MNIST

Top PantsPulloverDress Coat Sandal ShirtSneaker Bag Boot

(b) FashionMNIST

0 1 2 3 4 5 6 7 8 9

(c) SVHN

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

(d) CIFAR10

Figure F7: The synthetic images for MNIST, FashionMNIST, SVHN and CIFAR10 produced by our method
with ConvNet under 10 images/class setting.

Img/Cls Ratio % Optimal Random Selection cGAN Ours Whole DatasetTop 1000 Top 100 Top 10

MNIST 1 0.017 64.3±6.1 74.4±1.8 78.2±1.7 64.0±3.2 91.7±0.5 99.6±0.010 0.17 94.8±0.7 96.0±0.2 96.4±0.1 94.9±0.6 97.4±0.2

FashionMNIST 1 0.017 51.3±5.4 59.6±1.3 62.4±0.9 51.1±0.8 70.5±0.6 93.5±0.110 0.17 73.8±1.6 76.4±0.6 77.6±0.2 73.9±0.7 82.3±0.4

SVHN 1 0.014 14.3±2.1 18.1±0.9 19.9±0.2 16.1±0.9 31.2±1.4 95.4±0.110 0.14 34.6±3.2 40.3±1.3 42.9±0.9 33.9±1.1 76.1±0.6

CIFAR10 1 0.02 15.0±2.0 18.5±0.8 20.1±0.5 16.3±1.4 28.3±0.5 84.8±0.110 0.2 27.1±1.6 29.8±0.7 31.4±0.2 27.9±1.1 44.9±0.5

Table T12: The performance comparison to optimal random selection (ORS) and conditional generative ad-
versarial networks (cGAN) baselines. This table shows the testing accuracies (%) of different methods on four
datasets. ConvNet is used for training and testing. Img/Cls: image(s) per class, Ratio (%): the ratio of con-
densed images to whole training set. Top 1000, Top 100 and Top 10 means the selected 1000, 100 and 10
optimal coresets by ranking their performances.

17

Published as a conference paper at ICLR 2021

Img/Cls Ratio % Core-set Selection
LD† Ours Whole DatasetRandom Herding K-Center Forgetting

CIFAR100 1 0.2 4.2±0.3 8.4±0.3 8.3±0.3 3.5±0.3 11.5±0.4 12.8±0.3 56.2±0.310 2 14.6±0.5 17.3±0.3 7.1±0.3 9.8±0.2 - 25.2±0.3

Table T13: The performance comparison on CIFAR100. This table shows the testing accuracies (%) of
different methods. ConvNet is used for training and testing except that LD† uses AlexNet. Img/Cls: image(s)
per class, Ratio (%): the ratio of condensed images to whole training set.

Method MLP ConvNet LeNet AlexNet VGG ResNet

DD 72.7±2.8 77.6±2.9 79.5±8.1 51.3±19.9 11.4±2.6 63.6±12.7
Ours 83.0±2.5 92.9±0.5 93.9±0.6 90.6±1.9 92.9±0.5 94.5±0.4

Table T14: Generalization ability comparison to DD. The 10 condensed images per class are trained with
LeNet, and tested on various architectures. It shows that condensed images generated by our method have
better generalization ability.

Random and Herding (Rebuffi et al., 2017), in this experimental setting. After analyzing the algo-
rithms and coresets, we find two main reasons. 1) K-Center and Forgetting are not designed for
training deep networks from scratch, instead they are for active learning and continual learning re-
spectively. 2) The two algorithms both tend to select “hard” samples which are often outliers when
only a small number of images are selected. These outliers confuse the training, which results in
worse performance. Specifically, the first sample per class in K-Center coreset is initialized by se-
lecting the one closest to each class center. The later ones selected by the greedy criterion that
pursues maximum coverage are often outliers which confuse the training.

Performance on CIFAR100. We supplement the performance comparison on CIFAR100 dataset
which includes 10 times as many classes as other benchmarks. More classes while fewer images per
class makes CIFAR100 significantly more challenging than other datasets. We use the same set of
hyper-parameters for CIFAR100 as other datasets. Table T13 depicts the performances of coreset
selection methods, Label Distillation (LD) Bohdal et al. (2020) and ours. Our method achieves
12.8% and 25.2% testing accuracies on CIFAR100 when learning 1 and 10 images per class, which
are the best compared with others.

D FURTHER COMPARISON TO DD (WANG ET AL., 2018)

Next we compare our method to DD (Wang et al., 2018) first quantitatively in terms of cross-
architecture generalization, then qualitatively in terms of synthetic image quality, and finally in
terms of computational load for training synthetic images. Note that we use the original source code
to obtain the results for DD that is provided by the authors of DD in the experiments.

Generalization ability comparison. Here we compare the generalization ability across different
deep network architectures to DD. To this end, we use the synthesized 10 images/class data learned
with LeNet on MNIST to train MLP, ConvNet, LeNet, AlexNet, VGG11 and ResNet18 and report
the results in Table T14. We see that that the condensed set produced by our method achieves
good classification performances with all architectures, while the synthetic set produced by DD
perform poorly when used to trained some architectures, e.g. AlexNet, VGG and ResNet. Note
that DD generates learning rates to be used in every training step in addition to the synthetic data.
This is in contrast to our method which does not learn learning rates for specific training steps.
Although the tied learning rates improve the performance of DD while training and testing on the
same architecture, they will hinder the generalization to unseen architectures.

Method Dataset Architecture Memory (MB) Time (min) Test Acc.

DD MNIST LeNet 785 160 79.5±8.1
Ours MNIST LeNet 653 46 93.9±0.6

DD CIFAR10 AlexCifarNet 3211 214 36.8±1.2
Ours CIFAR10 AlexCifarNet 1445 105 39.1±1.2

Table T15: Time and memory use for training DD and our method in 10 images/class setting.

18

Published as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8 9

(a) MNIST of DD

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

(b) CIFAR10 of DD

0 1 2 3 4 5 6 7 8 9

(c) MNIST of ours

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

(d) CIFAR10 of ours

Figure F8: Qualitative comparison between the condensed images produced by DD and ours under 10 im-
ages/class setting. LeNet and AlexCifarNet are utilized for MNIST and CIFAR10 respectively.

Qualitative comparison. We also provide a qualitative comparison to to DD in terms of image
quality in Figure F8. Note that both of the synthetic sets are trained with LeNet on MNIST and
AlexCifarNet on CIFAR10. Our method produces more interpretable and realistic images than DD,
although it is not our goal. The MNIST images produced by DD are noisy, and the CIFAR10 images
produced by DD do not show any clear structure of the corresponding class. In contrast, the MNIST
and CIFAR10 images produced by our method are both visually meaningful and diverse.

Training memory and time. One advantage of our method is that we decouple the model weights
from its previous states in training, while DD requires to maintain the recursive computation graph
which is not scalable to large models and inner-loop optimizers with many steps. Hence, our method
requires less training time and memory cost. We compare the training time and memory cost re-
quired by DD and our method with one NVIDIA GTX1080-Ti GPU. Table T15 shows that our
method requires significantly less memory and training time than DD and provides an approxima-
tion reduction of 17% and 55% in memory and 71% and 51% in train time to learn MNIST and
CIFAR10 datasets respectively. Furthermore, our training time and memory cost can be signifi-
cantly decreased by using smaller hyper-parameters, e.g. K, T and the batch size of sampled real
images, with a slight performance decline (refer to Figure F6).

19

Published as a conference paper at ICLR 2021

E EXTENDED RELATED WORK

Variations of Dataset Distillation. There exists recent work that extends Dataset Distillation
(Wang et al., 2018). For example, (Sucholutsky & Schonlau, 2019; Bohdal et al., 2020) aim to
improve DD by learning soft labels with/without synthetic images. (Such et al., 2020) utilizes a
generator to synthesize images instead of directly updating image pixels. However, the reported
quantitative and qualitative improvements over DD are minor compared to our improvements. In
addition, none of these methods have thoroughly verified the cross-architecture generalization abil-
ity of the synthetic images.

Zero-shot Knowledge Distillation. Recent zero-shot KD methods (Lopes et al., 2017; Nayak
et al., 2019) aim to perform KD from a trained model in the absence of training data by generating
synthetic data as the intermediate production to further use. Unlike them, our method does not
require pretrained teacher models to provide the knowledge, i.e. to obtain the features and labels.

Data Privacy & Federated Learning. Synthetic dataset is also a promising solution to protecting
data privacy and enabling safe federated learning. There exists some work that uses synthetic dataset
to protect the privacy of medical dataset (Li et al., 2020) and reduce the communication rounds in
federated learning (Zhou et al., 2020). Although transmitting model weights or gradients (Zhu et al.,
2019; Zhao et al., 2020) may increase the transmission security, the huge parameters of modern deep
neural networks are prohibitive to transmit frequently. In contrast, transmitting small-scale synthetic
dataset between clients and server is low-cost (Goetz & Tewari, 2020).

20

	Introduction
	Method
	Dataset condensation
	Dataset condensation with parameter matching
	Dataset condensation with curriculum gradient matching

	Experiments
	Dataset condensation
	Applications

	Conclusion
	Implementation details
	Further analysis
	Comparison to More Baselines
	Further comparison to DD wang2018dataset
	Extended Related Work

