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ABSTRACT

Incremental gradient and incremental proximal methods are a fundamental class
of optimization algorithms used for solving finite sum problems, broadly stud-
ied in the literature. Yet, without strong convexity, their convergence guarantees
have primarily been established for the ergodic (average) iterate. We establish the
first nonasymptotic convergence guarantees for the last iterate of both incremental
gradient and incremental proximal methods, in general convex smooth (for both)
and convex Lipschitz (for the proximal variants) settings. Our oracle complex-
ity bounds for the last iterate nearly match (i.e., match up to a square-root-log
or a log factor) the best known oracle complexity bounds for the average iterate,
for both classes of methods. We further obtain generalizations of our results to
weighted averaging of the iterates with increasing weights and for randomly per-
muted ordering of updates. We study last iterate convergence of the incremental
proximal method as a mathematical abstraction of forgetting in continual learn-
ing and prove a lower bound that certifies that a large amount of regularization
is crucial to mitigating catastrophic forgetting—one of the key considerations in
continual learning. Our results generalize last iterate guarantees for incremen-
tal methods compared to state of the art, as such results were previously known
only for overparameterized linear models, which correspond to convex quadratic
problems with infinitely many solutions.

1 INTRODUCTION

We study the last iterate convergence of incremental (gradient and proximal) methods, which apply
to problems of the form

min
x∈Rd

{
f(x) :=

1

T

T∑
t=1

ft(x)
}
. (1)

As is standard, we assume that each component function ft is convex and either smooth or Lipschitz-
continuous and that a minimizer x∗ ∈ argminx f(x) exists.

Incremental methods traverse all the component functions ft in a cyclic manner, updating each it-
erate by taking either a gradient descent step (in the case of incremental gradient methods) or a
proximal-point step (in the case of the incremental proximal method) with respect to the individ-
ual component functions ft. For a more precise statement of these two classes of methods, see
Sections 2 and 3. Same as prior work (Bertsekas et al., 2011; Bertsekas, 2011; Li et al., 2019;
Mishchenko et al., 2020; Cai et al., 2024), we define oracle complexity of these methods as the
number of first-order or proximal oracle queries to individual component functions ft required to
reach a solution x with optimality gap f(x) − f(x∗) ≤ ϵ on the worst-case instance from the
considered problem class, where ϵ > 0 is a given error parameter.

Our main motivation for studying the last iterate convergence of incremental methods comes from
its intrinsic abstraction of the catastrophic forgetting in continual learning (CL) with cyclic task re-
playing. In particular, CL represents a sequential learning setting, where a machine learning model
gets updated over time, based on the changing or evolving distribution of the data passed to the
learner. A major challenge in such dynamic learning settings is the degradation of model perfor-
mance on previously seen data, known as the catastrophic forgetting (McCloskey & Cohen, 1989;
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Figure 1: Illustration of both continual learning over tasks {ft}Tt=1 (cyclic replay + regularization)
and incremental proximal method x·,t+1 = proxηft(x·,t) = argminx{ft(x) + 1

2η∥x− x·,t∥2}.

Goodfellow et al., 2013), which has been well-documented in various empirical studies; see, e.g.,
recent surveys (Parisi et al., 2019; De Lange et al., 2021). On the theoretical front, however, much is
still missing from the understanding of possibilities and limitations related to catastrophic forgetting,
with results for basic learning settings being obtained only very recently (Balcan et al., 2015; Evron
et al., 2022; Peng & Risteski, 2022; Chen et al., 2022; Cao et al., 2022; Evron et al., 2023; Lin et al.,
2023b; Goldfarb & Hand, 2023; Peng et al., 2023; Goldfarb et al., 2024). Our work contributes to
this line of theory research, focusing on more general convex settings compared to prior work.

While there are different learning settings studied under the umbrella of CL, following recent
work Evron et al. (2022; 2023), we focus on the CL settings with cyclic replaying of tasks. Such
settings arise in applications that naturally undergo cyclic changes in the data/tasks, due to diur-
nal or seasonal cycles (e.g., in agriculture, forestry, e-commerce, astronomy, etc.). For instance,
e-commerce platforms like Amazon have predictable seasonal changes in website traffic and pur-
chases around holidays and during promotional periods such as Prime Days.

Given T tasks associated with the loss functions {ft}Tt=1, we illustrate the correspondence between
the incremental proximal method (IPM) and CL in Fig. 1, where xn denotes the model parameter in
CL or the last iterate of IPM at time n. The proximal step of the IPM can be seen as a mathematical
abstraction of the training process (minimizing the loss function, with ℓ2-regularization enforcing
closeness to previous model parameters) on each task. We note in passing that which training al-
gorithm is used to minimize the loss has no bearing on this model, as we are interpreting cyclic
replaying of tasks in CL as an optimization algorithm over a discrete set of tasks, similar to previous
theoretical work on CL (Evron et al., 2022; 2023; Goldfarb et al., 2024).

The forgetting over T tasks after K epochs/cycles in CL with cyclic replaying of tasks is defined
by (Doan et al., 2021; Evron et al., 2022; 2023)

fK(xK−1,T+1) :=
1

T

T∑
t=1

ft(xK−1,T+1), (2)

where xk−1,T+1 is the model parameter vector after kth cycle/epoch. Forgetting is catastrophic if

fK(xK−1,T+1)
K→∞↛ 0.

Observe that Eq. (2) corresponds to the value of the objective function from Eq. (1) at the final iterate
xK := xK−1,T+1. Prior work (Evron et al., 2022) that obtained rigorous bounds for the forgetting
as in Eq. (2) applied to the problems where each ft is a convex quadratic function minimized by the
same x∗ such that ft(x∗) = f(x∗) = 0. By contrast, we consider more general convex functions
that are either smooth or Lipschitz continuous, and make no assumption about x∗ beyond being a
minimizer of the (average) function f . Since we are not assuming that f(x∗) = 0, our focus is on
bounding the excess forgetting fK(xK)− f(x∗), equivalently the optimality gap for the last iterate
in Eq. (1).

The method considered in Evron et al. (2022) minimized each component function exactly, out-
putting the solution closest to the previous iterate in each iteration, using implicit regularization
properties of SGD. To obtain the results, it was then crucial that the component functions were
quadratic (so that there is an explicit, closed-form solution for each subproblem) and that all com-
ponent functions shared a nonempty set of minimizers with value zero (so that forgetting can be
controlled despite aggressive adaption to the current task). Our work using the IPM instead consid-
ers explicit regularization to enforce closeness of models on differing tasks. This could potentially
degrade the performance on the current task, but as a trade-off can control forgetting and it addresses
a much broader class of loss functions, without any shared minima assumptions. Such explicit reg-
ularization is also motivated by the existing CL practice (Heckel, 2022; Li et al., 2023), as one of
major empirical approaches to mitigating catastrophic forgetting (De Lange et al., 2021).
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Due to space constraints, further discussion of related work is provided in Appendix A.

1.1 CONTRIBUTIONS

Our contributions are twofold. First, we derive the first results for the last iterate convergence rate of
standard incremental methods1. Second, our results for convergence of the IPM have a direct impli-
cation on the catastrophic forgetting in CL, and we formally characterize the effect of regularization
on forgetting. Below, we summarize our main contributions, where σ2

∗ := 1
T

∑T
t=1 ∥∇ft(x∗)∥2

denotes the gradient variance at x∗. The quantity σ2
∗ is intrinsic to oracle complexity of incremental

methods (Mishchenko et al., 2020; Nguyen et al., 2021; Cai et al., 2024; Cha et al., 2023).

Last iterate convergence of Incremental Gradient Descent (IGD). We provide the first or-
acle complexity guarantees for the last iterate of standard variants of IGD with either deter-
ministic or randomly permuted ordering of the updates, applied to convex L-smooth objectives.
Up to a square-root-log factor, our oracle complexity bounds in Theorem 1 and Corollary 2—
which are Õ

(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
for the deterministic variant and Õ

(TL∥x0−x∗∥2

ϵ +
√
TLσ∗∥x0−x∗∥2

ϵ3/2

)
for the randomly permuted variant—match the best known oracle complexity

bounds for these methods, previously known only for the (uniformly) average iterate (Mishchenko
et al., 2020; Nguyen et al., 2021; Cai et al., 2024; Cha et al., 2023). We further extend our results to
increasing weighted averaging of the iterates in Corollary 1, which places more weight on the more
recent iterates, removing the excess square-root-log factor in the resulting oracle complexity bound.

Last iterate convergence of Incremental Proximal Method (IPM). We provide the first oracle
complexity guarantees for the last iterate of IPM applied to convex and either smooth or Lipschitz-
continuous objectives. When each component function is convex and L-smooth, we show (in The-
orem 2) that IPM has the same Õ

(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
oracle complexity as IGD.

This result is new for any variant of this method—with average or last iterate as its output. When
component functions are convex and G-Lipschitz, our oracle complexity Õ

(G2T∥x0−x∗∥2

ϵ2

)
in The-

orem 4 matches the best known oracle complexity bound up to a log factor, which was previously
known only for the (uniformly) average iterate (Bertsekas, 2011; Li et al., 2019). We further argue
(in Corollary 3 and Corollary 4) that for both settings our analysis can be extended to admit inexact
proximal point evaluations—an important setting not addressed by prior work on general IPM.

IPM as a model of CL. We initiate the study of IPM as a model of CL, corresponding to sequential
ridge-regularized model training commonly used in practice. On the positive side, our last-iterate
convergence results for IPM in Theorem 2 and Theorem 3 demonstrate that forgetting (correspond-
ing to the optimality gap at the last iterate) can be effectively controlled if the amount of employed
regularization is sufficiently high. On the negative side, we show that for any constant amount
of regularization, forgetting is always catastrophic, even for least squares problems. In particular,
we provide a univariate quadratic example such that for any constant regularization parameter, the
asymptotic limit of (excess) forgetting is non-zero. Further, we prove that for forgetting to be made
smaller than some target ϵ, the regularization must be sufficiently high and depend polynomially
on 1/ϵ, T, and σ∗. These results are summarized in Theorem 3 and highlight the limitations of
regularization as a black-box tool for controlling forgetting in CL.

1.2 PRELIMINARIES

We consider the d-dimensional real vector space (Rd, ∥ · ∥), where ∥ · ∥ is the ℓ2 norm. We de-
note [T ] := {1, 2, . . . , T}. Given a proper, convex, lower semicontinuous function f , its proximal
operator and Moreau envelope are defined by

proxηf (x) = argminy∈Rd

{
1
2η∥y − x∥2 + f(y)

}
, Mηf (x) = miny∈Rd

{
1
2η∥y − x∥2 + f(y)

}
,

1An independent and concurrent work to ours (Liu & Zhou, 2024b) studied the last iterate convergence
of shuffled SGD for composite (strongly) convex smooth/Lipschitz optimization. For the same problems as
studied in our Section 2, they obtained the same convergence results. The remaining results in (Liu & Zhou,
2024b) and our work are not directly comparable, as the motivation for the two papers and the studied settings
are different; for a more detailed discussion, see Liu & Zhou (2024b, Section 2) and our Appendix A.
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Algorithm 1 Incremental Gradient Descent (IGD)

Input: initial point x0, number of epochs K, step size {ηk}
for k = 1 : K do
xk−1,1 = xk−1

for t = 1 : T do
xk−1,t+1 = xk−1,t − ηk∇ft(xk−1,t)

xk = xk−1,T+1

return xK

respectively, for a parameter η > 0. The Moreau envelope is 1
η -smooth with the gradient

∇Mηf (x) =
1
η (x− proxηf (x)) ∈ ∂f(proxηf (x)), where ∂f(·) is the subdifferential of f .

We make the following assumptions. The first one is made throughout the paper.

Assumption 1. Each ft is convex and there exists a minimizer x∗ ∈ argminx∈Rd f(x).

By Assumption 1, f is also convex. In nonsmooth settings, we make an additional standard assump-
tion that the component functions are Lipschitz-continuous.

Assumption 2. Each ft is G-Lipschitz, i.e., |ft(x)− ft(y)| ≤ G∥x− y∥ for any x,y ∈ Rd; thus
∥gt(x)∥ ≤ G for all gt(x) ∈ ∂ft(x).

For the smooth settings, we make the following assumption.

Assumption 3. Each ft is L-smooth, i.e., ∥∇ft(x)−∇ft(y)∥ ≤ L∥x− y∥ for any x,y ∈ Rd.

We remark that Assumptions 2 and 3 imply that f is also G-Lipschitz and L-smooth, respectively.
These two assumptions can also be generalized to be with distinct Lipschitz/smoothness constants,
and our results would scale with the average Lipschitz/smoothness constant using the techniques
from Cai et al. (2024), which we omit to keep the focus on the intricacies of the last iterate conver-
gence. When f is L-smooth and convex, we will often make use of the following standard inequality
that fully characterizes the class of L-smooth convex functions:

1
2L∥∇f(x)−∇f(y)∥2 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ , ∀x,y ∈ Rd. (3)

Finally, when each ft is smooth, we assume bounded variance at x∗, same as all prior work that
considered the same settings of IGD/shuffled SGD as we do (Mishchenko et al., 2020; Nguyen
et al., 2021; Tran et al., 2021; 2022; Cai et al., 2024).

Assumption 4. The quantity σ2
∗ := 1

T

∑T
t=1 ∥∇ft(x∗)∥2 is bounded.

2 LAST ITERATE CONVERGENCE OF INCREMENTAL GRADIENT DESCENT

In this section, we introduce our techniques for analyzing the last iterate guarantee and bound the
oracle complexity for the last iterate of incremental gradient descent (IGD), assuming component
functions are smooth and convex. In the context of CL, this corresponds to a simplified setup where
the learner incrementally performs a single gradient step on each task and cyclically replays the T
tasks. Nevertheless, this setup serves as a warmup to the proximal setup we discuss in the next
section. Additionally, it is of independent interest as incremental gradient methods are widely used
in the optimization and machine learning literature, where despite the lack of prior theoretical justi-
fication, it is typically the last iterate that gets output by the algorithm in practice.

We summarize the IGD method in Alg. 1, assuming the incremental order 1, 2, . . . , T in each epoch
for simplicity and without loss of generality. The oracle complexity for the (uniformly) average
iterate of IGD has been shown to be O(TL

ϵ + T
√
Lσ∗

ϵ3/2
) for an ϵ-optimality gap (Mishchenko et al.,

2020; Cai et al., 2024) under the same assumptions we make here (Assumptions 1, 3, and 4), while,
as discussed before, there were no guarantees for either the last iterate or even a weighted average
of the iterates. The main result of this section is that the same oracle complexity applies to the last
iterate of IGD, up to a square-root-log factor. We further generalize this result to weighted averages
of iterates with increasing weights and to variants with randomly permuted order of cyclic updates.
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We begin the analysis by deriving a bound on the gap with respect to an arbitrary but fixed reference
point z, as summarized in the following lemma, whose proof is in Appendix B. This stands in con-
trast to arguments deriving bounds on the average iterate, which take z = x∗. While this may seem
like a minor difference, it affects the analysis non-trivially: a direct extension of prior arguments
would require replacing Assumption 4—which imposes a bound on 1

T

∑T
t=1 ∥∇ft(x∗)∥2—with a

bound on 1
T

∑T
t=1 ∥∇ft(z)∥2 for an arbitrary z, which would be a much stronger requirement.

Lemma 1. Under Assumptions 1 and 3, for any z ∈ Rd that is fixed in the k-th cycle of Alg. 1 and
any α, β > 0 such that 1

α + 1
β ≤ 1

2 , if ηk ≤ 1√
βTL

, then for all k ∈ [K],

T
(
f(xk)− f(z)

)
≤ η2kL

∑T
t=1

∥∥∑T
s=t ∇fs(x∗)

∥∥2 + α
βT

(
f(z)− f(x∗)

)
+ 1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
.

Our next step is to specify our choice of the reference point z for each epoch. In particular, we
consider a sequence of points {zk}K−1

k=−1 that is recursively defined as a convex combination of the
algorithm iterate xk and the previous reference point zk−1:

zk = (1− λk)xk + λkzk−1 (4)
for k ≥ 0 with z−1 = x∗ and λk ∈ [0, 1] to be set later. Observe that zk can also be written as a
convex combination of the points {xj}kj=0 and x∗ by unrolling the recursion, i.e.,

zk = (1− λk)xk +
(∏k

i=0 λi

)
x∗ +

∑k−1
j=0

(∏k
i=j+1 λi

)
(1− λj)xj , (5)

where (1 − λk) +
∏k

i=0 λi +
∑k−1

j=0

(∏k
i=j+1 λi

)
(1 − λj) = 1. If we set λk = 1 for all k, then

we have zk = x∗ and recover the bound f(xk) − f(x∗) in Lemma 1, which leads to the average
iterate guarantee. For general {λk}, we obtain the following lemma to relate the function value gap
f(xk)− f(zk−1) to the optimality gap f(xk)− f(x∗), whose proof is deferred to Appendix B.
Lemma 2. Let zk be defined by Eq. (4) for a given sequence of parameters λk ∈ (0, 1), where
k ≥ 0 and z−1 = x∗. Under Assumption 1, if there exists a sequence of nonnegative weights wk

such that λkwk ≤ wk−1 for k ∈ [K − 1], then for all k ∈ [K]:

1. wk−1

(
f(zk−1)− f(x∗)

)
≤

∑k−1
j=0 wj(1− λj)

(
f(xj)− f(x∗)

)
;

2. wk−1

(
f(xk)− f(zk−1)

)
≥ wk−1(f(xk)− f(x∗))−

∑k−1
j=0 wj(1− λj)(f(xj)− f(x∗)).

The role of the sequence of weights {wk} in Lemma 2 is to ensure that we can telescope the terms
∥xk−1 − zk−1∥2 − ∥xk − zk−1∥2 in Lemma 1, when summing the weighted per-epoch recursion
wk−1

(
f(xk) − f(zk−1)

)
over k ∈ [K] and deriving the convergence results. On the other hand,

to succinctly see why such {zk} could lead to the desired last iterate guarantees, we note that the
second part of Lemma 2 indicates that wk−1

(
f(xk) − f(zk−1)

)
intrinsically includes retraction

terms of the optimality gaps at the previous iterates. Thus, we can deduct wK−1(f(xK) − f(x∗))

from
∑K

k=1 wk−1

(
f(xk)− f(zk−1)

)
by properly choosing λk and wk to cancel out the optimality

gap terms at the intermediate iterates. In this case, the convergence rate for the last iterate would be
characterized by O

(∑K
k=1 wk−1/wK−1

)
.

Our choice of {zk} is inspired by the recent work (Zamani & Glineur, 2023; Liu & Zhou, 2024a)
on last iterate guarantees for subgradient methods and SGD with λk = wk−1

wk
. However, their proof

techniques are not directly applicable to incremental methods, due to technical obstacles including
additional nontrivial error terms of the form α

βT
(
f(zk) − f(x∗)

)
in Lemma 1 arising from the

incremental gradient steps using reference points other than x∗. Further discussion is in Appendix A.
Such error terms inherently deteriorate the growth rate of {wk} and could lead to a worse last
iterate rate compared to the rate on the average iterate. In the following theorem, we calibrate such
degradation on the last iterate guarantees, and show that with a slightly smaller step size one can still
achieve essentially the same rate as for the average iterate. The proof is provided in Appendix B.
Theorem 1. Under Assumptions 1, 3, and 4 and for positive parameters α, β > 0 such that 1

α+
1
β ≤

1
2 , if the step size is fixed and satisfies ηk = η ≤ 1√

βTL
, the output xK of Alg. 1 satisfies

f(xK)− f(x∗) ≤ eη2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β + e∥x0−x∗∥2

2ηTK
1

1+α/β
. (6)
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In particular, for α = 4, β = 4 logK, and η = min
{ ∥x0−x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1+logK)1/3

, 1
2
√
logKTL

}
,

f(xK) − f(x∗) = O
(L1/3σ2/3

∗ ∥x0−x∗∥4/3(1+logK)1/3

K2/3 + L∥x0−x∗∥2√logK
K

)
, and thus f(xK) −

f(x∗) ≤ ϵ after Õ
(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
individual gradient evaluations.

The error term f(zk−1) − f(x∗) in Lemma 1 plays the role of slowing the last iterate rate, as
calibrated by the dependence on α/β in Eq. (6). To remedy such degradation compared to the
average iterate rate (Mishchenko et al., 2020; Cai et al., 2024), one natural thought is to make α/β
sufficiently small. In particular, we choose α/β = 1/ logK and show that the last iterate rate nearly
matches the best known rate on the average iterate, with the trade-off of requiring order- 1√

logK

smaller step sizes in comparison with Mishchenko et al. (2020); Cai et al. (2024). This translates
into the oracle complexity that is larger by at most a

√
log(1/ϵ) factor. For most cases of interest,

this quantity can be treated as a constant: for example, for ϵ = 10−8,
√

log(1/ϵ) ≈ 4.29.

On the other hand, with λk ≡ 1 and constant wk, Lemmas 1 and 2 directly imply the average iterate
guarantee, as a sanity check. Additionally, instead of zeroing the weights of the optimality gap terms
f(xk)− f(x∗) for k ∈ [K − 1] to obtain the last iterate guarantee, one can deduce the convergence
rate on the increasing weighted averaging that places more weight on later iterates, as formalized in
the following corollary. The proof is deferred to Appendix B.
Corollary 1 (Increasing Weighted Averaging). Under Assumptions 1, 3, and 4 and for parameters
α, β > 0 such that 1

α + 1
β ≤ 1

2 , if the step size η is fixed and such that η ≤ 1√
βTL

, then for any

constant c ∈ (0, 1] and increasing sequence {wk}K−1
k=0 with wk = (1+α/β)(K−k)+1−c

(1+α/β)(K−k) wk−1, Alg. 1

outputs x̂K =
∑K

k=1
wk−1xk∑K
k=1 wk−1

satisfying

f(x̂K)− f(x∗) ≤ T 2σ2
∗η

2L
c + ∥x0−x∗∥2

2cηTK .

In particular, taking β = O(1) and the step size η = min{ 1√
βTL

, (∥x0−x∗∥2

2T 3σ2
∗LK )1/3}, we have

f(x̂K)− f(x∗) ≤ ϵ after O
(TL∥x0−x∗∥2

cϵ + TL1/2σ∗∥x0−x∗∥2

c3/2ϵ3/2

)
individual gradient evaluations.

We remark that increasing weighted averaging shaves off the (at most) square-root-log term appear-
ing in the last iterate rate above and recovers the best known rate for the average iterate (Mishchenko
et al., 2020; Cai et al., 2024). The parameters α, β are included in the weights wk controlling the
growth rate of the increasing sequence {wk}. When α/β → ∞, increasing weighted averaging
reduces to the uniform weighted average.

Shuffled SGD. We extend our analysis to handle the case with possible random permutations on
the task ordering in each epoch, showing order-

√
T improvements in complexity if involving ran-

domness. We consider two main permutation strategies of particular interests in the literature on
shuffled SGD: (i) random reshuffling (RR): randomly generate permutations at the beginning of
each epoch; (ii) shuffle-once (SO): generate a single random permutation at the beginning and
use it in all epochs. Those strategies lead to order-(1/T ) improvements in bounding the vari-
ance term η2kL

∑T
t=1

∥∥∑T
s=t ∇fs(x∗)

∥∥2 from Lemma 1, and we state the improved convergence
results with permutations in the following corollary. The proof is deferred to Appendix B. Our
last iterate guarantee nearly matches the best known average iterate convergence rate for shuffled
SGD (Mishchenko et al., 2020; Nguyen et al., 2021; Cai et al., 2024) and the lower bound results
for the RR scheme (Cha et al., 2023), with a slightly (order-( 1√

logK
)) smaller step size.

Corollary 2 (Shuffled SGD (RR/SO)). Under Assumptions 1, 3 and 4 and for positive parameters
α, β > 0 such that 1

α + 1
β ≤ 1

2 , if the step size is fixed and such that η ≤ 1√
βTL

, the output xK of
Alg. 1 with uniformly random (SO/RR) shuffling satisfies

E[f(xK)− f(x∗)] ≤ eη2σ2
∗TL(1 + β/α)K

α/β
1+α/β + e∥x0−x∗∥2

2TηK
1

1+α/β
.

With α = 4, β = 4 logK and η = min
{ ∥x0−x∗∥2/3

21/3T 2/3σ
2/3
∗ L1/3K1/3(1+logK)1/3

, 1
2
√
logKTL

}
, we have

E[f(xK)− f(x∗)] ≤ ϵ after Õ
(TL∥x0−x∗∥2

ϵ +
√
TLσ∗∥x0−x∗∥2

ϵ3/2

)
individual gradient evaluations.
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Algorithm 2 Incremental Proximal Method (IPM)

Input: initial point x0, number of epochs K, step size {ηk}
for k = 1 : K do
xk−1,1 = xk−1

for t = 1 : T do
xk−1,t+1 = proxηkft

(xk−1,t) = argminx∈Rd

{
1

2ηk
∥x− xk−1,t∥2 + ft(x)

}
xk = xk−1,T+1

return xK

It is worth noting here that the analysis of shuffled SGD is technically disjoint from the traditional
analysis of SGD, which relies on sampling with replacement. (By contrast, shuffled SGD employs
sampling without replacement.) As a consequence, the last iterate results for SGD are not applicable
to incremental methods (nor shuffled SGD), as discussed in more details in Appendix A.

3 INCREMENTAL PROXIMAL METHOD

In this section, we leverage the proof techniques developed in the previous section and derive the
last iterate convergence bounds for the IPM, summarized in Alg. 2. While the IPM is a fundamental
method broadly studied in the optimization literature—and thus its last iterate convergence bounds
are of independent interest—our main motivation for considering this method comes from using it
as a mathematical abstraction of CL, as discussed in the introduction. Thus we begin this section by
briefly explaining this connection and reasoning.

The considered setup is motivated by the general ℓ2-regularized CL setting (Heckel, 2022; Li et al.,
2023). In particular, each proximal iteration xk−1,t+1 = proxηkft

(xk−1,t) can be interpreted as
minimizing the ℓ2 (a.k.a. ridge) regularized loss ft(x) +

1
2ηk

∥x − xk−1,t∥22 corresponding to the
current task t, which aligns with the common machine learning practice of using regularization
to improve the generalization error and prevent forgetting. When ηk → ∞, the proximal point
step reduces to the CL setting where the learner exactly minimizes the loss of the current task, i.e.,
xk−1,t+1 = argminx∈Rd ft(x), while the regularization effect vanishes and causes larger forgetting
on previous tasks. When ηk is small, the proximal point step is easier to compute with larger
quadratic regularization and prevents deviating from the previous iterate thus causing less forgetting.
However, in this case the plasticity of the model may be deteriorated.

We also note that our analysis of IPM is related to previous work on cyclic replays for overparame-
terized linear models with (S)GD (Evron et al., 2022; Swartworth et al., 2024), as (S)GD in this case
acts as an implicit regularizer (Gunasekar et al., 2018; Zhang et al., 2021) (whereas proximal point
update acts as an explicit regularizer). The two lines of work are not directly comparable: Evron
et al. (2022); Swartworth et al. (2024) considers exact minimization of component/task loss function
and bounds the forgetting, but only addresses convex quadratics where the component loss functions
have a nonempty intersecting set of minima (which implies σ∗ = 0 in Assumption 4). On the other
hand, our work addresses much more general (not necessarily quadratic) convex functions and does
not require σ∗ = 0, but instead relies on sufficiently large regularization.

3.1 SMOOTH CONVEX SETTING

We first study the setting where the loss of each task is convex and smooth, for which we show faster
convergence and which covers many regression tasks studied in prior CL work; see e.g., Evron et al.
(2022); Goldfarb et al. (2024). In contrast, prior work either only focused on nonsmooth settings for
IPM (Bertsekas, 2011; Li et al., 2019; 2020) or studied different algorithms without component-wise
proximal steps for smooth settings (Bertsekas, 2015; Mishchenko et al., 2022).

Under component smoothness, the proximal iteration is equivalent to the backward gradient step:

xk−1,t+1 = xk−1,t − ηk∇ft(xk−1,t+1).

Hence, much of the analysis from Section 2 can be adapted here, and the main difference lies in
bounding the gap f(xk) − f(z) within each epoch with decomposition w.r.t. xk−1,t+1 instead of

7
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xk−1,t in comparison to Lemma 1. Then choosing z = zk−1 defined by Eq. (4) and mimicking the
proof of Theorem 1, we obtain the following theorem, whose proof is in Appendix C.
Theorem 2. Under Assumptions 1, 3, and 4 and for parameters α, β > 0 such that 1

α + 1
β ≤ 1

2 , if
the step size is fixed and such that η ≤ 1√

βTL
, the output xK of Alg. 2 satisfies

f(xK)− f(x∗) ≤ eη2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β + e∥x0−x∗∥2

2ηTK
1

1+α/β
.

With α = 4, β = 4 logK and η = min
{ ∥x0−x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1+logK)1/3

, 1
2
√
logKTL

}
, we have

f(xK) − f(x∗) = O
(L1/3σ2/3

∗ ∥x0−x∗∥4/3(1+logK)1/3

K2/3 + L∥x0−x∗∥2√logK
K

)
, and thus f(xK) −

f(x∗) ≤ ϵ after Õ
(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
individual gradient evaluations.

A few remarks are in order here. First, the last iterate convergence rate of IPM matches the rate
of IGD for the last iterate. This is also the first convergence result for IPM (with component-
wise proximal updates) in smooth convex settings, in comparison with the prior results for convex
Lipschitz setups (Bertsekas, 2011; Li et al., 2019; 2020). Second, the extensions to the increasing
weighted averaging and RR/SO shuffling discussed in Section 2 also apply to this setting, which we
omit for brevity. Lastly, the step size constraint in Theorem 2 may seem surprising, given that the
proximal point method (corresponding to IPM with T = 1) converges for any positive step size.
However, as we show in the following theorem, such a step size restriction is necessary for IPM
(with T ≥ 2) to reach the target optimality gap, highlighting challenges arising from incremental
updates. We provide a proof sketch below, while the complete proof is in Appendix C.
Theorem 3. Given L > 0 and T ≥ 2, let FT,L be the class of finite-sum functions f(x) =
1
T

∑T
t=1 ft(x), with each component ft being L-smooth and convex. Then:

1. For any fixed step size η, there exists a function f ∈ FT,L such that the iterates xk of Alg. 2
satisfy f(xk)− f(x∗) ↛ 0 as k → ∞. As a consequence, the forgetting is catastrophic.

2. For any fixed step size η that only depends on the parameters of the problem class (L, T, error ϵ),
there exists a function f ∈ FT,L such that the iterates xk of Alg. 2 satisfy lim

k→∞
f(xk)− f(x∗) > 1.

3. Given ε > 0, if the fixed step size η satisfies η ≥ min
{ 16

√
ε√

TLσ∗
, 1

TL

}
, then there exists a function

f ∈ FT,L such that the iterates xk of Alg. 2 satisfy f(xk)− f(x∗) > ε for all sufficiently large k.

Proof sketch. For all parts of the proof, we consider 1-dimensional quadratics

f(x) = 1
T

∑T
t=1 ft(x), where ft(x) =

L
2 (x− δt)

2 (t ∈ [T ])

for L > 0 and {δt}t∈[T ] ⊆ R. It is immediate that f(x) is minimized at x∗ = 1
T

∑T
t=1 δt. In this

case, Alg. 2 using a fixed step size η performs closed-form updates on f , i.e., xk+1 = γnxk + (1−
γ)

∑T
t=1 γ

T−tδt, where γ = 1
ηL+1 ∈ (0, 1). Given any initial point x0, by iterating we have

xk − x∗ = γkTx0 +
∑T

t=1

(γT−t(1−γ)(1−γkT )
1−γT − 1

T

)
δt

k→∞−→
∑T

t=1

(γT−t(1−γ)
1−γT − 1

T

)
δt.

For 1), since γ ∈ (0, 1), 1−γ
1−γT − 1

T = 1∑T−1
t=0 γt

− 1
T > 0 at t = T . As k → ∞, for {δt}t∈[T ] with

sgn(δt) = sgn
(γT−t(1−γ)

1−γT − 1
T

)
, we have f(xk)−f(x∗) =

L
2 (xk−x∗)

2 ≥ L
2

(
1−γ
1−γT − 1

T

)2

δ2T > 0.

For 2), further observe that as γ ∈ (0, 1),
∣∣γT−t(1−γ)

1−γT − 1
T

∣∣ ≤ T−1
T . As k → ∞, for |δt| < T (2/L)1/2

(T−1)2

(t ∈ [T − 1]) and δT ≥ 2(2/L)1/2

1−γ

1−γT − 1
T

: f(xk)− f(x∗) >
L
2

((
1−γ
1−γT − 1

T

)
δT −

∑T−1
t=1

T−1
T |δt|

)2

= 1.

For 3), the case η ≥ 1
TL can be handled similarly as in 1), so we assume w.l.o.g. that γ ≥ 1− 1

T+1 .

Let γ = 1 − κ, where 0 < κ ≤ 1
T+1 < 1

T . Further noticing that (1 − κ)T ≥ 1 − κT + κ2T (T−1)
4

for T ≥ 2 and κT < 1, then we have that the coefficient of δT is
1−γ
1−γT − 1

T = κ
1−(1−κ)T

− 1
T ≥ κ

κT−κ2T (T−1)
4

− 1
T ≥ κ(T−1)

4T ≥ κ
8 .

8
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(a) Forgetting (b) Regularization error (avg) (c) Regularization error (max)

Figure 2: Numerical results for performing IPM on T component least square functions, correspond-
ing to the ℓ2-regularized CL setting with T linear regression tasks with cyclic replays.

If η ≥ 16
√
ε√

TLσ∗
, since σ2

∗ ≤ L2
∑T

t=1 δ
2
t /T in this example, κ = ηL

ηL+1 ≥ 16
√

ε/L

16
√

ε/L+
√∑T

t=1 δ2t
>

8
√

3ε/L√∑T
t=1 δ2t

with choosing large enough
∑T

t=1 δ
2
t . Then for sufficiently large k and {δt}t∈[T ] such

that δ2T > 5
6

∑T
t=1 δ

2
t and sgn(δt) = sgn

(γT−t(1−γ)
1−γT − 1

T

)
: f(xk)−f(x∗) ≥ 2L

5
3εδ2T

L
∑T

t=1 δ2t
> ε.

Regularization effect. We now discuss how the regularization parameter (the inverse step size of
IPM) affects the loss on the current task and (excess) forgetting, based on the above convergence
results for IPM. An interesting aspect of our result in Theorem 2 is that there is a critical value

η∗ = min
{

∥x0−x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1+β/α)1/3

, 1√
βTL

}
(7)

such that decreasing η beyond η∗, both the regularization error on the current task and our upper
bound on the forgetting increase. For η > η∗ (i.e., when we decrease the regularization error),
Theorem 3 shows that the forgetting would increase, at least in some regimes of the problem param-
eters. Moreover, Theorem 3 demonstrates that polynomial dependence on other parameters like ϵ
and 1/σ∗ is necessary in the choice for η. In other words, strong regularization is needed to control
the forgetting to a target error in general smooth convex settings. Another direct implication of The-
orem 3 is that if no assumptions such as similarity are made on the tasks, then any ℓ2-regularized
model using a finite regularization parameter would suffer catastrophic forgetting, i.e., the forgetting
would not be approaching zero as the number of epochs tends to infinity.

We further provide illustrative numerical results in Fig. 2 to facilitate our discussion. In particular,
we choose L = 2, T ∈ {100, 150, 200}, δt = 1/t (t ∈ [T − 1]) and δT = T for the example
f(x) = L

2T

∑T
t=1(x− δt)

2 used in the proof of Theorem 3. In Fig. 2(a), we plot the optimality gap
at the last iterate, i.e., the excess forgetting, against the step sizes after K = 104 epochs. It can be
observed that the forgetting first decreases with reducing the step size, but then increases beyond
some critical value. Note that the critical values are around 10−5, which is nontrivially smaller
than 1/L = 1/2, while a larger T leads to a smaller such critical value. These numerical examples
corroborate our results from Theorems 2 and 3, which jointly suggest that the step size (amount of
regularization) can neither be too small nor too large. On the other hand, in Fig. 2(b)-(c) we show the
final stagnated average and maximum regularization error, i.e., 1

T

∑T
t=1 ft(xk−1,t+1)−ft(x∗,t) and

maxt∈[T ] ft(xk−1,t+1)−ft(x∗,t) over T tasks, where x∗,t is the minimizer of ft. We thus conclude
from Fig. 2 that as the step size increases (equivalently, regularization parameter decreases), the
regularization error decreases as well, but the forgetting increases.

To conclude, our results demonstrate that there is an inherent trade-off between forgetting and regu-
larization error in CL with cyclic replaying of regularized smooth convex tasks. It is an interesting
question for future research how incorporating task similarity into the analysis and even into the
employed regularizing function might affect the conclusions.

3.2 CONVEX LIPSCHITZ SETTING

We now further relax the smoothness assumption and consider the convex Lipschitz setting, with
applications such as linear classification tasks considered in Evron et al. (2023). To carry out the

9
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analysis, we leverage the standard fact that the proximal iteration is equivalent to the gradient step
with respect to the Moreau envelope, i.e.,

xk−1,t+1 = xk−1,t − ηk∇Mηkft(xk−1,t),

while the gradient of the Moreau envelope ∇Mηkft(xk−1,t) belongs to ∂ft(xk−1,t+1), thus is
bounded by the Lipschitz constant of ft. We use these observations to bound the gap f(xk)− f(z)
for each epoch and then use the sequence {zk} defined in Eq. (4) to deduce the last iterate rate. The
results are summarized in the following theorem, while the proofs are deferred to Appendix C.
Theorem 4. Under Assumptions 1 and 2, the output xK of Alg. 2 satisfies

f(xK)− f(x∗) ≤ 1
2T

∑K
k=1 ηk

∥x0 − x∗∥2 + G2T
2

∑K
k=1

η2
k∑K

j=k ηj
.

Moreover, given ϵ > 0, there exists a constant step size η = ∥x0−x∗∥
GT

√
K

such that f(xK)− f(x∗) ≤ ϵ

after Õ
(G2T∥x0−x∗∥2

ϵ2

)
individual proximal oracle queries.

The last iterate rate we obtained in Theorem 4 matches the best known prior results for the average
iterate of incremental proximal methods in nonsmooth settings (Bertsekas, 2011; Li et al., 2019), up
to a logarithmic factor. Further, we take the Θ( 1√

K
) step size only for analytical simplicity, while

the diminishing step sizes ηk = Θ( 1√
k
) will yield the same rate via a similar analysis.

3.3 INEXACT PROXIMAL POINT EVALUATIONS

In the last two subsections, we derived our results assuming that the proximal point operator can be
evaluated exactly. However, computing the proximal point corresponds to solving a strongly convex
problem, which is generally possible to do only up to a finite accuracy. In the context of CL, it is
also more realistic to assume that the loss of each task is minimized to certain accuracy, rather than
exactly. Thus, we now consider the case where xk−1,t+1 is an approximation of proxηkft

(xk−1,t)

with solving the corresponding strongly convex problem to ε2k−1,t/2ηk-optimality gap for εk−1,t >

0. Equivalently, using strong convexity and denoting gk−1,t :=
1
ηk
(xk−1,t − xk−1,t+1), we have

∥xk−1,t+1 − proxηkft
(xk−1,t)∥ ≤ εk−1,t, ∥gk−1,t −∇Mηkft(xk−1,t)∥ ≤ εk−1,t/ηk. (8)

We note that direct extensions of the previous analysis would not work, because inexact evaluations
give rise to additional positive terms ∥xk − zk−1∥2 that cause issues for telescoping. However, we
observe that the coefficients of these terms admit additional slackness, i.e., (λ2

kwk − wk−1)∥xk −
zk−1∥2, while Lemma 2 only requires λkwk ≤ wk−1. Thus, as long as the approximation error at
each iteration is small, we can still maintain the convergence rate of the IPM with exact proximal
point evaluations. With these insights, we extend our convergence results to admit inexact proximal
point evaluations as summarized in the following corollaries, with proofs in Appendix C.
Corollary 3 (Convex Smooth). Under Assumptions 1 and 3, 4 and for parameters α, β such that
1
α + 1

β ≤ 1
2 , if the step size is fixed and satisfies ηk ≡ η ≤ 1√

βTL
, the output xK of Alg. 2 with

inexact proximal point evaluations as in Eq. (8) with
∑T

t=1 εk−1,t ≤
√
η

1+(1+α/β)(K−k+1) satisfies

f(xK)− f(x∗) ≤ e∥x0−x∗∥2

2ηTK
1

1+α/β
+ 2η2T 2σ2

∗L(1 + β/α)K
α/β

1+α/β + e
2ηT

∑K−1
k=0

∑T
t=1

2Tε2k,t+
√
ηεk,t

(K−k)
1

1+α/β
.

Given ϵ > 0, if
∑T

t=1 εk−1,t ≤
√
ηmin{ε, 1

3(K−k+1)}, there exists η such that f(xK)− f(x∗) ≤ ϵ

after Õ
(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
individual inexact proximal point evaluations.

Corollary 4 (Convex Lipschitz). Under Assumptions 1 and 2, the output xK of Alg. 2 with inexact
proximal point evaluations as in Eq. (8) with

∑T
t=1 εk−1,t ≤ ηkηk−1GT∑K

j=k ηj
satisfies

f(xK)− f(x∗) ≤ ∥x0−x∗∥2

2T
∑K

k=1 ηk
+ G2T

2

∑K
k=1

η2
k∑K

j=k ηj
+

∑K
k=1

∑T
t=1

( ε2k−1,t

2T
∑K

j=k ηj
+

3Gεk−1,tηk∑K
j=k ηj

)
.

Given ϵ > 0, if
∑T

t=1 εk−1,t ≤ 2ηGT
K−k+1 , there exists a constant step size η such that f(xK) −

f(x∗) ≤ ϵ after Õ
(G2T∥x0−x∗∥2

ϵ2

)
individual inexact proximal point evaluations.

Due to space constraints, conclusions and discussions of future directions appear in Appendix D.
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Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In
Proc. Symposium on Learning and Data Science, Paris’09, 2009.

Xufeng Cai, Chaobing Song, Stephen J Wright, and Jelena Diakonikolas. Cyclic block coordinate
descent with variance reduction for composite nonconvex optimization. In Proc. ICML’23, 2023.

Xufeng Cai, Cheuk Yin Lin, and Jelena Diakonikolas. Tighter convergence bounds for shuffled SGD
via primal-dual perspective. In Proc. NeurIPS’24, 2024.

Xinyuan Cao, Weiyang Liu, and Santosh Vempala. Provable lifelong learning of representations. In
Proc. AISTATS’22, 2022.

Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter lower bounds for shuffling SGD: Random
permutations and beyond. arXiv preprint arXiv:2303.07160, 2023.

Xi Chen, Christos Papadimitriou, and Binghui Peng. Memory bounds for continual learning. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), 2022.

Flavia Chorobura and Ion Necoara. Random coordinate descent methods for nonseparable compos-
ite optimization. SIAM Journal on Optimization, 2023.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
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Table 1: Comparison of our results with state of the art, in terms of individual gradient/proximal
oracle complexity required to output xout with f(xout)− f(x∗) ≤ ϵ (IGD and IPM) or E[f(xout)−
f(x∗)] ≤ ϵ (RR/SO), where ϵ > 0 is the target error and x∗ is the optimal solution. Here, σ2

∗ =
1
T

∑T
t=1 ∥∇ft(x∗)∥22, D = ∥x0 − x∗∥2, and Õ(·) suppresses up to square-root-log factors of 1/ε.

PAPER ASSUMPTION
AVERAGE ITERATE

COMPLEXITY
LAST ITERATE
COMPLEXITY

MISHCHENKO ET AL. (2020)
NGUYEN ET AL. (2021)
CAI ET AL. (2024)

(IGD) ft : L-SMOOTH,
CONVEX

O
(
TLD2

ϵ + T
√

Lσ∗D2

ϵ3/2

)
−

[Ours] (IGD) ft : L-SMOOTH,
CONVEX

O
(
TLD2

ϵ + T
√

Lσ∗D2

ϵ3/2

)
Õ
(
TLD2

ϵ + T
√

Lσ∗D2

ϵ3/2

)
MISHCHENKO ET AL. (2020)
NGUYEN ET AL. (2021)
CHA ET AL. (2023)
CAI ET AL. (2024)

(RR/SO) ft : L-SMOOTH,
CONVEX

O
(
TLD2

ϵ +
√

TLσ∗D2

ϵ3/2

)
−

[Ours] (RR/SO) ft : L-SMOOTH,
CONVEX

O
(
TLD2

ϵ +
√

TLσ∗D2

ϵ3/2

)
Õ
(
TLD2

ϵ +
√

TLσ∗D2

ϵ3/2

)
BERTSEKAS (2011)
LI ET AL. (2019) (IPM) ft : G-LIPSCHITZ,

CONVEX
O
(
TG2D2

ϵ2

)
−

[Ours] (IPM) ft : L-SMOOTH,
CONVEX

O
(
TLD2

ϵ + T
√

Lσ∗D2

ϵ3/2

)
Õ
(
TLD2

ϵ + T
√

Lσ∗D2

ϵ3/2

)
[Ours] (IPM) ft : G-LIPSCHITZ,

CONVEX
O
(
TG2D2

ϵ2

)
Õ
(
TG2D2

ϵ2

)

A RELATED WORK

We first provide Table 1 for a comparison of our results on incremental methods with the state-of-
the-art on average iterate convergence.

To remedy catastrophic forgetting, various empirical approaches have been proposed, corresponding
to three main categories: (i) memory-based approaches, which store samples from previous tasks
and reuse those data for training on the current task (Robins, 1995; Lopez-Paz & Ranzato, 2017;
Rolnick et al., 2019); (ii) expansion-based approaches, which progressively expand the model size
to accommodate new tasks (Rusu et al., 2016; Yoon et al., 2017); and (iii) regularization-based
approaches, which regularize the loss of the current task to ensure the new model parameter vector
is close to the old ones (Kirkpatrick et al., 2017); for a more complete survey, we refer to De Lange
et al. (2021). Our focus in this work is on (i) and (iii).

On the theoretical front, the majority of existing work for the settings we consider has studied
catastrophic forgetting for overparameterized linear models (Evron et al., 2022; 2023; Lin et al.,
2023b; Goldfarb & Hand, 2023; Goldfarb et al., 2024; Swartworth et al., 2024) or under the neural
tangent kernel regime (Bennani et al., 2020; Doan et al., 2021). Another related line of work studied
the task similarity in CL under the teacher-student learning framework (Asanuma et al., 2021; Lee
et al., 2021). A recent work showed that an algorithm recursively minimizing the loss of the current
task over the solution space of the previous task, named the ideal continual learner, never forgets,
assuming all tasks share a common global minimizer (Peng et al., 2023).

When it comes to the cyclic forgetting that this paper focuses on, theoretical results have only been
established for linear models (Evron et al., 2022; 2023; Swartworth et al., 2024). In particular, the
analysis for linear regression tasks in Evron et al. (2022); Swartworth et al. (2024) crucially relies
on the exact minimization of each task using (S)GD to have closed-form updates between tasks,
while Evron et al. (2023) uses alternating projections to analyze linear classification tasks. It is
unclear how to extend either of these results to general convex loss functions that we consider.

On a technical level, our results are most closely related to 1) the literature on last iterate conver-
gence guarantees for subgradient-based methods and stochastic gradient descent (SGD) and 2) the
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literature on incremental gradient methods and shuffled SGD. For 1), we draw inspiration from the
recent results (Zamani & Glineur, 2023; Liu & Zhou, 2024a), which rely on a clever construction of
reference points zk with respect to which a gap quantity f(xk)− f(zk−1) gets bounded to deduce
a bound for the optimality gap f(xk) − f(x∗) of the last iterate x∗. For the latter line of work 2),
we generalize the analysis used exclusively for the optimality gap of the (uniformly) average iter-
ate (Mishchenko et al., 2020; Nguyen et al., 2021; Cha et al., 2023; Cai et al., 2024) to control the
gap-like quantities f(xk)− f(zk−1), which require a more careful argument for controlling all er-
ror terms introduced by replacing x∗ by zk−1 without introducing spurious unrealistic assumptions
about the magnitudes of the component functions’ gradients.

For further comparison with the works on last iterate guarantees (Zamani & Glineur, 2023; Liu &
Zhou, 2024a), we note that Zamani & Glineur (2023) study subgradient methods for a single deter-
ministic objective function in convex Lipschitz settings. Since the work is not dealing with finite
sum objectives and incremental updates, the focus is different and the algorithms are not directly
comparable, barring for trivial cases (e.g., setting T = 1 in our results). Further, Liu & Zhou
(2024a) study the last-iterate convergence for classical SGD with replacement sampling, in stochas-
tic convex settings. The major challenge in our setting is that the functions are accessed in a cyclic
order, as opposed to being randomly sampled as in Liu & Zhou (2024a). We note that analyzing
SGD with cyclic ordering of component gradients (as opposed to standard SGD that uses random
sampling with replacement) was a major open problem for decades (Bottou, 2009), while existing
results rely on a completely different analysis. For additional results on the last iterate convergence
of classical SGD, which is less relevant to this work, we direct the reader to the references in Jain
et al. (2021); Liu & Zhou (2024a).

We finally note that both these related lines of work concern problems on which progress was made
only in the very recent literature. In particular, while the oracle complexity upper bound for the aver-
age iterate of SGD in convex Lipschitz-continuous settings has been known for decades and its anal-
ysis is routinely taught in optimization and machine learning classes, there were no such results for
the last iterate of SGD until 2013 (Shamir & Zhang, 2013) with improvements and generalizations
to these results obtained as recently as in the past several months (Liu & Zhou, 2024a). Regarding
2), obtaining any nonasymptotic convergence guarantees for incremental gradient methods/shuffled
SGD had remained open for decades (Bottou, 2009) until a recent line of work (Gürbüzbalaban
et al., 2021; Shamir, 2016; Haochen & Sra, 2019; Nagaraj et al., 2019; Ahn et al., 2020; Rajput
et al., 2020; Yun et al., 2022; Safran & Shamir, 2020). For nonconvex problems, Yu & Li (2023)
proposed a stopping criteria for shuffled SGD and proved the high-probability guarantee for the ex-
iting point, which is technically disjoint from our work. For smooth convex problems we consider,
the convergence results were obtained only in the past few years (Mishchenko et al., 2020; Nguyen
et al., 2021; Cha et al., 2023) and improved in Cai et al. (2024) using a fine-grained analysis in-
spired by the recent advances in cyclic methods (Song & Diakonikolas, 2023; Cai et al., 2023; Lin
et al., 2023a). However, all those results are for the (uniformly) average iterate, while obtaining
convergence results for the last iterate had remained open until this work.

An independent and concurrent work to ours (Liu & Zhou, 2024b) studied the last-iterate conver-
gence of shuffled SGD for composite (strongly) convex smooth/Lipschitz optimization. For the same
problems as studied in our Section 2, they obtained the same convergence results. The remaining
results in Liu & Zhou (2024b) and our work are not directly comparable, as the motivation for the
two works and the studied settings are different: we do not consider composite optimization settings
for shuffled SGD/incremental gradient nor strong convexity of component functions, while Liu &
Zhou (2024b) did not consider the incremental proximal method (our Section 3). It is of note that
while Liu & Zhou (2024b) used proximal steps to handle the nonsmooth portion of the objective
in their composite setting, the proximal maps are not applied component-wise, but at the end of a
cycle, to only one (regularizer) function.

Further discussion on other related topics. In the context of more general finite-sum minimiza-
tion, one interesting application of our results is in federated learning, where most of the existing
results are proved for the average iterate; see e.g., Alistarh et al. (2017). Last-iterate results in fed-
erated learning have only been obtained for different algorithms without incremental updates over
component gradients, see e.g., Li (2021); Li & Richtárik (2021). Hence, our last-iterate results are
still new, even to the field of federated learning.
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Incremental methods this work focuses on also have a natural connection to cyclic coordinate meth-
ods. However, the results for cyclic coordinate methods are not directly applicable to deriving
convergence guarantees for incremental methods. For the direct reformulation of finite sum mini-
mization to minx,z1,...,zT

1
T

∑T
t=1 zt, s.t. zt = ft(x) (t ∈ [T ]) with introducing additional vari-

ables, one needs to handle nonseparable constraints associated with generic functions zt = ft(x).
These constraints are nonconvex unless ft’s are linear. In most works on cyclic block coordinate
methods for composite optimization (see e.g., Cai et al. (2023) and references therein), the regular-
izer is assumed to be convex and generally cannot enforce such hard constraints. It is worth noting
that Chorobura & Necoara (2023) derive convergence results for the last iterate of a cyclic coor-
dinate method applied to problems with nonseparable constraints. However, Chorobura & Necoara
(2023) require additional assumptions on the regularizing function, such as either being weakly con-
vex with easy proximal steps or being concave along coordinates with additional assumptions made
about its Hessian. Their last iterate result also depends on a uniform bound over the iterate distance
to optima, which would be ill-defined if ported to the setting of incremental methods.

B OMITTED PROOFS FROM SECTION 2

Lemma 1. Under Assumptions 1 and 3, for any z ∈ Rd that is fixed in the k-th cycle of Alg. 1 and
any α, β > 0 such that 1

α + 1
β ≤ 1

2 , if ηk ≤ 1√
βTL

, then for all k ∈ [K],

T
(
f(xk)− f(z)

)
≤ η2kL

∑T
t=1

∥∥∑T
s=t ∇fs(x∗)

∥∥2 + α
βT

(
f(z)− f(x∗)

)
+ 1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
.

Proof. Since each ft is convex and L-smooth, we have for t ∈ [T ] (see Eq. (3)):

ft(xk)− ft(xk−1,t) ≤ ⟨∇ft(xk),xk − xk−1,t⟩ −
1

2L
∥∇ft(xk)−∇ft(xk−1,t)∥2, (9)

ft(xk−1,t)− ft(z) ≤ ⟨∇ft(xk−1,t),xk−1,t − z⟩ − 1

2L
∥∇ft(xk−1,t)−∇ft(z)∥2. (10)

On the other hand, letting Φk−1,t(x) := ⟨∇ft(xk−1,t),x⟩ + 1
2ηk

∥xk−1,t − x∥2, we have
∇Φk−1,t(xk−1,t+1) = 0 by the update xk−1,t+1 = xk−1,t − ηk∇ft(xk−1,t) in Alg. 1. Observe
that Φk−1,t is 1

ηk
-strong convex, and thus we also have

Φk−1,t(z) ≥ Φk−1,t(xk−1,t+1) +
1

2ηk
∥z − xk−1,t+1∥2. (11)

Summing Eq. (9) and (10) and using Eq. (11), we conclude that for t ∈ [T ],

ft(xk)− ft(z) ≤ ⟨∇ft(xk),xk − xk−1,t⟩+ ⟨∇ft(xk−1,t),xk−1,t − xk−1,t+1⟩

− 1

2L
∥∇ft(xk)−∇ft(xk−1,t)∥2 −

1

2L
∥∇ft(xk−1,t)−∇ft(z)∥2

− 1

2ηk
∥xk−1,t+1 − xk−1,t∥2 +

1

2ηk

(
∥xk−1,t − z∥2 − ∥xk−1,t+1 − z∥2

)
.
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Decomposing ∇ft(xk) = ∇ft(xk)−∇ft(xk−1,t)+∇ft(xk−1,t) and summing over t ∈ [T ] where
we recall xk−1 = xk−1,1 and xk = xk−1,T+1, we have

T
(
f(xk)− f(z)

)
≤

T∑
t=1

⟨∇ft(xk−1,t),xk − xk−1,t+1⟩ −
1

2ηk

T∑
t=1

∥xk−1,t+1 − xk−1,t∥2︸ ︷︷ ︸
T1

+

T∑
t=1

⟨∇ft(xk)−∇ft(xk−1,t),xk − xk−1,t⟩︸ ︷︷ ︸
T2

− 1

2L

T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t)∥2 −
1

2L

T∑
t=1

∥∇ft(xk−1,t)−∇ft(z)∥2

+
1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
.

For the term T1, we recall that by the IGD update, ∇ft(xk−1,t) = − 1
ηk
(xk−1,t+1 − xk−1,t) and

xk − xk−1,t+1 =
∑T

s=t+1(xk−1,s+1 − xk−1,s), and thus we have

T1 = − 1

ηk

T−1∑
t=1

T∑
s=t+1

⟨xk−1,t+1 − xk−1,t,xk−1,s+1 − xk−1,s⟩ −
1

2ηk

T∑
t=1

∥xk−1,t+1 − xk−1,t∥2

= − 1

2ηk

∥∥∥ T∑
t=1

(xk−1,t+1 − xk−1,t)
∥∥∥2 = − 1

2ηk
∥xk − xk−1∥2 ≤ 0.

For the term T2, noticing that xk − xk−1,t = −ηk
∑T

s=t ∇fs(xk−1,s) and decomposing
∇fs(xk−1,s) = (∇fs(xk−1,s) − ∇fs(z)) + (∇fs(z) − ∇fs(x∗)) + ∇fs(x∗), we use Young’s
inequality with parameters α > 0 and β > 0 to obtain

T2 =

T∑
t=1

〈
∇ft(xk)−∇ft(xk−1,t),−ηk

T∑
s=t

∇fs(xk−1,s)
〉

≤ 1

2L

(1
2
+

1

α
+

1

β

) T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t)∥2

+
αη2kL

2

T∑
t=1

∥∥∥ T∑
s=t

(
∇fs(z)−∇fs(x∗)

)∥∥∥2 + η2kL

T∑
t=1

∥∥∥ T∑
s=t

∇fs(x∗)
∥∥∥2

+
βη2kL

2

T∑
t=1

∥∥∥ T∑
s=t

(
∇fs(xk−1,s)−∇fs(z)

)∥∥∥2.
Further using that ∥

∑n
i=1 xi∥2 ≤ n

∑n
i=1 ∥xi∥2 and combining the above bounds on T1 and T2,

we obtain

T
(
f(xk)− f(z)

)
≤ 1

2L

( 1

α
+

1

β
− 1

2

) T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t)∥2

+
(βη2kT 2L

2
− 1

2L

) T∑
t=1

∥∇ft(xk−1,t)−∇ft(z)∥2

+
αη2kT

2L

2

T∑
t=1

∥∇ft(z)−∇ft(x∗)∥2 + η2kL

T∑
t=1

∥∥∥ T∑
s=t

∇fs(x∗)
∥∥∥2

+
1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
,
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To make the first two terms on the right-hand side both nonpositive, we choose
1

α
+

1

β
≤ 1

2
, ηk ≤ 1√

βTL
.

We further bound the term
∑T

t=1 ∥∇ft(z) − ∇ft(x∗)∥2 by the smoothness and convexity of each
ft as follows:

T∑
t=1

∥∇ft(z)−∇ft(x∗)∥2 ≤ 2L

T∑
t=1

(
ft(z)− ft(x∗)− ⟨∇ft(x∗), z − x∗⟩

)
= 2TL

(
f(z)− f(x∗)

)
,

where in the last equation we used ∇f(x∗) = 0. Hence, we finally obtain

T
(
f(xk)− f(z)

)
≤ η2kL

T∑
t=1

∥∥∥ T∑
s=t

∇fs(x∗)
∥∥∥2 + αT 3η2kL

2
(
f(z)− f(x∗)

)
+

1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
≤ η2kL

T∑
t=1

∥∥∥ T∑
s=t

∇fs(x∗)
∥∥∥2 + α

β
T
(
f(z)− f(x∗)

)
+

1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
,

where we used ηk ≤ 1√
βTL

in the last inequality, thus completing the proof.

Lemma 2. Let zk be defined by Eq. (4) for a given sequence of parameters λk ∈ (0, 1), where
k ≥ 0 and z−1 = x∗. Under Assumption 1, if there exists a sequence of nonnegative weights wk

such that λkwk ≤ wk−1 for k ∈ [K − 1], then for all k ∈ [K]:

1. wk−1

(
f(zk−1)− f(x∗)

)
≤

∑k−1
j=0 wj(1− λj)

(
f(xj)− f(x∗)

)
;

2. wk−1

(
f(xk)− f(zk−1)

)
≥ wk−1(f(xk)− f(x∗))−

∑k−1
j=0 wj(1− λj)(f(xj)− f(x∗)).

Proof.

1. Using Eq. (5) and the convexity of f , we have

f(zk−1)− f(x∗)

≤ (1− λk−1)
(
f(xk−1)− f(x∗)

)
+

k−2∑
j=0

( k−1∏
i=j+1

λi

)
(1− λj)

(
f(xj)− f(x∗)

)
.

It remains to multiply by wk−1 on both sides and notice that by the lemma assumption,

wk−1

( k−1∏
i=j+1

λi

)
(1− λj) ≤ wk−2

( k−2∏
i=j+1

λi

)
(1− λj) ≤ · · · ≤ wj(1− λj).

2. This follows from the first part of the lemma, by decomposing f(xk) − f(zk−1) = f(xk) −
f(x∗)−

(
f(zk−1)− f(x∗)

)
.

Theorem 1. Under Assumptions 1, 3, and 4 and for positive parameters α, β > 0 such that 1
α+

1
β ≤

1
2 , if the step size is fixed and satisfies ηk = η ≤ 1√

βTL
, the output xK of Alg. 1 satisfies

f(xK)− f(x∗) ≤ eη2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β + e∥x0−x∗∥2

2ηTK
1

1+α/β
. (6)
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In particular, for α = 4, β = 4 logK, and η = min
{ ∥x0−x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1+logK)1/3

, 1
2
√
logKTL

}
,

f(xK) − f(x∗) = O
(L1/3σ2/3

∗ ∥x0−x∗∥4/3(1+logK)1/3

K2/3 + L∥x0−x∗∥2√logK
K

)
, and thus f(xK) −

f(x∗) ≤ ϵ after Õ
(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
individual gradient evaluations.

Proof. Plugging zk−1 defined by Eq. (4) into Lemma 1 and using the inequality ∥
∑n

i=1 xi∥2 ≤
n
∑n

i=1 ∥xi∥2 to bound the term
∑T

t=1 ∥
∑T

s=t ∇fs(x∗)∥2, we obtain

T
(
f(xk)− f(zk−1)

)
≤ T 3η2kσ

2
∗L+

α

β
T
(
f(zk−1)− f(x∗)

)
+

1

2ηk

(
∥xk−1 − zk−1∥2 − ∥xk − zk−1∥2

)
,

where 1
α + 1

β ≤ 1
2 . Multiplying ηkwk−1 on both sides with wk such that λkwk ≤ wk−1 and noticing

that ∥xk−1 − zk−1∥2 ≤ λk−1∥xk−1 − zk−2∥2 by Eq. (4), we have

Tηkwk−1

(
f(xk)− f(zk−1)

)
≤ T 3η3kσ

2
∗Lwk−1 +

α

β
Tηkwk−1

(
f(zk−1)− f(x∗)

)
+

1

2

(
wk−2∥xk−1 − zk−2∥2 − wk−1∥xk − zk−1∥2

)
We then sum over k ∈ [K] and use Lemma 2 to obtain

T

K∑
k=1

ηk

[
wk−1

(
f(xk)− f(x∗)

)
−

k−1∑
j=0

wj(1− λj)
(
f(xj)− f(x∗)

)]

≤ T 3σ2
∗L

K∑
k=1

η3kwk−1 +
w−1

2
∥x0 − x∗∥2 +

α

β
T

K∑
k=1

ηk

k−1∑
j=0

wj(1− λj)
(
f(xj)− f(x∗)

)
,

(12)

where we also use z−1 = x∗. Unrolling the terms w.r.t. f(xk)− f(x∗) (k ∈ [K]) we get
K∑

k=1

ηk

[
wk−1

(
f(xk)− f(x∗)

)
−

k−1∑
j=0

wj(1− λj)
(
f(xj)− f(x∗)

)]

= ηKwK−1

(
f(xK)− f(x∗)

)
− w0(1− λ0)

(
f(x0)− f(x∗)

) K∑
k=1

ηk

+

K−1∑
k=1

(
ηkwk−1 − wk(1− λk)

K∑
j=k+1

ηj

)(
f(xk)− f(x∗)

)
(13)

and
K∑

k=1

ηk

k−1∑
j=0

wj(1− λj)
(
f(xj)− f(x∗)

)
=

K−1∑
k=0

(
wk(1− λk)

K∑
j=k+1

ηj

)(
f(xk)− f(x∗)

)
.

Plugging back into Eq. (12), grouping the like terms, and choosing λ0 = 1, we obtain

TηKwK−1

(
f(xK)− f(x∗)

)
+ T

K−1∑
k=1

[
ηkwk−1 −

(
1 +

α

β

)
wk(1− λk)

K∑
j=k+1

ηj

](
f(xk)− f(x∗)

)
≤ T 3σ2

∗L

K∑
k=1

η3kwk−1 +
w−1

2
∥x0 − x∗∥2.

(14)

To obtain the last iterate guarantee, it suffices to choose wk and λk such that
λkwk ≤ wk−1, 0 ≤ k ≤ K − 1, (15)

ηkwk−1 −
(
1 +

α

β

)
wk(1− λk)

K∑
j=k+1

ηj ≥ 0, 1 ≤ k ≤ K − 1. (16)
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Noticing that Eq. 16 is equivalent to λk ≥ 1− ηkwk−1(
1+α

β

)
wk

∑K
j=k+1 ηj

, to have both inequalities satisfied

at the same time, it suffices that

1− ηkwk−1(
1 + α

β

)
wk

∑K
j=k+1 ηj

≤ wk−1

wk
⇐⇒ wk ≤

ηk +
(
1 + α

β

)∑K
j=k+1 ηj(

1 + α
β

)∑K
j=k+1 ηj

wk−1.

To maximize the growth rate of {wk}, we let wk =
ηk+(1+α

β )
∑K

j=k+1 ηj

(1+α
β )

∑K
j=k+1 ηj

wk−1. Without loss of

generality, we take w−1 = w0 =
∏K−1

k=1

(1+α
β )

∑K
j=k+1 ηj

ηk+(1+α
β )

∑K
j=k+1 ηj

, and thus wK−1 = 1. Hence, dividing

both sides of Eq. (14) by TηKwK−1 and choosing the constant step size ηk ≡ η for all k ∈ [K], we
obtain

f(xK)− f(x∗) ≤ η2T 2σ2
∗L

K∑
k=1

wk−1 +
w−1

2ηT
∥x0 − x∗∥2. (17)

We first bound w−1 =
∏K−1

k=1

(1+α
β )(K−k)

1+(1+α
β )(K−k) =

∏K−1
k=1

(1+α
β )k

1+(1+α
β )k with the constant step size. Tak-

ing the natural logarithm of w−1, we have
K−1∑
k=1

log
(
1− 1

1 +
(
1 + α

β

)
k

) (i)

≤ −
K−1∑
k=1

1

1 +
(
1 + α

β

)
k
≤ − 1

1 + α
β

K−1∑
k=1

1

k + 1
.

where for (i) we use the fact that log(1 + x) ≤ x for x > −1. Further noticing that
∑K−1

k=1
1

k+1 =∑K
k=1

1
k − 1 ≥ log(K) + 1

K − 1, then we have

log(w−1) ≤ − 1

1 + α
β

log(K) +
1

1 + α
β

⇐⇒ w−1 ≤ e1/(1+α/β)

K
1

1+α/β

≤ e

K
1

1+α/β

.

On the other hand, we note that wk−1 =
∏K−1

j=k

(1+α
β )(K−j)

1+(1+α
β )(K−j) =

∏K−k
j=1

(1+α
β )j

1+(1+α
β )j for 1 ≤ k ≤

K − 1 and wK−1 = 1, then we follow the above argument and obtain
K∑

k=1

wk−1 = 1 +

K−1∑
k=1

K−k∏
j=1

(1 + α
β )j

1 + (1 + α
β )j

≤ 1 +

K−1∑
k=1

e

(K − k + 1)
1

1+α/β

(i)

≤ e(1 + α/β)

α/β
K

α/β
1+α/β ,

where (i) is due to
∑K

k=2
1
kq ≤

∫K+1

2
1

(x−1)q dx = K1−q−1
1−q for any 0 < q < 1. Hence, we obtain

the final bound:

f(xK)− f(x∗) ≤ eη2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β +

e∥x0 − x∗∥2

2TηK
1

1+α/β

.

To analyze the oracle complexity, we take

η = min
{ ∥x0 − x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1 + β/α)1/3

,
1√
βTL

}
and analyze the two possible cases depending on which term in the min is smaller. If the first term
in the min is smaller (which we can equivalently think of as K being “large”), we get

f(xK)− f(x∗) ≤
3.5(1 + β/α)1/3L1/3σ

2/3
∗ ∥x0 − x∗∥4/3

K
1

1+α/β
− 1

3

.

Alternatively, if η = 1√
βTL

≤ ∥x0−x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1+β/α)1/3

(which we can think of as having

“small” K), we obtain

f(xK)− f(x∗) ≤
1.8(1 + β/α)1/3L1/3σ

2/3
∗ ∥x0 − x∗∥4/3

K
1

1+α/β
− 1

3

+
1.4

√
βL∥x0 − x∗∥2

K
1

1+α/β

.
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Hence, combining these two cases, we have

f(xK)− f(x∗) ≤
3.5(1 + β/α)1/3L1/3σ

2/3
∗ ∥x0 − x∗∥4/3

K
1

1+α/β
− 1

3

+
1.4

√
βL∥x0 − x∗∥2

K
1

1+α/β

.

In particular, if we choose α = 4 and β = 4 logK, assuming without loss of generality that logK >

1, then we have K
α/β

1+α/β = K
1

log K+1 ≤ e and thus

f(xK)− f(x∗) ≤
9.4L

1
3σ

2
3
∗ ∥x0 − x∗∥

4
3 (1 + logK)

1
3

K
2
3

+
7.4L∥x0 − x∗∥2

√
logK

K
.

To guarantee f(xK) − f(x∗) ≤ ϵ given ϵ > 0, the total number of individual gradient evaluations
will be

TK = Õ
(TL∥x0 − x∗∥2

ϵ
+

TL1/2σ∗∥x0 − x∗∥2

ϵ3/2

)
.

Corollary 1 (Increasing Weighted Averaging). Under Assumptions 1, 3, and 4 and for parameters
α, β > 0 such that 1

α + 1
β ≤ 1

2 , if the step size η is fixed and such that η ≤ 1√
βTL

, then for any

constant c ∈ (0, 1] and increasing sequence {wk}K−1
k=0 with wk = (1+α/β)(K−k)+1−c

(1+α/β)(K−k) wk−1, Alg. 1

outputs x̂K =
∑K

k=1
wk−1xk∑K
k=1 wk−1

satisfying

f(x̂K)− f(x∗) ≤ T 2σ2
∗η

2L
c + ∥x0−x∗∥2

2cηTK .

In particular, taking β = O(1) and the step size η = min{ 1√
βTL

, (∥x0−x∗∥2

2T 3σ2
∗LK )1/3}, we have

f(x̂K)− f(x∗) ≤ ϵ after O
(TL∥x0−x∗∥2

cϵ + TL1/2σ∗∥x0−x∗∥2

c3/2ϵ3/2

)
individual gradient evaluations.

Proof. We follow the proof of Theorem 1 up to Eq. (14) with constant step size η, then we instead
take λk = wk−1/wk and wk =

(1+α
β )(K−k)+1−c

(1+α
β )(K−k) wk−1 to obtain

cηT

K∑
k=1

wk−1

(
f(xk)− f(x∗)

)
≤ T 3η3σ2

∗L

K∑
k=1

wk−1 +
w−1

2
∥x0 − x∗∥2.

Since f is convex, we have f(x̂K) − f(x∗) ≤
∑K

k=1 wk−1(f(xk)−f(x∗))∑K
k=1 wk−1

where x̂K =∑K
k=1

wk−1xk∑K
k=1 wk−1

is the increasing weighted averaging of {xk}Kk=1, thus (cf. Eq. (17))

f(x̂K)− f(x∗) ≤
T 2σ2

∗η
2L

c
+

∥x0 − x∗∥2w−1

2cηT
∑K

k=1 wk−1

≤ T 2σ2
∗η

2L

c
+

∥x0 − x∗∥2

2cηTK
,

where the last step is due to
∑K

k=1 wk−1 ≥ Kw−1. Then we follow the proof of Theorem 1 and

choose η = min{ 1√
βTL

, (∥x0−x∗∥2

2T 3σ2
∗LK )1/3} to obtain

f(x̂K)− f(x∗) ≤
√
βL∥x0 − x∗∥2

2cK
+

21/3L1/3σ
2/3
∗ ∥x0 − x∗∥4/3

cK2/3
.

To guarantee f(xK)−f(x∗) ≤ ϵ for ϵ > 0, we choose β = O(1) and the total number of individual
gradient evaluations will be

TK = O
(TL∥x0 − x∗∥2

cϵ
+

TL1/2σ∗∥x0 − x∗∥2

c3/2ϵ3/2

)
,

thus finishing the proof.
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Corollary 2 (Shuffled SGD (RR/SO)). Under Assumptions 1, 3 and 4 and for positive parameters
α, β > 0 such that 1

α + 1
β ≤ 1

2 , if the step size is fixed and such that η ≤ 1√
βTL

, the output xK of
Alg. 1 with uniformly random (SO/RR) shuffling satisfies

E[f(xK)− f(x∗)] ≤ eη2σ2
∗TL(1 + β/α)K

α/β
1+α/β + e∥x0−x∗∥2

2TηK
1

1+α/β
.

With α = 4, β = 4 logK and η = min
{ ∥x0−x∗∥2/3

21/3T 2/3σ
2/3
∗ L1/3K1/3(1+logK)1/3

, 1
2
√
logKTL

}
, we have

E[f(xK)− f(x∗)] ≤ ϵ after Õ
(TL∥x0−x∗∥2

ϵ +
√
TLσ∗∥x0−x∗∥2

ϵ3/2

)
individual gradient evaluations.

Before proceeding the proof of Corollary 2, it is helpful to first introduce a lemma to bound the term∑T
t=1 ∥

∑T
s=t ∇fs(x∗)∥2 in Lemma 1.

Lemma 3. Under Assumptions 4 and for Alg. 1 with uniformly random (SO/RR) shuffling, we have

E
[∑T

t=1 ∥
∑T

s=t ∇fs(x∗)∥2
]
≤ T (T+1)

6 σ2
∗.

Proof. We first consider the case of random reshuffling strategy. Conditional on all the randomness
up to but not including k-th epoch, the only randomness of Ek[

∑T
t=1 ∥

∑T
s=t ∇fs(x∗)∥2] comes

from the permutation π(k) at k-th epoch. Further noticing that each partial sum
∑T

s=t ∇fs(x∗) can
be seen as a batch sampled without replacement from {∇ft(x∗)}t∈[T ], we have

Ek

[ T∑
t=1

∥∥∥ T∑
s=t

∇fs(x∗)
∥∥∥2] =

T∑
t=1

Eπ(k)

[∥∥∥ T∑
s=t

∇fs(x∗)
∥∥∥2]

=

T∑
t=1

(T − t+ 1)2Eπ(k)

[∥∥∥ 1

T − t+ 1

T∑
s=t

∇fs(x∗)
∥∥∥2]

(i)

≤
T∑

t=1

(T − t+ 1)2
t− 1

(T − t+ 1)(T − 1)
σ2
∗

=
T (T + 1)

6
σ2
∗,

where (i) is due to
∑T

t=1 ∇ft(x∗) = 0 and sampling without replacement (see e.g., (Lohr, 2021,
Section 2.7)). It remains to take expectation w.r.t. all randomness on both sides and use the law of
total expectation. For the case of shuffle-once variant, we can directly take expectation since the
randomness only comes from the initial random permutation, and the above argument still applies.

Proof of Corollary 2. This follows the analysis in the proof of Theorem 1, with taking expectation
w.r.t. all the randomness on both sides of the inequality in Lemma 1 and using Lemma 3.

C OMITTED PROOFS FROM SECTION 3

C.1 CONVEX SMOOTH SETTING

Lemma 4. Under Assumptions 1 and 3, for any z ∈ Rd that is fixed in the k-th cycle of Alg. 2 and
for α > 0, β > 0 such that 1

α + 1
β ≤ 1

2 , if the step sizes satisfy ηk ≤ 1√
βTL

, then we have for
k ∈ [K]

T
(
f(xk)− f(z)

)
≤ η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2 + α

β
T
(
f(z)− f(x∗)

)
+

1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
.

(18)
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Proof. Since each ft is convex and L-smooth, we have for t ∈ [T ]

ft(xk)− ft(xk−1,t+1) ≤ ⟨∇ft(xk),xk − xk−1,t+1⟩ −
1

2L
∥∇ft(xk)−∇ft(xk−1,t+1)∥2,

ft(xk−1,t+1)− ft(z) ≤ ⟨∇ft(xk−1,t+1),xk−1,t+1 − z⟩ − 1

2L
∥∇ft(xk−1,t+1)−∇ft(z)∥2.

Following the proof of Lemma 1, we add and subtract 1
2ηk

∥xk−1,t − z∥2 on the right-hand side of
the second inequality and combine the above two inequalities to obtain

ft(xk)− ft(z) ≤ ⟨∇ft(xk),xk − xk−1,t+1⟩ −
1

2ηk
∥xk−1,t+1 − xk−1,t∥2

− 1

2L

(
∥∇ft(xk)−∇ft(xk−1,t+1)∥2 + ∥∇ft(xk−1,t+1)−∇ft(z)∥2

)
+

1

2ηk

(
∥xk−1,t − z∥2 − ∥xk−1,t+1 − z∥2

)
.

Decomposing ∇ft(xk) = ∇ft(xk)−∇ft(xk−1,t+1)+∇ft(xk−1,t+1) and summing over t ∈ [T ],
we note that xk−1 = xk−1,1 and xk = xk−1,T+1 and obtain

T
(
f(xk)− f(z)

)
≤

T∑
t=1

⟨∇ft(xk−1,t+1),xk − xk−1,t+1⟩ −
1

2ηk

T∑
t=1

∥xk−1,t+1 − xk−1,t∥2︸ ︷︷ ︸
T1

+

T∑
t=1

⟨∇ft(xk)−∇ft(xk−1,t+1),xk − xk−1,t+1⟩︸ ︷︷ ︸
T2

+
1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)

− 1

2L

T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t+1)∥2 −
1

2L

T∑
t=1

∥∇ft(xk−1,t+1)−∇ft(z)∥2.

For the term T1, we follow the argument from the proof of Theorem 1 to obtain

T1 = − 1

2ηk
∥xk − xk−1∥2 ≤ 0.

For the term T2, noticing that xk−xk−1,t+1 = −ηk
∑T

s=t+1 ∇fs(xk−1,s+1) for 1 ≤ t ≤ T −1 and
decomposing ∇fs(xk−1,s+1) = (∇fs(xk−1,s+1)−∇fs(z)) + (∇fs(z)−∇fs(x∗)) +∇fs(x∗),
we use Young’s inequality with parameters α > 0 and β > 0 to obtain

T2 =

T−1∑
t=1

〈
∇ft(xk)−∇ft(xk−1,t+1),−ηk

T∑
s=t+1

∇fs(xk−1,s+1)
〉

≤ 1

2L

(1
2
+

1

α
+

1

β

) T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t+1)∥2

+
αη2kL

2

T−1∑
t=1

∥∥∥ T∑
s=t+1

(
∇fs(z)−∇fs(x∗)

)∥∥∥2 + η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2

+
βη2kL

2

T−1∑
t=1

∥∥∥ T∑
s=t+1

(
∇fs(xk−1,s+1)−∇fs(z)

)∥∥∥2.
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Further using the fact that ∥
∑n

i=1 xi∥2 ≤ n
∑n

i=1 ∥xi∥2 and combining the above bounds on T1
and T2, we obtain

T
(
f(xk)− f(z)

)
≤ 1

2L

( 1

α
+

1

β
− 1

2

) T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t)∥2

+
(βη2kT 2L

2
− 1

2L

) T∑
t=1

∥∇ft(xk−1,t+1)−∇ft(z)∥2

+
αη2kT

2L

2

T∑
t=1

∥∇ft(z)−∇ft(x∗)∥2 + η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2

+
1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
.

The rest of the proof is the same as the proof of Lemma 1 and is thus omitted.

Theorem 2. Under Assumptions 1, 3, and 4 and for parameters α, β > 0 such that 1
α + 1

β ≤ 1
2 , if

the step size is fixed and such that η ≤ 1√
βTL

, the output xK of Alg. 2 satisfies

f(xK)− f(x∗) ≤ eη2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β + e∥x0−x∗∥2

2ηTK
1

1+α/β
.

With α = 4, β = 4 logK and η = min
{ ∥x0−x∗∥2/3

21/3Tσ
2/3
∗ L1/3K1/3(1+logK)1/3

, 1
2
√
logKTL

}
, we have

f(xK) − f(x∗) = O
(L1/3σ2/3

∗ ∥x0−x∗∥4/3(1+logK)1/3

K2/3 + L∥x0−x∗∥2√logK
K

)
, and thus f(xK) −

f(x∗) ≤ ϵ after Õ
(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
individual gradient evaluations.

Proof. This follows Lemma 4 and the proof of Theorem 1.

Theorem 3. Given L > 0 and T ≥ 2, let FT,L be the class of finite-sum functions f(x) =
1
T

∑T
t=1 ft(x), with each component ft being L-smooth and convex. Then:

1. For any fixed step size η, there exists a function f ∈ FT,L such that the iterates xk of Alg. 2
satisfy f(xk)− f(x∗) ↛ 0 as k → ∞. As a consequence, the forgetting is catastrophic.

2. For any fixed step size η that only depends on the parameters of the problem class (L, T, error ϵ),
there exists a function f ∈ FT,L such that the iterates xk of Alg. 2 satisfy lim

k→∞
f(xk)− f(x∗) > 1.

3. Given ε > 0, if the fixed step size η satisfies η ≥ min
{ 16

√
ε√

TLσ∗
, 1

TL

}
, then there exists a function

f ∈ FT,L such that the iterates xk of Alg. 2 satisfy f(xk)− f(x∗) > ε for all sufficiently large k.

Proof. For all parts of the proof, we consider 1-dimensional quadratics

f(x) :=
1

T

T∑
t=1

ft(x), where ft(x) =
L

2
(x− δt)

2

for t ∈ [T ], L > 0, and appropriately chosen sequences of {δt}t∈[T ] ⊆ R.

It is immediate that f(x) is minimized at x∗ = 1
T

∑T
t=1 δt. Observe that Alg. 2 using a constant

step size η > 0 has closed-form updates on f , i.e.,

xk+1 = γnxk + (1− γ)

T∑
t=1

γT−tδt,
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where γ = 1
ηL+1 ∈ (0, 1). Given any initial point x0, by iterating we have

xk − x∗ = γkTx0 +

T∑
t=1

(γT−t(1− γ)(1− γkT )

1− γT
− 1

T

)
δt (19)

k→∞−→
T∑

t=1

(γT−t(1− γ)

1− γT
− 1

T

)
δt. (20)

1. Consider the weight δT in Eq. (20). Since γ ∈ (0, 1), we have

1− γ

1− γT
− 1

T
=

1∑T−1
t=0 γt

− 1

T
> 0.

Then for any {δt}t∈[T ] such that sgn(δt) = sgn
(γT−t(1−γ)

1−γT − 1
T

)
and δT > 0, we know that

lim
k→∞

f(xk)− f(x∗)
(i)
=

L

2
lim
k→∞

(xk − x∗)
2 ≥ L

2

( 1− γ

1− γT
− 1

T

)2

δ2T > 0,

where (i) is due to f being both L-strongly convex and L-smooth.

2. Consider the weights of δt in Eq. (20). Since γ ∈ (0, 1), we have

0 ≤ γT−t(1− γ)

1− γT
≤ γT−t ≤ 1,

thus for any t ∈ [T − 1]

γT−t(1− γ)

1− γT
− 1

T
∈
[
− 1

T
,
T − 1

T

)
.

For t = T , given any fixed γ < 1, we have

1− γ

1− γT
− 1

T
=

1∑T−1
t=0 γt

− 1

T
> 0.

Hence, for the sequence {δt} such that

|δt| <
T
√

2/L

(T − 1)2
(t ∈ [T − 1]), δT >

2
√

2/L
1−γ
1−γT − 1

T

,

then combining the bounds on the weights of δt with Eq. (20) we obtain

lim
k→∞

xk − x∗ =

T∑
t=1

(γT−t(1− γ)

1− γT
− 1

T

)
δt

≥
( 1− γ

1− γT
− 1

T

)
δT −

T−1∑
t=1

T − 1

T
|δt|

>
√
2/L.

Since f is L-smooth and L-strongly convex, we know that

lim
k→∞

f(xk)− f(x∗) =
L

2
lim
k→∞

(xk − x∗)
2 > 1,

thus finishing the proof of the second part. We note in passing that 1 on the right-hand side can be
replaced by any constant using a simple rescaling.
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3. Observe that given a fixed step size η > 0, we can choose a sequence {δt}t∈[T ] such that

sgn(δt) = sgn
(γT−t(1−γ)

1−γT − 1
T

)
for all t ∈ [T ], thus for any initial point x0 ≥ x∗:

f(xk)− f(x∗) =
L

2

(
γkT (x0 − x∗) + (1− γkT )

T∑
t=1

(γT−t(1− γ)

1− γT
− 1

T

)
δt

)2

≥ (1− γkT )2L

2

T∑
t=1

(γT−t(1− γ)

1− γT
− 1

T

)2

δ2t

+ (1− γkT )2L
∑

s ̸=t∈[T ]

(γT−t(1− γ)

1− γT
− 1

T

)(γT−t(1− γ)

1− γT
− 1

T

)
δsδt.

Without loss of generality, taking a sufficiently large k ≥ logγ(1−2/
√
5)

T , we obtain

f(xk)− f(x∗) ≥
2L

5

T∑
t=1

(γT−t(1− γ)

1− γT
− 1

T

)2

δ2t .

Then for any step size η ≥ 1/TL, we have γ = 1
ηL+1 ≤ T

T+1 . Consider t = T , we can bound

1− γ

1− γT
− 1

T
≥

1− T
T+1

1− ( T
T+1 )

T
− 1

T
=

1

T

( 1

1− (1− 1
T )

T
− 1

)
>

e− 1

T
.

Thus, for δT ≥
√
5T

√
ε√

2(e−1)L
, we have

f(xk)− f(x∗) ≥
2L

5

( 1− γ

1− γT
− 1

T

)2

δ2T > ε.

On the other hand, recalling the definition in Assumption 4, we have in this example that

σ2
∗ =

L2

T

T∑
t=1

(∑T
t=1 δt
T

− δt

)2

=
L2

T

( (∑T
t=1 δt)

2

T
− 2

(
∑T

t=1 δt)
2

T
+

T∑
t=1

δ2t

)
≤ L2

T∑
t=1

δ2t /T.

Thus for any step size η ≥ 16
√
ε√

TLσ∗
≥ 16

√
ε

L3/2
√∑T

t=1 δ2t
, we have γ = 1

ηL+1 ≤
√∑T

t=1 δ2t

16
√

ε/L+
√∑T

t=1 δ2t
.

We now proceed by bounding the weight of δT . In particular, let γ = 1 − κ for some κ > 0, and
assume that κ ≤ 1

T+1 < 1
T without loss of generality by the discussion above. Since κT < 1 and

T ≥ 2, we have

(1− κ)T ≥ 1− κT +
κ2T (T − 1)

4
,

which leads to

1− γT = 1− (1− κ)T ≤ κT − κ2T (T − 1)

4
.

Hence, we have
1− γ

1− γT
≥ κ

κT − κ2T (T−1)
4

=
1

T

1

1− κ(T − 1)/4
.

Further noticing that

1

1− κ(T − 1)/4
≥ 1 +

κ(T − 1)

4
≥ 1 +

κT

8

for T ≥ 2 and κ < 1
T , then we have

1− γ

1− γT
− 1

T
≥ 1

T
(1 +

κT

8
)− 1

T
=

κ

8
.
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Recall that γ ≤
√∑T

t=1 δ2t

16
√

ε/L+
√∑T

t=1 δ2t
, then we obtain

1− γ

1− γT
− 1

T
≥

2
√

ε/L

16
√

ε/L+
√∑T

t=1 δ
2
t

≥
√

3ε/L√∑T
t=1 δ

2
t

,

for {δt}t∈[T ] such that
√∑T

t=1 δ
2
t ≥ 16

√
3(2 +

√
3)
√
ε/L. Thus, for the sequence {δt}t∈[T ] such

that δ2T > 5
6

∑T
t=1 δ

2
t and sgn(δt) = sgn

(γT−t(1−γ)
1−γT − 1

T

)
, we have

f(xk)− f(x∗) ≥
2L

5

( (1− γ)

1− γT
− 1

T

)2

δ2T

>
2L

5

3εδ2T

L
∑T

t=1 δ
2
t

> ε,

completing the proof.

C.2 CONVEX LIPSCHITZ SETTING

Lemma 5. Under Assumptions 1 and 2, for any z ∈ Rd that is fixed in the k-th cycle of Alg. 2, we
have for k ∈ [K]

T
(
f(xk)− f(z)

)
≤ 1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
+

T (T − 1)G2ηk
2

. (21)

Proof. Since ft is convex and closed, we have

∇Mηkft(xk−1,t) =
1

ηk
(xk−1,t − xk−1,t+1) ∈ ∂ft(xk−1,t+1).

By G-Lipschitzness of each component function, we have that for t ∈ [T − 1]

ft(xk)− ft(xk−1,t+1)

≤ G∥xk − xk−1,t+1∥ ≤ ηkG

T∑
s=t+1

∥∇Mηkfs(xk−1,s)∥ ≤ (T − t)G2ηk.
(22)

On the other hand, using convexity of ft, we have that for t ∈ [T ]

ft(z) ≥ ft(xk−1,t+1) + ⟨∇Mηkft(xk−1,t), z − xk−1,t+1⟩ .
Expanding the inner product in the above inequality leads to

ft(xk−1,t+1)− ft(z)

≤ − 1

ηk
⟨xk−1,t − xk−1,t+1, z − xk−1,t+1⟩

=
1

2ηk

(
∥xk−1,t − z∥2 − ∥xk−1,t+1 − z∥2

)
− 1

2ηk
∥xk−1,t+1 − xk−1,t∥2. (23)

Combining Eq. (22) and (23) and noticing that xk−1,T+1 = xk and xk−1,1 = xk−1, we sum the
inequalities over t ∈ [T ] and obtain

T (f(xk)− f(z)) ≤ 1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
+

T (T − 1)G2ηk
2

− 1

2ηk

T∑
t=1

∥xk−1,t+1 − xk−1,t∥2

≤ 1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
+

T (T − 1)G2ηk
2

.
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Theorem 4. Under Assumptions 1 and 2, the output xK of Alg. 2 satisfies

f(xK)− f(x∗) ≤ 1
2T

∑K
k=1 ηk

∥x0 − x∗∥2 + G2T
2

∑K
k=1

η2
k∑K

j=k ηj
.

Moreover, given ϵ > 0, there exists a constant step size η = ∥x0−x∗∥
GT

√
K

such that f(xK)− f(x∗) ≤ ϵ

after Õ
(G2T∥x0−x∗∥2

ϵ2

)
individual proximal oracle queries.

Proof. Plugging zk−1 defined in Eq. (4) into Eq. (21) and multiplying ηkwk−1 on both sides, we
obtain

Tηkwk−1

(
f(xk)− f(zk−1)

)
≤ 1

2

(
wk−2∥xk−1 − zk−2∥2 − wk−1∥xk − zk−1∥2

)
+

T (T − 1)G2η2kwk−1

2
,

Summing over k ∈ [K] and using the second part of Lemma 2, we have
K∑

k=1

Tηk

[
wk−1(f(xk)− f(x∗))−

k−1∑
j=0

wj(1− λj)(f(xj)− f(x∗))
]

≤ T (T − 1)G2

2

K∑
k=1

η2kwk−1 +
w−1

2
∥x0 − x∗∥2,

where we also recall that z−1 = x∗. Unrolling the terms on the left-hand side as Eq. (13) and
choosing λ0 = 1, we obtain

TηKwK−1

(
f(xK)− f(x∗)

)
+ T

K−1∑
k=1

[
ηkwk−1 − wk(1− λk)

K∑
j=k+1

ηj

](
f(xk)− f(x∗)

)
≤ T (T − 1)G2

2

K∑
k=1

η2kwk−1 +
w−1

2
∥x0 − x∗∥2.

(24)

To obtain the last iterate guarantee, we choose λk and wk such that

λkwk ≤ wk−1, 0 ≤ k ≤ K − 1,

ηkwk−1 − wk(1− λk)

K∑
j=k+1

ηj ≥ 0, 1 ≤ k ≤ K − 1.

For simplicity and without loss of generality, we make both inequalities tight and choose wk =∑K
j=k ηj∑K

j=k+1 ηj
wk−1. In particular, we choose wk = ηK∑K

j=k+1 ηj
for 0 ≤ k ≤ K−1 such that wK−1 = 1,

then we divide TηK on both sides of Eq. (24) and obtain

f(xK)− f(x∗) ≤
w−1

2TηK
∥x0 − x∗∥2 +

G2T

2ηK

K∑
k=1

η2kwk−1

=
1

2T
∑K

k=1 ηk
∥x0 − x∗∥2 +

G2T

2

K∑
k=1

η2k∑K
j=k ηj

.

Finally, choosing ηk ≡ η = ∥x0−x∗∥
GT

√
K

, we get

f(xK)− f(x∗) ≤
G∥x0 − x∗∥

2
√
K

(
1 +

K∑
k=1

1

K − k + 1

)
≤ G∥x0 − x∗∥(1 + logK/2)√

K
.

Hence, given ϵ > 0, to guarantee f(xK) − f(x∗) ≤ ϵ, the total number of individual gradient
evaluations will be

TK = Õ
(G2T∥x0 − x∗∥2

ϵ2

)
,

completing the proof.

29



Published as a conference paper at ICLR 2025

C.3 INEXACT PROXIMAL POINT EVALUATIONS

We first prove the convergence results for convex smooth settings. The following techical lemma
bounds f(xk)− f(z) within each epoch with inexact proximal point evaluations.
Lemma 6. Under Assumptions 1 and 3, for any z ∈ Rd that is fixed in the k-th cycle of Alg. 2 and
for α > 0, β > 0 such that 1

α + 1
β ≤ 1

2 , if the step sizes satisfy ηk ≤ 1√
βTL

, then we have for
k ∈ [K]

T
(
f(xk)− f(z)

)
≤ 2η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2 + α

β
T
(
f(z)− f(x∗)

)
+

T

ηk

T∑
t=1

ε2k−1,t

+
1

2ηk
∥xk−1 − z∥2 − 1

2ηk

(
1−

∑T
t=1 εk−1,t√

ηk

)
∥xk − z∥2 +

∑T
t=1 εk−1,t

2
√
ηk

.

Proof. Since each ft is convex and L-smooth, we have for t ∈ [T ]

ft(xk)− ft(xk−1,t+1) ≤ ⟨∇ft(xk),xk − xk−1,t+1⟩ −
1

2L
∥∇ft(xk)−∇ft(xk−1,t+1)∥2,

ft(xk−1,t+1)− ft(z) ≤ ⟨∇ft(xk−1,t+1),xk−1,t+1 − z⟩ − 1

2L
∥∇ft(xk−1,t+1)−∇ft(z)∥2.

Following the proof of Lemma 1, we add and subtract 1
2ηk

∥xk−1,t − z∥2 on the right-hand side
of the second inequality and notice that ⟨gk−1,t, z⟩ + 1

2ηk
∥xk−1,t − z∥2 ≥ ⟨gk−1,t,xk−1,t+1⟩ +

1
2ηk

∥xk−1,t−xk−1,t+1∥2+ 1
2ηk

∥xk−1,t+1−z∥2, then we combine the above inequalities to obtain

ft(xk)− ft(z) ≤ ⟨∇ft(xk),xk − xk−1,t+1⟩+ ⟨∇ft(xk−1,t+1)− gk−1,t,xk−1,t+1 − z⟩

− 1

2L

(
∥∇ft(xk)−∇ft(xk−1,t+1)∥2 + ∥∇ft(xk−1,t+1)−∇ft(z)∥2

)
− 1

2ηk
∥xk−1,t+1 − xk−1,t∥2 +

1

2ηk

(
∥xk−1,t − z∥2 − ∥xk−1,t+1 − z∥2

)
.

We decompose ∇ft(xk) = ∇ft(xk)−∇ft(xk−1,t+1) +∇ft(xk−1,t+1)− gk−1,t + gk−1,t in the
first inner product term on the right-hand side, and sum the inequalities over t ∈ [T ] with noticing
xk−1 = xk−1,1 and xk = xk−1,T+1, and obtain

T
(
f(xk)− f(z)

)
≤

T∑
t=1

⟨gk−1,t,xk − xk−1,t+1⟩ −
1

2ηk

T∑
t=1

∥xk−1,t+1 − xk−1,t∥2︸ ︷︷ ︸
T1

+

T∑
t=1

⟨∇ft(xk)−∇ft(xk−1,t+1),xk − xk−1,t+1⟩︸ ︷︷ ︸
T2

+

T∑
t=1

⟨∇ft(xk−1,t+1)− gk−1,t,xk − z⟩︸ ︷︷ ︸
T3

+
1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)

− 1

2L

T∑
t=1

(
∥∇ft(xk)−∇ft(xk−1,t+1)∥2 + ∥∇ft(xk−1,t+1)−∇ft(z)∥2

)
.

For the term T1, we follow the argument from the proof of Theorem 1 to obtain

T1 = − 1

2ηk
∥xk − xk−1∥2 ≤ 0.

For the term T2, noticing that xk − xk−1,t+1 = −ηk
∑T

s=t+1 gk−1,s for 1 ≤ t ≤ T − 1 and
gk−1,s = gk−1,s−∇fs(xk−1,s+1)+∇fs(xk−1,s+1)−∇fs(z)+∇fs(z)−∇fs(x∗)+∇fs(x∗),
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we use Young’s inequality with parameters α > 0 and β > 0 to obtain

T2 =

T−1∑
t=1

〈
∇ft(xk)−∇ft(xk−1,t+1),−ηk

T∑
s=t+1

gk−1,s

〉

≤ 1

2L

(1
2
+

1

α
+

1

β

) T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t+1)∥2

+
αη2kL

2

T−1∑
t=1

∥∥∥ T∑
s=t+1

(
∇fs(z)−∇fs(x∗)

)∥∥∥2 + 2η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2

+
βη2kL

2

T−1∑
t=1

∥∥∥ T∑
s=t+1

(
∇fs(xk−1,s+1)−∇fs(z)

)∥∥∥2
+ 2η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

(
gk−1,s −∇fs(xk−1,s+1)

)∥∥∥2
For the term T3, we use Cauchy-Schwarz inequality and Young’s inequality to get

T∑
t=1

⟨∇ft(xk−1,t+1)− gk−1,t,xk − z⟩

≤ 1

2
√
ηk

T∑
t=1

∥∇ft(xk−1,t+1)− gk−1,t∥∥xk − z∥2 +
√
ηk

2

T∑
t=1

∥∇ft(xk−1,t+1)− gk−1,t∥.

Further using the fact that ∥
∑n

i=1 xi∥2 ≤ n
∑n

i=1 ∥xi∥2 and combining the above bounds on T1,
T2 and T3 with ∥gk−1,t −∇ft(xk−1,t+1)∥ ≤ εk−1,t

ηk
for t ∈ [T ], we obtain

T
(
f(xk)− f(z)

)
≤ 1

2L

( 1

α
+

1

β
− 1

2

) T∑
t=1

∥∇ft(xk)−∇ft(xk−1,t)∥2

+
(βη2kT 2L

2
− 1

2L

) T∑
t=1

∥∇ft(xk−1,t+1)−∇ft(z)∥2

+
αη2kT

2L

2

T∑
t=1

∥∇ft(z)−∇ft(x∗)∥2 + 2η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2

+ 2T 2L
T∑

t=1

ε2k−1,t +
1

2η
3/2
k

T∑
t=1

εk−1,t∥xk − z∥2 + 1

2
√
ηk

T∑
t=1

εk−1,t

+
1

2ηk

(
∥xk−1 − z∥2 − ∥xk − z∥2

)
.

It remains to follow the proof of Lemma 1 and use ηk ≤ 1√
βTL

≤ 1
2TL for β ≥ 4 to obtain

T
(
f(xk)− f(z)

)
≤ 2η2kL

T−1∑
t=1

∥∥∥ T∑
s=t+1

∇fs(x∗)
∥∥∥2 + α

β
T
(
f(z)− f(x∗)

)
+

T

ηk

T∑
t=1

ε2k−1,t

+
1

2ηk
∥xk−1 − z∥2 − 1

2ηk

(
1−

∑T
t=1 εk−1,t√

ηk

)
∥xk − z∥2 +

∑T
t=1 εk−1,t

2
√
ηk

,

thus finishing the proof.

Corollary 3 (Convex Smooth). Under Assumptions 1 and 3, 4 and for parameters α, β such that
1
α + 1

β ≤ 1
2 , if the step size is fixed and satisfies ηk ≡ η ≤ 1√

βTL
, the output xK of Alg. 2 with

inexact proximal point evaluations as in Eq. (8) with
∑T

t=1 εk−1,t ≤
√
η

1+(1+α/β)(K−k+1) satisfies

f(xK)− f(x∗) ≤ e∥x0−x∗∥2

2ηTK
1

1+α/β
+ 2η2T 2σ2

∗L(1 + β/α)K
α/β

1+α/β + e
2ηT

∑K−1
k=0

∑T
t=1

2Tε2k,t+
√
ηεk,t

(K−k)
1

1+α/β
.
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Given ϵ > 0, if
∑T

t=1 εk−1,t ≤
√
ηmin{ε, 1

3(K−k+1)}, there exists η such that f(xK)− f(x∗) ≤ ϵ

after Õ
(TL∥x0−x∗∥2

ϵ + TL1/2σ∗∥x0−x∗∥2

ϵ3/2

)
individual inexact proximal point evaluations.

Proof. Using Lemma 6 and following the proof of Theorem 1 with multiplying ηkwk−1 on both
sides, we have

Tηkwk−1

(
f(xk)− f(zk−1)

)
≤ 2T 3η3kwk−1Lσ

2
∗ +

α

β
Tηkwk−1

(
f(zk−1)− f(x∗)

)
+ Twk−1

T∑
t=1

ε2k−1,t +
wk−1

√
ηk

2

T∑
t=1

εk−1,t

+
λ2
k−1wk−1

2
∥xk−1 − zk−2∥2 −

wk−1(1−
∑T

t=1 εk−1,t/
√
ηk)

2
∥xk − zk−1∥2.

Then we sum the above inequality over k ∈ [K] and follow the proof of Theorem 1. To telescope
the terms ∥xk − zk−1∥2, we need

∑T
t=1 εk−1,t/

√
ηk ≤ 1− λk for 1 ≤ k ≤ K − 1 such that

λ2
kwk ≤ λkwk

(
1−

T∑
t=1

εk−1,t/
√
ηk

)
≤ wk−1

(
1−

T∑
t=1

εk−1,t/
√
ηk

)
.

In this case, we maintain the same requirements on {λk} and {wk} to obtain the guarantee on the
last iterate as in Theorem 1. In particular, we take the same choices with constant step sizes ηk ≡ η

such that λk = wk−1

wk
=

(1+α
β )(K−k)

1+(1+α
β )(K−k) for 0 ≤ k ≤ K − 1, so it suffices to let

∑T
t=1 εk−1,t ≤

√
η

1+(1+α
β )(K−k+1) for 1 ≤ k ≤ K. Following the proof of Theorem 1, we obtain

f(xK)− f(x∗) ≤
w−1

2ηT
∥x0 − x∗∥2 + 2η2T 2σ2

∗L

K∑
k=1

wk−1

+
1

η

K∑
k=1

T∑
t=1

wk−1ε
2
k−1,t +

1

2
√
ηT

K∑
k=1

T∑
t=1

wk−1εk−1,t.

Plugging in the choice that wk−1 ≤ e

(K−k+1)
1

1+α/β
for 1 ≤ k ≤ K − 1 and wK−1 = 1, we then

have

f(xK)− f(x∗) ≤
e∥x0 − x∗∥2

2ηTK
1

1+α/β

+ 2η2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β +

e

2ηT

K−1∑
k=0

T∑
t=1

2Tε2k,t +
√
ηεk,t

(K − k)
1

1+α/β

.

Hence, given ε > 0, to maintain the convergence rate with exact proximal point evaluations, it
suffices to take

∑T
t=1 εk−1,t ≤

√
ηmin{ ε

4e2(1+logK) ,
1

1+(1+α
β )(K−k+1)} for 1 ≤ k ≤ K. Indeed,

we have

f(xK)− f(x∗) ≤
e∥x0 − x∗∥2

2ηTK
1

1+α/β

+ 2η2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β +

K∑
k=0

2eε

(K − k)
1

1+α/β

(i)

≤ e∥x0 − x∗∥2

2ηTK
1

1+α/β

+ 2η2T 2σ2
∗L(1 + β/α)K

α/β
1+α/β + 2eε(1 + β/α)K

α/β
1+α/β .

It remains to follow the proof of Theorem 1, and we choose
∑T

t=1 εk−1,t =
√
ηmin{ε, 1

3(K−k+1)},
assuming without loss of generality that ε ≤ 1

4e2(1+logK) .

We then come to prove the convergence with inexact proximal point evaluations for convex Lipschitz
settings.
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Lemma 7. Under Assumptions 1 and 2, for any z ∈ Rd that is fixed in the k-th cycle of Alg. 2, we
have for k ∈ [K]

T (f(xk)− f(z)) ≤ 1

2ηk

(
1 +

1

2ηkGT

T∑
t=1

εk−1,t

)
∥xk−1 − z∥2 − 1

2ηk
∥xk − z∥2

+
T (T − 1)G2ηk

2
+

1

ηk

( T∑
t=1

εk−1,t

)2

+ 3GT

T∑
t=1

εk−1,t.

(25)

Proof. By Lipschitzness of each component function, we have for t ∈ [T − 1]

ft(xk)− ft(xk−1,t+1) ≤ G∥xk − xk−1,t+1∥ = Gηk

∥∥∥ T∑
s=t+1

gk−1,s

∥∥∥.
Decomposing gk−1,s = gk−1,s −∇Mηkfs(xk−1,s) +∇Mηkfs(xk−1,s) and using triangle inequal-
ities, we have

ft(xk)− ft(xk−1,t+1)

≤ ηkG

T∑
s=t+1

(
∥gk−1,s −∇Mηkfs(xk−1,s)∥+ ∥∇Mηkfs(xk−1,s)∥

)
(i)

≤ ηkG

T∑
s=t+1

(εk−1,s

ηk
+G

)
≤ (T − t)G2ηk +G

T∑
s=t+1

εk−1,s, (26)

where we use Eq. (8) and the fact that ∇Mηkfs(xk−1,s) ∈ ∂ft(proxηkft
(xk−1,t)) for (i). On the

other hand, using convexity of ft, we have for t ∈ [T ] that

ft(z) ≥ ft(xk−1,t+1) + ⟨∇Mηkft(xk−1,t), z − xk−1,t+1⟩
= ft(xk−1,t+1) + ⟨gk−1,t, z − xk−1,t+1⟩+ ⟨∇Mηkft(xk−1,t)− gk−1,t, z − xk−1,t+1⟩ .

Expanding the inner product in the above quantity and using Cauchy-Schwarz inequality with Eq. (8)
leads to

ft(xk−1,t+1)− ft(z)

≤ − 1

ηk
⟨xk−1,t − xk−1,t+1, z − xk−1,t+1⟩+ ∥∇Mηkft(xk−1,t) + gk−1,t∥∥z − xk−1,t+1∥

≤ 1

2ηk

(
∥xk−1,t − z∥2 − ∥xk−1,t+1 − z∥2

)
+

εk−1,t

ηk
∥xk−1,t+1 − z∥. (27)

Using triangle inequalities and decomposing xk−1,t+1 − xk−1 = ηk
∑t

s=1 gk−1,s −
∇Mηkfs(xk−1,s) + ∇Mηkfs(xk−1,s), we bound the term T :=

∑T
t=1 εk−1,t∥xk−1,t+1 − z∥ in

Eq. (27) as follows

T ≤
T∑

t=1

εk−1,t

(
∥xk−1,t+1 − xk−1∥+ ∥xk−1 − z∥

)
≤

T∑
t=1

εk−1,t

(
ηk

t∑
s=1

(
∥gk−1,s −∇Mηkfs(xk−1,s)∥+ ∥∇Mηkfs(xk−1,s)∥

)
+ ∥xk−1 − z∥

)
≤

T∑
t=1

εk−1,t

t∑
s=1

εk−1,s +
(
ηkGT + ∥xk−1 − z∥

) T∑
t=1

εk−1,t

(i)

≤
( T∑

t=1

εk−1,t

)2

+ 2ηkGT

T∑
t=1

εk−1,t +
1

4ηkGT

T∑
t=1

εk−1,t∥xk−1 − z∥2,
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where we use Young’s inequality for (i). Combining Eq. (26) and (27) with the above bound on T
and noticing that xk−1,T+1 = xk and xk−1,1 = xk−1, we sum the inequalities over t ∈ [T ] and
obtain

T (f(xk)− f(z)) ≤ 1

2ηk

(
1 +

1

2ηkGT

T∑
t=1

εk−1,t

)
∥xk−1 − z∥2 − 1

2ηk
∥xk − z∥2

+
T (T − 1)G2ηk

2
+

1

ηk

( T∑
t=1

εk−1,t

)2

+ 3GT

T∑
t=1

εk−1,t,

thus finishing the proof.

Corollary 4 (Convex Lipschitz). Under Assumptions 1 and 2, the output xK of Alg. 2 with inexact
proximal point evaluations as in Eq. (8) with

∑T
t=1 εk−1,t ≤ ηkηk−1GT∑K

j=k ηj
satisfies

f(xK)− f(x∗) ≤ ∥x0−x∗∥2

2T
∑K

k=1 ηk
+ G2T

2

∑K
k=1

η2
k∑K

j=k ηj
+

∑K
k=1

∑T
t=1

( ε2k−1,t

2T
∑K

j=k ηj
+

3Gεk−1,tηk∑K
j=k ηj

)
.

Given ϵ > 0, if
∑T

t=1 εk−1,t ≤ 2ηGT
K−k+1 , there exists a constant step size η such that f(xK) −

f(x∗) ≤ ϵ after Õ
(G2T∥x0−x∗∥2

ϵ2

)
individual inexact proximal point evaluations.

Proof. Using Lemma 7 with z = zk−1 defined by Eq. (4) and multiplying ηkwk−1 on both sides,
we have

Tηkwk−1(f(xk)− f(zk−1))

≤
wk−1λ

2
k−1(1 +

1
2ηkGT

∑T
t=1 εk−1,t)

2
∥xk−1 − zk−2∥2 −

wk−1

2
∥xk − zk−1∥2

+
T (T − 1)G2η2kwk−1

2
+

wk−1

2

( T∑
t=1

εk−1,t

)2

+ 3GTηkwk−1

T∑
t=1

εk−1,t.

Then we sum the inequalities over k ∈ [K] and follow the proof of Theorem 4. To telescope the
terms ∥xk − zk−1∥2, we need λk−1 ≤ 1

1+ 1
2ηkGT

∑T
t=1 εk−1,t

for 1 ≤ k ≤ K − 1 such that

wk−1λ
2
k−1(1 +

1

2ηkGT

T∑
t=1

εk−1,t) ≤ wk−1λk−1 ≤ wk−2,

while we maintain other requirements on {λk} and {wk} to obtain the last iterate convergence as in

Theorem 4. In particular, we take the same choice that wk = ηK∑K
j=k+1 ηj

and λk =
∑K

j=k+1 ηj∑K
j=k ηj

for

0 ≤ k ≤ K − 1, so it suffices to let
∑T

t=1 εk−1,t ≤ 2ηkηk−1GT∑K
j=k ηj

. So we arrive at

f(xK)− f(x∗) ≤
w−1

2TηK
∥x0 − x∗∥2 +

G2T

2ηK

K∑
k=1

η2kwk−1

+
3G

ηK

K∑
k=1

wk−1ηk

T∑
t=1

εk−1,t +
1

2TηK

K∑
k=1

( T∑
t=1

εk−1,t

)2

wk−1

=
1

2T
∑K

k=1 ηk
∥x0 − x∗∥2 +

G2T

2

K∑
k=1

η2k∑K
j=k ηj

+ 3G

K∑
k=1

T∑
t=1

εk−1,tηk∑K
j=k ηj

+
1

2T

K∑
k=1

(
∑T

t=1 εk−1,t)
2∑K

j=k ηj
.

Hence, given ε > 0 and taking the constant step size ηk ≡ η = ∥x0−x∗∥
GT

√
K

for simplicity, to maintain
the convergence rate as in Theorem 4 with inexact proximal point evaluations, it suffices to let
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∑T
t=1 εk−1,t ≤ 2ηGT

K−k+1 . Indeed, we have

3G

K∑
k=1

T∑
t=1

εk−1,tηk∑K
j=k ηj

= 3G

K∑
k=1

∑T
t=1 εk−1,t

K − k + 1
≤ 5G∥x0 − x∗∥√

K
,

and

1

2T

K∑
k=1

(
∑T

t=1 εk−1,t)
2∑K

j=k ηj
≤ 2G∥x0 − x∗∥√

K

K∑
k=1

1

(K − k + 1)3
≤ 2.5G∥x0 − x∗∥√

K
.

It remains to follow the proof of Theorem 4, thus finishing the proof.

D CONCLUSION

This work provides the first oracle complexity guarantees for the last iterate of standard incremental
(gradient and proximal) methods, motivated by catastrophic forgetting considerations in continual
learning. The obtained complexity bounds nearly match the best known oracle complexity bounds
that in the same settings were previously known only for the (uniformly) average iterate. Our re-
sults for the incremental proximal method further characterize the effect of regularization and its
limitations in controlling catastrophic forgetting in continual learning applications. Our results com-
plement prior theoretical findings in continual learning (CL) on linear models (Evron et al., 2022),
where the authors enforce high task similarity in their setup and assume all tasks share a common
set of loss minima. They further rely on implicit regularization to enforce closeness of models cor-
responding to subsequent tasks, arguing that this is sufficient for ensuring that forgetting will not be
catastrophic. Our work explores the other side of the spectrum: if one does not assume tasks are
“similar” (i.e., they do not necessarily have shared loss minima) but still enforces closeness of mod-
els using explicit regularization, it is impossible to prevent catastrophic forgetting entirely; however,
one can ensure that forgetting is controlled using sufficient regularization. For future directions, it
would be interesting to study what lies between the setups of prior work (Evron et al., 2022) and
this work; in particular, to formally and quantitatively characterize the impact of (appropriately de-
fined) task similarity on forgetting. Other possible future directions include 1) deriving last-iterate
guarantees of incremental methods for nonconvex tasks; 2) obtaining convergence results match-
ing ours in smooth convex settings while employing diminishing step sizes; and 3) deriving more
fine-grained oracle complexity bounds by considering low-level stochastic oracles for each task and
possible similarity between consecutive tasks.
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