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ABSTRACT

LLM-based multi-agent (LLM-MA) systems have shown promise in tackling com-
plex tasks. However, existing solutions often suffer from limited agent coordination
and heavy reliance on predefined Standard Operating Procedures (SOPs), which
demand extensive human input. To address these limitations, we propose MegaA-
gent, a framework designed for autonomous coordination in LLM-MA systems.
MegaAgent generates agents based on task complexity and enables dynamic task
decomposition, parallel execution, efficient communication, and comprehensive
system monitoring of agents. In evaluations, MegaAgent demonstrates exceptional
performance, successfully developing a Gobang game within 800 seconds and
scaling up to 590 agents in a national policy simulation to generate multi-domain
policies. It significantly outperforms existing systems, such as MetaGPT, in both
task completion efficiency and scalability. By eliminating the need for predefined
SOPs, MegaAgent demonstrates exceptional scalability and autonomy, setting a
foundation for advancing true autonomy in LLM-MA systems. Code is available at
https://anonymous.4open.science/r/MegaAgent—dev-DEF0

1 INTRODUCTION

The remarkable planning and cognitive capabilities of Large Language Models (LLMs) (Touvron
et al., [2023}; [Zhu et al., [2023)) have spurred significant interest in LLM-based multi-agent (LLM-MA)
systems (Wu et al.| 2023} |Chen et al.,[2023bj |[Hong et al., |2023)), which coordinate multiple LLM
agents to address complex tasks. The demand for large-scale social simulation applications, such as
social media and war simulations (Gao et al.,[2023; [Hua et al., 2023} |Jin et al., |2024), is driving the
development of LLM-MA systems capable of simulating complex real-world scenarios.

However, existing LLM-MA frameworks have two limitations. (1) They fail to achieve adaptive
task coordination when the task is big and complex e.g. generating hundreds of agents for a social
simulation; and do not consider the coordination between large scale of agents. (2) Most systems
heavily depend on user-defined configurations, including predefined agent roles, standard operating
procedures (SOPs), and static communication graphs (Huang et al.l [2023b)). This approach limits
flexibility and requires significant human effort when deploying numerous agents to complete a task.

Addressing the above limitations presents the following key challenges: (1) Facilitating adaptive
and effective communication among agents and with external file systems. As tasks grow in
complexity and scale, managing communication becomes increasingly difficult, especially when
incorporating parallelism and coordinating multiple agents across different rounds of communication
(Zhang et al., 2024a). (2) Ensuring that each agent completes its task accurately without relying
on predefined SOPs. LLM agents often generate hallucinated outputs (Huang et al., 2023b) or
fail to complete tasks correctly within a single round (Andriushchenko et al.,[2024)), necessitating
robust mechanisms to ensure reliability and correctness. This is critical in multi-agent systems, where
hallucinations can propagate and compromise the entire system’s performance (Lee & Tiwari, 2024).

Drawing inspiration from Operating Systems (OS), where processes and threads efficiently manage
tasks through: (1) generating multiple threads within a process to complete a task, and (2) enabling
different processes to operate in parallel, we propose MegaAgent to address the aforementioned
limitations. MegaAgent decomposes large tasks into multiple hierarchical subtasks (analogous
to processes), with each subtask completed by a dedicated group of agents (similar to threads).
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Communication occurs either within agent groups or between them as needed, resembling inter-
process communication in an OS. Users simply need to provide a meta prompt to Boss Agent,
after which the task is autonomously completed. The novelty comparison between MegaAgent

and popular baselines is in[Table 1| Details are in[Table 12] An overview of MegaAgent is shown in
We equip MegaAgent with the following two strategies to tackle the above challenges:

Hierarchical Task Management. To enable
adaptive task handling and effective communica-

tion, MegaAgent implements a three-level hierar- Model  No Predefined SOP _ Multi-file Support Parallelism _ Scalability
chical task management system: (1) Boss Agent ~ AutoGen |
MetaGPT 4

Level Task Decomposition: When the Boss  cameL

Agent receives a user task, it acts as the cen- h’;;::’;: | ; . . .
tral leader, decomposing the task into smaller,

manageable subtasks and assigning them to ad-  Taple 1: Novelty comparison of popular LLM-MA
min agents who oversee and further coordinate  gystems with MegaAgent.

execution; (2) Dynamic Hierarchical Group For-

mation: If an admin agent can handle a subtask

within its capacity, it completes it independently; otherwise, it recruits additional agents to form a
group under its supervision, and these agents can in turn recruit others for further sub-task division,
thereby ensuring that even complex tasks are efficiently managed through recursive task splitting;
(3) System-Level Coordination and Communication: MegaAgent facilitates smooth interactions by
executing tasks in parallel and employing dynamic communication mechanisms. Each agent accesses
external resources (e.g., databases, files, checklists) via function calls, ensuring effective coordination
across multiple rounds of interaction.

Hierarchical Monitoring. To ensure agents complete tasks accurately without relying on predefined
SOPs, MegaAgent incorporates hierarchical monitoring and coordination mechanisms. First, each
agent is assigned a task by its admin agent upon generation. Then, MegaAgent employs a robust
hierarchical monitoring and coordination framework for each agent as follows. (1) Agent-Level
Monitoring: Each agent maintains an checklist to document its actions and verify progress. This
monitoring ensures accountability and allows agents to independently validate their work before
proceeding to the next step. (2) Group-Level Monitoring: Each agent group is supervised by an admin
agent, which tracks the progress of individual agents, ensures smooth execution, and coordinates
tasks within the group. (3) System-Level Monitoring: At the highest level, Boss Agent oversees
the outputs of all agent groups upon task completion, ensuring adherence to the correct format and
minimizing hallucinated results. This process enhances consistency, reliability, and correctness.

We conduct two experiments in widely recognized LLM-MA research scenarios (Hong et al.| 2023}
Guo et al.}|2024) to demonstrate MegaAgent’s effectiveness and autonomy. (1) Software development:
Gobang Game Development. This experiment highlights MegaAgent’s superior autonomy and
efficiency compared to previous baselines, with MegaAgent being the only model capable of
completing the task within 800 seconds. (2) Social Simulation: National Policy Generation. This
task demonstrates MegaAgent’s large-scale autonomy and scalability, generating and coordinating
approximately 590 agents to produce the expected policies within 3000 seconds. In contrast, baseline
models can coordinate fewer than 10 agents and fail to generate the expected policies.

Our contributions are as follows:

* Autonomous Framework. We introduce MegaAgent, a practical framework enabling autonomous
coordination in LLM-MA systems. It supports dynamic task decomposition, parallel execution,
and systematic monitoring, ensuring efficient task management.

* Minimizing Human-designed Prompts. We notice the importance of minimizing human-designed
prompts in LLM-MA systems, addressing a critical limitation of previous frameworks that creates
a bottleneck for large-scale LLM-MA systems for complex tasks. To overcome this, we propose
assigning LL.M agents to autonomously split tasks and generate SOPs for agents. This approach
reduces human intervention and enable broader range of users to employ LLM-MA systems.

» Experimental Validation. Extensive experiments on two scenarios demonstrate that MegaAgent is:
(1) Superior: It is the only framework capable of completing both Gobang game development and
national policy simulation tasks, outperforming all baselines. (2) Efficient: MegaAgent successfully
completes the Gobang game development task within 800 seconds, demonstrating its superior task
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Figure 1: MegaAgent parses a user-provided meta-prompt into distinct tasks, assigning each to
dedicated admin agents. These admins autonomously recruit task-specific agent groups for parallel
execution, dynamically expanding into multi-level hierarchies via sub-agent recruitment. Admin
agents oversee group progress and output quality, while ordinary agents operate within their assigned
groups to optimize communication efficiency. All agents interact with a centralized storage module
through function calls, enabling seamless file access and task execution.

execution and coordination capabilities. Moreover, it efficiently coordinates 590 agents for national
policy generation within 3000 seconds, while baselines manage fewer than 10 agents and fail to
complete the task. This remarkable agent count underscores MegaAgent’s scalability.

2 MEGAAGENT FRAMEWORK

We introduce the MegaAgent framework from two hierarchical perspectives, as outlined
Figure I}

(1) Hierarchical Task Management and (2) Hierarchical Monitoring. An overview is in

2.1 HIERACHICAL TASK MANAGEMENT

Multi-level Task Splitting. To efficiently manage complex tasks in large-scale LLM-MA systems,
we implement a multi-level task management framework. Boss Agent is responsible for decomposing
the main task into manageable subtasks upon receiving the meta-prompt from a user. Each subtask is
delegated to a specialized admin agent with a well-defined role by Boss Agent. If a subtask is too
complex for an admin agent to complete independently, it can recruit additional agents to handle
specific components. These newly created agents can, in turn, recruit more agents if needed, assuming
the role of admin agent themselves, as depicted in Level 2 and Level 3 in This recursive
task-splitting mechanism enables the system to adapt dynamically as task complexity increases.

To enhance efficiency, we implement a parallel mechanism for agent groups operating at the same
level. For instance, the two agent groups in Level 2 of can work in parallel, with one
generating economic policies and the other developing health policies. This parallelization reduces
overall task completion time.

Hierarchical Coordination Mechanism. Effective task execution in MegaAgent is driven by
a two-layer hierarchical coordination structure: (1) Intra-group Chat, where agents within the
same task group collaborate by sharing updates through prompt-based communication, ensuring
smooth progress and effective task execution when interaction is required, as indicated by the black
double-arrow line in|Figure 1} and (2) Inter-group Chat, where admin agents from different groups
communicate to resolve task dependencies and coordinate cross-group efforts, as represented by
the yellow double-arrow line in [Figure 1} For instance, in the software development experiment
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discussed in the software implementation must adhere to the game logic designer’s
requirements. Ordinary agents are restricted from directly communicating with agents outside their
group to enhance efficiency.

File Management. To enable effective interaction between LLM agents and external files, we
introduce an external storage module that manages all file-related tasks. This module includes
components such as agent execution logs, a memory database, task monitoring tools, Python code
execution support, shared files, and individualized agent checklists. To ensure consistent and accurate
file management, we propose the following two designs:

(1) Git-Based Version Control. To maintain file consistency, we integrate a Git-based version control
mechanism. Since agents may spend considerable time editing files after reading them, concurrent
modifications by other agents could cause conflicts. To prevent this, an agent retrieves the file’s
current Git commit hash upon reading it. Before making changes, the agent submits this hash to
the file management system, which commits the updates, merges them into the latest HEAD, and
prompts the agent to resolve any merge conflicts if necessary. All Git operations are serialized using
a global mutex lock to ensure synchronization and prevent race conditions.

(2) Long-Term Memory Management with a Vector Database. Many studies show that LLM agents
would forget the conversation history after several rounds due to the token length limit (Becker, [2024;
Xue et al.}[2024)). To address this, we implement a vector database to store the outputs of agents. Each
output is encoded into embeddings using language models and stored in a vector database. Therefore,
agents can retrieve relevant memory entries, enabling them to maintain contextual awareness.

2.2 HIERARCHICAL MONITORING

To ensure accurate task execution and minimize the propagation of hallucinations (Huang et al.,
2023b)) in an LLM-MA system, we implement a hierarchical monitoring mechanism that facilitates
real-time oversight, error correction, and progress validation through a structured process.

Multi-level Monitoring. The monitoring system in MegaAgent follows a structured, multi-level
hierarchy to ensure accurate task completion and prevent error propagation. Then, MegaAgent
employs a hierarchical monitoring and coordination framework for each agent as follows:

» Agent-Level Monitoring: Each agent maintains an checklist upon its being generated by its admin
agent to document its actions and verify progress. This monitoring ensures accountability and
allows agents to independently validate their work before proceeding to the next step.

* Group-Level Monitoring: Each agent group is supervised by an admin agent, which tracks the
progress of individual agents, ensures smooth execution, and coordinates tasks within the group.

* System-Level Monitoring: At the highest level, Boss Agent oversees the outputs of all agent groups
upon task completion, ensuring adherence to the correct format and minimizing hallucinated results.
This process enhances system-wide consistency, reliability, and correctness.

Failure Scenarios and Solutions. Monitoring focuses on two key aspects: output format verification
and result validation, detailed as follows:

(1) Output Format Verification. First, the monitoring would focus on the output format of an agent.
For example, if an agent generates a Python file that fails to execute, its admin agent would flag the
issue, log the error, and prompt a retry. By enforcing consistent output formats, this step prevents
downstream agents from misinterpreting data, reducing potential hallucinations.

(2) Result Validation. Once a group completes its tasks, the admin agent reviews the generated
outputs and compares them against the initial task requirements. If discrepancies are detected, the
admin agent would detail error messages, outline missing or incorrect aspects, prompt the responsible
agents to revise their work. This validation process ensures that final outputs align with intended
objectives while minimizing task failures. We provide common detailed scenarios in

By combining strict output format verification and result validation, it ensures agents remain aligned
with system goals. Comprehensive error-handling processes prevent cascading failures, ensuring
system stability and optimal performance throughout the LLM-MA framework.
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3 EXPERIMENTS

We evaluate MegaAgent’s capabilities using two experiments: software development and social
simulation. Unlike tasks such as reasoning or math problems—areas where a single LLM agent
typically suffices (Guo et al.l[2024)—these scenarios require extensive multi-agent coordination. This
approach better mirrors the complex, collaborative processes found in human societies.

We focus on the following two research questions:
RQ1: Can MegaAgent complete a task requiring extensive coordination without a predefined SOP?

RQ2: Can MegaAgent be effectively scaled to handle more complex tasks that involve a significantly
larger number of agents, showcasing its scalability?

3.1 RQI1: SOFTWARE DEVELOPMENT - GOBANG GAME

Gobanyg is a strategic board game played between two participants who take turns placing black and
white pieces on a grid. The objective is to be the first to align five consecutive pieces horizontally,
vertically, or diagonallyﬂ We select game development as a test scenario because it effectively
evaluates an LLM-MA system’s coding and coordination abilities. The task requires generating
both backend logic and frontend components while involving extensive collaboration among roles
like product manager, game logic designer, and software developers. This setting provides a robust
evaluation of MegaAgent’s capabilities in coordination, autonomy, and parallelism in a project.

Experiment Setup We conduct this experiment using the GPT-40 AP]E], setting the "temperature’
parameter to 0 to ensure more deterministic responses (Achiam et al.| |2023). The experiment begins

by feeding the meta prompt to MegaAgent shown in More details are in

Table 2: Gobang Game Meta Prompt.

Prompts: You are Bob, the leader of a software development club. Your club’s current goal is to develop a
Gobang game with an Al, and it can be executed by running "main.py”’.

For comparative analysis, we employ AutoGen, MetaGPT, CAMEL, and AgentVerse to perform the
same task. We manually adjust their backbones to GPT-40 or GPT-4 when GPT-40 is incompatible
with their configurations. To ensure a fair evaluation, we design prompts tailored to each baseline’s
requirements while adhering to the guidelines specified in their respective papers to determine

appropriate testing methods. Further details are in

Evaluation Metrics. To evaluate the generated Gobang game, we establish the following evaluation
metrics: (1) Error-Free Execution, which assesses the program’s ability to run without errors; (2)
User Move, which evaluates the user’s ability to make a move; (3) AI Move, which measures the
AT’s ability to make a move; and (4) Game Termination, which ensures the game’s ability to end
correctly when there are five consecutive pieces.

Experiment Results We demonstrate Gobang Game Development’s experimental results in
MegaAgent autonomously generates an SOP involving seven agents, effectively coordinates their
tasks, and successfully develops a fully functional Gobang game with an interactive interface within
800 seconds. These achievements fulfill all task requirements, making MegaAgent the only
system capable of producing a complete and operational game, unlike baseline models that
either produce incomplete results or fail entirely. Further details are provided in The
performance of other baseline models is analyzed below:

AutoGen: AutoGen employs two agents but fails to produce a valid game move. After approxi-
mately three minutes, it generates a program ending with # To be continued. . and becomes
stuck when attempting execution. The likely cause of this failure is its overly simplistic SOP, lack-
ing critical inter-agent communication steps such as code review. More details are provided in

[subsubsection D.6.11

"nttps://en.wikipedia.org/wiki/Gomoku
https://openai.com/index/hello—gpt-40/
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Model Error-Free Execution User Move AIMove Game Termination # of Agents Time(s) \ Time/Agent (s)
AutoGen v v 2 180 90
MetaGPT ‘ v v 6 480 80
CAMEL 2 1,830 915

AgentVerse | 4 1,980 495
MegaAgent v 4 v 4 7 800 | 114

Table 3: Gobang Game Development Results

MetaGPT: Despite generating six agents, MetaGPT fails to produce a functional AI move in any
trial. The main issues include: (1) unexecutable code due to the lack of debugging tools, (2) incorrect
program generation, such as creating a tic-tac-toe gamfﬂ instead of a Gobang game, likely due to a
simplistic SOP and insufficient agent communication, and (3) infinite loops caused by incomplete
implementations. More details are in[subsubsection D.6.2}

CAMEL: CAMEL cannot produce executable Python code using two agents, likely due to weak
planning and limited contextual reasoning capabilities. More details are in[subsubsection D.6.3|

AgentVerse: AgentVerse generates four agents to complete the task but faces significant issues. In
the first two trials, the agents repeatedly reject results for all ten rounds. In the third trial, while the
result is accepted, the generated code contains numerous placeholders and remains unexecutable.
The likely cause of failure is an overly rigid task outline during the planning stage, which current
LLMs struggle to fulfill. More details are in [subsubsection D.6.4]

Ablation Study To validate the necessity of each component design in MegaAgent, we conduct an

ablation study, with results in[Table 4]

Components | Completed Metrics | # Agents | Time(s) | Time/Agent (s)

Full 1)) (3) @) 7 800 114
w/o hierarchy () 2) 5 920 184
w/o parallelism (123 @ 7 4,505 643
w/o monitoring (H2)A3) 7 300 42

Table 4: Gobang Ablation Study Results

Removing the hierarchical structure reduces agent usage to 5 but increases completion time to 920
seconds while achieving only basic metrics. Without parallelism, task groups complete their tasks
sequentially, increasing time complexity from O(logn) to O(n), which raises the execution time per
agent from 114 seconds to 643 seconds. Removing monitoring reduces execution time to 300 seconds
but fails to meet essential metrics. These findings underscore that parallel execution, hierarchy, and
monitoring are all crucial for both completion and speed. More details are in

Cost Analysis To evaluate token usage and better understand the efficiency of the Gobang game
generation, we provide a detailed cost analysis. The analysis is divided into three stages: Planning,
Task-Solving, and Merging, each representing distinct phases of the system’s operation. The Planning
stage focuses on initial strategy generation, the Task-Solving stage handles game-solving computa-
tions, and the Merging stage consolidates results for final outputs. We have two insights from results
in

Stage # Input Tokens # Output Tokens # Total Tokens Time (s)

Planning 42,947 12,347 55,294 0-60
Task-Solving | 1,098,573 55,022 1,153,595 30-840
Merging 22,099 1,493 23,592 840-870

Total \ 1,163,619 68,862 1,232,481 870

Table 5: Token usage analysis across different stages of Gobang GPT-40 experiments.

Insight 1: High Resource Consumption in the Task-Solving Stage. The majority of the time
and token usage occurs during the task-solving stage. This indicates that the task is inherently

*https://en.wikipedia.org/wiki/Tic-tac-toe
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complex, requiring significant coordination among agents to generate solutions. This highlights the
computational intensity of multi-agent interactions in solving strategic problems.

Insight 2: Disproportionate Input and Output Token Usage. The input token count is substantially
higher than the output token count, revealing significant room for optimization in token usage.
Notably, the input tokens predominantly originate from dialogues between agents. This suggests that
improving the efficiency and structure of inter-agent communication could be a valuable research
direction to enhance overall efficiency.

3.2 RQ2: SOCIAL SIMULATION - NATIONAL POLICY GENERATION

We propose a more challenging experiment: formulating national policies, which requires numer-
ous agents to perform various tasks in complex domains such as education, health, and finance.
We select this experiment because social simulations with LLM-MA systems require numerous
agents—potentially scaling to hundreds—to mimic a human-like society. This experiment can
evaluate MegaAgent’s autonomy, scalability, and coordination capabilities.

Experiment Setup. Due to budget constraints, we use the GPT-40-mini API for this experiment
conducted by MegaAgent. For comparative analysis, we utilize AutoGen, MetaGPT, CAMEL, and
AgentVerse to perform the same task. We manually adapt their backbone LLMs to GPT-40 or
GPT-4 when GPT-40 is incompatible with their code configurations. The meta prompt we feed into

MegaAgent is shown in[Table 6] with more details provided in[Appendix E] Descriptions of the other
baseline settings are included in[subsection E.5]

Table 6: National Policy Generation Meta Prompt.

Prompts: You are NationLeader, the leader of a pioneering nation. Your goal is to develop a highly detailed
policy for your cutting-edge country in policy_department.txt. You are now recruiting ministers and
assigning them tasks. For each potential minister, please write a prompt.

Evaluation Metrics. To evaluate the reliability of MegaAgent’s generated national policies, we use
the LLM-as-a-Judge framework to assess their reasonableness. We select five advanced and widely
recognized LLMs: Claude—3.5ﬂ gpt-4o0-mini, gpt-40, ol-mini, and ol-preview (Achiam et al.| 2023)
for this evaluation.

To validate the LLMs’ ability to assess national policies, we create a validation dataset containing
both authentic national policies and various unrelated text formats (Zheng et al.,[2023)). This setup
tests whether the LL.Ms can distinguish real policies from non-policy texts. We use the evaluation
prompt presented in for all selected LLMs. The results in show that, on average,
the models achieve an 89% accuracy rate in identifying real national policies, demonstrating their
effectiveness in this evaluation framework. Additional details are provided in

Table 7: National Policy Evaluation Prompt.

Prompts: "Is this policy reasonable as a national policy? Please return your answer with clear nuances: Agree,
Disagree, or Neutral with detailed explanations."

Experiment Results. We present National Pol-
icy Generation’s experimental results in

It shows Meg aAgent S ablhty to gener ate. Com_ Model Outputs #Agents Time (s) | Time/Agent (s)
plete and reasonable policies using a signifi- ~AuoGen Outline 1 m 20
cantly larger number of agents within competi-  MewGPT | Python Program 6 580 97
A . CAMEL Plans 2 1,380 690
tive time limits. The results show that MegaA-  Agentverse | None 4 510 128
gent outperforms baseline models by produc-  McgaAgent  Complete Policies 590 2,991 | 5

ing complete policies with 590 agents in 2,991

seconds. Notably, MegaAgent’s average pro- Table 8: National Policy Generation Results
cessing time per agent is 5 seconds, significantly

faster than the best-performing baseline at 40 seconds per agent, demonstrating its scalability. The
structure of the policies generated by MegaAgent is illustrated in with detailed outputs

provided in[subsection E.

*nttps://www.anthropic.com/claude/sonnet
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To evaluate the reliability of MegaAgent’s gen-
erated national policies, we feed the prompt in
to chosen advanced LLMs for reason-

Model | # Agree #Disagree # Neutral

o . Claude-3.5 26 1 4

O
ability assessment. As shown in an ept-domini | 28 0 3
average of 27.4 out of 31 pohcles are Jufiged apt-d4o 5 2 4
as reasonable by LLMs. This result highlights ol-mini 29 2 0
MegaAgent’s effectiveness in generating well- ol-preview 29 1 1
justified policies. Average | 274 1.2 24

Ablation Study. To validate the necessity of
each component design in MegaAgent, we con-
duct an ablation study with results shown in
[Table 10

Without hierarchy, only incomplete policies are

produced within 450 seconds using 19 agents, indicating the importance of hierarchical design.
Disabling parallelism entirely results in incomplete policies even after 14400 seconds, with over 100
agents continuously recruited but unable to complete tasks due to serialized processing bottlenecks.
Removing monitoring generates policies with placeholders in 667 seconds using 50 agents, highlight-
ing the need for continuous supervision for task completeness. Detailed outputs of these ablation

studies are insubsection E.4l

These findings underscore that parallelism is
not merely beneficial but critical for managing

Table 9: Evaluating the Rationality of 31 Policies
Generated by MegaAgent

Complex taSks in LLM_MA SyStemS' Components Outputs #of Agents Time (s) Time/Agent (s)
. . Full Complete Policies 590 2,991 B
Cost Analysis. To assess the token and time  wiohierachy | Incomplete Policies 19 450 | 2
. . . w/o parallelism Incomplete Policies >100 >14,400 N.A.
costs of this experiment, we perform a detailed  wio monitoring | Policies with Placcholders 50 667 | 13
analysis of token usage and execution time *We terminate the execution without parallelism
across three stages: Planning, Task-Solving, and after 14400 seconds.

Merging. The results are presented in[Table TI} Table 10: National Policy Generation Ablation

Similar to analysis in[3.1] we observe from([Ta] Study Results

[ble TT|that significant resource consumption dur-

ing the task-solving stage, which dominates both

time and token usage. A comparison of input-to-

output token ratios between the experiments reveals consistent inefficiencies, with the first experiment
showing a ratio of approximately 23:1, while the current experiment is slightly higher at 25:1. This
increase suggests that the policy generation task required additional resources for inter-agent
dialogues and greater context management, likely due to the involvement of a larger number
of agents. These findings highlight the critical need to optimize token usage and enhance dialogue
efficiency, which could significantly reduce resource consumption and improve overall performance
in LLM-MA systems. We also conduct a scalability analysis showing

4 RELATED WORK

We discuss the most related work here and leave

more details in

Stage Input Tokens Output Tokens Total Tokens Time (s)
Planning 111,601 24,103 135,704 0-180
4' 1 LLM_MA SYSTEMS Task-Solving ‘ 8,003,124 343,670 8,346,794 20-2,950
Merging 348,264 13,280 361,544 2,400-3,000
Total | 8463989 381,053 8,845,042 3,000

With the emergence of powerful LLMs (Achiam:
et al., 2023} |Team et al.| [2023)), recent research
on LL.M-based multi-agent systems has investi-
gated how multiple agents can accomplish tasks
through coordination, utilizing elements such
as personas (Chen et al., 2024bj (Chan et al.}
2024])), planning (Chen et al., 2023a}; Zhang et al.,
2024b)), and memory (Zhang et al.| 2023} Hatalis et al.| 2023). Unlike systems relying on a single
LLM-based agent, multi-agent systems demonstrate superiority in tackling challenging tasks. Recent

Table 11: Token usage analysis for National Policy
Generation.
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works, such as MetaGPT (Hong et al.| 2023)), AutoGen (Wu et al., 2023)), and AgentVerse (Chen
et al.,[2023b), design multiple specific roles to achieve a task.

However, most popular LLM-MA systems heavily rely on handcrafted prompts and expert design
Hong et al.|(2023); [L1 et al.| (2023)). Another limitation is these systems utilize a sequential pipeline
without considering parallel execution of agents (Li et al., |2023). Although AgentScope (Pan
et al.}2024) does consider this, its implementation follows a fixed trajectory in different rounds of
interaction, prohibiting changes in communication partners, thus limiting performance improvement
as the number of agents scales up.

In contrast, in the real world, when many software developers are employed, they may first work on
different files simultaneously, and then focus on one specific file when difficulties are encountered,
sparking creative ideas to overcome challenges by coordination. Additionally, existing LLM-MA
systems are restricted by their small scale and have not been applied in large-scale scenarios with
complex coordination. We compare current popular LLM-MA systems with MegaAgent in
where MegaAgent stands out for high autonomy, multi-file support, parallelism, and scalability.

4.2 SOPs IN LLM-MA SYSTEMS

Allocating SOPs is a common approach in designing agent profiles and tasks within LLM-based
multi-agent (LLM-MA) systems (Hong et al., 2023; [Huang et al., [2023a} [Park et al., 2023} [Zhuge
et al.l 2024} Shi et al., |2024). These systems define SOPs for both individual agents and their
communication protocols. While this method has proven effective in previous works, it has two
major limitations: (1) Agents may possess unforeseen capabilities that cannot be anticipated during
the human design stage but become relevant during task execution (Rivera et al.| 2024 |P1att1 et al.|
2024)); (2) As the scale of LLM-MA systems grows—potentially involving thousands or even billions
of agents—designing SOPs manually for each agent becomes infeasible (Mou et al.,2024; Pan et al.}
2024). To address this, the design mechanism must evolve, leveraging LLMs themselves, as in the
LLM-as-the-Judge concept (Huang et al., 2024} |Chen et al., [2024a)), allowing LLMs to autonomously
generate SOPs for large-scale LLM-MA systems.

5 CONCLUSION

We present MegaAgent, a practical framework for autonomous cooperation in LLM-MA systems,
requiring only an initial meta prompt. Our experiments in Gobang game development and national
policy generation demonstrate MegaAgent’s superior autonomy, coordination, and scalability—even
with hundreds of agents. With its hierarchical, adaptive design, MegaAgent has the potential to
become the foundational OS for future LLM-MA systems. We encourage further research on
enhancing agent cooperation to meet the growing demands of large-scale systems.

BROADER IMPACTS

Reducing Inefficiencies in Complex Tasks. MegaAgent’s hierarchical multi-agent structure could
improve efficiency in other domains requiring complex planning and collaboration, such as legal
drafting, project management, and research coordination.

LLM-MA System Design. MegaAgent framework redefines agent system design by treating it as an
OS for large-scale LLM-MA coordination. Its hierarchical structure mirrors modern OS principles,
where admin agents supervise task execution while the Boss Agent oversees system-wide operations.
This design introduces a flexible and adaptive blueprint for future agent systems, integrating real-time
monitoring, dynamic task assignment, and autonomous failure recovery.

Ethical and Social Considerations. The deployment of LLM-MA in social simulations could
reshape societal structures by reducing human involvement in decision-making processes. Ensuring
fairness, equity, and accountability will be essential as these systems are scaled up. Monitoring and
mitigating potential misuse or bias in generated content from LLMs should be prioritized through
ethical guidelines and technical safeguards.
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APPENDIX

A EXPERIMENTAL ENVIRONMENT

All experiments are conducted using an NVIDIA A100-80G Tensor Core GPU, utilizing Tier 5 APIs
for both ChatGPT-40 and ChatGPT-40 mini[l

B SUPPLEMENTARY RELATED WORK

B.1 LLM-BASED AGENTS COORDINATION

The coordination between LLM-based agents is critical infrastructure for supporting LLM-MA
systems |Guo et al.|(2024). There are three main coordination paradigms: cooperative, debate, and
competitive. MegaAgent focuses on the coordination paradigm, aiming to have agents work together
toward a shared goal. Within the cooperative paradigm are three main structures: layered, decentral-
ized, and centralized. Layered communication is organized hierarchically, with agents at each level
having distinct roles and each layer interacting with adjacent layers Liu et al.|(2023). Decentralized
communication operates on a peer-to-peer basis among agents. Centralized communication involves
a central agent or a group of central agents coordinating the system’s communication, with other
agents primarily connecting to the central agent. A shared message pool, as proposed in MetaGPT
Hong et al.|(2023)), maintains a shared message pool where agents publish and subscribe to relevant
messages, boosting communication efficiency.

B.2 LLM-BASED AGENTS MANAGEMENT

Research on the management of LLM-based agents is limited. Popular LLM-based multi-agent
systems, such as MetaGPT Hong et al.|(2023), AgentVerse |Chen et al.|(2023b), and AutoGen Wu et al.
(2023)), typically divide tasks into smaller sub-tasks and allocate multiple agents to complete them.
However, their approaches to planning are sequential, lacking strategic management. In contrast,
AIOS Mei et al.|(2024) introduces an LLM agent operating system that provides module isolation
and integrates LLM and OS functions. It employs various managers, including Agent Scheduler,
Context Manager, Memory Manager, Storage Manager, Tool Manager, and Access Manager, to
effectively handle numerous agents. However, AIOS manually organizes different applications, such
as a math problem-solving agent and a travel planning agent, rather than multiple agents within the
same application. This approach represents a different type of SOP and is not applicable to large-scale
LLM-MA systems, as it is impractical for humans to write every SOP and prompt for each agent
when the scale reaches thousands or even millions.

B.3 HALLUCINATIONS IN LLM-MA SYSTEMS

Hallucination refers to the phenomenon where a model generates factually incorrect text|Zhao et al.
(2023)); Huang et al.| (2023b)). Hallucinations are considered inevitable in LLMs Banerjee et al.
(2024). This issue becomes more severe in LLM-MA systems due to the multi-agent nature: one
agent can send information to others. If an agent generates a hallucinated message, it may propagate
to other agents, causing a cascading effectLee & Tiwari| (2024); Ju et al.| (2024)). Self-refinement
through feedback and reasoning has proven effective, such as using self-reflection and prompting
the LLM again to verify its outputs Ji et al.| (2023)); Tonmoy et al.|(2024). Inspired by this, we equip
MegaAgent with a self-correction mechanism, enabling agents to review their outputs based on a
to-do list generated at initialization. To enhance monitoring efficiency, we introduce a hierarchical
monitoring mechanism: first, agents check their own outputs; second, an admin agent reviews the
group’s outputs; and third, a boss agent oversees the outputs of all groups.

5https ://platform.openai.com/docs/guides/rate-limits/usage—-tiers?
context=tier-five
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B.4 NOVELTY COMPARISON BETWEEN MEGAAGENT AND BASELINES

To highlight the distinctions between MegaAgent and baseline models, we compare their supported
features in The comparison shows that MegaAgent stands out as the only LLM-MA system
supporting key features, including: (1) No Pre-defined Standard Operating Procedures (SOPs); (2)
Multi-file Input/Output Support; (3) Parallel Execution Capabilities; and (4) Scalability to a Large
Number of Agents.

Feature AutoGen | MetaGPT | CAMEL | AgentVerse | MegaAgent
Users pre-define roles, Users pre-define roles,
Definition of Each Agent’s Task such as product manager such as product manager
and software engineer and software engineer

Pre-defined No Pre-defined No pre-defined
agent abilities agent abilities agent abilities

Cannot handle Can generate and manage Cannot handle Cannot handle Can generate and manage

Support for Multi-File Input/Qutput mltiple files multiple files simultancously multiple files multiple files multiple files simultancously

Tasks arc finished sequentially, | Tasks are finished sequentially, | Tasks arc completed sequentially, | Tasks arc completed sequentially,

Support for Parallel Execution one after another one after another one after another one after another

Tasks are completed in parallel

Restricted by the number Limited by the number of Limited by the number of Limited by the number of Can adaptively generate more agents

Scalability to Large Numbers of Agents of user-defined agents user-defined agents user-defined agents user-defined agents based on needs of the task

Table 12: Comparison of features across LLM-based multi-agent (LLM-MA) systems. Definition
of Each Agent’s Task: Indicates whether the system can autonomously produce a clear and cus-
tomizable definition of roles and tasks for individual agents. Both MegaAgent and AgentVerse
support this feature, while other systems rely on fixed or developer-specified tasks. Support for
Multi-File Input/Output: Refers to the ability of systems to process and manage multiple files
simultaneously. MegaAgent and MetaGPT support this functionality, enhancing their usability for
complex workflows. Support for Parallel Execution: Indicates whether the system can execute
multiple tasks in parallel. Only MegaAgent supports true parallel execution, while other systems
operate sequentially. Scalability to Large Numbers of Agents: Assesses the system’s capability to
scale efficiently when the number of agents increases. MegaAgent is the only system designed to
handle a large number of agents seamlessly, demonstrating superior scalability.

C CoOMMON FAILURE SCENARIOS AND SOLUTIONS

To clarify the monitoring process, we outline common failure scenarios and solutions as follows:

» Incomplete TODO Lists: Agents may terminate prematurely or enter infinite loops due to inherent
LLM limitations. An admin agent would detect it and prompt the agent to retry the task to ensure
task completion.

* Task Repetition: Limited context memory may cause agents to forget completed tasks, leading to
redundant actions or task loops. An admin agent would identify inconsistencies by cross-referencing
agent checklists and prompts corrective actions as necessary.

» Secure Alignment Interruptions: Agents may become unresponsive or repeatedly return alignment-
related constraint messages, such as “Sorry, I can’t help with that.” In such cases, an admin agent
attempts to recruit other agents to finish the task.

D GOBANG GAME EXPERIMENT DETAILS

D.1 SETUP

We use ChatGPT-40 API for this experiment. The ’temperature’ parameter is set to O to reduce the
randomness of the outputs Achiam et al.| (2023)).

D.2 Cost

The total cost is $6.9.

D.3 RESULTS

First, Boss Agent receives the initial hand-written meta-prompt, shown in[Table 13| Then, MegaAgent
utilizes these initial prompts as the system message to create agents, with additional written function
calls in [Table 14] and [Table 151 The communication content and function call results are added
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directly into the corresponding agent’s memory. Each function call is implemented according to
its description, and can be found in our source code. The initial prompt and the additional written
functions are the only prompts that are written by hand, showcasing our framework’s autonomy.

D.4 ABLATION STUDY

We conduct the ablation study of MegaAgent for the Gobang task. We rerun the experiment without
hierarchy, parallelism, and monitoring mechanism, separately.

When running without hierarchy, group managers cannot create new agents. As shown in
the generated program will fall in an infinite loop. However, the Al development group’s manager
cannot resolve this issue by himself. Nor can he recruit new agents for collaboration in this scenario.

User command: 5,5
Trying to make move at (5, 5)

AI is making a move...
AI is calculating the best move...

Figure 2: Failure of MegaAgent without Hierarchy

When running without parallelism, each group will complete their tasks one by one, linearly. Although
this will not hinder the system’s performance, the time complexity will drop from O(log n) to O(n).
As a result, the execution time grows from 800 seconds to 4505 seconds.

When running without the monitoring mechanism, the group leaders will not validate the program.
As shown in figure[Figure 4] the program cannot terminate when there are five-in-a-row, but the group
agents do not find this bug because of the lack of the monitoring mechanism.

Then, MegaAgent would generate different agent roles in[Table 16] After generation, each agent will
update its own TODO list, utilize function calls to complete its tasks, or talk to other agents, until it
clears its TODO list and marks its task as Done’. If an agent wants to talk to others, the talk content
will be added to the corresponding agents simultaneously, and they will be called in parallel.

The memory of each agent is implemented by a chroma vector databaseﬂ It returns the last message’s
most relevant message, as well as the six latest messages (in this experiment), upon each memory
retrieval.

In our experiment, MegaAgent successfully produces a runnable Gobang game with a naive Al upon
the first trial, whose interface is shown in

D.5 HUMAN-WRITTEN SOP FOR GOBANG GAME

To evaluate the performance of the Gobang Game development against other baselines, we provide a
human-written SOP for the Gobang Game, as shown in[Table 17] This serves as a benchmark for
comparison with the MegaAgent-generated SOP.

Shttps://www.trychroma.com/
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Table 13: Gobang Game Development Meta Prompt.

Prompts:

You are Bob, the leader of a software development club. Your club’s current goal is to develop a Gobang game
with a very strong Al, no frontend, and can be executed by running ‘main.py’. You are now recruiting
employees and assigning work to them. For each employee (including yourself), please write a prompt
specifying: their name (one word, no prefix), their job, the tasks they need to complete, and their collaborators’
names and jobs. The format should follow the example below:

<employee name="Alice">

You are Alice, a novelist. Your job is to write a single chapter of a
novel with 1000 words according to the outline (outline.txt) from Carol,
the architect designer, and pass it to David (chapter_x.txt), the editor.
Please only follow this routine. Your collaborators include Bob (the
Boss), Carol (the architect designer), and David (the editor).
</employee>

Please note that every employee is lazy and will only perform the tasks explicitly mentioned in their prompt.
To ensure project completion, each task must be non-divisible, detailed, specific, and involve only supported
file types (txt or python). You should recruit enough employees to cover the entire SOP, ensuring tasks are
distributed to speed up the process. Finally, specify an employee’s name to initiate the project in the format:

<beginner>Name</beginner>

Table 14: Function Calls for Gobang Game Development (Part 1).

{"name" : "exec_python_file",
"description": "Execute a Python file and get the result.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "The filename of the Python file to be executed."
}
}

}

"name": "read_file",
"description": "Read the content of a file.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "The filename to be read.”
}
}

}

"name": "input",
"description": "Input a string to the running Python code.",
"parameters": {
"type": "object",
"properties”: {
"content": {
"type": "string",
"description": "The string to be input."
}
}
}

}

D.6  GOBANG GAME EXPERIMENT WITH BASELINES

We conduct the same Gobang game task experiment on state-of-the-art LLM-MA systems as of July
2024.
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Table 15: Function Calls for Gobang Game Development (Part 2).

{"name": "write_file",
"description": "Write content to a file.",
"parameters": {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "The filename to be written."

"content": {
"type": "string",
"description": "The content to be written."
}
}

}

{"name": "add_agent",
"description": "Recruit an agent as your subordinate.",
"parameters": {
"type": "object",
"properties”: {
"name": {
"type": "string",
"description": "Unique agent name."
}s
"description": {

"type": "string",
"description": "Agent description."

}
}

1,
"name": "TERMINATE",
"description": "End the conversation when all tasks are complete."

}

Table 16: Role Assignments Generated by MegaAgent

You are Bob, the leader of the software development club. Your job is to decide all the features to develop for
the Gobang game and write them in a file named ’ features. txt’. Your collaborators include Alice (game
designer), Carol (Al developer), David (game logic developer), and Eve (integrator).

You are Alice, a game designer. Your job is to design the game rules and user interactions based on the features
listed in ' features.txt’ from Bob, and document them in a file named ' game_design.txt’. Your
collaborators include Bob (leader), Carol (Al developer), David (game logic developer), and Eve (integrator).

You are Carol, an Al developer. Your job is to develop the Al for the Gobang game based on the game design
in “game_design.txt’ from Alice, and write the Al code in a file named " ai.py’. Your collaborators
include Bob (leader), Alice (game designer), David (game logic developer), and Eve (integrator).

You are David, a game logic developer. Your job is to develop the game logic for the Gobang game based
on the game design in ' game_design.txt’ from Alice, and write the game logic code in a file named
game_logic.py’. Your collaborators include Bob (leader), Alice (game designer), Carol (Al developer),
and Eve (integrator).

You are Eve, an integrator. Your job is to integrate the Al code from " ai.py’ by Carol and the game logic code
from " game_logic.py’ by David, and write the integration code in a file named 'main.py’ to ensure the
Gobang game can be executed by running "main.py’. Your collaborators include Bob (leader), Alice (game
designer), Carol (Al developer), and David (game logic developer).

D.6.1 AUTOGEN SETUP AND RESULT

We test AutoGen v1.0.16 based on its multi-agent coding demo. We only fill in the API key and
change its prompt to: Develop a Gobang game with an Al , and leave everything else unchanged. We
do not allow runtime human input.

As shown in [Figure 5| and [Figure 6] AutoGen generates a program ending with # To be
continued. . after about two minutes, and gets stuck when trying to execute it. The possi-
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Al's turn.
B B

Player W, enter your move (row,col): |

Figure 3: Interface of Gobang demo produced by MegaAgent

Table 17: Human-written Prompts for Gobang Game Development

You are Bob, the boss of the software development team. You are responsible for monitoring the project’s
progress and ensuring that it can be executed by running the main. py file in the end. Your team members are
Alan (game logic design), Alice (board. py), Charlie (main.py), David (ai.py), and Emily (testing).

You are Alan, an architect designer. Your job is to design the game logic of the Gobang game and propose possible
Al implementations. Document your design in design. txt and pass it to your teammates. Collaborators:
Bob (Boss), Alice (board. py), Charlie (main.py), David (ai.py).

You are Alice, a software developer. Implement the board. py file based on Alan’s design in design. txt.
Collaborators: Bob (Boss), Alan (game logic), Charlie (main. py), David (ai . py), Emily (testing).

You are Charlie, a software developer. Implement the main. py file based on Alan’s design in design. txt.
Ensure compatibility with board. py (Alice) and ai.py (David). Optionally create test . py for testing.
Collaborators: Bob (Boss), Alan (game logic), Alice (board. py), David (ai.py), Emily (testing).

You are David, an Al developer. Implement a naive ai . py file that makes random moves quickly. Collaborators:
Bob (Boss), Alan (game logic), Alice (board. py), Charlie (main. py), Emily (testing).

You are Emily, a tester. Test the Gobang game’s correctness and efficiency. Write test . py and ensure the
game runs correctly by executing main. py. Test thoroughly until the game completes. Collaborators: Bob
(Boss), Alan (game logic), Alice (board. py), Charlie (main.py), David (ai.py).

ble reason for its failure is that its SOP is too simple and does not include enough communication e.g.
code review between agents.

We try three times, which all end with similar results. In another one trial, as shown in Figure and
Figure 8] AutoGen successfully produces an Al with mini-max algorithm, but no pruning. This is
impossible to execute in a limited time, as the state space of Gobang game is very large. We try
another prompt: Develop a Gobang game with a very strong Al, no frontend, and can be executed by
running 'main.py’ , and get similar results.

By the time it gets stuck, AutoGen has cost $0.1 and 120 seconds. Since AutoGen cannot complete
this task, we are unable to count the overall cost.

D.6.2 METAGPT SETUP AND RESULT

We test MetaGPT v0.8.1 by feeding the prompt: Develop a Gobang game with an Al. We fill in the
API key and leave everything else unchanged. It produces results in[Figure 9] and its execution time
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Current board:

222220000000000
QOO0OO0OOOOOOOOOBOOOO
Q00O OPOOOOOOBOOOO
OO0OO00OOOO1OOOOOOO
QOOO00OOOE111220000
O000OA1110000O00O06O006
OO0OO0OOOOOOOOOOOOO
QOO0OO0OOOOOOOOOBOOOO
Q00O OPOOOOOOBOOOO
OO0OO0OOOOOOOOOOOOO
QOO0OO0OOOOOOOOBOOOO
O O0O0OOPOOOOOOBOOOO
OO0OO0OOOOOOOOOOOOO
QOO0OO0OOOOOOOOOBOOOO
O O0O0OOPOOOOOOBOOOO

Figure 4: Failure of MegaAgent without the Monitoring Mechanism

Enter your move (x y):
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# filename: gobang.py

import random
# define the size of the board
BOARD_SIZE = 15

# generate an empty board
board = [[' ' for _ in range(BOARD_SIZE)] for _ in range(BOARD_SIZE)]

def print_board():
# print the board
print('\n'.join([' '.join(row) for row in board]))
print()

def player_move():
# get move from player
move = input("Your move (e.g. '7 7'): ")
x, y = map(int, move.split())
board[x][y] = 'X'
def ai_move():
# randomly choose an empty slot on the board
while True:
x = random.randint(®, BOARD_SIZE-1)
y = random.randint(®, BOARD_SIZE-1)
if board[x][y] == ' ':
board[x][y] = '0"
break # stop the loop if we've found an empty slot

# To be continued...

Figure 5: Code Produced by AutoGen

def main():
while True:

print_board()

if game_over(board):
print("Game over!")
break

player_move()

if game_over(board):
print("Game over!")
break

print_board()

ai_move()

if __name__ == "__main__":
main()

Save this as a Python file and run it in your terminal with ‘python gobang.py".

Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation:

Figure 6: Execution Result of AutoGen
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minimax(board, depth, maximizing_player):
if depth == @ or game_over(board):
return score_board(board, 'O' if maximizing_player else 'X")

if maximizing_player:
max_eval = float('-inf")
for move in get_moves(board):
evaluation = minimax(make_move(board, move, '0'), depth - 1, False)

max_eval = max(max_eval, evaluation)

return max_eval

else:

min_eval = float('inf")

for move in get_moves(board):
evaluation = minimax(make_move(board, move, 'X'), depth - 1, True)
min_eval = min(min_eval, evaluation)

return min_eval

Figure 7: Code Produced by AutoGen in Another Trial

your move in the format 'row, column': 5,5

Figure 8: Execution Result of AutoGen in Another Trial. AI will keep thinking for almost infinite
time.
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is around eight minutes. We try three times, and find none of them can produce an Al move. The
major errors are:

* The code is not executable, and raises an error. The possible reason is that MetaGPT
does not have external tools to execute and debug the produced code.

* The produced program is not a Gobang game (for example, a tic-tac-toe game instead).
The possible reason for failure is that its SOP is too simple, and the requirement for
communication between agents is not sufficient.

Al falls into an infinite loop. The possible reason is that MetaGPT does not have external
tools to execute and debug the produced code, and the current ChatGPT API is not capable
of developing the AlphaBeta algorithm without errors by itself.

Enter row (@ indexed): 2
Enter column (@ indexed): 2

Traceback (most recent call last):
File ™ . “.gobang_ai\gobang_ai\main.py", line 141, in <module>
game.start_game()
File " ' “.gobang_ai\gobang_ai\main.py", line 103, in start_game
move = self.ai_player.calculate_move(self.board, self.current_player)

File - 19, in calculate_move
score = self.m

File "™ | \gobang_ai\gobang_ai\main.py", line 27, in minimax
if self.game.check_win(board, player):

TypeError: Game.check_win() takes 1 positional argument but 3 were given

Figure 9: Execution Result of the Code Produced by MetaGPT

D.6.3 CAMEL SETUP AND RESULT

We use the CAMEL v0.1.6.0 Jupiter Notebook demo in Colab. We fill in the API key, change the
task prompt to: Develop a Gobang game with an Al, and leave everything else unchanged. We try
three times. It turns out that CAMEL can only produce code segments. For example, in one trial, as
shown in[Figure T0] CAMEL forgets to write ui . py, which is included in game . py. The possible
reason for this is that its planning and contextual ability are weak. The total cost of one trial is $0.76.

D.6.4 AGENTVERSE SETUP AND RESULT

We test AgentVerse v0.1.8.1 based on its tasksolving/pythoncalculator scenario. We fill
in the API key, change the max_turn parameter from 3 to 10 to allow more rounds for better results,
and modify the task description to: develop a Gobang game with an Al using Python3. We leave
everything else unchanged and try three times. We find that, in the first and second trial, the agent
keeps rejecting the result for all the ten rounds, as shown in as for the third trial, although
the agent accepts the result, the code as shown in still presents many placeholders, and
cannot be executed. Given that ten rounds significantly exceed the default setting, we conclude that
AgentVerse is unlikely to successfully complete the Gobang task even with additional rounds and
opportunities. One trial costs about $8.07, and 1980 seconds.

To sum up, our MegaAgent framework is the first and only LLM-MA system to develop the Gobang
game successfully.
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GobangGame/

# Main source code directory

___T_

I— game_ lf_)crlc # Contains the core game logic (game rules, board management)
111‘(' orgot to ertﬁfontam: the user interface code (graphics, layout)
I— ai_logic/ # Contains the AI logic (decision-making algorithms)
| L—— main. py # Main entry point of the game
—— assets/ # Directory for game assets
| —— images # Contains image files (board, pieces, backgrounds)
| L—— sounds/ # Contains sound files (game sounds, music)
b—— tests # Directory for unit tests

test_game logic.pvy # Tests for game logic
b—— test_ai_logic. py 8 Tests for AI logic

L—— test_ui.py # Tests for user interface
|
—— README. md # Project documentation
L requirements. txt # Dependencies for the project

Figure 10: An example of CAMEL'’s output. It forgets to write ui.py in this trial.

Evaluation result:
Score: [5, 5, 8, 5]
Advice: The code provided is not complete it contains several place ere functionality not implemented and malk

ed with 'p. . The code also lacks 5 ) ing E ould 1mp10\e its robustn
of the code is quite good, as the code is well structured and the comments hat the code >h
improve the functionality and completene hould implement the evaluate_|

as add error handling and validation of

Figure 11: A rejected trial of AgentVerse after ten rounds.

Figure 12: An accepted trial of AgentVerse. The code still contains many placeholders, and is not
executable.
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E NATIONAL POLICY GENERATION EXPERIMENT DETAILS

E.1 SETUP
We use the ChatGPT-40 mini API for this experiment. The ‘temperature’ parameter is set to default.

The memory of each agent returns the most relevant message, as well as ten latest messages in this
experiment.

E.2 Cost

The total cost of this experiment is $3.3.

E.3 RESULTS

MegaAgent’s generated national policy structure is in

Hierachy Diagram

‘i Nation Leader

Minister of /™ Minister of /™ Minister of
Education = Health Finance
i

I I
¥ v v v v v

Tax
Trader Feedback
Collector

-

i i i - ) Fitness | |Regulatory
Tester 01 Tester 02 Tester 03 7 Expert Reviewer

Figure 13: MegaAgent’s Generated National Policy Structure

Boss agent receives the initial hand-written meta-prompt in[Table T8 Then, Boss Agent generated
several admin agents shown in

Table 18: National Policy Generation’s Meta Prompt

NationLeader’s Prompt:

You are NationLeader, the leader of a pioneering nation. You want to develop the best detailed policy for your
cutting-edge country in ' policy_{department}.txt’. You are now recruiting ministers and assigning
work to them. For each possible minister, please write a prompt. Please specify his name (no space), his job, and
what kinds of work he needs to do. Note that each of them can recruit subordinates and conduct tests on them
based on your policy. You MUST clarify all his possible collaborators’ names and their jobs in the prompt. The
format should be like (The example is for Alice in another novel writing project):

<employee name="MinisterName">

You are MinisterName, the {job_title} of {specific_department}. Your job is to de-
velop a comprehensive policy document (’ {file_name}.txt’) according to the guidelines provided
in "policy_{department}.txt’. You will collaborate with {collaboratorl_name} (the
{collaboratorl_role}), {collaborator2_name} (the {collaborator2_role}), and pass
the final document to {collaborator3_name} (the {collaborator3_role}). You can recruit
lots of citizens for testing. Ensure adherence to the specified routine only. Your collaborators include
{list_of_collaborators}.

</employee> Also, write a prompt for NationLeader (yourself). Please note that every minister is lazy and
will not care about anything not explicitly mentioned in your prompt. To ensure project completion, each
minister’s tasks should be non-divisible (covering ALL ministries concerning ALL aspects of the country),
detailed with specific actions (such as what file to write; only . txt files are supported), and limited to clear and
specific instructions. All ministers (including yourself) should follow the entire SOP to develop a policy. They
should simultaneously create citizens and conduct tests on them. Speed up the process by recruiting additional
ministers to divide the workload.

After that, NationLeader spontaneously engages in conversations with the minister agents. Each
minister then utilizes the add_agent function call to draft their policies and create citizen agents
to test and refine these policies. Citizen testers discuss their feedback among themselves and also
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Table 19: Role Assignments

You are NationLeader, the leader of a pioneering nation. You aim to develop the best detailed policy for your
cutting-edge country, saved in policy_{department}.txt. Recruit ministers, assign specific roles, and
ensure that each job is clearly defined. Ministers should collaborate, recruit subordinates, and conduct tests to
ensure policy effectiveness.

You are Alex, the Minister of Economy. Your job is to develop a comprehensive economic policy document in
economy . txt, based on the national strategy defined in policy_economy.txt. Collaborate with Sarah
(Minister of Trade) and Michael (Minister of Finance), and pass the final policy to Emily (National Auditor).
Recruit economic analysts for testing.

You are Sarah, the Minister of Trade. Draft the national trade policy in t rade . t xt according to the economic
policyin policy_economy. txt. Collaborate with Alex (Economy), Michael (Finance), and Emily (National
Auditor). Conduct trade simulations using citizen groups for validation.

You are Michael, the Minister of Finance. Create the national budget and tax policies in finance. txt,
ensuring consistency with the economic policy outlined in policy_economy.txt. Collaborate with Alex
(Economy), Sarah (Trade), and Emily (National Auditor). Simulate various fiscal policies with test citizens.
You are Emily, the National Auditor. Review, consolidate, and validate policies from economy.txt,
trade.txt, and finance.txt. Ensure policies align with the national strategy outlined in
policy_nation.txt. Request revisions if necessary before final submission.

Table 20: Nation’s Policy Development Prompt.

Your nation’s current goal is to develop the best detailed policy for your cutting-edge country, saved in
policy_{department}.txt. The policy should be divided into smaller parts. After the policy is drafted,
if you are a minister, you may recruit and test up to 5 citizens by interacting with them. Use their feedback
to revise policy files as needed, focusing on the policy’s completion and quality, detailed in specific laws and
actions.

You MUST use only function calls to work and communicate with other agents. Do not output directly! For
amendments to the policy, contact the corresponding minister, not the tester.

Leave a clearly marked TODO wherever there is an unfinished task. Continuously update your TODO list in
todo_yourname.txt. When all tasks are complete, clear your TODO list and write "TERMINATE" to
indicate that your role is finished.

communicate with their superiors to provide feedback. Moreover, ministers engage in discussions
with one another to enhance cooperation across ministries.

File system manages each agent’s todo list, records the citizens’ feedback, and maintains the most
recent version of each ministry’s policy. For example, a todo list for a citizen tester is shown in

Table 21: Citizen Tester’s TODO List for Urban Development Planning

. Specify the frequency and scope of health impact assessments.

. Include specific targets and timelines for air quality standards.

. Add metrics for success in active transportation promotion.

. Include incentives for businesses to support active transportation.

. Outline specific safety measures for transportation safety.

. Include a plan for regular safety audits of public transportation systems.

. Mention accessibility considerations in urban space design.

. Include partnerships with local health organizations for mental health initiatives.
. Emphasize community involvement in the planning process.

Nele N No WU, IR OV S I

Following the health testers’ discussions, the feedback on the education policy is shown in ??.

And the final version of the health policy is presented in[Table 23] and [Table 24] Other policies have
the similar format which can be found in the github repository.

Finally, MegaAgent generates 590 agents, forming a three-level hierarchy that can be extended further,
with human input limited to the meta-prompt. This demonstrates the scalability and autonomy of
MegaAgent framework.

One trial in this experiment costs about $3.3 and 2991 seconds.

E.4 ABLATION STUDY

Similar to the Gobang task, we conduct an ablation study on MegaAgent for National Policy Genera-
tion by rerunning the system without hierarchy, parallelism, and monitoring mechanisms separately.
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Table 22: Citizen Tester’s TODO List for Urban Development Planning

General Observations

- The policy provides a comprehensive framework for infrastructure development, with a strong emphasis on
health, technology, and environmental sustainability.

Health Infrastructure

Accessibility

- The focus on improving access to healthcare facilities through public transport and active transportation
is commendable. However, it would be beneficial to include specific metrics or targets for accessibility
improvements.

Health Impact Assessments

- The inclusion of health impact assessments is crucial. It is recommended to specify the types of health outcomes
that will be measured and how these assessments will influence project planning and design.

Environmental Considerations

- The environmental section is robust, but it should explicitly connect how sustainable practices can positively
impact public health, such as reducing pollution and promoting healthier living environments.

Cross-Sector Collaboration

- Consider promoting collaboration between environmental and health agencies to align sustainability and public
health objectives effectively.

Conclusion

- Overall, the policy is well-structured and aligns with national goals. Further detailing in specific areas,
particularly around health metrics, stakeholder engagement, and sustainability integration, will enhance its
effectiveness.

Recommendations

1. Include specific metrics for accessibility improvements in healthcare.

2. Specify health outcomes to be measured in health impact assessments.

3. Outline methods for stakeholder engagement in health assessments.

4. Provide examples of innovative technologies that can improve health outcomes.

5. Connect sustainable practices to public health benefits more explicitly.

6. Promote collaboration between environmental and health agencies.

Table 23: Health-Related Aspects of Urban Development Policy (Part 1)

1. Health Impact Assessments

- Conduct health impact assessments for all urban development projects exceeding a specified budget threshold
(to be defined).

- Assessments should be conducted at the planning stage and include evaluations of potential health risks and
benefits.

- Frequency of assessments to be determined based on project size and scope.

2. Accessibility Guidelines

- Ensure all urban designs adhere to accessibility guidelines for individuals with disabilities.

- Include specific metrics for evaluating accessibility improvements over time, such as the percentage of public
spaces meeting accessibility standards.

3. Collaboration with Health Organizations

- Outline specific roles and responsibilities for local health organizations in community health initiatives.

- Establish regular communication channels between urban planners and health organizations to ensure alignment
of goals.

4. Safety Measures

- Implement regular safety audits for public transportation systems to assess the effectiveness of safety measures
such as surveillance cameras and emergency call buttons.

- Develop a plan for continuous improvement based on audit findings, including a timeline for conducting safety
audits and implementing improvements.

5. Community Health Initiatives

- Promote community health initiatives in collaboration with local health organizations, focusing on preventive
care and health education.

- Engage community members in the planning process to ensure their health needs are addressed.

- Expand on the community engagement process to include diverse populations and ensure their voices are heard.

When running without hierarchy, minister agents cannot recruit new subordinates, forcing them to
draft policies independently. As a result, the generated policies are relatively short and lack precision.
For example, health-related aspects are missing, while certain sections, such as economic policies,
are partially complete, as shown in This indicates that tasks in the second layer remain
challenging for individual agents, highlighting the necessity of hierarchical task splitting.

Disabling parallelism forces all 590 agents to work sequentially, with only one agent active at a time.
After 14,400 seconds, more than 100 agents are recruited, most of which remain in the planning stage.
This demonstrates that parallel processing is essential as the number of agents scales up.
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Table 24: Health-Related Aspects of Urban Development Policy (Part 2)

6. Monitoring and Evaluation

- Establish a framework for monitoring and evaluating the health-related aspects of urban development policies
over time.

- Include metrics for success, such as reductions in health disparities and improvements in community health
outcomes.

7. Mental Health Support

1. Resource Allocation and Funding: Allocate funding for mental health support through government budgets,
grants, and partnerships with private organizations.

2. Partnerships with Local Health Organizations: Collaborate with local mental health organizations,
community health centers, and non-profits to provide comprehensive mental health services.

3. Evaluation Plan: Develop a plan to evaluate the effectiveness of mental health initiatives, including metrics
such as the number of individuals served, improvements in mental health outcomes, and community feedback.
8. Community Engagement Strategies

- Implement interactive methods for community involvement, such as online forums and feedback sessions, to
ensure diverse voices are heard.

- Establish a follow-up mechanism to inform the community about how their feedback has influenced decisions.
9. Reducing Air Pollution

- Implement stricter emissions standards for construction vehicles and promote the use of electric vehicles in
urban development projects.

- Increase green spaces and urban forests to improve air quality and provide recreational areas for residents.

- Encourage the use of public transportation and carpooling.

Without the monitoring mechanism, MegaAgent produces mostly complete policies, as seen in

Table 27]and [Table 28] However, some sections, such as the Regulation Policy shown in [Table 23] re-

main unfinished. This underscores the importance of a final validation stage to ensure comprehensive
and accurate policy generation.

E.5 NATIONAL PoLICY GENERATION EXPERIMENT WITH OTHER BASELINES
E.5.1 AUTOGEN SETUP AND RESULT

Similar to the setup of Gobang Game, we change the prompt to: Develop a best detailed policy for a
cutting-edge country, which is the same as that of MegaAgent’s, except for the agent recruitment part.
It only outputs an outline for each industry, with no policy details provided, as shown below:

It takes 40 seconds and $0.1 in this trial. The failure might because AutoGen is too simple in structure,
and cannot manage complex outputs with multiple files.

E.5.2 METAGPT SETUP AND RESULT

Similar to the setup of Gobang Game, we change the prompt to: Develop a best detailed policy
for a cutting-edge country. After 580 seconds, MegaGPT only outputs python codes for a policy
management system. The *main.py’ is shown in[Table 31| The reason for its failure is that it follows
a code generation SOP, and cannot cope with works other than writing the code.

The cost of one trial is $0.90.

E.5.3 CAMEL SETUP AND RESULT

Similar to the setup of the Gobang Game, we adjust the prompt to: Develop the best detailed policy
for a cutting-edge country. After 1380 seconds, CAMEL generates numerous implementation plans
instead of actual policies, as shown in The likely reason for this failure is its overly
simplistic standard operating procedure (SOP), coupled with the agent *Al User’ repeatedly raising
irrelevant questions. One trial costs about $0.68.

E.5.4 AGENTVERSE SETUP AND RESULT

Similar to the setup in the Gobang Game, we adapt the scenario to
tasksolving/brainstorming and modify the prompt to: Develop the best detailed
policy for a cutting-edge country. After 510 seconds, AgentVerse consistently rejects its proposed
solutions across all ten rounds, failing to produce a viable policy with four agents, as shown in
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Table 25: Economic Development Policy from MegaAgent when running without hierarchy

Introduction
This document outlines the comprehensive policy for economic development in our cutting-edge country. The
aim is to foster sustainable growth, innovation, and competitiveness in the global market.

Objectives

1. Promote innovation and technology adoption.
2. Enhance workforce skills and education.

3. Attract foreign investment.

4. Support small and medium enterprises (SMEs).
5. Ensure sustainable economic practices.

Policy Areas

1. Innovation and Technology

- Establish innovation hubs in major cities.

- Provide grants and tax incentives for R&D activities.

- Collaborate with universities for technology transfer.

- Performance Indicators: Number of innovation hubs established, amount of R&D funding allocated.
2. Workforce Development

- Implement vocational training

programs.

- Partner with industries to align education with market needs.

- Promote lifelong learning initiatives.

- Performance Indicators: Number of training programs launched, percentage of workforce with relevant skills.

3. Foreign Investment

- Streamline the investment approval process.

- Offer incentives for foreign companies to set up operations.

- Create a one-stop-shop for foreign investors.

- Performance Indicators: Amount of foreign investment attracted, number of new foreign companies estab-
lished.

4. Support for SMEs

- Increase access to financing for SMEs.

- Provide mentorship and business development services.

- Facilitate networking opportunities for SMEs.

- Performance Indicators: Number of SMEs receiving support, growth rate of SMEs.

5. Sustainable Practices

- Encourage green technologies and practices.

- Implement regulations to reduce carbon emissions.

- Support sustainable agriculture and resource management.

- Performance Indicators: Reduction in carbon emissions, number of sustainable projects funded.

Conclusion
This policy aims to create a robust economic environment that fosters growth, innovation, and sustainability.
Continuous evaluation and adaptation will be essential to meet the changing needs of our economy.

Table 26: Regulation Policy from MegaAgent when running without the monitoring mechanism. The
policy is mostly complete, except for the TODOs at the tail.

...(Mostly complete policies)

TODO

1. Review and clarify terms in the policy_regulations.txt, such as ’evidence-based’.
2. Elaborate on the monitoring and reporting system in section 3.3.

3. Detail the stakeholder engagement process for consultations.

4. Specify the frequency and criteria for the periodic review process in section 2.3.

5. Provide examples of proportionate penalties in section 4.2.

6. Add more detail to the appeals process in section 4.3, including timelines and involved bodies.
7. Include a timeline for the implementation of measures.

8. Define metrics for success in compliance and enforcement.

9. Develop a plan for making information accessible to all citizens.

10. Elaborate on the feedback mechanism’s operation.

A likely reason for this failure is its current inability to draft complex policies in an
organized manner, leading to persistent dissatisfaction with its own performance.

One trial costs about $2.05.
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Table 27: Health Policy from MegaAgent when running without the monitoring mechanism (Part 1)

1. Introduction

This document outlines the comprehensive health policy aimed at improving healthcare access, quality, and
public health initiatives in our nation. It addresses current health challenges such as rising chronic diseases,
mental health issues, and disparities in healthcare access.

2. Healthcare Access

2.1 Universal Healthcare Coverage

- Action 2.1.1: Implement a universal healthcare system that guarantees access to essential health services for
all citizens.

- Action 2.1.2: Establish a network of community health centers in underserved areas to provide primary care
services.

- Action 2.1.3: Define specific metrics for measuring access and quality of services, including patient satisfaction
and wait times.

- Timeline: A detailed timeline for the implementation of universal healthcare coverage will be developed,
including milestones for evaluation.

2.2 Telehealth Services

- Action 2.2.1: Expand telehealth services to ensure remote access to healthcare professionals.

- Action 2.2.2: Provide training for healthcare providers on telehealth technologies.

- Action 2.2.3: Include a timeline for implementation and evaluation of the program’s effectiveness.

3. Quality of Care

3.1 Quality Assurance Standards

- Action 3.1.1: Develop and enforce quality assurance standards for healthcare facilities.

- Action 3.1.2: Conduct regular audits and assessments to ensure compliance with quality standards.

3.2 Patient Safety Initiatives

- Action 3.2.1: Implement a national patient safety program to reduce medical errors and improve patient
outcomes.

- Action 3.2.2: Establish a reporting system for adverse events.

Table 28: Health Policy from MegaAgent when running without the monitoring mechanism (Part 2)

4. Public Health Initiatives

4.1 Preventive Health Programs

- Action 4.1.1: Launch nationwide campaigns to promote vaccination and preventive screenings, defining target
populations for these programs.

- Action 4.1.2: Provide funding for community-based health education programs.

4.2 Mental Health Services

- Action 4.2.1: Increase funding for mental health services and support programs.

- Action 4.2.2: Integrate mental health services into primary care settings, specifying training and resources for
primary care providers.

5. Conclusion

This health policy aims to create a robust healthcare system that prioritizes access, quality, and public health
initiatives for the well-being of all citizens.

Regulatory Aspects and Compliance Measures

- Compliance Monitoring: Establish a regulatory body to oversee compliance with healthcare standards and
regulations.

- Penalties for Non-Compliance: Define specific penalties for healthcare providers that fail to meet established
standards, such as fines, suspension of licenses, or mandatory retraining programs. Include examples of non-
compliance and enforcement processes.

- Public Reporting: Implement a public reporting system for healthcare facilities to disclose compliance status
and quality metrics, clarifying the frequency and content of reports.

- Stakeholder Engagement: Involve community stakeholders in the development and review of healthcare
regulations to ensure they meet public needs, specifying how stakeholders will be identified and involved.

- Monitoring Mechanisms: Develop a comprehensive monitoring framework that includes regular inspections,
data collection, and community feedback to assess the effectiveness of public health initiatives.

F NATIONAL POLICY EVALUATION VALIDATION EXPERIMENT

F.1 DATA COLLECTION

To construct a reliable validation dataset for evaluating MegaAgent’s national policy generation, we
collect 50 publicly available national policies from verified government and institutional sources.
These policies are obtained from the U.S. Government’s official Websiteﬂ the U.K. Government’s
policy portaﬂ and the World Health Organizatiorﬂ These sources are chosen for their transparency,

"https://www.usa.gov
$https://www.gov.uk
‘nttps://www.who.int
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Table 29: National Policy for Artificial Intelligence and Digital Technologies (Part 1)

1. Preamble:

The national policy for Artificial Intelligence (AI) and Digital Technologies is a strategic directive aimed
at positioning our country as a world leader in the development, adoption, and regulation of Al and digital
technologies. Through this endeavor, we are committed to fostering a digital ecosystem that enables innovation .
2. Objectives:

The primary objectives of this policy include:

. Strengthening education and research in Al and related fields.

. Encouraging innovation and entrepreneurship.

. Ensuring data protection and privacy.

. Fortifying national cybersecurity measures.

. Upholding ethical standards in technological advancements.

. Integrating Al in public sector services for efficiency and effectiveness.

. Promoting international collaborations.

. Strategies and Actions:

3.1 Education and Research:

Establish centers of excellence in Al and digital technologies in educational institutions. Encourage and fund
research in Al, Machine Learning, and other emerging technologies.

3.2 Infrastructure Development:

Support infrastructure required for digital technologies, including high-speed internet access, and cloud platforms.
3.3 Innovation and Entrepreneurship:

Institute a supportive regulatory environment for technology start-ups and provide seed funding.

WIS NN —

Table 30: National Policy for Artificial Intelligence and Digital Technologies (Part 2)

3.4 Data Protection:

- Enforce stringent data protection regulations to prevent unauthorized data access and usage.

- Raise public awareness of data privacy and impose penalties for breaches.

3.5 Cybersecurity:

- Develop national resilience against cyber threats through proactive and reactive measures.

- Create a dedicated task force responsible for maintaining nationwide cybersecurity.

3.6 Ethical Standards:

- Promote the development and use of Al and digital technologies in line with ethical and societal norms.

3.7 Public Sector Services:

- Enable the digital transformation of government services to enhance efficiency and user-friendliness.

3.8 International Collaborations:

- Actively pursue and foster international partnerships to share and adopt best practices.

4. Oversight and Enforcement Mechanisms:

- Establish a high-level committee with representatives from various sectors to oversee policy enforcement.

5. Policy Review and Updates:

- This policy will be reviewed every two years to address new advancements and challenges in the field.

This is a high-level policy guideline. The implementation of each objective will require detailed action plans and
regulations, which will be developed separately and are beyond the scope of this document.

Summary:

This policy, driven strategically, aims to position our nation as a global leader in Al and digital technology. If fur-
ther details are needed on specific areas, please let me know. If everything is clear, respond with "TERMINATE"
to end this session.

accessibility, and adherence to open data policies. In detail, we collect 13 health policies, 10 tax
policies, 12 technology policies, and 15 environment policies.

Additionally, we collected 50 unrelated negative samples from publicly available sources |Zhong
et al.[(2021); Zheng et al.| (2023)), including 25 samples from multi-turn conversations@] and 25
samples from meeting summarieq '| which resemble policy statements due to their length and logical
structure. This dual-structured dataset allows us to evaluate whether LLMs can effectively distinguish
reasonable policies from non-policy texts.

Yhttps://huggingface.co/datasets/lmsys/mt_bench_human_judgments
"https://github.com/Yale-LILY/QMSum
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Table 31: Code Snippet from main.py

main.py:

from flask import Flask, request, Jjsonify, send_file
from policy_framework import PolicyFramework

from data_analysis import DataAnalysis

from visualization import Visualization

import logging

import io

app = Flask(__name_ )
# Initialize the core classes
policy_framework = PolicyFramework ()

data_analysis = DataAnalysis ()
visualization = Visualization()

Table 32: AgentVerse Generated Results

AgentVerse’s Responses:

1. Objectives of the M&E Framework:
Assess the implementation progress of the digital governance policy;, measure the impact of various initiatives
on citizen engagement, privacy, and access to digital resources; identify strengths and weaknesses in policy
implementation for continuous improvement.

2. Key Components of the Framework:

A. Indicators:

Data Protection Framework: Number of data breaches reported annually; percentage of citizens aware of their
data privacy rights.

Algorithm Transparency Guidelines: Number of algorithms documented and made transparent; percentage of
stakeholders reporting understanding of algorithmic decisions.

Eco-Friendly Tech Initiatives: Reduction in energy consumption in government data centers; number of eco-
friendly tech projects funded and implemented.

Equitable Access to Digital Resources: Percentage of underserved communities with internet access, number of
low-cost devices distributed to low-income families.

Community Engagement and Innovation: Number of citizen ideas submitted through open innovation platforms;
participation rate in digital town halls and forums.

B. Data Collection Methods:
Surveys: Conduct regular surveys targeting citizens to gather feedback on digital governance initiatives;
Interviews: Hold interviews with stakeholders, including community leaders and tech experts.

F.2 DATA ETHICS

In this study, we follow established ethical guidelines for data collection, processing, and usage. We
obtain permission from the referenced websites, ensuring that data collection for research purposes is
authorize

And we obey to following principles to guide our research:

* Data Collection Transparency: We collect publicly available policy documents from
official government websites, recognized policy databases, and open-access repositories. No
sensitive or confidential information is included.

* Informed Use: The data is used solely for research and analysis purposes related to
evaluating the effectiveness of the MegaAgent framework in generating policy drafts. We do
not engage in commercial or unauthorized uses of the dataset.

* Privacy and Anonymity: Since the dataset consists only of publicly available national
policies, no personally identifiable information (PII) is collected. The dataset is anonymized
where applicable to maintain privacy standards.

* Fairness and Bias Mitigation: We ensure diverse representation by collecting policies from
various domains, such as technology, health, taxation, and the environment. This reduces
potential biases and improves the generalizability of the analysis.

“https://www.who.int/about/policies/publishing/copyright, https://www.
gov.uk/help/terms—conditions, https://www.gsa.gov/website-information/
website-policies#privacy
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Figure 14: The result of AgentVerse for policy simulation. It keeps rejecting for all ten rounds.

* Data Integrity and Security: All collected data is securely stored and managed following
best practices for data security. Access is restricted to authorized researchers involved in
this study.

F.3 EXPERIMENT SETUP

We employ five advanced LLMs: Claude-3.5, gpt-4o0-mini, gpt-40, ol-mini, and ol-preview |/Achiam
et al.[(2023)—to conduct the validation experiment. Each model is presented with the same evaluation
prompt, as shown in[Table 33| identical to the prompt used for evaluating MegaAgent’s generated
policies in The prompt asks whether a given policy is reasonable as a national policy, with
models instructed to respond with "Agree," "Disagree," or "Neutral," along with detailed explanations
to justify their answers.

To ensure fairness and consistency, we apply a uniform evaluation protocol across all models. Each
model processes the validation dataset independently, without access to external context or prior
knowledge beyond its pretraining, ensuring no bias in evaluating policy structures.

Table 33: National Policy Evaluation Prompt.

Prompts: "Is this policy reasonable as a national policy? Please return your answer with clear nuances: Agree,
Disagree, or Neutral with detailed explanations.”

F.4 EVALUATION METRICS

To assess the effectiveness of the selected LLMs in evaluating national policies generated by MegaA-
gent, we use four standard evaluation metrics: Precision, Recall, F1-Score, and Accuracy Huang et al.
(2024). These metrics provide a comprehensive overview of the LLMs’ classification performance.

* Precision: Precision measures the proportion of correctly predicted positive samples out of
all samples predicted as positive. It indicates how accurate the model is when it predicts a
policy as reasonable.

True Positives
True Positives + False Positives

Precision =

* Recall: Recall, also known as sensitivity, measures the proportion of actual positive samples
correctly identified by the model. It reflects how well the model can detect reasonable
policies.
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Recall = True Positives

True Positives + False Negatives

* F1-Score: The F1-Score is the harmonic mean of Precision and Recall, providing a balanced
evaluation of the model’s performance. It is useful when there is an uneven class distribution.

Fl-Score — 2 - Precision - Recall

Precision 4 Recall
* Accuracy: Accuracy represents the proportion of correct predictions out of all samples
evaluated. While straightforward, accuracy alone may be less informative if the dataset is
imbalanced.

Correct Predictions

A =
ceuracy Total Samples

These metrics are calculated for each LLM, and their average performance is reported to com-
pare model capabilities. The results, presented in demonstrate the models’ evaluation
effectiveness based on the national policy validation dataset.

F.5 EXPERIMENT RESULTS

Model | Precision Recall F1-Score | Accuracy
Claude-3.5 091 0.87 0.89 0.88
gpt-4o-mini 0.95 0.90 0.92 0.91
gpt-4o 0.92 0.89 0.90 0.92
ol-mini 0.90 0.83 0.86 0.86
ol-preview 0.93 0.88 0.90 0.89
Average |  0.92 0.87 089 | 0.8

Table 34: Evaluation Results of National Policy Validation Dataset

The evaluation results, presented in indicate that the selected LLMs achieved an average
accuracy of 89% in distinguishing real national policies from false ones. Among the five models,
gpt-4o demonstrated the best performance with an accuracy of 92%. Notably, all models exhibited
strong accuracy, with the lowest reaching 86%. These findings underscore the reliability of the
chosen LLMs as effective tools for evaluating the credibility and reliability of policies generated by
MegaAgent.

LIMITATIONS

Planning and Communication Overhead. The primary bottleneck lies in the planning and commu-
nication processes among LLM agents, particularly in translating code into prompts, managing task
checklists, maintaining the framework, and debugging. As the number of agents and communication
rounds increases, input-output token consumption grows substantially, affecting both efficiency and
cost. Future work should explore advanced token summarization, semantic compression, and efficient
dialogue storage methods.

Hallucination in Agent Outputs. Despite using task-specific checklists to monitor agent actions,
occasional hallucinations persist, with output formats sometimes deviating from expected require-
ments. Since the checklists themselves are generated by LLMs, errors may propagate. Addressing
this requires more robust verification mechanisms, potentially involving external expert knowledge
bases before, during, or after agent response generation.

API Cost and Model Integration. MegaAgent’s reliance on GPT-4 incurs high API costs. While
cheaper alternatives exist, they may lack generalizability. A promising direction would involve
integrating specialized LLMs for specific tasks, leveraging models that excel in certain domains while
maintaining efficient communication and data sharing across the LLMs.
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