
Citation: Jung, H.; Park, H.; Lee, K.

Enhancing Recommender Systems

with Semantic User Profiling through

Frequent Subgraph Mining on

Knowledge Graphs. Appl. Sci. 2023,

13, 10041. https://doi.org/

10.3390/app131810041

Academic Editor: José Machado

Received: 30 July 2023

Revised: 30 August 2023

Accepted: 3 September 2023

Published: 6 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Enhancing Recommender Systems with Semantic User Profiling
through Frequent Subgraph Mining on Knowledge Graphs
Haemin Jung 1 , Heesung Park 1 and Kwangyon Lee 2,*

1 Department of Industrial Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea;
hmjung@yonsei.ac.kr (H.J.); gregmark@naver.com (H.P.)

2 School of Electronic Engineering, Soongsil University, Dongjak-gu, Seoul 06978, Republic of Korea
* Correspondence: kylee@ssu.ac.kr

Abstract: Recommender systems play a crucial role in personalizing online user experiences by
creating user profiles based on user–item interactions and preferences. Knowledge graphs (KGs)
are intricate data structures that encapsulate semantic information, expressing users and items in a
meaningful way. Although recent deep learning-based recommendation algorithms that embed KGs
have demonstrated impressive performance, the richness of semantics and explainability embedded
in the KGs are often lost due to the opaque nature of vector representations in deep neural networks.
To address this issue, we propose a novel user profiling method for recommender systems that can
encapsulate user preferences while preserving the original semantics of the KGs, using frequent sub-
graph mining. Our approach involves creating user profile vectors from a set of frequent subgraphs
that contain information about user preferences and the strength of those preferences, measured
by frequency. Subsequently, we trained a deep neural network model to learn the relationship
between users and items, thereby facilitating effective recommendations using the neural network’s
approximation ability. We evaluated our user profiling methodology on movie data and found that it
demonstrated competitive performance, indicating that our approach can accurately represent user
preferences while maintaining the semantics of the KGs. This work, therefore, presents a significant
step towards creating more transparent and effective recommender systems that can be beneficial for
a wide range of applications and readers interested in this field.

Keywords: frequent subgraph mining; knowledge graph; recommender system; user profiling

1. Introduction

Recommender systems have long attracted attention and have become increasingly
essential in many aspects of our lives. An effective recommendation algorithm benefits both
the user and service (or content) provider. If the recommendation system can reasonably
match the product, service, or content with what a user wants, high user satisfaction and
sales growth for the provider can be guaranteed.

A knowledge graph (KG) is a database with a graph structure that can express various
relationships [1]. In many machine learning algorithms, KGs have been used as an effective
tool to provide explainability to their results [2]. Owing to their reasoning capability and
human-readable characteristic, recommendation is also one of the areas where the use
of KGs has received significant attention [3]. However, devising a method to process
KGs for real-world recommendation applications is challenging because of their complex
graph structure. With the recent progress in deep learning technology, recommendation
methodologies using KG-embedding techniques have been proposed [4,5]. Despite their
high performance, the explainability of KGs is erased in such methodologies, making it
difficult to provide meaningful rationale for recommendations. Graph-learning-based
algorithms [6,7] have also been proposed, but they require relatively large computing
resources for an iterative propagation process.

Appl. Sci. 2023, 13, 10041. https://doi.org/10.3390/app131810041 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810041
https://doi.org/10.3390/app131810041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1182-9303
https://orcid.org/0000-0001-7639-6687
https://doi.org/10.3390/app131810041
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810041?type=check_update&version=1

Appl. Sci. 2023, 13, 10041 2 of 17

In this study, we propose a user profiling method that represents user preferences
while maintaining the semantic information inside the KG using frequent subgraph mining
(FSM). Instead of directly embedding the KG, we identify the user-preferred attributes from
frequent subgraphs and then use them to create vectors representing users and items. This
user profiling method is rather simple but powerful; by training user–item representation
pairs in a neural network, we obtained decent recommendation performance while still
being able to describe user preferences with the user profile.

First, we combined a KG representing metadata about items and user–item interaction
data to create an expanded KG. Considering the range of information to be used for
the recommendations, this KG was divided into graphs for each user. Subsequently, we
extracted frequent subgraphs, which explicitly represented the preference of each user.

The set of subgraphs was used to create user profiles, which are vectors containing
both the semantic information of KG and frequency from the user–item interaction data. In
other words, the user profile represented both the common attributes of the items interacted
with by each user and the intensity (i.e., frequency) of the preference of each user for these
attributes. By determining the dimension of the user profiles as the number of attributes
appearing in the frequent subgraphs of all users, we could explain the preference of each
user with respect to the preference space of the entire user group.

After obtaining the user profiles, we sampled positive and negative pairs of user–item
interactions. We then fed the user profile and item vector pairs into a neural network classifi-
cation model and trained the model to learn their relationship to recommend a specific item
to the target user. Owing to the powerful approximation ability of the neural network, our
methodology demonstrated good recommendation performance while providing concrete
reasons for the recommendation based on the information in the user profiles.

To verify the performance of the proposed profiling method, we conducted experi-
ments using movie data. The movie data have been used in previous studies [8–10] owing
to having many attributes in a single item; relatively more people are involved in making a
film than writing a book or piece of music. As filtering out only the meaningful attributes is
essential for recommendation in the movie domain, it is an appropriate domain to examine
the effectiveness of our profiling method, wherein user-preferred attributes are determined
through FSM.

The characteristics of this study are as follows:

• We propose a novel user profiling method that generates user profiles, which clearly
represent user preference through the use of FSM on a KG.

• We present a recommendation method that uses the information in the frequent
subgraphs extracted from a KG to train a neural network model.

• Our method can overcome the disadvantages of a few existing opaque recommenda-
tion algorithms as it can provide recommendations using user profiles while maintain-
ing the original semantics.

• We demonstrate the effective performance of our method using movie domain data,
while factoring the characteristics of the domain.

The current section is followed by the Materials and Methods section, which reviews
other existing recommendation algorithms before our user profiling methodology is ex-
plained in detail. The experimental setup and test results are then discussed in the Results
section. Finally, the study and future research directions are discussed in the last section.

2. Materials and Methods

This section outlines the types and characteristics of recommendation algorithms.
Subsequently, we introduce the recommender systems based on KG and explain the posi-
tion and significance of our methodology in this field of research. We then describe our
methodology. Figure 1 shows the entire process, which comprises two main steps. The first
step is user profiling using frequent subgraphs, wherein data on user–item interactions
are combined with a KG, followed by the creation of an individual graph for each user.
Subsequently, frequent subgraphs are extracted from each user graph and converted into

Appl. Sci. 2023, 13, 10041 3 of 17

vectors representing user preferences through user profiling. In the second step, pairs of
user profile and item vectors are inputted to the deep neural network model to learn the
relationship between them, and the outputted value is used for recommendation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 17

methodology. Figure 1 shows the entire process, which comprises two main steps. The
first step is user profiling using frequent subgraphs, wherein data on user–item interac-
tions are combined with a KG, followed by the creation of an individual graph for each
user. Subsequently, frequent subgraphs are extracted from each user graph and converted
into vectors representing user preferences through user profiling. In the second step, pairs
of user profile and item vectors are inputted to the deep neural network model to learn
the relationship between them, and the outputted value is used for recommendation.

Figure 1. Overview of proposed method. Note: DNN, deep neural network.

2.1. Recommendation Algorithms
The purpose of a recommender system is to match users to items they may like based

on their preference inferred from behavioral data (i.e., user–item interactions) [11]. Rec-
ommendation problems can be described using the following equation: 𝑦ො௨ = 𝑓(𝑣௨, 𝑣). (1)

The predicted preference of user 𝑢 for item 𝑖, denoted as 𝑦ො௨, can be calculated us-
ing the function 𝑓 of user representation 𝑣௨ and item representation 𝑣 [12]. Finding
both the function 𝑓 and a convenient way of representing users and items to make 𝑦ො௨
close to the actual preference 𝑦௨ is at the core of item recommendation.

Depending on the type of value 𝑦௨, recommendation algorithms can be divided into
two categories: implicit and explicit feedback-based [13]. Implicit feedback is based on
whether a user has interacted with an item. Therefore, implicit feedback-based algorithms
often attempt to solve binary classification problems and use accuracy and F1-scores as
their performance metrics. By contrast, explicit feedback-based algorithms use more direct
responses given by the user, such as user ratings. They view the recommendation task as
a multi-class classification or regression problem to predict ratings and make recommen-
dations if the predicted rating is high. For regression problems, metrics such as root mean
square error are used. In this study, we proposed an algorithm based on implicit feedback;
predicted preference 𝑦௨ is the probability that user 𝑢 interacts with item 𝑖.

In addition, recommendation algorithms are divided into three categories based on
their filtering types: collaborative, content-based, and hybrid filtering [13,14]. Collabora-
tive filtering primarily considers the similarities between users or items in user–item in-
teraction data. Since the underlying assumption is that users with similar preferences se-
lect similar items, this technique is domain independent. Various methods, such as clus-
tering techniques [15] or matrix factorization [16], have been proposed. Content-based fil-
tering uses domain-specific information to solve data sparsity and cold-start problems
[10]. This additional domain-specific information varies from text or images about items

Figure 1. Overview of proposed method. Note: DNN, deep neural network.

2.1. Recommendation Algorithms

The purpose of a recommender system is to match users to items they may like
based on their preference inferred from behavioral data (i.e., user–item interactions) [11].
Recommendation problems can be described using the following equation:

ŷui = f (vu, vi). (1)

The predicted preference of user u for item i, denoted as ŷui, can be calculated using
the function f of user representation vu and item representation vi [12]. Finding both the
function f and a convenient way of representing users and items to make ŷui close to the
actual preference yui is at the core of item recommendation.

Depending on the type of value yui, recommendation algorithms can be divided into
two categories: implicit and explicit feedback-based [13]. Implicit feedback is based on
whether a user has interacted with an item. Therefore, implicit feedback-based algorithms
often attempt to solve binary classification problems and use accuracy and F1-scores
as their performance metrics. By contrast, explicit feedback-based algorithms use more
direct responses given by the user, such as user ratings. They view the recommendation
task as a multi-class classification or regression problem to predict ratings and make
recommendations if the predicted rating is high. For regression problems, metrics such as
root mean square error are used. In this study, we proposed an algorithm based on implicit
feedback; predicted preference yui is the probability that user u interacts with item i.

In addition, recommendation algorithms are divided into three categories based on
their filtering types: collaborative, content-based, and hybrid filtering [13,14]. Collaborative
filtering primarily considers the similarities between users or items in user–item interac-
tion data. Since the underlying assumption is that users with similar preferences select
similar items, this technique is domain independent. Various methods, such as clustering
techniques [15] or matrix factorization [16], have been proposed. Content-based filter-
ing uses domain-specific information to solve data sparsity and cold-start problems [10].
This additional domain-specific information varies from text or images about items to the
demographic information of users, through which users and items are represented for
recommendation. Finally, the hybrid method attempts to achieve higher performance by
combining multiple approaches [17].

Appl. Sci. 2023, 13, 10041 4 of 17

Our proposed method involves hybrid filtering; it benefits from the characteristics of
content-based filtering in that it creates user profiles using a KG as external information but
also resembles collaborative filtering in that information from multiple users is reflected
together in user profiling.

KG-Based Recommendation Algorithms

In recent years, many researchers have introduced the KG as additional information
to recommender systems [6]. The term “KG” has never been clearly defined with a single
meaning; however, it can generally be understood from the perspective of Semantic Web
technologies or Linked Open Data [1]. Based on this perspective, we used common elements
and concepts such as TBox and ABox levels, schemas, classes, object properties, datatype
properties, and instances, which are defined in W3C standards such as the Resource
Description Framework (RDF), RDF Schema, and Web Ontology Language. Generally, a
KG can be defined as follows:

KG = (V, E) = {(v1, e, v2)|v1, v2 ∈ V, e ∈ E} (2)

where V is the set of vertices constituting the graph, E denotes the set of edges constituting
the graph, and (v1, e, v2) refers to a unit that forms a graph called a triple.

One of the key benefits of KG-based recommendation is the explainability when
recommending items [18]. Many attempts have been made to use the semantic information
and expressiveness of KGs [3–5]. Existing KG-based recommender systems can be generally
categorized into three classes: embedding-based, path-based, and unified (or graph neural
network-based) methods [6].

Embedding-based methods use various types of information from the KG to model
the representations of items or users. Representative methods [4,5] characterize items
through graph embedding algorithms such as TransE [19] or TransR [20] and apply them
for recommendation. Although these methodologies show a good performance, because of
the characteristics of the embedding process, they suffer from the shortcoming of losing
the semantic information in the original KG. In other words, as entities are converted into
numerical vectors, the semantic information originally represented as paths in the KG
is lost.

Path-based methods consider the pre-defined connecting patterns or meta-paths
of users and items, leveraging the similarity of paths between entities to enhance the
performance of the recommendation. Yu et al. [21] suggested HeteMF, which focused on
the relations of items connected by meta-paths to calculate item–item similarity. Drawing
from the collaborative filtering approach, Luo et al. [22] proposed the HeteCF algorithm
using item–item similarity in addition to user–item and user–user similarities. Although
the meta-paths can introduce explainability in recommendations, there is a downside; the
effectiveness of these methods depends heavily on the quality and amount of manually
created meta-paths, which requires expertise in the target domain. This reduces their
applicability to other domains.

Graph neural network (GNN)-based methods attempt to obtain better representa-
tions by integrating semantic information with connecting patterns through embedding
propagation [6]. Wang et al. [7] proposed a KG convolutional network, which iteratively
updates the representation of each entity through an inward propagation process from its
neighbors. Another method is KGAT [23], which initializes the representation of entities
with TransR [20] and propagates information outwardly. Recent GNN-based algorithms are
not necessarily used only for KG-based recommendations, but they show high performance
with KGs owing to their graph modeling ability. However, they require a relatively large
amount of computation compared to other methods. Our proposed method does not clearly
fall into any of these three main categories.

Methodologies based on KGs that can use additional information about items with
stronger explanatory power compared to methods solely based on user–item interactions
and are relatively immune to cold start problems. Recent KG-based recommendation

Appl. Sci. 2023, 13, 10041 5 of 17

methodologies, such as KGAT [23], have shown high performance on data in the enter-
tainment domain (books, music) and business service domain (restaurants). Moreover,
they exhibit strengths in domains where there is a high necessity to clearly explain the
recommendations, such as in the education domain for recommending educational content
and in the medical domain for clinical treatment recommendation scenarios.

However, KG-based methodologies tend to focus on utilizing semantic information
and often overlook frequency information, which is a crucial element representing user
preferences in user–item interactions. Our approach differs from existing methodologies
by addressing this issue; we create user profiles by incorporating frequency information.

In this paper, we have devised a novel user profiling method that creates user profiles
using frequent subgraphs extracted from the graph of each user. A frequent subgraph,
consisting of common attributes of user-interacted items with their frequencies, represents
user preference well without losing the semantic information of the original KG. Subse-
quently, we converted the subgraphs into user profile vectors and inputted them into a
neural network along with item vectors with the same vector space. The neural network,
acting as the function f in (1), effectively modeled the relationship between users and
items to predict preference. Most state-of-the-art algorithms are based on GNNs, but our
algorithm is relatively simple and much easier to understand; it does not need to consider
the entire graph or require a complex neural net structure for embedding propagation. In
other words, we paid attention to the fact that competitive recommendation performance
could be obtained by using user preferences extracted through FSM on a KG.

2.2. User Profiling Based on Frequent Subgraphs

We wanted to aggregate information from KGs from the perspective of each user.
Therefore, we created a small graph called a user graph that contained only the metadata
of the items that a user interacted with. Then, FSM was applied to the user graph to find
attributes commonly included in the items, i.e., each user preference.

This process could be viewed as a type of feature extraction that selected only what
the user considered important when selecting an item among the numerous attributes that
described it.

2.2.1. Expansion of the KG

Two types of inputted data were required to implement our methodology. First, we
needed user–item interaction data, which are the most common and fundamental pieces of
information used for traditional collaborative filtering tasks. They comprised sequential or
nonsequential records of items that each user interacted with. The other inputted data were
KG data, which contained information about all the items. In the TBox level or schema, the
classes and properties related to the items were defined and organized, and in the ABox
level, each item that was an instance of those classes was connected to another instance or
value based on object or datatype properties.

We combined these two pieces of data to form a larger KG. Figure 2 illustrates this
combination process and the resulting KG. The orange and purple circles represent classes
and instances, respectively; the orange dotted lines connecting the classes and instances
represent “instanceOf” relationships; the blue straight lines represent object properties;
and the green straight lines represent datatype properties. First, we created a class named
“USER” in the KG and added users appearing in the user–item interaction as an instance
of the class. Then, we connected them with the items they had interacted with through
an object property named “interactedWith”. The instances of the “USER” class could be
dynamically created according to the set of users for whom we wanted to find patterns,
while the original part of the KG was relatively static (i.e., new items and their related
triples could be added, but existing items and their triples were less likely to be changed or
removed). In this combination process, duplicate cases wherein a user interacted with an
item multiple times were not considered.

Appl. Sci. 2023, 13, 10041 6 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 17

could be added, but existing items and their triples were less likely to be changed or re-
moved). In this combination process, duplicate cases wherein a user interacted with an
item multiple times were not considered.

Figure 2. Generation of expanded knowledge graph.

2.2.2. Generation of User Graphs
To understand the preference of each user, we divided the expanded KG into multi-

ple user graphs. A user graph is a part of a KG wherein only the items that each user has
interacted with and their related triples are connected; each user has only one user graph.
Figure 3 conceptually illustrates an example of a user graph; User_1 interacts with two
items, and User_M interacts with three items. It should be noted that the user graph con-
tained not only instance-level triple information but also information on the class to which
each instance belonged.

Figure 3. User graphs.

Due to the nature of the graph structure, instances of the expanded KG were con-
nected to other instances at very remote ranges. However, not all the data included in the
KG were required for recommendation. Therefore, we set path conditions to create user
graphs that included only useful information.

There were two factors to be determined. One was the set of classes and properties
to be excluded from the path search. This was information that could not be used or
needed to be excluded for recommendation. For example, serial numbers, which are used

Figure 2. Generation of expanded knowledge graph.

2.2.2. Generation of User Graphs

To understand the preference of each user, we divided the expanded KG into multiple
user graphs. A user graph is a part of a KG wherein only the items that each user has
interacted with and their related triples are connected; each user has only one user graph.
Figure 3 conceptually illustrates an example of a user graph; User_1 interacts with two
items, and User_M interacts with three items. It should be noted that the user graph
contained not only instance-level triple information but also information on the class to
which each instance belonged.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 17

could be added, but existing items and their triples were less likely to be changed or re-
moved). In this combination process, duplicate cases wherein a user interacted with an
item multiple times were not considered.

Figure 2. Generation of expanded knowledge graph.

2.2.2. Generation of User Graphs
To understand the preference of each user, we divided the expanded KG into multi-

ple user graphs. A user graph is a part of a KG wherein only the items that each user has
interacted with and their related triples are connected; each user has only one user graph.
Figure 3 conceptually illustrates an example of a user graph; User_1 interacts with two
items, and User_M interacts with three items. It should be noted that the user graph con-
tained not only instance-level triple information but also information on the class to which
each instance belonged.

Figure 3. User graphs.

Due to the nature of the graph structure, instances of the expanded KG were con-
nected to other instances at very remote ranges. However, not all the data included in the
KG were required for recommendation. Therefore, we set path conditions to create user
graphs that included only useful information.

There were two factors to be determined. One was the set of classes and properties
to be excluded from the path search. This was information that could not be used or
needed to be excluded for recommendation. For example, serial numbers, which are used

Figure 3. User graphs.

Due to the nature of the graph structure, instances of the expanded KG were connected
to other instances at very remote ranges. However, not all the data included in the KG were
required for recommendation. Therefore, we set path conditions to create user graphs that
included only useful information.

There were two factors to be determined. One was the set of classes and properties to
be excluded from the path search. This was information that could not be used or needed
to be excluded for recommendation. For example, serial numbers, which are used as the

Appl. Sci. 2023, 13, 10041 7 of 17

IDs for items, can be considered meaningless; when recommending a movie, the running
time may be a relatively less important attribute than other attributes.

The other factor was the depth, which is related to the length of a path. The minimum
depth removes short paths that may be included unnecessarily according to the structure of
the KG. The maximum depth limits the path length that can in principle be infinite due to
the nature of the graph. The depth is the number of properties connected from the “USER”
class. For instance, the depth of class “ATR1” in Figure 3 is two, as it is connected to the
“USER” class through the “ITEM” class.

These two factors should be carefully decided by domain experts who are aware of
the KG structure, considering the attributes of the items they want to include as the reason
for recommendation. By applying the factors differently according to the target users or
purpose of recommendation, a single KG can be used in various ways.

Once these factors were set, a schema-level path that satisfied them needed to be
found. The paths began from the “USER” class and consisted of continuous classes and
properties. Subsequently, all the instance-level paths matching the schema-level path were
searched and, finally, these paths were combined to form the user graph.

2.2.3. Mining Frequent Subgraphs

An FSM algorithm [24] was applied to each user graph, chunking the overlapping
parts until there were no more candidate patterns with a frequency over the minimum
support. An isomorphic part to count the frequency was required, as the item instances
included in the user graph were essentially all different. Therefore, we applied abstraction
to them. Abstraction is similar to conceptualization, wherein a specific instance is replaced
with its class. Then, the algorithm finds common triples, counts their frequency, and selects
the triples that exceed the minimum support as candidates. The most dominant candidate
is replaced with a new node (or chunk), and the graph updates to reflect this replacement.
This process is repeated until no more candidates appear, and a frequent subgraph is
obtained by reconstructing the original shape of the last chunk.

Algorithm 1 is the pseudo code of the FSM algorithm.

Algorithm 1. FSM algorithm.

user graph U
candidates← {}
chunks← {}
min_support s
abstract(item instances in U)
count initial frequencies of triples in U
for each triple t in U

if frequency(t) > s then
candidates← candidates + t

while |candidates| > 0 do
target← choose_from(candidates)
chunks← chunks + target
candidates← {}
U← update(U) # replace triples around target
count triple frequencies in U
for each triple t’ in UG

if frequency(t’) > s then
candidates← candidates + t’

if |chunks| > 0 then
subgraph← restructure(chunks)

return subgraph

The main parameter to be set for this process was the minimum support for mining
patterns. The minimum support allowed decisions to be made differentially by considering

Appl. Sci. 2023, 13, 10041 8 of 17

the distribution of the number of items each user interacts with. For example, in the movie
domain, if the minimum support was set to two for those who watched 10 movies and
those who watched 100 movies, the degree of preference might be reflected differently.
Therefore, it was appropriate to differentiate the minimum support.

The resulting set of subgraphs comprised common triples belonging to the items that a
user commonly interacted with. Figure 4 shows a simple example of an extracted subgraph
applied to a movie domain. As a movie is an item, it is abstracted. The numbers next to the
properties indicate how many times there have been interactions with the movie with the
corresponding triple.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 17

The main parameter to be set for this process was the minimum support for mining
patterns. The minimum support allowed decisions to be made differentially by consider-
ing the distribution of the number of items each user interacts with. For example, in the
movie domain, if the minimum support was set to two for those who watched 10 movies
and those who watched 100 movies, the degree of preference might be reflected differ-
ently. Therefore, it was appropriate to differentiate the minimum support.

The resulting set of subgraphs comprised common triples belonging to the items that
a user commonly interacted with. Figure 4 shows a simple example of an extracted sub-
graph applied to a movie domain. As a movie is an item, it is abstracted. The numbers
next to the properties indicate how many times there have been interactions with the
movie with the corresponding triple.

Figure 4. Example of frequent subgraph.

2.2.4. User Profiling
The frequent subgraph of a user expresses their preference. In other words, it repre-

sents the major attributes that the user considers when selecting an item and the strength
of the preference the user has for that attribute. Each user has different frequent sub-
graphs; our proposed user profiling method makes these subgraphs into vectors of the
same dimension.

Table 1 describes the notations of the main sets used in this section.

Table 1. Notation of Sets.

Notation Definition
U Users that exist in the user–item interaction data
G Frequent subgraphs of U
T Instance triples in KG
TG Instance triples in G

I Items that exist in the user–item interaction data
Iu Items that user u has interacted with
S Samples in the training set

First, we collected a set of frequent subgraphs extracted for all the users of the user–
item interaction. If the subgraph of each user 𝑢 is denoted by 𝑔௨, and the triples included
in 𝑔௨ are denoted by 𝑡(𝑔௨), then the frequent subgraph set G of the users can be denoted
as follows: 𝐺 = ሼ𝑔௨ | ∃𝑔௨: |𝑡(𝑔௨)| > 0, 𝑢 ∈ 𝑈ሽ. (3)

Figure 4. Example of frequent subgraph.

2.2.4. User Profiling

The frequent subgraph of a user expresses their preference. In other words, it repre-
sents the major attributes that the user considers when selecting an item and the strength
of the preference the user has for that attribute. Each user has different frequent sub-
graphs; our proposed user profiling method makes these subgraphs into vectors of the
same dimension.

Table 1 describes the notations of the main sets used in this section.

Table 1. Notation of Sets.

Notation Definition

U Users that exist in the user–item interaction data
G Frequent subgraphs of U
T Instance triples in KG

TG Instance triples in G
I Items that exist in the user–item interaction data
Iu Items that user u has interacted with
S Samples in the training set

First, we collected a set of frequent subgraphs extracted for all the users of the user–
item interaction. If the subgraph of each user u is denoted by gu, and the triples included
in gu are denoted by t(gu), then the frequent subgraph set G of the users can be denoted
as follows:

G = {gu| ∃gu :|t(gu)|> 0, u ∈ U }. (3)

Appl. Sci. 2023, 13, 10041 9 of 17

That is, if the frequent subgraph obtained for each user includes one or more triples,
these subgraphs are collected for set G. Additionally, the triple set TG can be defined
as follows:

TG =
⋃

gu∈G
t(gu). (4)

TG can be viewed as a set of item attributes that all users consider important when selecting
an item. Not all the elements of TG are included in T due to abstraction, but they at least
have a form like that of the triples included in T.

Finally, we define the user profile vector. The user profile vector vu of user u can be
expressed as follows:

vu =
(

e1, e2, · · · , ei · · · , e|TG |

)
,

ei =

{
0 (i f ti /∈ t(gu))
f requency o f ti (i f ti ∈ t(gu))

. (5)

If user u’s subgraph contains the i-th triple ti, which belongs to TG, the value of element
ei is the frequency of the ti that appears in user u’s frequent subgraph. The user profile
vector represents the subgraph extracted from the user graph in the dimensional space of
|TG|. In other words, it is the preference of a specific user u in the space of attributes that
the user set U considers important in item selection.

2.3. Recommendations Using the Deep Neural Network Model

In this step, the deep neural network learns the relationship between the user profile
vector and the item vector obtained in the previous step. After training, the model can
predict whether a user with a certain preference will choose an item with a certain attribute.

2.3.1. Model Training

The structure of the proposed neural network is shown in Figure 5. A pair of vectors at
the bottom represents a user profile vector and an item triple vector. The user profile vector
in the example can be interpreted by itself; the frequent subgraph of the user contains two
triples wherein PERS_0006908 (“Marc Macaulay”) participates as an actor and three triples
wherein GENR_00018 (“Drama”) is the genre.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 17

That is, if the frequent subgraph obtained for each user includes one or more triples,
these subgraphs are collected for set 𝐺. Additionally, the triple set 𝑇 can be defined as
follows: 𝑇 = ⋃ 𝑡(𝑔௨).ೠ∈ீ (4)𝑇 can be viewed as a set of item attributes that all users consider important when select-
ing an item. Not all the elements of 𝑇 are included in 𝑇 due to abstraction, but they at
least have a form like that of the triples included in 𝑇.

Finally, we define the user profile vector. The user profile vector 𝑣௨ of user 𝑢 can be
expressed as follows: 𝑣௨ = ൫𝑒ଵ, 𝑒ଶ, ⋯ , 𝑒 ⋯ , 𝑒|்ಸ|൯,

𝑒 = ቊ0 ൫𝑖𝑓 𝑡 ∉ 𝑡(𝑔௨)൯𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 ൫𝑖𝑓 𝑡 ∈ 𝑡(𝑔௨)൯. (5)

If user 𝑢’s subgraph contains the 𝑖-th triple 𝑡, which belongs to 𝑇 , the value of el-
ement 𝑒 is the frequency of the 𝑡 that appears in user 𝑢’s frequent subgraph. The user
profile vector represents the subgraph extracted from the user graph in the dimensional
space of |𝑇 |. In other words, it is the preference of a specific user 𝑢 in the space of attrib-
utes that the user set 𝑈 considers important in item selection.

2.3. Recommendations Using the Deep Neural Network Model
In this step, the deep neural network learns the relationship between the user profile

vector and the item vector obtained in the previous step. After training, the model can
predict whether a user with a certain preference will choose an item with a certain attrib-
ute.

2.3.1. Model Training
The structure of the proposed neural network is shown in Figure 5. A pair of vectors

at the bottom represents a user profile vector and an item triple vector. The user profile
vector in the example can be interpreted by itself; the frequent subgraph of the user con-
tains two triples wherein PERS_0006908 (“Marc Macaulay”) participates as an actor and
three triples wherein GENR_00018 (“Drama”) is the genre.

Figure 5. Structure of proposed prediction model. Figure 5. Structure of proposed prediction model.

Appl. Sci. 2023, 13, 10041 10 of 17

There are various methods to embed items, with the simplest method setting the di-
mension of the item vector to that of the user profile vector. Here, the value of each element
of the item vector is binary and is determined according to whether the corresponding item
is connected to each triple in the KG.

The user profile and item vectors, which are sparse vectors, were transformed into
dense representations v′u and v′i through each fully connected layer. Then, the two vectors
were concatenated and passed through a layer that interpreted the relationship between
them. Finally, a probability value ŷui that predicted whether the user would interact with
the item was outputted using the sigmoid function. A brief formula for the model is shown
as follows:

v′u = fm(Wuvu + bu), (6)

v′i = gn(Wivi + bi), (7)

ŷui = σ
(

ho

(
W
(

v′u
⊕

v′i
)
+ bui

))
, (8)

where the functions fm, gn, and ho represent the fully connected layers of the user profile
vectors, item vectors, and their concatenated embedding vectors, respectively, while m, n,
and o represent the number of hidden layers.

Each input vector does not represent the ID of a specific user or item. As different
users can have the same user profile vector, the proposed model calculates the probability
that a user with a specific preference would watch a movie with a specific characteristic,
rather than the probability of them watching a specific movie.

The input of the training data consisted of a pair of user profile and item vectors from
the sample set S, and the label was either zero or one. For a set of positive samples Spos, the
label was one. The samples in Spos were the samples included in the user–item interaction
data. Label 0 was assigned to the samples in Sneg, which were obtained through negative
sampling among the items that each user did not interact with.

Spos =
{
(vu, vi)

∣∣∣vu, vi ∈ Rk, i ∈ Iu

}
, (9)

Sneg =
{
(vu, vi)

∣∣∣vu, vi ∈ Rki ∈ (I − Iu)
}

, (10)

S = Spos + Sneg. (11)

As a binary classification task, it aimed to minimize the following loss:

L = − 1
|S| ∑

(u,i)∈S
[(yuilogS(ŷui) + (1− yui)logS(1− ŷui)]. (12)

2.3.2. Recommendation

After training, we can obtain a probability ŷui for a newly inputted user–item pair.
Using this probability, we can select the most recommended item among several items that
the user had never interacted with. Additionally, in real-world applications, a frequent
subgraph can be used as a basis for recommendation. Each user’s subgraph shows the
attributes common to the items they have interacted with, acting as a visual representation
that can attract their attention.

3. Results

In this section, we evaluate our methodology and assess the impact of the characteris-
tics of data on its performance.

Appl. Sci. 2023, 13, 10041 11 of 17

3.1. Experimental Design
3.1.1. Dataset

We used the MovieLens dataset, which is widely used for the performance evalu-
ation of recommendation algorithms. The source of this dataset was GroupLens (https:
//grouplens.org/datasets/movielens/, accessed on 30 April 2023), and it provided user–
item interaction data in various sizes. In our experiment, ml-Small and ml-1m were used to
observe the changes in performance according to dataset size. Table 2 lists the number of
users, items, and interactions in each dataset.

Table 2. Dataset Information.

ml-Small ml-1m

Users 630 (671) 6040 (6070)
Items 9048 (9066) 3666 (3706)

Interactions 99,898 (100,004) 997,407 (1,000,209)

The numbers in parentheses indicate the number of items in the original data. Users
were excluded when frequent subgraphs were not extracted, and items were excluded
when their metadata could not be found. Additionally, when either a user or an item was
excluded, the corresponding interactions were also excluded. The data consisted of four
columns: userId, movieId, rating, and timestamp. As this study targeted implicit feedback
data, we did not use the rating column.

For a background KG, we used the data uploaded on Kaggle (https://www.kaggle.
com/datasets/rounakbanik/the-movies-dataset, accessed on 5 October 2022), which con-
tained metadata on approximately 45,000 movies in The Movie Database (TMDB), along
with a mapping between the TMDB movie ID and movieId column in the GroupLens
data. After constructing a schema for this metadata, we built the KG by generating triples
for each movie according to the schema. Finally, we created “USER” class instances and
connected them with the item instances through the “interactedWith” property to prepare
the KG for a state suitable for application in our algorithm.

3.1.2. Experimental Setup

We experimented with leave-one-out cross-validation. Specifically, after sorting using
the timestamp column, only the movie that each user watched last was collected and saved
as a test set. The hit ratio (HR) and normalized discounted cumulative gain (NDCG),
which are frequently used terms in recommendation, were used as evaluation metrics. The
HR was used to check whether an item was included in the top ranking, and the NDCG
was affected by the position in the top ranking. To calculate these two metrics, a list of
100 movies that comprised the one left out at the end for testing and 99 randomly sampled
movies unseen by the user were employed.

We first constructed a user graph for each user and extracted the frequent subgraph.
The function of minimum support value was set as follows:

f (x) =
{

2 (3 ≤ x < 8)
[lnx] (x ≥ 8)

(13)

where the number of movies the user has watched is x.
Most users only watched a few movies, but some watched hundreds or thousands.

Thus, applying the same value to all the users would not be fair. However, if an excessively
high threshold is applied to those who watch many movies, the criterion for judging the
user preference exhibits an excessively large difference. Thus, considering both the absolute
and relative values, we used ln x which gradually increases; the value was approximated
to an integer. Regarding the case wherein eight or less movies were watched, the value of
f (x) was one; hence, we set the value to two because a triple that appears once should not
be considered frequent.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset

Appl. Sci. 2023, 13, 10041 12 of 17

After the frequent subgraphs were selected, they were vectorized through user pro-
filing. The movie pool for negative sampling was a set of all the items I that at least one
user had interacted with, and the number of negative samples for each positive sample
was four. Finally, 100 movies were ranked based on the probability value ŷui derived from
the neural network.

The neural network model was implemented in TensorFlow, and the tested learning
rates were 0.0005, 0.001, 0.002, and 0.005; the batch sizes were 256, 512, and 1024, and the
dimensions of the embedding vector were 32, 64, 128, and 256.

The main baseline models were as follows: itemPop (item popularity) simply recom-
mends items based on their popularity [25]; itemKNN [26] uses the similarities between
items to identify the set of items to be recommended; Bayesian personalized ranking (BPR)
employs the optimization criterion BPR-Opt and solves the recommendation problem from
a Bayesian point of view [27]; the factored item similarity model (FISM) uses an item-item
similarity matrix as the product of two latent factor matrices [28]; neural attentive item
similarity (NAIS) uses a neural network model involving the application of the attention
mechanism [29]; hamming spatial graph convolutional networks (HS-GCN) [30] capture
hamming similarity between users and items through graph convolution operation; and
recurrent KG embedding (RKGE) [31] obtains graph embeddings for recommendation
using recurrent neural networks.

3.2. Results

The size of the user profile vector was 534 for ml-Small and 678 for ml-1m. Table 3
presents the number of properties included in the user profile and representative examples
for the ml-1m data.

Table 3. Properties in User Profile Vector (ml-1m).

Property Number of Properties Examples

Production 69 George Lucas, Mike Fenton, Albert R. Broccoli

CostumeMakeup 17 John Mollo, Eugene Joseff, Joanna Johnston

MovieKeyword 115 Dystopia, independent film, android

MovieCompany 41 Paramount Pictures, Warner Bros., Twentieth Century
Fox Film Corporation

Acting 159 Harrison Ford, Desmond Lleweyn, Michael Palin

BelongsToCollection 16 James Bond Collection, Planet of the Apes Original
Collection, Puppet Master Collection

MovieRevenue 7
Revenue_Under_norm_100%,
Revenue_Under_norm_40%,
Revenue_Under_norm_50%

MovieVote Average 10
Vote_avg_Under_norm_90%,

Vote_avg_Under_norm_100%,
Vote_avg_Under_norm_80%

Art 20 Leslie Dilley, Herman F. Zimmerman, Norman Reynolds

Editing 19 Michael Khan, John Glen, Akira Kurosawa

MovieGenre 18 Drama, Comedy, Action

Camera 20 Takao Saito, Roland Totheroh, Robert Burks

Sound 36 John Williams, Scott Martin Gershin, Christopher Assells

VisualEffects 13 John Lounsbery, Milt Kahl, Ollie Johnston

Directing 26 Nick Park, Woody Allen,

Appl. Sci. 2023, 13, 10041 13 of 17

Table 3. Cont.

Property Number of Properties Examples

Writing 39 George Lucas, Ian Fleming, Terry Gilliam

MovieBudget 8 Budget_Under_norm_30%, Budget_Under_norm_100%,
Budget_Under_norm_40%

MoviePopularity 7
Popularity_Under_norm_100%,
Popularity_Under_norm_90%,
Popularity_Under_norm_80%

MovieCountry 11 United States, United Kingdom, France

MovieVote_Count 6
Vote_count_Under_norm_100%,
Vote_count_Under_norm_50%,
Vote_count_Under_norm_60%

Crew 12 Jessica Drake, Lisa Dennis Kennedy, Brian Johnson

MovieRuntime 9
Runtime_Under_norm_50%,
Runtime_Under_norm_60%,
Runtime_Under_norm_100%

3.2.1. Overall Performance

Table 4 shows the performance of our model and those of other methodologies. HR@k
and NDCG@k were calculated for k = 5, 10, and 20. Our model had an embedding size
of 128, a batch size of 1024, and a running rate of 0.001. The bold numbers in the table
represent the best performances among the methodologies.

Table 4. Overall Performance.

ml-Small ml-1m

HR NDCG HR NDCG

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

itemPOP 0.188 0.292 0.408 0.122 0.158 0.186 0.311 0.455 0.638 0.208 0.255 0.301
itemKNN 0.304 0.405 0.518 0.230 0.263 0.290 0.368 0.521 0.707 0.255 0.306 0.351

BPR 0.341 0.450 0.563 0.229 0.262 0.284 0.510 0.687 0.843 0.349 0.405 0.443
FISM 0.327 0.415 0.527 0.223 0.252 0.276 0.482 0.658 0.815 0.331 0.388 0.425
NAIS 0.336 0.424 0.531 0.234 0.250 0.276 0.497 0.671 0.826 0.397 0.397 0.435

HS-GCN 0.380 0.477 0.675 0.257 0.280 0.347 0.452 0.616 0.774 0.323 0.380 0.418
RKGE 0.365 0.461 0.630 0.248 0.275 0.345 0.435 0.623 0.784 0.318 0.377 0.408
Ours 0.335 0.473 0.618 0.226 0.270 0.307 0.438 0.628 0.796 0.288 0.350 0.392

We inferred the following facts:

• Our model showed sufficient performance on the ml-Small data. In HR@5, it showed
similar performance to BPR, FISM, and NAIS; however, it showed better performance in
HR@10 and HR@20. The algorithms utilizing graph structure showed good performance.

• The performance of our model on the ml-1m dataset was also sufficient. It showed a
relatively low performance in metrics at rank 5, but for those at ranks 10 and 20, the
difference was low. The performance of the graph-based algorithms is relatively poor.

• The performance of the algorithms showed significantly different patterns on the two
datasets. Traditional methodologies exhibited relatively better performance on the
ml-1m dataset, whereas the performance of HS-GCN, RKGE, and our methodology,
which utilize graph structural information, actually decreased. We can infer that this
is due to the characteristics of the data.

Appl. Sci. 2023, 13, 10041 14 of 17

3.2.2. Influence of Data Characteristics

For the two datasets, the relative performance of our algorithm was different: for
ml-Small, it showed a higher performance than the baseline algorithms; however, it did not
show the same for ml-1m. Therefore, we analyzed the characteristics of the two datasets.

Table 5 shows the distribution of the number of users who watched a common movie.

Table 5. User per Movie.

Metrics ml-Small ml-1m

Mean 11.03 272.07
Standard deviation (σ) 24.05 385.07

Min 1 1
25% 1 34
50% 3 127
75% 9 353
Max 341 3428

The number of users for ml-1m was 10 times higher than that for ml-Small, although
the total number of movies was 3666, which was relatively small compared to the 9066 for
ml-Small (Table 2). Additionally, the average number of users who watched the same movie
from the 9066 movies was 11.03, while the average number of users who watched the same
movie from the 3666 movies was 272.07. In other words, the movies that users watched
were much more concentrated in ml-1m. These results showed that the characteristics of
the two datasets were completely different.

We calculated the sparsity according to the following formula:

sparsity = 1− |interactions|
|all possible interactions| . (14)

The sparsity values of the ml-Small and ml-1m datasets were 98.4 and 95.5%, re-
spectively. Accordingly, we made the following assumptions. Owing to the nature of
our method, which only included the preference—and not the ID—of a user in the input
vectors, a good performance could only be achieved when the preference of each user was
firmly distinguished. We inferred that the relative performance was low for ml-1m because
the watching histories of the users had been duplicated to the extent that the extracted user
profiles did not show a significant difference.

To prove this, we tried to adjust the ml-1m dataset. Figure 6 shows the number of users
who watched each movie in the ml-1m dataset. The most watched movie was watched by
3428 of the 6040 users. We assumed that such popular movies were so popular that they
would result in more indistinguishable user profiles. We created a dataset named ml-1m-
3sig-out by excluding the 78 most watched movies that were outside 3σ from the mean
(movies watched by more than 1427 users); this operation removed 152,841 interactions
from the dataset.

Table 6 shows the comparison of performances for the new dataset when the hyperpa-
rameters are same. Our method showed a higher performance when extremely popular
movies were excluded. This implied that the user profiling in this study would be more
effective in situations wherein the item selection of each user was very different. Addition-
ally, for practical applications, it would be helpful to exclude popular items in the dataset
to extract distinctive user preferences.

Appl. Sci. 2023, 13, 10041 15 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 17

25% 1 34
50% 3 127
75% 9 353
Max 341 3428

The number of users for ml-1m was 10 times higher than that for ml-Small, although
the total number of movies was 3666, which was relatively small compared to the 9066 for
ml-Small (Table 2). Additionally, the average number of users who watched the same
movie from the 9066 movies was 11.03, while the average number of users who watched
the same movie from the 3666 movies was 272.07. In other words, the movies that users
watched were much more concentrated in ml-1m. These results showed that the charac-
teristics of the two datasets were completely different.

We calculated the sparsity according to the following formula: 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 − |௧௧௦|| ௦௦ ௧௧௦|. (14)

The sparsity values of the ml-Small and ml-1m datasets were 98.4 and 95.5%, respec-
tively. Accordingly, we made the following assumptions. Owing to the nature of our
method, which only included the preference—and not the ID—of a user in the input vec-
tors, a good performance could only be achieved when the preference of each user was
firmly distinguished. We inferred that the relative performance was low for ml-1m be-
cause the watching histories of the users had been duplicated to the extent that the ex-
tracted user profiles did not show a significant difference.

To prove this, we tried to adjust the ml-1m dataset. Figure 6 shows the number of
users who watched each movie in the ml-1m dataset. The most watched movie was
watched by 3428 of the 6040 users. We assumed that such popular movies were so popular
that they would result in more indistinguishable user profiles. We created a dataset named
ml-1m-3sig-out by excluding the 78 most watched movies that were outside 3𝜎 from the
mean (movies watched by more than 1427 users); this operation removed 152,841 interac-
tions from the dataset.

Figure 6. Number of users who have watched movies (sorted in ascending order).

Table 6 shows the comparison of performances for the new dataset when the hy-
perparameters are same. Our method showed a higher performance when extremely pop-
ular movies were excluded. This implied that the user profiling in this study would be
more effective in situations wherein the item selection of each user was very different.
Additionally, for practical applications, it would be helpful to exclude popular items in
the dataset to extract distinctive user preferences.

Figure 6. Number of users who have watched movies (sorted in ascending order).

Table 6. Performance Comparison Between Different Datasets.

Dataset Users Items Interactions Sparsity
HR NDCG

@5 @10 @20 @5 @10 @20

ml-1m 6040 3666 997,407 95.5% 0.438 0.628 0.796 0.288 0.350 0.392
ml-1m-3sig 6040 3588 844,566 96.1% 0.440 0.635 0.805 0.291 0.357 0.399

4. Discussion

We conducted a comparative experiment between seven baseline algorithms and
our methodology using two datasets from the movie domain, which vary in size and
characteristics. As shown in Table 4, our model does not always outperform the others, but
it provides greater explainability through the use of user profiles.

Table 3 presents a list of properties found in the frequent subgraphs, helping to
understand the properties of movies that people are most interested in. These properties
are the constituent elements of user profiles, and each user profile contributes to enhancing
the explainability of each recommendation. Additionally, the fitting capability of the deep
neural network model enables our method to demonstrate satisfactory performance.

Rather than adapting and testing various neural network structures, we concentrated
on demonstrating that user profiling through frequent subgraphs provides explanatory
recommendations with an adequate performance.

To better understand the cause of performance decline on the ml-1m dataset, we
attempted to discern how the characteristics of the data affect our algorithm. Through
experimentation, we concluded that sparsity plays a significant role; when there is a high
overlap in the items selected by users, the differences between user profiles diminish,
which, in turn, leads to lower performance. In other words, the algorithm performs well
when users’ choices or preferences are relatively diverse.

5. Conclusions

In this study, we propose a new user profiling recommendation method, employing
FSM for KGs. Through this, we effectively represent user preferences in a matter that
simultaneously reflects the semantic information contained in each subgraph and frequency
information that indicates the strength of these preferences.

Regarding the application domain, movie recommendations are the most important
concern for service providers, such as Netflix, Disney+, and Apple TV, helping them acquire

Appl. Sci. 2023, 13, 10041 16 of 17

and retain subscribers. Therefore, our recommendation methodology focused on various
characteristics of movie domain data.

In future research, we hope to address various issues, such as determining the op-
timal minimum support, improving the user profiling method to represent information
more accurately in frequent subgraphs, and creating a neural network that yields better
results. Additionally, we hope to explore how to use our user profiling in combination
with the graph-learning-based algorithms; our user profiling can be used as initial graph
embeddings. Furthermore, this research demonstrated the recommendation performance
only using user-related data, while there is an abundance of other information that can
be employed. For instance, we can include user and item IDs in the input vectors or use
similarities between users and items.

Finally, the diversification of test datasets is required. We tested on the MovieLens
dataset because it was a benchmark dataset that had been tested extensively in previous
studies and the number of triples linked to each item was very large compared to those
found in books and music datasets. In the future, we plan to test and expand the KG of
MovieLens by using additional external metadata and experiment with KG datasets for
other domains.

Author Contributions: Conceptualization, H.J., H.P. and K.L.; Methodology, H.J. and K.L.; Writing—
original draft, H.J. and K.L.; Writing—review and editing, H.J., H.P. and K.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Korea Institute for Advancement of Technology (KIAT):
P0017123, The Competency Development Program for Industry Specialist.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://grouplens.org/datasets/movielens/ and https://www.kaggle.com/datasets/
rounakbanik/the-movies-dataset (accessed on 30 April 2023).

Acknowledgments: Special thanks to researchers in Smart Systems Lab who shared their resources
for the experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ehrlinger, L.; Wöß, W. Towards a definition of knowledge graphs. In Proceedings of the Posters and Demos Track of 12th

International Conference on Semantic Systems, Leipzig, Germany, 12–15 September 2016.
2. Tiddi, I.; Schlobach, S. Knowledge graphs as tools for explainable machine learning: A survey. Artif. Intell. 2022, 302, 103627.

[CrossRef]
3. Wang, X.; Wang, D.; Xu, C.; He, X.; Cao, Y.; Chua, T. Explainable reasoning over knowledge graphs for recommendation. In

Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 5329–5336. [CrossRef]

4. Zhang, F.; Yuan, N.J.; Lian, D.; Xie, X.; Ma, W. Collaborative knowledge base embedding for recommender systems. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17
August 2016; pp. 353–362. [CrossRef]

5. Huang, J.; Zhao, W.X.; Dou, H.; Wen, J.; Chang, E.Y. Improving sequential recommendation with knowledge-enhanced memory
networks. In Proceedings of the SIGIR ’18: 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 505–514. [CrossRef]

6. Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A survey on knowledge graph-based recommender systems. IEEE
Trans. Knowl. Data Eng. 2020, 34, 3549–3568. [CrossRef]

7. Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge graph convolutional networks for recommender systems. In Proceedings
of the WWW’19: The World Wide Web Conference, San Francisco CA USA, 13–17 May 2019; Association for Computing
Machinery: New York, NY, USA, 2019; pp. 3307–3313. [CrossRef]

8. Choi, S.-M.; Ko, S.-K.; Han, Y.-S. A movie recommendation algorithm based on genre correlations. Expert Syst. Appl. 2012, 39,
8079–8085. [CrossRef]

9. Zamanzadeh Darban, Z.Z.; Valipour, M.H. GHRS: Graph-based hybrid recommendation system with application to movie
recommendation. Expert Syst. Appl. 2022, 200, 116850. [CrossRef]

10. Chen, Y.-L.; Yeh, Y.-H.; Ma, M.-R. A movie recommendation method based on users’ positive and negative profiles. Inf. Process.
Manag. 2021, 58, 102531. [CrossRef]

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://doi.org/10.1016/j.artint.2021.103627
https://doi.org/10.1609/aaai.v33i01.33015329
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/3209978.3210017
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1016/j.eswa.2012.01.132
https://doi.org/10.1016/j.eswa.2022.116850
https://doi.org/10.1016/j.ipm.2021.102531

Appl. Sci. 2023, 13, 10041 17 of 17

11. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]

12. Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv. 2023,
55, 1–37. [CrossRef]

13. Isinkaye, F.O.; Folajimi, Y.O.; Ojokoh, B.A. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015,
16, 261–273. [CrossRef]

14. He, C.; Parra, D.; Verbert, K. Interactive recommender systems: A survey of the state of the art and future research challenges and
opportunities. Expert Syst. Appl. 2016, 56, 9–27. [CrossRef]

15. Salah, A.; Rogovschi, N.; Nadif, M. A dynamic collaborative filtering system via a weighted clustering approach. Neurocomputing
2016, 175, 206–215. [CrossRef]

16. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
17. Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User Adapt. Interact. 2002, 12, 331–370. [CrossRef]
18. Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Ripplenet: Propagating user preferences on the knowledge

graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, Torino, Italy, 22–26 October 2018; pp. 417–426. [CrossRef]

19. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-Relational Data.
Available online: https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf (accessed on
30 April 2023).

20. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings
of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [CrossRef]

21. Yu, X.; Ren, X.; Gu, Q.; Sun, Y.; Han, J. Collaborative Filtering with Entity Similarity Regularization in Heterogeneous
Information Networks. 2013. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=
&ved=2ahUKEwi82I2j9ZSBAxXGjqQKHUGWDTwQFnoECBsQAQ&url=http%3A%2F%2Fink-ron.usc.edu%2Fxiangren%
2Fijcai13_HINA.pdf&usg=AOvVaw1DW-Uz7L_ZxvDWQB6gSc2G&opi=89978449 (accessed on 30 April 2023).

22. Luo, C.; Pang, W.; Wang, Z.; Lin, C. Hete-CF: Social-based collaborative filtering recommendation using heterogeneous relations.
In Proceedings of the IEEE International Conference on Data Mining, Shenzen, China, 14–17 December 2014; pp. 917–922.
[CrossRef]

23. Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.-S. Kgat: Knowledge graph attention network for recommendation. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Ser. KDD’19, New York, NY, USA,
4–8 August 2019; pp. 950–958. [CrossRef]

24. Lee, K.; Jung, H.; Hong, J.S.; Kim, W. Learning knowledge using frequent subgraph mining from ontology graph data. Appl. Sci.
2021, 11, 932. [CrossRef]

25. Steck, H. Item popularity and recommendation accuracy. In Proceedings of the 5th ACM Conference on Recommender Systems,
Chicago, IL, USA, 23–27 October 2011; pp. 125–132. [CrossRef]

26. Deshpande, M.; Karypis, G. Item-based top- N recommendation algorithms. ACM Trans. Inf. Syst. 2004, 22, 143–177. [CrossRef]
27. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. In

Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–21 June 2009; pp. 452–461.
28. Kabbur, S.; Ning, X.; Karypis, G. Fism: Factored item similarity models for top-n recommender systems. In Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013;
pp. 659–667. [CrossRef]

29. He, X.; He, Z.; Song, J.; Liu, Z.; Jiang, Y.; Chua, T. Nais: Neural attentive item similarity model for recommendation. IEEE Trans.
Knowl. Data Eng. 2018, 30, 2354–2366. [CrossRef]

30. Liu, H.; Wei, Y.; Yin, J.; Nie, L. HS-GCN: Hamming spatial graph convolutional networks for recommendation. IEEE Trans. Knowl.
Data Eng. 2022, 35, 5977–5990. [CrossRef]

31. Sun, Z.; Yang, J.; Zhang, J.; Bozzon, A.; Huang, L.K.; Xu, C. Recurrent knowledge graph embedding for effective recommendation.
In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 297–305.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1145/3535101
https://doi.org/10.1016/j.eij.2015.06.005
https://doi.org/10.1016/j.eswa.2016.02.013
https://doi.org/10.1016/j.neucom.2015.10.050
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1145/3269206.3271739
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1609/aaai.v29i1.9491
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi82I2j9ZSBAxXGjqQKHUGWDTwQFnoECBsQAQ&url=http%3A%2F%2Fink-ron.usc.edu%2Fxiangren%2Fijcai13_HINA.pdf&usg=AOvVaw1DW-Uz7L_ZxvDWQB6gSc2G&opi=89978449
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi82I2j9ZSBAxXGjqQKHUGWDTwQFnoECBsQAQ&url=http%3A%2F%2Fink-ron.usc.edu%2Fxiangren%2Fijcai13_HINA.pdf&usg=AOvVaw1DW-Uz7L_ZxvDWQB6gSc2G&opi=89978449
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi82I2j9ZSBAxXGjqQKHUGWDTwQFnoECBsQAQ&url=http%3A%2F%2Fink-ron.usc.edu%2Fxiangren%2Fijcai13_HINA.pdf&usg=AOvVaw1DW-Uz7L_ZxvDWQB6gSc2G&opi=89978449
https://doi.org/10.1109/ICDM.2014.64
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.3390/app11030932
https://doi.org/10.1145/2043932.2043957
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1109/TKDE.2018.2831682
https://doi.org/10.1109/TKDE.2022.3158317
https://doi.org/10.1145/3240323.3240361

	Introduction
	Materials and Methods
	Recommendation Algorithms
	User Profiling Based on Frequent Subgraphs
	Expansion of the KG
	Generation of User Graphs
	Mining Frequent Subgraphs
	User Profiling

	Recommendations Using the Deep Neural Network Model
	Model Training
	Recommendation

	Results
	Experimental Design
	Dataset
	Experimental Setup

	Results
	Overall Performance
	Influence of Data Characteristics

	Discussion
	Conclusions
	References

