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Abstract
3D Geometric Graph Neural Networks (GNNs)
have emerged as transformative tools for mod-
eling molecular data. Despite their predictive
power, these models often suffer from limited
interpretability, raising concerns for scientific ap-
plications that require reliable and transparent in-
sights. While existing methods have primarily
focused on explaining molecular substructures
in 2D GNNs, the transition to 3D GNNs intro-
duces unique challenges, such as handling the
implicit dense edge structures created by a cut-off
radius. To tackle this, we introduce a novel expla-
nation method specifically designed for 3D GNNs,
which localizes the explanation to the immediate
neighborhood of each node within the 3D space.
Each node is assigned an radius of influence,
defining the localized region within which mes-
sage passing captures spatial and structural inter-
actions crucial for the model’s predictions. This
method leverages the spatial and geometric char-
acteristics inherent in 3D graphs. By constraining
the subgraph to a localized radius of influence,
the approach not only enhances interpretability
but also aligns with the physical and structural
dependencies typical of 3D graph applications,
such as molecular learning. The code is available
at https://github.com/QuJX/RISE.

1. Introduction
With recent advances in deep learning, molecular learning
has become a pivotal field of research, driving significant
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progress in drug discovery, protein engineering, and ma-
terials science (Zhang et al., 2025; Bronstein et al., 2021).
Traditionally, molecules have commonly been modeled as
2D planar graphs (Gao et al., 2021; Liu et al., 2021; 2020),
with atoms represented as nodes and chemical bonds as
edges, disregarding their geometric configurations. How-
ever, it is widely believed that chemical behaviors and bi-
ological functions of molecules are largely determined by
their 3D geometric structures (Tusnády & Simon, 1998;
Hansch & Fujita, 1964). The limitations of 2D represen-
tations in capturing geometric information have led to a
growing focus on 3D graph learning (Gainza et al., 2020;
Townshend et al., 2021). Consequently, 3D graph neural net-
works (GNNs) with geometric features have demonstrated
superior performance and thus become dominant across var-
ious tasks (Schütt et al., 2017; Gasteiger et al., 2020; Liu
et al., 2022; Wang et al., 2022b; Brandstetter et al., 2022;
Subedi et al., 2024; Yan et al., 2022; Wang et al., 2023).

Although 3D GNNs have gained appealing performance
in molecular graph learning, they are largely regarded as
black-box models. GNN explanation methods seek to find
crucial information from a molecular graph that significantly
impacts the model’s predictions. The main goal is to iden-
tify a compact subset of edges (a subgraph) that accurately
captures the behavior of the original graph (Ying et al.,
2019; Yuan et al., 2020; Luo et al., 2020; Yuan et al., 2021;
Huang et al., 2023; Liu et al., 2025). Chemists can verify
whether these explanatory subgraphs align with actual chem-
ical substructures, such as functional groups and motifs, that
contribute the most to the chemical properties. While these
explanation methods have demonstrated effectiveness for
2D GNNs, they overlook the fundamental distinctions of
3D GNNs, leading to explanations with inferior fidelity.

There are two major differences between 2D and 3D GNNs
that should be taken into account when designing explana-
tion methods for 3D molecular learning. (1) Difference in
Representation: In 3D molecular graphs, the edges are no
longer actual chemical bonds but are instead constructed
based on cut-off distances (Schütt et al., 2017; Gasteiger
et al., 2020; Liu et al., 2022), resulting in a rapid increase
of edges; (2) Difference in Learning: 3D GNNs aim to
model both bonded and non-bonded interactions (e.g., elec-
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trostatics, hydrogen bonds) through distances and spatial
modeling. These differences lead to a broader search
space and significant difficulty in optimization for existing
explanation methods, which will be discussed further in
Sec. 3.1.1. More importantly, these characteristics render
the explanatory results from existing methods chemically
uninterpretable. In 2D molecular graph learning, edges
directly represent chemical bonds, which naturally define
explanatory substructures such as functional groups (Wu
et al., 2018; Diao et al., 2022; Ma et al., 2020). However,
this direct correspondence no longer holds in 3D GNNs and
the optimized substructures often consist of a set of “random
edges” that are chemically uninterpretable. As a result, there
is a pressing need for a principled explanation framework
that considers the differences and closes this gap.

In order to design principled 3D GNN explanation methods
considering these differences, a natural question arises:

(Q) In atomic systems, interactions between atoms
or nodes often weaken with distance. Does the 3D
GNN inherently adhere to this physical principle in
its learning process? If so, can we design explanation
methods by referring to distances?

In particular, we find that the proximity (distances between
atoms) has substantial impacts on the message-passing
scheme that messages between closer nodes are more im-
portant. Building on these insights, we propose a principled
approach that finds the radius of influence for each atom to
extract the explanatory subgraphs. These radii of influence
define the localized regions that capture the most important
interactions critical for the prediction.

Overall, we summarize our contribution as follows: ① We
are the first to identify and introduce two crucial yet previ-
ously overlooked differences between 2D and 3D GNNs. ②
Building on this, we propose a principled approach, known
as RISE, that leverages radii of influence to extract the
explanatory subgraphs for 3D GNNs. ③ Our proposed ap-
proach does not require the relaxation from binary masks to
continuous masks as in existing methods, allowing exact op-
timization. ④ Radii of influence naturally account for both
differences, making RISE the only explanation pipeline that
can produce chemically interpretable explanatory subgraphs
as discussed in Sec. 3.3. ⑤ Experiments demonstrate the
superiority of our proposed framework, not only in quanti-
tative evaluation metrics but also in producing chemically
interpretable results.

2. Background and Related Work
2.1. GNN Explanation

The notations used throughout the paper are summarized
in Table 4 in Appendix A. A GNN Φ is a mapping from
a graph G to a prediction Ŷ corresponding to the target

variable Y . The target Y can be discrete labels for graph
classification tasks or continuous values for regression tasks.
Without loss of generality, we focus on regression tasks.

There is a notable absence of well-founded explanation
methods specifically designed for 3D GNNs, as most ex-
isting approaches work primarily for 2D GNNs. A 2D
molecular graph G is represented as G = (V, A,X), where
V = {v1, v2, . . . , vn} denotes a set of n nodes, A denotes
an n × n adjacency matrix where each entry aij ∈ {0, 1}
indicates the presence or absence of an edge connecting
nodes i and j, and X = [x1,x2, . . . ,xn]

T ∈ Rn×dv is
the node feature matrix, with each xi ∈ Rdv denoting the
dv-dimensional node feature associated with node vi.

Following Ying et al. (2019), instance-level graph explana-
tion aims to find a subgraph GS ⊆ G that is important to
the target Y . This is formally expressed as:

G∗
S = argmin

GS⊆G
L(Y ; Φ(GS)) s.t. |GS | ≤ B, (1)

where L denotes the task-dependent loss function, and B
represents a size constraint on the subgraph to avoid trivial
solutions. Eq. (1) can be rewritten as:

G∗
S = argmin

M
L(Y ; Φ(M ⊙A,X)) s.t. ∥M∥1 ≤ B, (2)

where M ∈ {0, 1}n×n are binary masks, indicating whether
to retain or remove an edge, applied to extract a subgraph.

2.2. Existing Works

GNN explanation methods (Huang et al., 2023; Luo et al.,
2020; Ying et al., 2019; Zhang et al., 2024; Yuan et al., 2021;
Miao et al., 2023; Xie et al., 2022) aim to understand and
interpret the decision-making processes of GNNs. We can
classify GNN explanation into two categories—instance-
level and model-level explanations. Instance-level expla-
nation aims to identify important graph components that
drive the model’s decisions. As a pioneering work, GN-
NExplainer (Ying et al., 2019) finds the most important
subgraph in a transductive setting by masking the edges.
PGExplainer (Luo et al., 2020) extends GNNExplainer to
the inductive setting by parametrizing masks with neural
networks. Various works have been proposed to further
extend and refine these methods. For example, MixupEx-
plainer (Zhang et al., 2023) consider the subgraph distri-
bution to further improve explanatory results. In contrast,
model-level methods aim to provide global explanations of
a model’s behavior, independent of specific input graphs.
For instance, XGNN (Yuan et al., 2020) utilizes a graph
generator to interpret the model’s decision-making process,
while CGE (Fang et al., 2023) generates explanatory sub-
graphs along with their corresponding subnetworks. Despite
the advancements in GNN explanation methods and their
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Figure 1. Comparison with existing approaches. Existing approaches require a relaxation from binary masks to soft continuous masks,
leading to inconsistencies between the optimized masks and the explanatory binary masks. These inconsistencies not only compromise
explanation fidelity quantitatively but also produce chemically uninterpretable results, making the model explanation itself a black-box.
On the other hand, RISE introduces a novel framework for extracting explanatory substructures based on atomic radii of influence that aim
to find localized regions that capture the most important interactions decisive to the prediction under some budgets. Given an appropriate
small budget, RISE can precisely extract chemical bonds and chemical bonds only. For instance, for Ethane (CH3CH3) in the figure,
the radii of influence from our experiments assign the C of interest with a radius of 1.532 and the H of interest with a radius of 1.171.
Under similar radii of influence for C atoms and H atoms, respectively, RISE extracts the precise chemical bonds and chemical bonds
only: C-H (1.171 > 1.095); C-C (1.532 > 1.530); all other edges have a distance greater than 1.532 and will be masked out by RISE.
Note the unit of distance is Å, which is used throughout the paper unless otherwise specified.

proven effectiveness, existing approaches struggle to effec-
tively explain 3D GNNs (Miao et al., 2023), as they often
overlook the fundamental differences between 2D and 3D
representation learning as discussed later in Sec. 3.1. In this
work, we focus on addressing the unique challenges of 3D
graph representation and learning at the instance level.

Relations with Prior Works. There is a significant lack
of work in 3D GNN explanation. To our best knowledge,
there is only one published work specifically concerned with
3D GNN explanation, known as LRI (Miao et al., 2023).
LRI introduces a probabilistic masking framework based
on Bernoulli and Gaussian noise to evaluate the importance
of atom existence and spatial location, then masking the
edges based on the importance of its vertices. However, it
only considers the difference in representation between 2D
and 3D molecular graphs; there is an important piece that
is missing: The difference in learning mechanism for 2D
and 3D GNNs resulting from different representations. The
message-passing framework operates differently with 3D
molecular representations. Building on this, we propose a
principled approach based on the radius of influence, which
accounts for both representational differences and variations
in the learning mechanism. This design offers several the-
oretical advantages and leads to significant performance
improvements, as demonstrated in Sec. 3.3 and Sec. 4.2.

3. RISE: Radius of Influence based Subgraph
Extraction

In this section, we begin by analyzing the two geometric
characteristics unique in 3D GNNs in Sec. 3.1: ❶First, we
discuss the difference in representation and the challenges it
brings to existing explanation methods in Sec. 3.1.1; ❷We
then discuss the differences in learning, highlighting the
crucial role of proximity in the message-passing scheme
in Sec. 3.1.2. Motivated from these geometric characteris-
tics, we introduce our proposed Radius of Influence based
Subgraph Extraction (RISE) framework, specifically refor-
mulated for 3D GNNs, in Sec. 3.2. Finally, in Sec. 3.3, we
discuss the benefits that RISE offers, especially its consis-
tency in optimization and, most importantly, its capability to
provide interpretable explanatory subgraphs. An overview
of RISE is given in Fig. 1.

3.1. The Missing Piece: Geometric Characteristics
The primary difference between 2D and 3D molecular learn-
ing stems from the inherent structural distinctions between
the molecular graph representations. In 2D graphs, nodes
are presented in a planar layout and the edges are the chem-
ical bonds. In 3D graphs, nodes are presented in 3D Eu-
clidean space, offering a more general depiction of geo-
metric relationships, and the edges are usually constructed
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based on a cut-off distance (Schütt et al., 2017; Gasteiger
et al., 2020; Liu et al., 2022; Brandstetter et al., 2022), re-
sulting in very dense graphs (difference in representation)
as illustrated in Fig. 2. This construction is motivated by
the underlying physical and chemical interactions (Wang
et al., 2022a; Leach, 2001), aiming to model both bonded
and non-bonded interactions (difference in learning). This
distinction between 2D and 3D molecular learning leads to
two geometric characteristics that should be considered but
are missing in existing GNN explanation methods.

(a)

(b) (c)

Figure 2. (a): 2D representation of C8H18—Nodes are atoms, and
edges are chemical bonds. No geometric information; typically a
small number of edges. (b): 3D representation of C8H18—Nodes
are atoms with spatial locations. Edges are constructed with a
specified cut-off distance, resulting in a dense graph. (c): 3D
representation of C8H18 with all non-bonding edges removed.

3.1.1. DIFFERENCE IN REPRESENTATION

We find that the difference between 2D and 3D molecu-
lar representations poses significant challenges in adapt-
ing 2D GNN explanation methods for 3D GNNs. Specifi-
cally, to allow gradient-based optimization, the binary hard-
masks in Eq. (2) are relaxed to continuous soft-masks,
Msoft ∈ [0, 1]n×n. During testing, an explanatory subgraph
is generated from the soft-mask based on the budget; the
masks are now made strictly 0-s and 1-s, even though some
values, such as 0.70, might be thresholded to 1, while oth-
ers, such as 0.68, are assigned to 0. Clearly, a significant
drawback of relaxing discrete masks to soft masks lies in
the difference between optimized continuous masks and the
final binary masks representing the explanatory subgraph
(inconsistency in optimization). Mathematically, we give
the following bound to illustrate such an inconsistency:

G∗
S = argmin

GS⊆G
L(Y ; Φ(GS)) ≤ L(Y ; Φ(X,Msoft ⊙A))︸ ︷︷ ︸

optimization objective

+ L(Φ(X,Msoft ⊙A); Φ(X,M ⊙A))︸ ︷︷ ︸
difference that is ignored during optimization

,

(3)

GNNExplainer (Ying et al., 2019) and follow-up works (Luo
et al., 2020; Yuan et al., 2021) attempt to lessen this issue by
including additional losses penalizing the extent to which
the masks deviate from 0 or 1, such as the entropy loss.
Moreover, the budget is enforced through sparsity regular-
ization loss, such as the L1 regularization. Therefore, the
final optimization objective becomes

G∗
S = argmin

Msoft

L(Y ; Φ(Msoft ⊙A,X)) + α∥Msoft∥1

+ β ·H[Msoft],
(4)

where α and β are loss balancing terms. However, adding
additional loss terms introduces a trade-off between the
optimization objective and the regularization. This trade-off
often requires careful tuning of hyperparameters to balance
the sparsity or discreteness of the masks against the primary
objective of accurately explaining the model’s predictions.
This issue exists in 2D GNN explanation as well but worsens
in 3D GNNs due to a rapid increase of edges, where small
inconsistencies for each mask compound into significant
deficits in explanation fidelity.

3.1.2. DIFFERENCE IN LEARNING

The dense edges in 3D GNNs aim to capture interatomic
interactions, including both bonded and non-bonded inter-
actions. These interactions and forces usually decay signifi-
cantly with distance. Interactions between nodes separated
by large distances are typically negligible due to the rapid
decay of force magnitudes, e.g., London dispersion poten-
tial decays as 1

d6 or faster, Pauli repulsion decays as e−αd,
and strong interactions usually have a short-distance depen-
dency (1− 2Å for covalent bonds and 2− 3Å for hydrogen
bonding).

We find that 3D GNNs can fully leverage the underlying
physical principles and truly learn to capture the proximity-
dependent nature of interactions. In Sec. 4.1, we conduct
extensive experiments to demonstrate that 3D GNNs learn
the proximity-dependency in message passing: Messages
between closer nodes in general carry greater importance.
This learning difference between 2D and 3D molecular
graphs underscores the need for a tailored explanation frame-
work that effectively captures the unique ability of 3D GNNs
to learn range-dependent relationships.

These two geometric characteristics make 2D GNNs poorly
suited for 3D GNNs, which can be seen from their poor per-
formance in Sec. 4.2. We are the first to propose a principled
explanation method based on our findings on the geomet-
ric characteristics of 3D molecular graphs. The geometric
influence on the message-passing scheme suggests reformu-
lating 3D graph explanations in terms of atomic radii of
influence, explicitly accounting for the varying importance
of interactions based on distance.
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3.2. RISE Reformulation

Due to the difference in representation, where 3D molecu-
lar graphs are constructed based on a cut-off distance, 3D
graphs can be treated as proximity graphs, in which edges
are not explicitly defined.
Definition 3.1. A directed proximity graph (DPG) is a ge-
ometric graph constructed from a set of points in a metric
space, where directed edges are formed based on a prox-
imity rule. Specifically, each node vi has an associated
radius 0 ≤ ri, and a directed edge ei7→j exists if and only if
dij < ri, where dij is the distance between vi and vj .
Remark 3.2. Any 3D graph constructed based on node radii
can be viewed as a directed proximity graph. A 3D graph
constructed based on a cut-off distance (the same radius
for all nodes) is a proximity graph under uniform radii; the
graph is undirected as all the radii are the same.

In 2D GNNs, edges are explicitly defined, leading to the
formulation of 2D graphs as described in Sec. 2.1, where
subgraphs are considered subsets of these edges. In contrast,
3D GNNs do not have explicitly defined edges; instead,
edges are determined based on a specific cut-off radius.
Building on this concept, we generalize graph construc-
tion using the notion of DPGs; consequently, explanatory
subgraphs are also identified as DPGs as presented below.

We define a 3D graph as G = (V, P,R,X), where V repre-
sents the set of nodes and X denotes their features, similar
to 2D GNNs. The matrix P ∈ Rn×3 contains the Euclidean
coordinates of the nodes, and R = [r1, r2, . . . , rn] ∈ Rn

specifies their radii for edge constructions.

(a) (b)

Figure 3. (a): Original 3D graphs constructed based on a com-
mon cut-off distance; this is the approach taken in most 3D
GNNs (Schütt et al., 2017; Gasteiger et al., 2020; Liu et al., 2022;
Brandstetter et al., 2022). The edges are bidirectional and dense.
(b): Explanatory substructure identified by finding the radii of
influence. The radii of influence are optimized (the circles shrink
dynamically; see an illustration in Fig. 6 in Appendix B) such that
the critical messages that are most relevant to the prediction task
are preserved. The edges are directed and more sparse.

With this new definition of 3D graphs, instance-level graph

explanation in Eq. (1) can be reformulated as:

G∗
S = argmin

Mr

L(Y ; Φ(P,Mr ⊙R,X)) s.t. ∥Mr∥1 ≤ B,

(5)
where Mr ∈ [0, 1]n are continuous masks defining the
radius of influence of each node as shown in Fig. 3. B is
the budget to avoid trivial solutions and can be set as a ratio
B = ρ · ∥R∥1.

Clearly, the resulting explanatory graph is a DPG and is a
subgraph of the original graph. The main objective of 3D
GNN explanation is to provide interpretable insights into
the predictions. The concept of the radius of influence inher-
ently contributes to chemical explainability, as it represents
the spatial extent over which each atom interacts with others,
depending on the property of consideration. Different chem-
ical properties are influenced by different types of atomic
interactions, which may only be significant within specific
spatial ranges.

Let Ar ∈ {0, 1}n×n be the adjacency matrix induced by the
radii, R, of the original graph. Eq. (5) can be optimized by
masking of the computation graph of Ar through:

G∗
S = argmin

M
L(Y ; Φ(P,M ⊙Ar, X)), (6)

where M ∈ {0, 1}n×n indicates the removal or retention of
an edge after reducing the radii of influence, Mr. As strict
discrete values are not differentiable, we reparametrize each
element Mij in M with a bounded differentiable function f
such that Mij = f (Mr

i , dij) that satisfies Mij → 1 when
dij < Mr

i and Mij → 0 when dij > Mr
i , where dij is

the distance between nodes vi and vj , and Mr
i denotes the

radius of influence of the node vi. Generally, any bounded
differentiable function that satisfies this requirement should
suffice. However, a smooth monotonic function is better for
the purpose of gradient-based optimization. Therefore, we
use the following function in particular:

Mij =
1

1 + e−k(Mr
i −dij)

, (7)

where k > 0 is typically large. With a sufficiently large k,
it is obvious that the requirement above is satisfied.

3.3. Merits of RISE

Consistency in Optimization. RISE is consistent between
the optimization objective and the explanation process, as it
directly optimizes the radius of influence, which is naturally
continuous; there is no relaxation from discrete masks to
continuous masks. The optimized radius mask Mr naturally
represent a subgraph Gs = (V, P,Mr · R,X) whereas in
existing methods, the optimized continuous soft edge or
node masks do not represent a subgraph Gs ̸= (V,Msoft ⊙
Ar, X). Additionally, we can enforce the budget exactly to
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avoid having a sparsity regularization loss:

Mr
i = B · exp (Θi)∑n

j=1 exp (Θj)
· σ(Ωi), (8)

where Θ,Ω ∈ Rn are both learnable parameters and σ(·)
is the sigmoid function. It is ensured by construction that
|Mr|1 ≤ B. Therefore, RISE is consistent in optimization,
as it does not require converting discrete values into contin-
uous ones for optimization and does not include penalty or
regularization terms to promote discreteness or enforce the
budget, different from existing works where the inconsis-
tency is induced as seen in Eq. (4). Such inconsistency not
only compromises explanation fidelity but also presents a far
more severe issue: The explanatory substructures become
chemically uninterpretable, making model explanation itself
a black-box. We demonstrate this below.

Interpretable Subgraph Extraction. In 2D GNNs, edges
correspond directly to chemical bonds, naturally forming
the basis for chemically interpretable substructures. In 3D
GNNs, due to a rapid increase of edges, different continu-
ous edge masks can all yield very high explanation fidelity,
leading to ambiguity in explanation. On the other hand,
enforcing discreteness regularization loss can compromise
explanation fidelity, ultimately reducing the reliability of
the extracted substructures. LRI shifts edge masks to node
masks by defining each edge mask as the product of the
node masks of its end nodes. However, this approach still
fails to provide chemically interpretable substructures: two
nodes with high mask values will indicate a high impor-
tance for their connecting edge, even if they are distant (see
more details in Appendix C). This misrepresentation con-
tradicts both the learning dynamics of 3D GNNs and actual
chemistry.

RISE

GNNExplainer LRI-BernoulliPGExplainer

Actual Chemical Bonds

Figure 4. Explanatory substructure produced from experiments by
different explanation methods on the Ethane molecule (CH3CH3)
in the QM9 dataset (Ramakrishnan et al., 2014). The same budget
(number of edges) is used for different explainers. It is obvious
that only RISE yields chemically interpretable results that conform
to interpretable chemical structures. It should be noted that, un-
der larger budgets, baseline methods yield a more “chaotic” set
of edges that are uninterpretable at all, whereas RISE identifies
atomic regions of influence, enabling chemical interpretation. This
underscores the need for interpretable 3D methods like RISE.

With appropriate radii of influence under a small budget,
RISE is able to extract chemical bonds and chemical bonds
only as illustrated in Fig. 1, while all other methods may
fail due to the aforementioned issues. In Fig. 4, we show the
explanatory substructure from real experiments; it is obvious
that all baseline methods extract chemically uninterpretable
results while RISE extracts exactly the chemical bonds. We
provide more results in Fig. 8 in Appendix D. Therefore,
designing interpretable explanation methods like RISE for
3D GNNs is critical.

4. Experiments
In this section, we begin by addressing the critical question
of how the distances between nodes influence the impor-
tance of message passing; as discussed in Sec. 4.1, it is clear
that the distances indicate the importance of message pass-
ing. Next, we evaluate our RISE method, developed based
on insights from the aforementioned findings, and com-
pare its performance against several state-of-the-art (SOTA)
baselines in Sec. 4.2. Several representative 3D GNNs, in-
cluding invariant models SchNet (Schütt et al., 2017) and
DimeNet (Gasteiger et al., 2020) and an equivariant model
SEGNN (Brandstetter et al., 2022), are used as backbone
models. An introduction to these 3D GNNs is given in
Appendix E. All explanation methods are evaluated on the
widely used datasets QM9 (molecules in the equilibrium
state) (Ramakrishnan et al., 2014) and GEOM (geometric
ensemble of molecules) (Axelrod & Gomez-Bombarelli,
2022). The results highlight the superiority of RISE as a
principled approach specifically designed for 3D GNNs.

4.1. Proximity Decides Messages To Pass or Not To Pass

To study where proximity (distance) decides the importance
of message passing, we conduct experiments centered on
two key questions: ❶ Does excluding short-distance edges
from message passing impact the model’s predictions more
significantly than excluding long-distance edges? ❷ Do
edges with similar distances have comparable importance
in influencing the model’s predictions?

Setup. We group edges based on their distances dij into
5 annular bins: {0 ≤ dk ≤ dij < dk+1 ≤ dcut-off}5k=1,
where all dk-values are determined such that, on average
over the entire testing dataset, each annulus contains ∼
20% of the total edges. ❶ To answer the first question,
we remove all the edges in each annulus and measure the
resulting decline in predictive fidelity. If the importance of
message-passing edges correlates with distance, the removal
of edges from inner annuli (shorter distances) should lead
to a more pronounced decline in performance. ❷ To answer
the second question, we randomly remove 10% of the edges
within each annulus and evaluate the model performance
after the removal of edges; if the intra-annulus variance is
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Table 1. Comparison of masking edges in different radius ranges on α and ϵLUMO properties of the QM9 dataset with SchNet and SEGNN
as the representative of invariant and equivariant models, respectively. Values in most cells are strictly greater than the previous ones in
the row; clearly, proximity decides the importance of message passing.

MAE After Annulus of Edges RemovedProperty Backbone Original MAE 80-100% 60-80% 40-60% 20-40% 0-20%

α
SchNet 0.118 0.248 0.253 0.373 0.373 0.739
SEGNN 0.110 0.196 0.342 0.418 0.826 0.895

ϵHOMO
SchNet 0.046 0.051 0.051 0.058 0.070 0.128
SEGNN 0.032 0.034 0.035 0.036 0.048 0.088

consistently small, it suggests that the importance of edges
in each annulus (similar distance) is approximately uniform.

Results. The quantitative results for setting ❶ are presented
in Table 1. It is evident that removing closer annuli leads
to a more significant drop in MAE, as values in most cells
strictly decrease compared to the previous row. A sample
of the qualitative results for setting ❷ is shown in Fig. 5,
with the full results, all sharing the same trend, available in
Appendix F. From these results, we observe that edges at
similar distances have comparable importance, as indicated
by the relatively flat trend lines with minimal fluctuation.
Additionally, shorter edges play a more significant role in
message passing. In summary, proximity determines the
importance of messages. This pattern holds consistently
across molecular graphs in the dataset, reinforcing the gen-
eral trend. For each molecular graph, we identify the atomic
radii of influence to retain the most critical interactions
within the given budget.

Figure 5. The visualization of the quantitative results of α of the
QM9 dataset on SEGNN when randomly masking 10% edges in
different annuli. It shows that the influence of edge masking has a
significant correlation with the distances, i.e., masking short edges
will cause larger perturbation than long edges. Moreover, the small
variance of each annulus demonstrates the comparable importance
among edges with similar distances.

4.2. The Power of Proximity: RISE Performance

We evaluate the performance of RISE on two widely used
molecular datasets—QM9 and GEOM. For the QM9 dataset,
the learning objective is a regression task to predict molecu-
lar properties for stable molecules; we perform experiments
on 4 important properties: the dipole moment (µ), isotropic

polarizability (α), the highest occupied molecular orbital
energy (ϵHOMO), and the lowest unoccupied molecular or-
bital energy (ϵLUMO). For the GEOM dataset, the learning
task focuses on predicting the energy of conformers at their
low-energy states.

Setup. Experiments are conducted on all three represen-
tative 3D GNNs as the backbone models. Specifically, in-
variant models are tested with the original QM9 test dataset
and 1, 000 randomly extracted molecules from the GEOM
dataset, while the equivariant model is tested using the first
1, 000 molecules from the QM9 test dataset and the same
1, 000 molecules from the GEOM dataset due to the compu-
tational hurdle of tensor decompositions in SEGNN. RISE is
compared with the two representative explanation methods,
GNNExplainer and PGExplainer, and the only existing 3D
explanation method—LRI-Bernoulli. Note there is another
method in LRI, LRI-Gaussian; however, it is perturbation-
based and cannot be directly compared with RISE. More de-
tails about baseline explanation methods are in Appendix G.
Following existing works (Yuan et al., 2022), we report
the mean absolute error (MAE, the lower the better) of the
predictions made using the explanatory subgraphs.

To thoroughly evaluate performance across varying levels
of edge sparsity, we set the budget parameter ρ to different
values: 0.3 to 0.6 for the QM9 dataset, and 0.4 to 0.6 for the
GEOM dataset. Since different explanation methods have
different budget constraints, we compare them in a unified
way based on the number of preserved edges. The baseline
models’ budgets are set such that they strictly preserve
more edges than RISE, making the comparison even more
advantageous for the baselines. More experimental details
including hyperparameter settings and training details are
attached in Appendix H.

Results. We present the results on the QM9 dataset using
SchNet as a representative of invariant backbone models
in Table 2. When SchNet is used as the backbone model,
RISE consistently outperforms all baselines across various
budgets, except for the ϵHOMO property, where it performs
on par with GNNExplainer. We present the results on the
QM9 dataset using SEGNN as a representative equivariant
backbone in Table 3. Similarly, when SEGNN is used as
the backbone model, RISE consistently outperforms all
baselines across various budgets, except for the α property
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Table 2. Resulting MAE (the lower the better) with SchNet on the QM9 dataset. The original SchNet employs a cut-off of 10Å, leading to
an average of 316 edges per graph. The average number of edges preserved is indicated in parentheses. The best and second best results
are respectively highlighted in red and blue, or both in red if they are very close and the lower one has more edges preserved.

µ αExplainer
0.3 0.4 0.5 0.3 0.4 0.5

GNNExplainer 2.972(50.0%) 1.162(69.9%) 0.859(79.9%) 2.836(50.0%) 2.216(69.9%) 2.054(79.9%)
PGExplainer 1.884(45.6%) 1.756(65.1%) 1.684(82.8%) 10.420(45.9%) 9.520(63.9%) 9.221(81.9%)
LRI-Bernoulli 6.087(44.1%) 5.325(70.0%) 4.127(80.0%) 14.459(47.8%) 11.847(67.3%) 10.144(80.3%)
RISE (ours) 0.596(44.1%) 0.518(64.8%) 0.422(79.2%) 2.670(44.6%) 2.127(63.7%) 1.430(77.0%)

ϵHOMO ϵLUMOExplainer
0.3 0.4 0.5 0.3 0.4 0.5

GNNExplainer 0.334(49.9%) 0.239(69.9%) 0.154(80.0%) 1.181(50.0%) 0.766(69.9%) 0.209(89.9%)
PGExplainer 0.567(50.0%) 0.580(70.0%) 0.598(80.0%) 1.322(50.2%) 1.355(71.6%) 1.418(85.9%)
LRI-Bernoulli 0.601(47.7%) 0.622(67.4%) 0.623(80.4%) 1.355(50.0%) 1.379(80.3%) 1.401(90.0%)
RISE (ours) 0.333(44.3%) 0.248(63.5%) 0.172(76.8%) 0.544(45.2%) 0.370(66.0%) 0.207(80.4%)

Table 3. Resulting MAE (the lower the better) with SEGNN on the QM9 dataset. The original work employs a cut-off of 5Å, leading to
an average of 280 edges per graph. The average number of edges preserved is indicated in parentheses. The best and second best results
are respectively highlighted in red and blue, or both in red if they are very close and the lower one has more edges preserved.

µ αExplainer
0.4 0.5 0.6 0.4 0.5 0.6

GNNExplainer 1.183(29.8%) 1.056(50.0%) 0.939(59.8%) 27.590(29.8%) 23.026(44.9%) 16.388(59.8%)
PGExplainer 1.197(30.1%) 1.140(40.1%) 0.974(60.2%) 27.191(31.5%) 23.320(41.5%) 17.673(52.2%)
LRI-Bernoulli 1.051(42.1%) 1.005(50.0%) 0.895(60.0%) 26.247(30.4%) 22.625(43.2%) 15.201(60.2%)
RISE (ours) 1.040(27.2%) 0.872(40.0%) 0.674(51.8%) 26.261(27.9%) 20.274(40.2%) 15.557(51.6%)

ϵHOMO ϵLUMOExplainer
0.4 0.5 0.6 0.4 0.5 0.6

GNNExplainer 0.849(29.8%) 0.725(39.8%) 0.457(59.8%) 1.671(29.8%) 1.455(39.8%) 1.014(59.8%)
PGExplainer 0.848(29.8%) 0.766(40.0%) 0.461(60.0%) 1.778(30.6%) 1.582(40.6%) 1.129(60.5%)
LRI-Bernoulli 3.677(30.0%) 3.646(40.0%) 3.363(60.0%) 1.006(30.0%) 0.724(40.0%) 0.578(63.8%)
RISE (ours) 0.838(26.8%) 0.551(39.4%) 0.339(50.9%) 0.988(26.8%) 0.679(39.1%) 0.438(50.5%)

under a budget of 0.4, where it performs on par with LRI-
Bernoulli. When using SEGNN as the backbone model,
higher MAEs are observed across the board.

Additionally, in Appendix I, we present results on the QM9
dataset using DimeNet (invariant) and on the GEOM dataset.
RISE consistently achieves the best performance across all
configurations on the GEOM dataset and outperforms other
methods in most configurations on QM9 with DimeNet.
These results further emphasize RISE’s ability to capture
meaningful interactions essential for molecular prediction
while generating interpretable explanatory substructures that
generalize across different datasets and tasks.

While achieving exceptional quantitative results is impor-
tant, another crucial aspect is the interpretability of the
explanation results. As discussed in Sec. 3.1, due to the
differences between 2D and 3D GNNs in molecular rep-
resentation and learning dynamics, existing methods often
produce chemically uninterpretable results when applied
to 3D GNNs. We provide several visualizations of the ex-
planatory substructures in Appendix D. Notably, under a
small budget, when explanation methods can preserve only a
limited number of edges, RISE is the only method that selec-
tively retains edges corresponding exclusively to chemical
bonds. This is particularly significant because, chemically,

bonds represent the strongest interactions, and RISE effec-
tively captures this crucial aspect of molecular structures.

5. Conclusions, Limitations, and Future Work
In this work, we introduce a principled explanation method
for 3D GNNs by representing 3D graphs as directed prox-
imity graphs and determining the radius of influence for
each atom. Our approach is the first to explicitly address
the fundamental distinctions between 2D and 3D GNNs in
both representation and learning dynamics. Consequently,
it surpasses existing SOTA explainers in quantitative perfor-
mance on 3D GNNs. More importantly, existing methods
often yield chemically uninterpretable explanations for 3D
GNNs, as they do not specifically account for 3D character-
istics, rendering the explanation method itself a black box.
In contrast, our method consistently produces interpretable
and chemically meaningful results.

Limitations and Future work. This work focuses on ex-
plaining relatively small 3D molecular graphs. However,
macromolecules, such as proteins, exhibit more complex
interactions and intricate structural hierarchies that may in-
troduce long-range dependencies. It would be interesting
to see if our method can be generalized to macromolecules
with long-range interactions.
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A. Table of Notations

Table 4. A summary of used notations.
Symbol Description

Φ A GNN mapping a graph G to a prediction Ŷ .
G A molecular graph, defined as G = (V, A,X) for 2D and G = (V, P,R,X) for 3D.
V Set of nodes in the graph, V = {v1, v2, . . . , vn}.
A Adjacency matrix of size n× n, where aij ∈ {0, 1} indicates edge presence.
X Node feature matrix, X ∈ Rn×dv , where xi ∈ Rdv is the feature of node vi.
P Euclidean coordinates of nodes in 3D space, P ∈ Rn×3.
R Initial radii for edge construction in 3D graphs, R = [r1, r2, . . . , rn] ∈ Rn.
α, β Loss balancing terms.
L Task-dependent loss function.
dij Euclidean distance between nodes vi and vj .
GS A subgraph of G.
M Binary (hard) edge mask, M ∈ {0, 1}n×n, used for subgraph extraction.
Msoft Continuous (soft) edge mask, Msoft ∈ [0, 1]n×n for approximation of M for gradient-

based optimization
Mr Radius of influence masks for nodes in 3D graphs, Mr ∈ [0, 1]n.
Ar Adjacency matrix induced by radii R in 3D graphs.
Θ,Ω Learnable parameters for determining radii of influence in RISE.
σ(·) Sigmoid activation function.
B Budget constraint on subgraph size, B = ρ · ∥R∥1 with the ratio ρ.
H Entropy function used in soft mask regularization.

B. An Animation of Optimizing the Radii of Influence
As we optimize the masks for the radii of influence, we are essentially shrinking the atomic influence circles. An illustration
is given in Fig. 6. From the top-left to the bottom-right, the sequence represents the entire evolution.

Figure 6. An animation of optimizing the radii of influence.
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C. Issues with Masking Nodes in 3D GNNs
The structural differences between 2D and 3D molecular graphs not only alter the representation but also impact the learning
mechanism. The importance of message passing should be based on distances. LRI-Bernoulli accounts for the difference in
representation by offsetting the edge masks to node masks. Namely, let Mnode represent the set of masks on nodes, with
M i

node indicating the mask on node vi. LRI-Bernoulli conditions on the message passing by converting node masks to edge
masks through:

M ij
soft = M i

node ·M
j
node. (9)

This node masking approach, which disregards the differences in learning dynamics between 2D and 3D GNNs, may result
in significant issues. We now assume fully connected graphs for simplicity; in fact, with a cut-off distance of 5 , many
3D graphs for small molecules are fully connected (Satorras et al., 2021). Taking CH3CH3 as an example, both C-C and
same-side C-H bonds are critical, so we aim to assign high mask values to the corresponding C and H atoms. However,
since all C and H atoms participate in C-C and same-side C-H bonds, assigning high mask values to all C and H atoms fails
to differentiate the relative importance of specific bonds. This approach also inadvertently assigns high mask values to less
significant interactions, such as H-H edges across different sides. On the other hand, by accounting for the differences in
learning dynamics, the RISE explanation, with appropriate radii of influence, precisely preserves the chemical bonds
and chemical bonds only. This is demonstrated in Fig. 7.
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Figure 7. Comparison between node-masking methods (a) and RISE (b). (a): Node-masking methods fail to accurately capture important
interactions because they do not consider spatial proximity. Two nodes with high mask values will always result in a high importance for
their connecting edge, even if they are far apart. This contradicts how 3D GNNs learn and the principles of actual chemistry. (b): RISE
can correctly capture the most important interactions by considering proximity. Given an appropriate small budget, in this example,
B = 0.15, RISE can precisely extract chemical bonds and chemical bonds only, i.e., for Ethane (CH3CH3) given in the figure, the
radii of influence from our experiments assign the C of interest with a radius of 1.532 and the H of interest with a radius of 1.171. Under
similar radii of influence for C atoms and H atoms, respectively, RISE extracts precisely chemical bonds and chemical bonds only: C-H
(1.171 > 1.095); C-C (1.532 > 1.530); all other edges have a distance greater than 1.532 and will be masked out by RISE.

D. Visualization of Explanatory Substructures
The qualitative results of explanations are depicted in Fig. 8. These results highlight the unique advantage of RISE
not only in delivering the highest explanation fidelity (quantitative metric) but also in extracting interpretable subgraphs
that are chemically meaningful. Existing explanation methods, including GNNExplainer, PGExplainer, and LRI, often
produce fragmented, overly dense, and chemically inconsistent explanations, and this issue gets worse in larger graphs (for
visualization purposes, we provide relatively small molecules here).

For instance, in the case of methylene oxalate (C3H2O4), other methods fail to isolate all C–O bonds, instead erroneously
highlighting distant or non-adjacent nodes due to their reliance on continuous or indirect edge attributions. In contrast, RISE
successfully reconstructs the precise chemical structures, as confirmed by structural comparisons with the ground-truth
molecular bonds.
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The failure of baseline methods stems from their inability to resolve the ambiguity of 3D explanations—either by producing
overly distributed importance scores (e.g., LRI) or by failing to enforce discrete structural preservation (e.g., GNNExplainer)
as discussed in Sec. 3.3. These limitations underscore the necessity of RISE, a principled approach that resolves the
aforementioned issues by considering the two major differences between 2D and 3D graphs.

Figure 8. The visualized samples of molecules within the QM9 dataset. The explanatory results of GNNExplainer, PGExplainer, LRI-
Bernoulli, and RISE are inferred based on SchNet. The budgets are the same across different explanation methods; in other words, the
same number of edges are retained in the explanation results. All edges are directed due to masking; however, RISE consistently identifies
both directions, as interactions should be bidirectional in nature, whereas other methods often capture only one direction, leading to a less
faithful representation of the underlying interactions. As a result, other explanation methods appear to retain more edges visually (both
bidirectional and unidirectional edges are visualized as a single edge). Apparently, it can be seen that only our method preserves the
chemical structures well, while other methods produce ambiguous explanations without interpretable chemical structures.

E. 3D Geometric GNNs: Invariant and Equivariant GNNs
In 3D GNNs, molecular or spatial structures are typically represented as 3D graphs, where nodes correspond to atoms or
spatial points, and edges indicate interactions or proximity relationships. The most common approach to constructing a 3D
graph is to connect nodes based on a distance cut-off, where an edge is established between nodes whose Euclidean distance
falls below a specified threshold, i.e., the cut-off. Based on different geometric feature representations of the constructed
graph, the corresponding 3D GNNs can be divided into invariant and equivariant GNNs.

Invariant GNNs, also referred to as scalarization GNNs (Duval et al., 2024), are 3D geometric graph neural networks that
rely exclusively on invariant features, such as distances, angles, and bond angles. These features remain unchanged under
Euclidean transformations, including translations and rotations. As a result, these GNNs are inherently invariant to Euclidean
transformations, making them particularly suitable for invariant tasks, such as predicting energies, ϵHOMO-ϵLUMO gaps, and
other scalar molecular properties. Notable, but far from complete, examples of invariant GNNs include SchNet (Schütt et al.,
2017), DimeNet (Gasteiger et al., 2020), and SphereNet (Liu et al., 2022).

Equivariant GNNs, on the other hand, are designed to handle vectorial or tensorial properties that transform predictably
under Euclidean transformations. These networks incorporate both invariant and equivariant features to ensure that the
outputs transform in a consistent manner when the inputs are subjected to translations or rotations. For example, when
predicting forces, dipole moments, or gradients, the outputs of an equivariant GNN should rotate or translate in accordance
with the same transformation applied to the input geometry. Equivariant GNNs leverage advanced mechanisms, such as
spherical harmonics and tensor algebra, to ensure that all the operations preserve equivariance throughout the neural network.
Notable examples of equivariant GNNs include SE(3)-Transformer (Fuchs et al., 2020), E(3)-equivariant GNNs (Batzner
et al., 2022), and SEGNN (Brandstetter et al., 2022).
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F. Proximity Decides Messages To Pass or Not To Pass

Table 5. Corresponding cut-off distance range of annuli.
Cut-off Distance 0-20% 20-40% 40-60% 60-80% 80-100%
5Å [0, 2.1] [2.1, 2.6] [2.6, 3.2] [3.2, 4.0] [4.0, 5.0]

10Å [0, 2.2] [2.2, 2.8] [2.8, 3.5] [3.5, 4.4] [4.4, 10]

To investigate the correlation between edge distance and importance, we conducted extensive experiments on the QM9
dataset using both invariant and equivariant backbones. First, to categorize edges into distinct annuli, we analyzed the edge
distance distribution within QM9, as presented in Table 5. The visual and quantitative results are illustrated in Fig. 9.

Our findings reveal that as the distance of masked edges increases, the perturbation induced by edge masking correspondingly
decreases, indicating a reduction in edge importance. Additionally, the low variance observed across 20 trials suggests that
edges within the same annulus exhibit similar importance. Collectively, these results establish a strong correlation between
edge proximity and its role in message passing, reinforcing the significance of RISE, which explains 3D graphs based on
spatially localized interactions.

G. Descriptions of Baseline Explanation Methods
Graph explanation methods aim to find a subgraph that best preserves the predictive signal of the original graph G while
satisfying a budget constraint B on the size of the subgraph (Ying et al., 2019). Mathematically,

G∗
S = argmin

GS⊆G
L(Y ; Φ(GS)) s.t. |GS | ≤ B, (10)

where L denotes the task-dependent loss function, and B represents a size constraint on the subgraph to avoid trivial
solutions. Eq. (10) can be rewritten as:

G∗
S = argmin

M
L(Y ; Φ(M ⊙A,X)) s.t. ∥M∥1 ≤ B, (11)

where M ∈ {0, 1}n×n are binary masks, indicating whether to retain or remove an edge, applied to extract a subgraph.

Existing explanation methods relax binary masks into continuous soft masks, Msoft ∈ [0, 1]n×n, to enable gradient-based
optimization. In practice, GNNExplainer (Ying et al., 2019) initializes these masks as learnable parameters, applying a
sigmoid function to constrain their values to be between 0 and 1, and optimizes them in a transductive setting.

PGExplainer (Luo et al., 2020) extends this idea by introducing a parameterized explainer that employs a multi-layer
perceptron (MLP) to generate edge masks from learned feature embeddings. This approach enables the collective explanation
of multiple instances, improving generalization and making it applicable in the inductive setting.

Learnable Randomness Injection (LRI) (Miao et al., 2023) introduces two different methods—LRI-Bernoulli and LRI-
Gaussian. LRI-Bernoulli injects Bernoulli noise into nodes to evaluate the importance of node-wise existence for the final
prediction; in simple terms, it applies binary masks to nodes. LRI-Gaussian, on the other hand, is a perturbation-based
method that adds Gaussian noise to the positions of nodes to assess the significance of their geometric features. Unlike
methods that aim to identify substructures, LRI-Gaussian does not identify subgraph but rather focuses on identifying
important geometric aspects of the input geometric graph. Therefore, it is not directly comparable with RISE or other
extraction-based baselines, including GNNExplainer and PGExplainer.

H. Experimental Details
We conduct comparative experiments on molecular graph regression tasks using two widely used molecular datasets, QM9
and GEOM. For the QM9 dataset, four key molecular properties are taken for testing purposes: dipole moment (µ), isotropic
polarizability (α), highest occupied molecular orbital energy (ϵHOMO), and lowest unoccupied molecular orbital energy
(ϵLUMO). In contrast, for the GEOM dataset, the regression task focuses on predicting the energy. The QM9 dataset was
obtained from the PyTorch Geometric (PyG) library and used in its original form. The GEOM dataset was sourced from the
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Figure 9. The visualization of MAE prediction on µ, α, ϵHOMO, and ϵLUMO with randomly mask 10% edges within the top 0 − 20%,
20− 40%, 40− 60%, 60− 80%, and 80− 100% distant range, respectively. The results on four properties jointly indicate the correlation
between edge distance and corresponding importance, while edges within the same annulus have similar importance.

official GEOM paper (Axelrod & Gomez-Bombarelli, 2022), and we preprocessed it by removing all conformers except the
lowest-energy one for each molecule.

As for the backbone models, on QM9 dataset, we parameterize SchNet and DimeNet models with the pre-trained weight
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Table 6. Hyperparameter Search Space: To ensure fairness and reproducibility, we present the parameter search space used in our
experiments. All models were evaluated under a range of different hyperparameter settings, and the best-performing results are reported.

Explainer Setting Search Space

RISE Loss Weights λpred = 1, λsize = 0, λent = 0
Training Epochs 50, 100, 300

GNNExplainer Loss Weights λpred = 1, λpred ∈ {0.1, 0.5, 1.0}, λent ∈ {0.5, 1}
Training Epochs 50, 100, 300

PGExplainer Loss Weights λpred = 1, λpred ∈ {0.1, 0.2, 0.5,Z ∈ [1, 10]}, λent ∈ {0.05, 0.1, 0.2}
Training Epochs 50, 100, 300, 500

LRI-Bernoulli Loss Weights λpred = 1, λpred ∈ {0.5,Z ∈ [1, 10], 20}, λent ∈ {0.01, 0.05, 0.1, 0.2}
Training Epochs 50, 100, 300, 500

provided by the PyG (Fey & Lenssen, 2019) library with their original settings. The SEGNN model was trained on QM9
following the official settings described in the paper. For the GEOM dataset, model settings were maintained the same as the
experiments on QM9. The cut-off for all models was set to 5.0 on GEOM. The backbone models are first trained on 50, 000
molecules from GEOM dataset, which is then filtered and split into 10, 000 molecules for training explanation models, and
1, 000 for testing. All models are trained independently on a single NVIDIA RTX A6000 GPU.

We configure our RISE method as described in Sec. 4. For the baseline methods, we adjust the weights of the loss function,
which given as

L = λpredLpred + λsize∥Msoft∥1 + λentH[Msoft], (12)

where the Lpred is the prediction loss. The search space of weights and training epochs are shown in Table 6. After training,
baseline methods select the top k edges based on their mask values. The original LRI method lacks the size loss, which
makes it learn a dense edge mask with all values close to 1. Therefore, we incorporate the size loss into its original loss
function as well.

I. Additional Experimental Results

Table 7. Resulting MAE (the lower the better) using DimeNet as the backbone model on the QM9 dataset. The setup from the original
work employs a cut-off distance of 5Å, leading to an average of 279 edges per graph. The average number of edges preserved is indicated
in parentheses. The best and second best results are respectively highlighted in red and blue.

µ αExplainer
0.4 0.5 0.6 0.4 0.5 0.6

GNNExplainer 0.897(29.9%) 0.795(39.9%) 0.667(50.0%) 25.873(29.9%) 17.769(39.9%) 10.073(50.0%)
PGExplainer 1.202(31.3%) 1.410(48.4%) 1.423(57.1%) 56.00(30.0%) 112.81(40.0%) 208.19(50.0%)
LRI-Bernoulli 7.932(33.3%) 6.087(44.1%) 5.265(52.8%) 15.963(34.7%) 15.142(41.2%) 13.740(54.3%)
RISE (ours) 0.697(25.2%) 0.570(37.8%) 0.458(49.8%) 5.004(25.2%) 1.485(37.8%) 1.087(49.8%)

ϵHOMO ϵLUMOExplainer
0.5 0.6 0.7 0.5 0.6 0.7

GNNExplainer 1.505(39.8%) 0.995(50.0%) 0.493(69.8%) 1.055(39.8%) 0.882(50.0%) 0.368(69.8%)
PGExplainer 3.712(42.6%) 3.596(49.7%) 3.268(71.3%) 1.039(40.0%) 1.002(50.0%) 0.950(70.0%)
LRI-Bernoulli 3.646(40.0%) 3.547(50.0%) 3.128(70.0%) 0.944(40.0%) 0.927(50.0%) 0.911(70.0%)
RISE (ours) 5.091(37.6%) 2.727(49.1%) 1.486(65.9%) 0.749(37.8%) 0.731(47.5%) 0.197(66.4%)

Table 8. Resulting MAE (the lower the better) using SchNet and DimeNet as the backbone models on the GEOM dataset. The setup from
the original work employs a cut-off distance of 5Å, leading to an average of 981 edges per graph. The average number of edges preserved
is indicated in parentheses. The best and second best results are respectively highlighted in red and blue, or both in red if they are very
close and the lower one has more edges preserved.

SchNet DimeNetExplainer 0.4 0.5 0.6 0.4 0.5 0.6
GNNExplainer 0.105(30.0%) 0.106(40.0%) 0.102(50.0%) 10.397(30.0%) 4.224(40.0%) 2.292(50.0%)
PGExplainer 0.071(25.8%) 0.084(39.5%) 0.097(53.2%) 47.605(20.0%) 41.645(30.0%) 29.949(50.0%)
LRI-Bernoulli 17.535(20.0%) 17.532(40.0%) 17.531(50.0%) 33.018(20.0%) 24.633(30.0%) 12.018(50.0%)
RISE (ours) 0.098(19.6%) 0.096(31.2%) 0.082(43.2%) 0.845(17.3%) 0.198(27.3%) 0.081(40.5%)
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I.1. RISE Performance: DimeNet on QM9 Dataset

On the QM9 dataset, we additionally provide the results using DimeNet as the backbone model in Table 7. The results
indicate that RISE outperforms all baselines in most cases across different budgets. For instance, at B = 0.6, RISE achieves
the lowest MAE for µ, α, and ϵLUMO predictions, as well as the second-lowest MAE for ϵHOMO, while preserving fewer
edges. These results demonstrate the superiority of RISE in capturing meaningful interactions.

I.2. RISE Performance: Comparison on GEOM Dataset

To demonstrate the generalizability of our method, we also conducted experiments on the GEOM dataset, which contains
the molecules related to experimental data in the biophysics, physiology, and physical chemistry domains. The quantitative
results are shown in Table 8. RISE consistently outperforms or is at least on par with existing explanation methods. These
findings highlight the robustness of our approach in adapting to diverse molecular structures and learning meaningful edge
attributions.

18


