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Abstract

This paper introduces the novel concept of few-shot weakly supervised learning for
pathology Whole Slide Image (WSI) classification, denoted as FSWC. A solution
is proposed based on prompt learning and the utilization of a large language model,
GPT-4. Since a WSI is too large and needs to be divided into patches for processing,
WSI classification is commonly approached as a Multiple Instance Learning (MIL)
problem. In this context, each WSI is considered a bag, and the obtained patches
are treated as instances. The objective of FSWC is to classify both bags and
instances with only a limited number of labeled bags. Unlike conventional few-shot
learning problems, FSWC poses additional challenges due to its weak bag labels
within the MIL framework. Drawing inspiration from the recent achievements of
vision-language models (V-L models) in downstream few-shot classification tasks,
we propose a two-level prompt learning MIL framework tailored for pathology,
incorporating language prior knowledge. Specifically, we leverage CLIP to extract
instance features for each patch, and introduce a prompt-guided pooling strategy to
aggregate these instance features into a bag feature. Subsequently, we employ a
small number of labeled bags to facilitate few-shot prompt learning based on the
bag features. Our approach incorporates the utilization of GPT-4 in a question-
and-answer mode to obtain language prior knowledge at both the instance and bag
levels, which are then integrated into the instance and bag level language prompts.
Additionally, a learnable component of the language prompts is trained using
the available few-shot labeled data. We conduct extensive experiments on three
real WSI datasets encompassing breast cancer, lung cancer, and cervical cancer,
demonstrating the notable performance of the proposed method in bag and instance
classification. Codes will be available at https://github.com/miccaiif/TOP.

1 Introduction

The automated analysis of pathology Whole Slide Images (WSIs) plays a crucial role in contemporary
cancer diagnosis and the prediction of treatment response [34, 44, 28, 31, 26, 15, 43, 3]. Unlike
natural images, WSIs typically possess a gigapixel resolution, rendering them unsuitable as direct
inputs for deep learning models. To address this problem, a common approach involves dividing
WSIs into non-overlapping small patches for subsequent processing. However, due to the vast number
of patches within a single WSI, it is impractical to assign fine-grained labels to these small patches,
rendering instance-level supervised methods unfeasible [39, 9, 7, 27, 29]. Consequently, Multiple
Instance Learning (MIL), a popular weakly supervised learning paradigm, has emerged as an effective
solution to overcome these challenges. In the MIL framework, each WSI is considered a "bag", and
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the extracted patches are regarded as instances within this bag. In a positive bag, there exists at least
one positive instance, while in a negative bag, all instances are negative. During training, only the
bag labels are known, whereas the instance labels remain unknown [35, 49]. Deep learning-based
WSI classification typically involves two tasks: bag-level classification, accurately predicting the
category of the target bag, and instance-level classification, accurately identifying positive instances
within positively labeled bags.

MIL methods for WSI classification can be broadly categorized into instance-based methods [4, 10,
35, 23] and bag-based methods [18, 41, 22, 56, 40, 8, 29, 48, 46]. Instance-based approaches involve
training an instance classifier using artificially-generated pseudo labels to estimate the probability of
each instance being positive. These individual predictions are then aggregated to obtain the bag-level
prediction. On the other hand, bag-based methods have emerged as the predominant approach for
WSI classification. These methods initially extract features for each instance and subsequently employ
an aggregation function to combine the features of all instances within a bag into a single bag feature.
Finally, a bag classifier is trained using the known labels of the bags. Recently, attention-based
aggregation methods [18, 16, 61, 54, 41, 22, 56, 29] have demonstrated promising performance, and
they could leverage attention scores assigned to each instance for instance-level classification.

Most existing MIL methods for WSI classification assume the availability of a substantial amount
of labeled data at the bag level. However, in clinical practice, limitations such as patient privacy
concerns, challenges in obtaining pathological samples, or the diagnosis of rare or emerging diseases
often result in a scarcity of pathological data [34, 44, 39, 9, 21]. Consequently, existing methods
are ill-equipped to handle such few-shot learning scenarios. In this paper, we present a novel WSI
classification problem termed Few-shot Weakly Supervised WSI Classification (FSWC). Traditional
few-shot learning strives to achieve good classification performance with very few labeled support
samples per class (usually only 1, 2, 4, 8, or 16 samples). Similarly, in FSWC, only a few bags
are labeled for training (only 1, 2, 4, 8, or 16 per class). Notably, FSWC diverges from traditional
few-shot learning on natural images due to the absence of instance-level labels, with only bag-level
labels provided. The MIL setting and the absence of instance labels make FSWC considerably more
challenging than traditional few-shot learning problems. The primary objective of FSWC is to achieve
precise bag-level and instance-level classification with very few training bags. Figure 1 A and B
provide intuitive illustrations of the existing WSI classification and FSWC tasks.

Recently, significant advancements have been made in visual representation and transfer learning with
the emergence of vision-language models (V-L models) such as CLIP [38], ALIGN [20], and FLIP
[55]. These models have demonstrated remarkable success, indicating their ability to learn universal
visual representations and perform effectively in zero-shot or few-shot settings for downstream
tasks. Motivated by these achievements, we apply V-L models to address the FSWC problem. Unlike
traditional visual frameworks, V-L models employ a two-tower architecture consisting of an Image
Encoder and a Text Encoder for pre-training on extensive image-text pairs. The objective is to
align images and their corresponding description texts within a shared feature space. For zero-shot
classification tasks, a carefully designed prompt template, such as "a photo of a [CLS]," is utilized
to classify the target image through similarity matching in the corresponding feature space. To
enhance transfer performance and eliminate the need for handcrafted prompt templates, methods like
CoOp [60] replace manual prompts with learned prompt representations. These approaches adapt
V-L models for few-shot image recognition tasks using a small number of labeled images from the
target dataset, with only prompt parameters being trained while the V-L model parameters remain
fixed. Figure 1 C provides an intuitive depiction of the fine-tuning paradigm based on pre-trained
V-L models and prompt learning in the context of natural images. A straightforward application of
V-L models in FSWC involves using the Image Encoder to extract instance features within each bag
and aggregating these instance features into bag-level representations using established aggregation
functions. Subsequently, prompt learning algorithms like CoOp [60] can be employed at the bag
level. However, our experimental results demonstrate unsatisfactory performance with this approach.
The main challenges lie in the absence of efficient instance aggregation methods and the complexity
of designing appropriate bag-level prompts.

In order to effectively utilize V-L models for addressing the FSWC problem, we present a TwO-level
Prompt Learning MIL framework guided by pathology language prior knowledge, referred to as TOP.
The main concept of TOP is illustrated in Figure 1 D. Initially, we employ the Image Encoder of
V-L models to extract instance features within each bag. Subsequently, we introduce prompt guided
pooling as a means to aggregate these instance features into a bag-level feature. To facilitate this
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Figure 1: A. Existing WSI classification tasks. B. Our proposed FSWC task based on language
models. C. Existing prompt learning paradigm using pre-trained V-L models, where the parameters
of the V-L models are always frozen. D. Our proposed Two-level Prompt Learning paradigm.

aggregation process, we leverage the capabilities of the large language model GPT-4 [33] to generate
multiple instance-level prompt groups. These prompt groups serve as instance-level pathology
language prior knowledge, effectively guiding the aggregation process. Furthermore, GPT-4 [33] is
utilized to construct a bag-level prompt group, which is matched with the bag feature to facilitate
few-shot prompt learning at the bag level. Throughout this process, the bag-level prompt group acts as
pathology language prior knowledge, providing guidance for the few-shot prompt learning process. In
TOP, both the instance-level and bag-level prompts comprise three components. The first component
encompasses the task label at the instance or bag level, such as "an image patch of [Lymphocytes]"
and "a WSI of [Lung adenocarcinoma]." The second component consists of a combination of various
visual description texts associated with the given task label. It is important to note that these visual
descriptions are not manually designed, but are obtained through a question-answering approach
employing GPT-4. For example, we generate prompts such as "What are the visual pathological
forms of Lung adenocarcinoma?". Our experimental findings consistently demonstrate the criticality
of incorporating task-specific visual descriptions tailored to the pathological WSI classification
task. Inspired by CoOp [60], we design the third component as a learnable continuous prompt
representation, enabling automatic adaptation and further enhancing transfer performance.

The main contributions of this paper are as follows:

•We proposed and effectively solved the novel Few-shot Weakly Supervised WSI Classification
(FSWC) problem.

•We propose a Two-level Prompt Learning MIL framework, referred to as TOP. At the instance level,
we leverage pathology language prior knowledge derived from GPT-4 to guide the aggregation of
instance features into bag features. In addition, at the bag level, we create a comprehensive bag-level
prompt group by incorporating bag-level pathology categories and visual pathology descriptions as
prior knowledge to facilitate few-shot learning under the supervision of bag labels.
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• We conducted comprehensive evaluations on three real-world WSI datasets, including breast
cancer, lung cancer, and cervical cancer. TOP demonstrates strong bag classification and instance
classification performance under limited bag-level labeled data, achieving state-of-the-art results.

2 Related Work

2.1 Multiple Instance Learning for WSI Classification

Most MIL methods for WSI classification [18, 54, 41, 22, 56, 40, 8, 48, 24, 46, 19, 37] follow a
two-step process: they extract features for each instance and then aggregate these instance features to
obtain a representative bag feature. Subsequently, a bag classifier is trained using the bag features and
corresponding labels. Notably, attention-based aggregation methods [18, 16, 61, 54, 41, 22, 56, 29]
have demonstrated promising results, where attention scores assigned to each instance contribute
to instance-level classification. However, these approaches heavily rely on a substantial number
of labeled bags, which is not the case in our proposed FSWC task, where only a limited number
of labeled bags are available for training. While some recent studies [22, 56, 40, 36, 5, 6, 30]
employed pre-trained networks to extract instance features, these models were solely pre-trained
on self-supervised learning or ImageNet data. In contrast, we explore the utilization of pre-trained
V-L models (as detailed in Section 2.3) for extracting instance features. Additionally, we present a
Two-level Prompt Learning MIL framework guided by pathology language prior knowledge.

2.2 Few Shot Classification

The primary objective of Few-shot Classification (FSC) is to accurately classify test samples by
utilizing limited labeled support examples. Typically, only 1, 2, 4, 8, or 16 examples per category are
available. This classification process leverages learned knowledge and prior information [12, 13, 1, 42,
45, 47]. Recently, vision-language models (referred to as V-L models, detailed in Section 2.3) such as
CLIP [38], ALIGN [20], and FLIP [55] have demonstrated significant success in FSC. This success
suggests that these large models have acquired universal visual representations and exhibit improved
performance in downstream tasks, particularly in zero-shot or few-shot scenarios. Nevertheless, the
task of few-shot WSI classification under bag-level supervision has not yet been investigated. In this
paper, we introduce this paradigm as few-shot weakly-supervised WSI classification (FSWC) and
propose an effective solution by employing CLIP-based prompt learning.

2.3 Vision-language Models and Prompt Learning

Pre-trained Vision-Language (V-L) models, such as CLIP [38], ALIGN [20], and FLIP [55], which
have been trained on extensive image-text pairs, exhibit remarkable potential in visual representation
and transfer learning [57, 60, 59, 11, 50, 51, 14, 52, 53, 58]. These V-L models employ a dual-tower
architecture that comprises visual and text encoders. They utilize contrastive learning to align text-
to-image and image-to-text in the feature space. The pre-trained V-L models, including CLIP [38],
demonstrate remarkable transferability in image recognition. By carefully designing text descriptions,
referred to as "prompts," to align with the corresponding image features in the feature space, these
models enable zero-shot or few-shot classification. Building on the accomplishments of CLIP, CoOp
[60] replaces manually created prompts with a learned prompt representation and adapts V-L models
to downstream FSC tasks. Motivated by the triumph of V-L models in FSC within the domain
of natural images, we propose several techniques to effectively adapt pre-trained V-L models for
addressing the FSWC problem.

3 Preliminaries

3.1 Problem Formulation

Given a dataset X = {X1, X2, . . . , XN} comprising N WSIs, and each WSI Xi is partitioned into
non-overlapping small patches {xi,j , j = 1, 2, . . . ni}, where ni represents the number of patches
obtained from Xi. All patches within Xi collectively form a bag, and each patch serves as an instance
of that bag. The bag is assigned a label Yi ∈ {0, 1}, where i = {1, 2, ...N}. The labels of each
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instance {yi,j , j = 1, 2, . . . ni} are associated with the bag label in the following manner:

Yi =

{
0, if

∑
j yi,j = 0

1, else (1)

This implies that all instances within negative bags are assigned negative labels, whereas positive
bags contain at least one positive-labeled instance. In the context of weakly-supervised MIL, only the
bag label is provided for the training set, while the labels of individual instances remain unknown.
The Few-shot Weakly-supervised WSI Classification (FSWC) task poses an even greater challenge as
it allows only a limited number of labeled bags for training. In the FSWC task, "shot" refers to the
number of labeled slides. In N-shot experiments, the training set uses only N pairs of positive and
negative slides for training, and the model is evaluated on the complete testing set. Typically, only a
small number of bags per class, such as 1, 2, 4, 8, or 16, are available for training. The objective of
FSWC is to accurately classify both the bags and individual instances, despite the scarcity of labeled
training bags.

3.2 Vision-Language Pre-training and Few-shot Prompt Learning

We first provide a concise overview of the pre-training of V-L models and few-shot prompt learning.
In this paper, we use the V-L model of CLIP [38], but our method is also applicable to other CLIP-like
V-L models.

Model and Pre-training. The CLIP framework comprises an image encoder and a text encoder.
The image encoder employs ResNet-50 or ViT to extract image features, while the text encoder uses
Transformer to generate text features. CLIP’s primary training objective is to establish an embedding
space that align image features with their corresponding text features by means of a contrastive loss.
During training, a batch of image-text pairs is used, and CLIP maximizes the cosine similarity of
matching pairs while minimizing the cosine similarity of all other non-matching pairs. To facilitate
the acquisition of diverse visual concepts that can be readily applied to downstream tasks, CLIP is
trained on a large-scale dataset consisting of 400 million image-text pairs, which includes medical
data.

Zero-shot Inference. CLIP has the inherent ability to perform zero-shot classification because
it is pre-trained to predict whether an image matches a given text description. Specifically, the
approach involves using the image encoder to extract features from the image to be classified, using
the text encoder to extract features of the text descriptions of all candidate categories (referred to
as "prompts"), and then calculating the degree of match between the image features and all the text
features to determine the classification category. Formally, let z be the image feature extracted by the
image encoder for image x, and let {wi}Ki=1 be a set of weight vectors generated by the text encoder.
Here, K represents the number of candidate categories, and each wi comes from the prompt "a photo
of a [CLASS]", where the CLASS token is replaced with a specific class name, such as "cat", "dog",
or "car". The predicted probability of each category is calculated using Equation 2:

p(y = i | x) = exp (cos (wi,f) /τ)∑K
j=1 exp (cos (wj ,f) /τ)

(2)

Here, τ is the temperature coefficient learned by CLIP, and cos(·, ·) represents cosine similarity.

Few-shot Prompt Learning. Research has shown that the construction of prompts plays a crucial
role in the downstream task classification performance. CoOp [60] learns an end-to-end continuous
vector as a supplementary prompt using limited labeled data from the downstream task. Formally, the
overall prompt is designed as:

t = [V ]1[V ]2 . . . [V ]M [CLASS] (3)

where each [V ]m(m ∈ {1, . . . ,M}) is a vector of the same dimension as the word embedding (i.e.,
512 for CLIP), and M is a hyperparameter that specifies the number of context tokens. The text
encoder of CLIP is used to encode the prompt t to obtain a classification weight vector {wi}Ki=1
that represents the visual concept, and then the prediction probability of each category is calculated
according to Equation 2. A small amount of labeled data in the downstream task is used to train
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Figure 2: Framework of our proposed TOP.
and optimize [V ]m in the prompt using cross-entropy loss. Other parameters, including the Image
Encoder and Text Encoder of the V-L model, are frozen.

Loss = CE(y, p) (4)

where y represents the ground truth label and p represents the predicted probability of each class
based on the prompt.

4 Method

Figure 2 presents our proposed TOP framework. First, we use the Image Encoder fimg of CLIP to
extract instance features Zi for all instances within a bag Xi. Then, we propose instance prompt
guided pooling to aggregate these instance features into a bag feature F i. During this process, we
use a large language model GPT-4 to generate multiple instance-level prompt groups and input them
into the Text Encoder ftext of CLIP to generate instance prototypes P , which serve as instance-level
language priors to guide the aggregation process. Next, we use GPT-4 to construct a bag-level prompt
group and input it into the Text Encoder ftext to generate a Bag text token Bi. We then match
Bi with the aggregated bag feature F i to complete bag-level few-shot prompt learning. During
this process, the bag-level prompt group serves as a bag-level language prior to guide the few-shot
prompt learning process. The loss function for few-shot prompt learning is shown in equation 4
in Section 3.2, and the overall training objective is to use a small amount of bag-level labeled data
to optimize the learnable prompt vectors [V ]m in the bag-level and instance-level prompt groups
(the two [V ]m vectors are different). In addition, during training, we also constrain the minimum
correlation between each Instance prototype in P to prevent all prototypes from being too similar
and causing degradation. The construction of instance and bag-level prompts will be introduced in
Section 4.1 and the instance prompt guided pooling method will be introduced in Section 4.2.

During inference, for bag classification, we calculate the matching degree between the image features
and all target class bag prompt features to determine the classification category, as shown in equation
2 in Section 3.2. For instance classification, we obtain the classification score of each instance by
averaging the similarity weights established between each instance feature and multiple text-based
instance prototypes.

4.1 Construction of Instance and Bag-level Prompt

We utilize GPT-4 to construct instance and bag-level prompts as efficient language priors to guide the
instance-level feature aggregation and the bag-level few-shot prompt learning.
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Instance-level prompt groups are designed to generate visual descriptions of various instance phe-
notypes as prior knowledge to effectively guide instance-level feature aggregation. Each prompt
group corresponds to a potential tissue phenotype that may appear in WSI and consists of three parts.
The first part is a text description of various instance phenotypes in the form of "an image patch
of [Lymphocytes]". Typically, instances in a WSI contain information about different phenotypes,
such as different forms of tumor cells, lymphocytes, epithelial cells, etc. For the second part, we
used a question-answering mode with GPT-4 to obtain common visual descriptions of different
instance phenotypes in WSIs. Note that these visual descriptions do not require manual design but
are obtained from GPT-4, as shown in the Supplementary Materials. For each instance phenotype, we
focus on guiding GPT-4 to describe the visual characteristics it has from a visual perspective, thereby
establishing visual priors for these phenotypes. Inspired by the learnable prompt in CoOp [60], we
design the third part as a learnable prompt representation.

The bag-level prompt group is designed to guide the few-shot prompt learning process at the bag
level. It also consists of three parts. The first part is the description of the task label at the bag level in
the form of "a WSI of [Lung adenocarcinoma]". The second part is a combination of various visual
descriptions for this task label, which are also obtained from GPT-4, as shown in the Supplementary
Materials. For each classification task, we guide the GPT-4 model to describe the complex medical
concept from a visual perspective, so as to establish a visual prior for the complex medical concept
from the textual description. The third part is also designed as a learnable prompt representation.

Detailed bag-level and instance-level task descriptive prompt ensembles are presented in the Supple-
mentary Materials and will be fully open-source.

4.2 Instance Prompt Guided Pooling

We propose a prompt guided pooling strategy to aggregate instance features into bag features. The
main idea is to first calculate similarity weights between the image features of each instance and the
prototypes of multiple text descriptions, and then use the weighted average of all instance features in
a bag as the bag feature.

Mathematically, assuming that Xi represents the current bag containing ni instances, we use the
Image Encoder fimg to extract instance features Zi ∈ Rni×m, where m represents the dimension of
the features.

Zi = fimg (Xi) (5)

Then, we input multiple instance-level prompt groups T into the Text Encoder ftext to obtain multiple
instance prototypes, P ∈ Rnp×m, where np represents the number of prototypes, which corresponds
to the number of instance-level prompt groups. It varies depending on the specific classification task.

P = ftext (T ) (6)

Next, we calculate the dot product of instance features Zi and a set of prototypes P , and then
perform softmax normalization by column (each column corresponds to a prototype), obtaining
aggregation weights W i ∈ Rni×np for each prototype with respect to the current bag. Next, we use
the aggregation weights to obtain a set of weighted features W ᵀ

i ·Zi ∈ Rnp×m, and finally average
the weights of all prototypes to obtain the bag feature F i ∈ R1×m.

W i = Softmax
(
Zi · P>

)
(7)

F i = mean
(
W>

i ·Zi

)
(8)

In addition, during training, we also constrain the minimum correlation between each instance
prototype in P to avoid degeneration, which means that all prototypes are too similar to each other,
with the following loss:

Loss = min
(
W> ×W

)
(9)

This auxiliary loss aims to separate instance prototypes learned by each instance prompt, ensuring
distinct phenotypes representing WSIs. Crucial instance prototypes for slide classification stand out
during aggregation.
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Table 1: Performance of bag-level classification on the Camelyon 16 Dataset.
Method 16-shot 8-shot 4-shot 2-shot 1-shot

Linear-Probe (Mean-pooling) 0.5816 0.5627 0.4930 0.3235 0.3357
Linear-Probe (Max-pooling) 0.5947 0.5814 0.5417 0.5401 0.5268

Linear-Probe (Attention-pooling) 0.7866 0.6738 0.6594 0.6187 0.5312
CoOp (Attention-pooling) 0.8012 0.6746 0.6639 0.6525 0.6462

Instance+Bag Prompt Learning (Ours) 0.8301 0.7287 0.7151 0.6958 0.6783

Table 2: Performance of instance-level classification on the Camelyon 16 Dataset.
Method 16-shot 8-shot 4-shot 2-shot 1-shot

Linear-Probe (Attention-pooling) 0.7508 0.6630 0.6316 0.6177 0.5934
CoOp (Attention-pooling) 0.8567 0.6648 0.6333 0.6221 0.5923

Instance+Bag Prompt Learning (Ours) 0.8896 0.7200 0.7142 0.7019 0.6938

5 Experiment

5.1 Datasets, Evaluation Metrics and Comparison Methods

We comprehensively evaluated the instance classification and bag classification performance of TOP
in FSWC tasks using three real-world datasets of different cancer types from different centers: the
Camelyon 16 Dataset [2] for breast cancer, the TCGA-Lung Cancer Dataset2 for lung cancer, and
an in-house Cervical Cancer Dataset for cervical cancer. See Supplementary Material for detailed
introductions to the datasets.

For both instance and bag classification, we use Area Under Curve (AUC) as the evaluation metric.
However, it should be noted that only the Camelyon 16 Dataset has the true labels for each instance,
while the other two datasets only have bag-level labels. Therefore, we evaluate the instance and bag
classification performance of each method on the Camelyon 16 Dataset, and only evaluate the bag
classification performance on the latter two datasets.

Because existing few-shot learning methods cannot be used in FSWC task, we constructed four
baselines based on the current state-of-the-art few-shot learning methods CoOp [60] and Linear Probe
[38]: (1) Linear-Probe (Mean pooling), (2) Linear-Probe (Max pooling), (3) Linear-Probe (Attention
pooling), and (4) CoOp (Attention pooling). Specifically, we first used CLIP as the image feature
extractor to extract all instance features within each bag. Then, we aggregated all instance features
within a bag using simple Mean, Max pooling or learnable Attention Pooling [18] to obtain the bag
feature. Linear-Probe indicates that we used a linear layer to perform bag-level classification on
the aggregated bag feature. CoOp indicates that we used the bag-level label and learnable prompt
to perform bag-level classification through prompt learning. We conducted few-shot classification
experiments with 1, 2, 4, 8, and 16 labeled bags for each class.

5.2 Implementation Details

We used the image encoder and text encoder of CLIP as the feature extractors for both images and
text. The number of learnable parameters is empirically set to 10 tokens for both instance and bag
prompt and other quantities can be used in practice. During training, we fixed all weights of CLIP
and only trained the learnable parameters of bag prompt and instance prompt. For experiments with
different shots, we randomly trained the network five times with fixed labeled bags and reported the
average performance of each method. All comparative methods utilize the same labeled bags.

5.3 Results on the Camelyon 16 Dataset

The bag classification and instance classification performance on the Camelyon 16 dataset are
shown in Tables 1 and 2, respectively. It can be seen that TOP achieved the best bag and instance
classification performance in all few-shot settings, and significantly outperformed all comparison
methods by a large margin. It can be observed that Linear-Probe with Mean/Max pooling can hardly
work. Although using trainable attention pooling helps learn the importance of each instance and
improves the performance of Linear-Probe, it still has limitations in performance. Prompt learning
with fully trainable prompts in CoOp outperforms Linear-Probe. In contrast, our method used a
two-level prompt learning paradigm, which achieved the best performance on both bag and instance

2http://www.cancer.gov/tcga
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Table 3: Performance of bag-level classification on the TCGA-Lung Cancer Dataset.
Method 16-shot 8-shot 4-shot 2-shot 1-shot

Linear-Probe (Mean-pooling) 0.6022 0.5418 0.4934 0.4908 0.4646
Linear-Probe (Max-pooling) 0.6227 0.5547 0.5155 0.4985 0.4876

Linear-Probe (Attention-pooling) 0.7178 0.6539 0.6248 0.5832 0.5713
CoOp (Attention-pooling) 0.7840 0.6824 0.6811 0.6772 0.6801

Instance+Bag Prompt-Learning (Ours) 0.8235 0.8059 0.7531 0.7245 0.7123

Table 4: Performance of bag-level classification on the Cervical Cancer Dataset.
Method 16-shot 8-shot 4-shot 2-shot 1-shot

Linear-Probe (Mean-pooling) 0.6756 0.6684 0.6593 0.6246 0.6011
Linear-Probe (Max-pooling) 0.6322 0.6249 0.6038 0.5884 0.5869

Linear-Probe (Attention-pooling) 0.7345 0.7282 0.7155 0.6873 0.6137
CoOp (Attention-pooling) 0.7565 0.7349 0.7271 0.6927 0.6484

Instance+Bag Prompt-Learning (Ours) 0.8189 0.8007 0.7869 0.7618 0.7052

classification, with an average improvement of 4.2% and 7.0%, respectively, over the second-best
method.

5.4 Results on the TCGA-Lung Cancer Dataset and the Cervical Cancer Dataset

The results on the TCGA-Lung Cancer Dataset are shown in Table 3. It can be seen that TOP still
achieves the best bag classification performance in all few-shot settings, and significantly outperforms
all competitors by a large margin, with an average improvement of 6.3% over the second-best method.

The results on the Cervical Cancer Dataset are shown in Table 4. It should be noted that this task is
extremely challenging, and even pathologists cannot make direct judgments. TOP displays strongest
performance, with an average improvement of 6.3% over the second-best method.

Table 5: Ablation results of bag-level classification on the Camelyon 16 Dataset.
Method 16-shot 8-shot 4-shot 2-shot 1-shot

Bag Prompt+Attention-pooling 0.8168 0.6980 0.6706 0.6673 0.6483
CoOp+Attention-pooling 0.8012 0.6746 0.6639 0.6525 0.6462

CoOp+Prompt guided pooling 0.8216 0.7079 0.6833 0.6732 0.6699
Bag Prompt+Prompt guided pooling (Ours) 0.8301 0.7287 0.7151 0.6958 0.6783

Table 6: Ablation results of instance-level classification on the Camelyon 16 Dataset.
Method 16-shot 8-shot 4-shot 2-shot 1-shot

Bag Prompt+Attention-pooling 0.8699 0.6753 0.6425 0.6399 0.5961
CoOp+Attention-pooling 0.8567 0.6648 0.6333 0.6221 0.5923

CoOp+Prompt guided pooling 0.8754 0.6912 0.6707 0.6515 0.6045
Bag Prompt+Prompt guided pooling (Ours) 0.8896 0.7200 0.7142 0.7019 0.6938

6 Ablation Study

We conducted ablation experiments on the two key components of TOP, the instance prompt guided
pooling and bag-level prompt group. Experiments are conducted on the Camelyon 16 Dataset, and
the bag classification and instance classification results are shown in Table 5 and Table 6, respectively.
In the two tables, "Prompt guided pooling" represents the use of our proposed instance prompt
guided aggregation method while "Attention-pooling" represents the use of attention-based method
to aggregate instance features into bag features; "Bag Prompt" represents the use of our proposed
Bag-level prompt group while "CoOp" represents using only the learnable part and bag labels as
prompt at the bag-level prompt learning.

Effectiveness of instance prompt guided pooling. In both Table 5 and Table 6, no matter ‘Bag Prompt’
or ‘CoOp’ is used for the bag-level prompt learning, ‘Prompt guided pooling’ consistently results in
significantly better performance than ‘Attention pooling’, which indicates the effectiveness of our
proposed Prompt guided pooling strategy for instance feature aggregation.

Effectiveness of Bag-level prompt group. In Table 5 and Table 6, no matter what instance feature
aggregation method is used, ‘Bag-prompt’ always outperforms ‘CoOp’, which indicates that our
proposed Task descriptive prompt is better than current SOTA methods of fully learnable prompt.
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Table 7: Ablation and sensitivity tests of the auxiliary loss on the Camelyon16 dataset.

Shot Loss Weight 0 10 25 (ours) 50

Bag AUC 0.6691 0.6759 0.6783 0.6771
1-shot Instance AUC 0.6837 0.6908 0.6938 0.6913

Bag AUC 0.6867 0.6924 0.6958 0.6945
2-shot Instance AUC 0.6924 0.7008 0.7019 0.7011

Bag AUC 0.7087 0.7123 0.7151 0.7154
4-shot Instance AUC 0.7033 0.7095 0.7142 0.7107

Bag AUC 0.7137 0.7218 0.7287 0.7259
8-shot Instance AUC 0.7005 0.7188 0.7200 0.7243

Bag AUC 0.8245 0.8281 0.8301 0.8299
16-shot Instance AUC 0.8834 0.8879 0.8896 0.8894

Effectiveness of Auxiliary Loss. Ablation and sensitivity tests on the Camelyon16 dataset (Table 7)
demonstrate that our method is not highly sensitive to the loss weight, but its addition significantly
improves performance compared to not using it.

7 Discussion

In this paper, we introduce the novel problem of Few-shot Weakly-supervised WSI Classification
(FSWC) for the first time. We proposed a Two-level Prompt Learning MIL framework named TOP
to solve the FSWC problem effectively. TOP utilizes GPT-4 to generate both instance-level and
bag-level visual descriptions to facilitate instance feature aggregation and bag-level prompt learning.
Experiments on three WSI classification tasks shows the high performance of TOP in FSWC tasks.

We carefully consider the validity, rationale, motivation and potential model updates’ impact for
using GPT-4’s knowledge. For validity and rationale: We rigorously reviewed pathology knowledge
descriptions from GPT-4 with three senior pathologists and found them accurate and detailed. Nori
et al. [32] supports GPT-4’s reliability in producing medical domain knowledge due to its vast
medical expertise in training data. For motivation and importance: Leveraging GPT-4’s knowledge as
templates enhances efficiency versus manual design. This approach aligns with the few-shot learning
goal, easing pathologist annotation. Manual templates might not cover all aspects; specialized doctors’
templates could be needed for varied cancer types/tasks. Additionally, different doctors’ descriptions
vary, lacking a standardized manual description. By leveraging GPT-4’s versatility, our aim is to attain
knowledge descriptions for multiple cancer types and tasks while avoiding manual domain biases. For
impact of model updates: GPT-4’s language descriptions contributed to training pathology models in
our research. We will publicly share all used descriptions, codes, and models. This disclosure ensures
reproducibility in reported tasks without the need of invoking GPT-4 for inference or new training.
GPT-4’s upgrades won’t influence current outcomes. We’ll explore if GPT upgrades generate new
descriptions and their effect on results.

As widely acknowledged, training a pathological foundation model demands a substantial corpus of
correlated pathological images and textual data, in addition to significant computational resources.
This poses considerable challenges in the field of computational pathology, characterized by high data
privacy, scarce annotations, and extensive storage requirements. More recently, prominent research
endeavors [25, 17] have entered the spotlight, aiming to develop a comprehensive vision-language
model within the domain of digital pathology. Nevertheless, the focus of this study is to some extent
orthogonal to these studies. The objective of our method is to develop new prompt-learning strategies
based on an existing large vision-language model for few-shot learning. More importantly, our
method can be combined with any large vision-language models (either in general natural image
domain or pathology-specific domain) for few-shot WSI classification, not limited to the CLIP model
used in the paper.

However, this paper has certain limitations, mainly due to the effectiveness of the proposed prompt
depending on the capabilities of the large model. If the large model fails to provide effective
descriptions, it can affect the model’s performance. This study aims to inspire further research that
combines foundational models with large-scale language models for the classification of pathology
Whole Slide Images. Such research endeavors will herald a new era in AI pathology.
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