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ABSTRACT

We present Prover Agent, a novel AI agent for automated theorem proving that in-
tegrates large language models (LLMs) with a formal proof assistant, Lean. Prover
Agent coordinates an informal reasoning LLM, a formal prover model, and feed-
back from Lean while also generating auxiliary lemmas to assist in discovering the
overall proof strategy. It achieves an 88.1% success rate on the MiniF2F bench-
mark, establishing a new state-of-the-art among methods using small language
models (SLMs) with a much lower sample budget than previous approaches. We
also present theoretical analyses and case studies that illustrate how these gener-
ated lemmas contribute to solving challenging problems.
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Figure 1: Comparison of theorem-proving performance on the MiniF2F benchmark (Zheng et al.,
2022) among methods using SLMs. Our approach achieves a higher success rate with fewer sample
budgets, establishing a new state-of-the-art at this scale.

1 INTRODUCTION

Recent advances in the reasoning capabilities of large language models (LLMs) have driven remark-
able progress across many areas of artificial intelligence, including mathematical theorem proving
and problem solving (OpenAI, 2024; DeepSeek-AI, 2025; Yang et al., 2025a; Lewkowycz et al.,
2022). However, LLMs are prone to errors and hallucinations that can undermine their reliability (Ji
et al., 2023; Huang et al., 2025; Xu et al., 2025). Inference-time scaling techniques such as chain-
of-thought have greatly enhanced their reasoning performance by allowing models to reflect on and
correct faulty reasoning steps (OpenAI, 2024; DeepSeek-AI, 2025; Wei et al., 2022). Nonetheless,
eliminating mistakes entirely remains challenging, especially for more difficult problems (Wei et al.,
2022; Zeng et al., 2025).

Formal proof assistants such as Lean (Moura & Ullrich, 2021), The Rocq Prover (previously known
as Coq) (Barras et al., 1999), and Isabelle (Paulson, 1994) rigorously verify by computer that every
inference step in mathematical proofs written in their respective languages is correct, based on the
Curry–Howard correspondence. This helps mathematicians verify the correctness of proofs. Here,
no errors, omissions of detail, implicit assumptions, or ambiguities are permitted. However, working
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with formal proof assistants typically requires painstaking manual effort and meticulous detail. As
a result, automating mathematical theorem proving has long been a grand challenge in artificial
intelligence and formal methods (Newell & Simon, 1956; Irving et al., 2016; Polu & Sutskever,
2020; Jiang et al., 2023; Lu et al., 2023).

Consequently, formal theorem proving with LLMs has become increasingly important in recent
years, leading to a growing body of research in this area (Wang et al., 2024b; Wu et al., 2024a;
Xin et al., 2025b; Li et al., 2025; Xin et al., 2025a; Dong & Ma, 2025; Lin et al., 2025b; Zhang
et al., 2025; Wang et al., 2025; Ren et al., 2025). This not only provides a way to guarantee the
correctness of mathematical reasoning by LLMs, but also marks a major breakthrough in automated
theorem proving. A key point is the complementary strengths of LLMs and formal proof assistants:
LLMs excel in reasoning and generation but may produce errors and lack guarantees of correctness,
whereas formal proof assistants, such as Lean, possess perfect verification capabilities grounded in
mathematical logic but are not generative.

Yet, significant hurdles remain in bridging informal reasoning and formal proving (Yang et al.,
2025b). For instance, prompting o3-mini (OpenAI, 2025) to directly generate a complete Lean
proof for a competition-level problem succeeds in only 6.0% of cases in a single attempt, despite its
strong performance on competition-level mathematical reasoning in natural language (Yousefzadeh
& Cao, 2025). Even when fine-tuned on mathematical data, trained with reinforcement learning, or
allowed chain-of-thought, purely neural approaches fail to produce correct formal proofs, and their
formal proving capabilities still lag far behind their informal reasoning skills in natural language.

To bridge this gap between informal reasoning and formal proving, we propose a novel agent frame-
work (Prover Agent) that coordinates an informal reasoning LLM, a formal prover model, and the
Lean verification system. To tackle difficult problems that cannot be solved directly, the agent gener-
ates auxiliary lemmas to assist in discovering a viable proof strategy. These lemmas are not limited
to subgoals that can be directly inserted into a formal proof, but may also include special cases
or intermediate facts derived from the assumptions. Such lemmas are particularly useful when the
overall proof strategy is not apparent from the outset, as they help in constructing a viable plan. On
the MiniF2F benchmark (Zheng et al., 2022), it achieves an 88.1% success rate, establishing a new
state-of-the-art among methods using small language models (SLMs). Notably, it uses only SLMs
with much smaller sample budget than previous high-performing approaches, making it much more
efficient in terms of inference-time cost. Furthermore, we provide both a theoretical analysis and a
case study to demonstrate the effectiveness of our agent’s approach to generating auxiliary lemmas.

Our contributions are summarized as follows:
• Coordination of Informal and Formal Reasoning with Lean Feedback: Our agent com-

bines an informal LLM and a formal prover under Lean’s verification. The LLM produces
natural language reasoning and lemmas, which the prover formalizes and Lean checks.
Errors detected by Lean are immediately fed back, enabling iterative refinement of con-
structed proofs.

• Auxiliary Lemma Generation for Strategy Discovery: For challenging problems that
cannot be solved directly, our agent generates auxiliary lemmas, such as specific cases,
intermediate facts, or hypothesis-driven conjectures, which are then formally proved. By
reconsidering the overall proof in light of the verified lemmas, the system uncovers viable
proof strategies even when the solution path is not apparent at first.

• State-of-the-Art Theorem-Proving Performance: On the challenging MiniF2F bench-
mark (Zheng et al., 2022), a standard benchmark for formal theorem proving that consists
of 488 problems drawn from mathematics Olympiads and advanced mathematics, our agent
achieves 88.1% pass rate, establishing a new state-of-the-art among methods using SLMs.

• Efficiency in Inference-Time Cost: The 88.1% success rate was achieved using only
SLMs with a much smaller sample budget than previous high-performing approaches. This
emphasizes the efficiency of our approach in terms of inference-time cost.

2 RELATED WORK

In this section, we provide a brief overview of recent advancements in automated formal theorem
proving. Details of representative systems are provided in Appendix A.
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Figure 2: Overall workflow of Prover Agent. The agent coordinates informal reasoning, formal
proving, and Lean verification. It first attempts direct proving; if unsuccessful, it generates auxiliary
lemmas to guide the discovery of a viable proof strategy. These lemmas are then formally proved,
and the successfully proved lemmas are subsequently used to synthesize the final proof.

Tree-Search-based Formal Proving. Tree-search methods construct Lean proofs tactic-by-tactic
and navigate the proof space with explicit search, such as best-first search or Monte-Carlo tree search
(MCTS) (Lample et al., 2022; Wang et al., 2023; Wu et al., 2024a; Zhou et al., 2024; Li et al., 2025;
Xin et al., 2025a;b). This line began with stepwise tactic prediction guided by a goal state, and
matured into systems that jointly optimize (i) the tactic policy, (ii) the search heuristic, and (iii) data
curation for longer proofs.

Whole-Proof Generation. A complementary line to tree-search methods is whole-proof genera-
tion (First et al., 2023), where a model emits an entire Lean script in one shot, often accompanied by
a long chain-of-thought reasoning trace. This approach has progressed via expert-iteration pipelines
that recycle verified proofs back into training (Polu et al., 2023; Wu et al., 2021; 2024a; Lin et al.,
2025a; Dong & Ma, 2025; Lin et al., 2025b;c) and via reinforcement learning with formal verifier
feedback (Kaliszyk et al., 2018; Xin et al., 2025a; Zhang et al., 2025; Wang et al., 2025; Ren et al.,
2025; Gloeckle et al., 2024; Ji et al., 2025; Lin et al., 2025c).

Formal Theorem Proving with Retrieval-Augmented Generation. Another emerging direction is
to combine LLM-based provers with retrieval-augmented generation (RAG), where external knowl-
edge sources or proof libraries are queried at inference time to supplement the model’s reason-
ing (Yang et al., 2023; Shen et al., 2025)

Proof Refinement and Subgoal Decomposition. Some work has explored proof refinement, where
an initial proof attempt is improved based on feedback from the proof assistant (Thakur et al., 2024;
Zhou et al., 2025; Chen et al., 2025; Lin et al., 2025c). Another line of work involves subgoal
decomposition, where a complex theorem is broken down into simpler subgoals that are easier to
prove (Dong et al., 2025; Wang et al., 2024a; Ren et al., 2025; Zhou et al., 2025), often guided by
natural-language sketches (Jiang et al., 2023; Cao et al., 2025).

The subgoal decomposition approach shares certain similarities with ours, but our method adopts a
more comprehensive strategy that subsumes it. In these works, the full sketch of the proof must be
correctly envisioned upfront, which is often challenging. In contrast, our approach does not assume
that the overall proof strategy is fully visible from the beginning. Rather than limiting decomposition
to subgoals directly aligned with a pre-defined proof plan, we also consider auxiliary lemmas, such
as specific cases or intermediate facts to help developing a strategy in a bottom-up manner.

3 METHOD

The overall workflow is illustrated in Figure 2 and the corresponding pseudocode is shown in Al-
gorithm 1. Given a formal math problem, our agent first attempts a direct proof, which is often
sufficient for simpler problems. For more difficult problems that cannot be solved directly, it gen-
erates auxiliary lemmas to uncover a viable proof strategy. These lemmas are then formalized and
proved individually, and the resulting proven lemmas are used to synthesize a final proof of the orig-
inal problem. Throughout this process, feedback from Lean is used to iteratively refine constructed
proofs. We describe each stage below, highlighting how the informal LLM, formal prover model,
and Lean coordinate to construct formal proofs.

3
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3.1 FORMAL PROOF CONSTRUCTION GUIDED BY INFORMAL REASONING AND ITERATIVE
FEEDBACK

The agent first attempts to directly prove the given problem or a generated lemma without decom-
position. To leverage the stronger mathematical reasoning ability of the informal LLM compared to
that of the formal prover model, we first generate an informal proof in natural language for the given
problem or lemma using the informal LLM. The formal prover model then uses the informal proof
as contextual guidance to generate a formal proof, which is subsequently verified by Lean. If the
proof is successful, this step is complete. If the proof fails, these steps are repeated until a successful
proof is found or the maximum number of attempts Ninit is reached. This process helps establish a
better initial outline for the subsequent iterative refinement process.

If the proof still fails, the agent enters an iterative refinement stage. The proof with the fewest
Lean verification errors among the prior attempts is selected as the initial draft. This proof is then
iteratively refined based on the feedback from Lean. In each iteration, the previous proof attempt,
along with the error locations and corresponding error messages, is provided to the prover model,
which revises and generates a corrected version of the proof. This process is repeated until the proof
is successfully verified by Lean or the maximum number of attempts Nrefine is reached.

This iterative refinement process leverages Lean’s verification to identify and correct mistakes. It
serves as a form of self-correction through in-context learning, akin to how humans improve their
understanding from feedback. This provides an efficient remedy to a key limitation of inference-
time scaling with chain-of-thought, where simply increasing the number of reasoning steps does not
guarantee better results due to the model’s limited ability of self-correction (Zeng et al., 2025; Song
et al., 2025; Stechly et al., 2025; Huang et al., 2024).

It is accessible if a generated lemma cannot be proven. This mirrors how human mathematicians
often approach problems: when the overall strategy is unclear at the beginning, they may explore
several directions, some of which turn out to be unproductive and are eventually discarded in favor
of more promising ones. Alternatively, to handle cases where the lemma is still too challenging to
prove, the system may recursively introduce smaller auxiliary lemmas, up to a depth limit D.

3.2 LEMMA GENERATION VIA INFORMAL REASONING

When the direct proving approach fails to solve the problem, the agent generates several auxiliary
lemmas. These are not limited to subgoals that can be directly inserted into a final proof; they
may also include specific cases or potentially useful facts derived from the assumptions that help in
developing a proof strategy. This represents a key difference from prior work, which typically relies
on decomposing the problem into subgoals based on a pre-defined proof sketch (Jiang et al., 2023;
Wang et al., 2024a; Ren et al., 2025; Cao et al., 2025; Zhou et al., 2025). In such approaches, it is
necessary to come up with the correct overall proof strategy beforehand, which is often a challenging
task. Indeed, these methods often rely on larger, stronger models such as DeepSeek-V3 (DeepSeek-
AI, 2024) and DeepSeek-R1 (DeepSeek-AI, 2025) to accurately predict the entire proof plan from
the outset. In contrast, our approach does not assume that the proof strategy is visible from the
outset. Instead, by generating auxiliary lemmas, the agent can gradually construct an effective proof
strategy in a bottom-up manner, even when the full structure is not initially apparent.

For example, when trying to prove that n2 + an is even for a natural number n and an odd number
a, it may be helpful to first consider specific cases such as a = 1 or a = 3, i.e., n2 + n or n2 + 3n.
These specific cases can help reveal patterns and guide the overall proof strategy for n2 + an, even
though expressions like n2 + n or n2 + 3n may not explicitly appear as steps within the final proof.

This approach mirrors how human mathematicians typically work. When the overall strategy is not
clear at the beginning, they often explore specific cases or consider what can be derived from the
assumptions. Through such trial and error, they gradually discover the overall proof strategy.

The system first generates lemmas in natural language to leverage the stronger mathematical reason-
ing capabilities of the informal LLM. These lemmas are then converted into formal statements by a
formalizer model, which formalizes only their assumptions and conclusions with no proof attempt.
Lean is also used here to verify the syntactic correctness of the formalized statements, which are
regenerated until they become valid. These formally stated lemmas are then proved using the proof
construction process described in Section 3.1.

4
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3.3 FINAL PROOF SYNTHESIS GUIDED BY VERIFIED LEMMAS AND ITERATIVE FEEDBACK

After attempting to prove each of these lemmas individually, the agent reconsiders the overall proof.
With the verified lemmas as context, it attempts to to construct a proof up to Ninit times, followed
by iterative refinement for up to Nrefine attempts, as described in Section 3.1.

4 THEORETICAL ANALYSIS

We present theoretical analyses to justify the effectiveness of our approach described in Section 3.
The use of lemmas serves two key purposes: (i) decomposing proof steps under a given strategy to
make them more manageable, and (ii) helping discover proof strategies when the appropriate one is
not initially clear (e.g., by testing specific cases). Prior work has largely focused only on (i), often
requiring larger models to directly devise an overall strategy (Wang et al., 2024a; Jiang et al., 2023;
Ren et al., 2025; Cao et al., 2025; Zhou et al., 2025), whereas our approach leverages both (i) and (ii)
to solve difficult problems more effectively. Sections 4.1 and 4.2 present brief results of theoretical
analyses on lemma usage in cases (i) and (ii), respectively. See Appendix C for the details.

4.1 BENEFITS OF LEMMAS FOR STRUCTURED PROOF DECOMPOSITION

Assumption 4.1. For a certain class of theorems, it is necessary to satisfy m essential intermediate
facts F1, . . . , Fm.
Assumption 4.2. The probability pi that the model correctly produces each Fi in a single attempt
is independent across i within one global generation.
Assumption 4.3. Given a set of completed intermediate facts {Fi}i∈S with S ⊆ [m]1, the probabil-
ity of proving their composition FS (e.g., simply concatenating them) is higher than the probability
of proving FS without being given those facts: P(FS | {Fi}i∈S) > P(FS).

Assuming p = p1 = · · · = pm for simplicity, the following theorems hold. Rigorous versions
without this simplification and without asymptotic notation are provided in Appendix C.1.
Theorem 4.4 (Required Number of Trials). Let Ndir denote the number of trials required to directly
prove a problem T with probability at least 1−δ. Let Nlem denote the total number of trials required
to complete the proof of T with probability at least 1− δ, when lemmas L1, . . . , Ln are introduced
with an allowed failure probability δlem. Suppose each lemma Li contains a subset of the essential
intermediate facts {Fi}i∈Si with Si ⊆ [m]. Then the following holds:

Ndir = Θ(p−m), E[Nlem] = Θ̃(p−s),

where s := max{maxi |Si|, |R0|} ≤ m, R0 := [m] \
⋃n

i=1 Si, and Θ̃ indicates asymptotic order
ignoring higher-order terms in δlem, which vanish when δlem is sufficiently small.
Theorem 4.5 (Threshold Condition for Lemma Efficiency). There exists a threshold τ ∈ [0, 1] such
that if p ≤ τ , then E[Nlem] ≤ Ndir holds for any δ, δlem ∈ (0, 1).
Theorem 4.6 (Optimal Partition of Lemma Coverage). Under the fixed lemma coverage U :=⋃n

i=1 Si ⊆ [m], E[Nlem] is minimized when |Si| = ⌈|U |/n⌉ or ⌊|U |/n⌋ for all i ∈ [n].

The proofs are provided in Appendix C.1. Theorem 4.4 shows that lemma-based decomposition
yields an exponential improvement in the order of required trials, while Theorem 4.5 indicates that
for small p (i.e., difficult problems), lemma usage reduces the required number of trials. This jus-
tifies our approach of generating lemmas for difficult problems while solving easy ones directly.
Furthermore, Theorem 4.6 suggests that the optimal lemmas are those that divide the problem into
subproblems of approximately equal difficulty.

4.2 BENEFITS OF LEMMAS FOR DISCOVERING PROOF STRATEGIES (E.G., SPECIFIC CASES)

Let S be the set of possible proof strategies (e.g., induction, bounding with monotonicity, or case
analysis with known results). Let π0 denote the prior distribution over strategies that the model
possesses, from which a strategy is chosen in the absence of any additional information. Our agent

1[m] denotes the set {1, 2, . . . ,m}.
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conducts experiments with lemmas L1, . . . , Ln and verifies them in Lean, thereby obtaining obser-
vations Y1, . . . , Yn. By incorporating these observations into the context, the distribution is updated
to the posterior πn(·) := π(· | Y1:n), where Y1:n := {Y1, . . . , Yn}, aiming to increase the probability
of selecting the correct proof strategy.

Let p(z) ∈ [0, 1] denote the model’s success probability under a given strategy z ∈ S, and define
r := infz p(z). As shown in Section 4.1, this quantity can be increased by using decomposition-type
lemmas. Define the entropy of the prior distribution as H0 := H(Z) = −

∑
z∈S π0(z) log π0(z).

Theorem 4.7 (Success Probability Improvement by Lemmas). The success probability of perform-
ing one trial of final proving by sampling a strategy from the posterior distribution πn is bounded
as: E[P(succ@1)] ≥ r exp

(
−H0 + I(Z;Y1:n)

)
.

The proof is provided in Appendix C.2. This shows that the success probability improves expo-
nentially in the mutual information contributed by lemmas, I(Z;Y1:n). In particular, it exceeds the
no-lemma case, where I(Z;Y1:n) = 0.

Furthermore, this result implies that not only lemmas but any information in the context that shares
mutual information with the final correct proof can similarly improve the success probability, thereby
justifying our use of natural language proofs and Lean feedback.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our approach on the MiniF2F benchmark (Zheng et al., 2022), a standard dataset
for formal theorem-proving systems. We use DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI,
2025) for the informal reasoning LLM and DeepSeek-Prover-V2-7B (Ren et al., 2025) and
Goedel-Prover-V2-8B (Lin et al., 2025c) for the prover model. We set Ninit = Nrefine = 50.
Thus, the sample budget at the initial direct proving stage is 50 at the first iteration, and 100 in total
when including iterative refinement. For lemmas, we use Ninit = Nrefine = 10 for each of the three
lemmas. In the final synthesis stage, Ninit = Nrefine = 50 is used again, resulting in a total sample
budget of 50 + 50 + (10 + 10)× 3 + 50 + 50 = 260.

There are several bugs that may result in invalid Lean proofs being incorrectly accepted, such as
the user-interference bug related to the apply? tactic discussed in Ren et al. (2025), and a bug in
REPL2. To avoid these issues and prevent invalid proofs from being mistakenly judged as correct, we
check proofs with lake build instead of REPL and additionally verified that the apply? tactic
is not used. Also, to avoid this bug and obtain reliable baseline results, we re-ran the experiments
for Goedel-Prover-V2-8B. We used the official prompts provided on GitHub3 and Hugging Face6,
while keeping all other experimental settings strictly identical to those used in our method, thereby
ensuring a fair comparison. For DeepSeek-Prover-V2, we relied on the results reported in (Ren
et al., 2025), in which this bug has been fixed. See Appendix D for further details.

5.2 MAIN RESULT: COMPARISON WITH THE PREVIOUS STATE-OF-THE-ART

The results are shown in Table 1 and Figure 3. Our agent achieves an 88.1% success rate, estab-
lishing a new state-of-the-art among methods using small language models (SLMs). Note that our
agent achieves this result with a sample budget of only 260, far smaller than that of prior work,
highlighting its efficiency in inference-time cost.

5.3 MODULAR AND SCALABLE DESIGN

To demonstrate the robustness of our approach, we conduct experiments across several models,
namely DeepSeek-Prover-V2 and Goedel-Prover-V2. In both settings, our approach achieves higher
success rates with a smaller sample budget than the vanilla versions of these models, as shown in
Table 1. Furthermore, our approach can also ensemble these models. In experiments where the
sample budget is split evenly between them, our agent achieves an even higher success rate, where
the models complement each other on problems that one alone cannot solve. Unlike monolithic

2https://github.com/leanprover-community/repl/issues/44
3https://github.com/Goedel-LM/Goedel-Prover-V2
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Table 1: Comparison of formal theorem-proving performance on miniF2F-test. The results are re-
ported as the percentage of theorems proved correctly. For Prover Agent, sample budget includes all
proof attempts across the full pipeline, including initial direct proving, iterative refinement, lemma
proving, and final proof synthesis. The best results within each model scale are highlighted in bold.

Prover System Method Model Size Sample Budget miniF2F-test
Large Language Models

DSP+ (Cao et al., 2025)
w/ QwQ, DeepSeek-V3, and BFS-Prover

w/ DeepSeek-R1, DeepSeek-V3, and BFS-Prover

Informal
+

Tree search
671B

1 52.5%
128 74.2%

1024 79.5%

1024 80.7%

DeepSeek-Prover-V2 (Ren et al., 2025) Whole-proof 671B
1 61.9%

1024 86.6%
8192 88.9%

Delta-Prover (Zhou et al., 2025) w/ Gemini 2.5 Pro Agent unknown 16384 95.9%

Seed-Prover (Chen et al., 2025) Whole-proof unknown unknown 99.6%

Medium Language Models

Kimina-Prover-Preview (Wang et al., 2025) Whole-proof 72B
1 52.9%

1024 77.9%
8192 80.7%

Goedel-Prover-V2 (Lin et al., 2025c) Whole-proof 32B
32 88.1%

1024 91.8%
8192 92.2%

Small Language Models

DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) Tree search 7B 32× 16× 400 63.5%
InternLM2.5-StepProver-BF + CG (Wu et al., 2024a) Tree search 7B 256× 32× 600 65.9%
HunyuanProver v16 + BFS + DC (Li et al., 2025) Tree search 7B 600× 8× 400 68.4%
BFS-Prover (Xin et al., 2025b) Tree search 7B 2048× 2× 600 70.8%

Leanabell-Prover-GD-RL (Zhang et al., 2025) Whole-proof 7B 128 61.1%
Goedel-Prover-SFT (Lin et al., 2025b) Whole-proof 7B 25600 64.7%
STP (Dong & Ma, 2025) Whole-proof 7B 25600 67.6%

Kimina-Prover-Preview-Distill (Wang et al., 2025) Whole-proof 7B
1 52.5%
32 63.1%

1024 70.8%

DeepSeek-Prover-V2 (Ren et al., 2025) Whole-proof 7B

1 58.6%
32 75.6%

1024 79.9%
8192 82.0%

Leanabell-Prover-V2-KM (Ji et al., 2025)
Whole-proof 7B

32 68.4%
128 70.4%

Leanabell-Prover-V2-DS (Ji et al., 2025) 32 76.6%
128 78.2%

Goedel-Prover-V2 (Lin et al., 2025c) Whole-proof 7B

1 60.8%
64 83.3%

256 85.2%
512 85.7%

Prover Agent
(Ours)

w/ DeepSeek-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

w/ Goedel-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

w/ Ensemble of
Goedel-Prover-V2 and
DeepSeek-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

Agent 8B

1 61.5%
50 79.9%

100 82.0%
260 82.8%

1 64.3%
50 84.4%

100 85.7%
260 86.5%

1 64.3%
50 85.7%

100 86.9%
260 88.1%

approaches that train a single large model end-to-end, our method takes an orthogonal approach by
combining an existing LLM and a prover model without any training. This modular design provides
a practical benefit, allowing the system to immediately take advantage of improvements in LLMs
and prover models by simply replacing components and to scale easily with future advancements.

5.4 EFFECTIVENESS OF INFORMAL, FORMAL, AND LEAN COORDINATION

Table 1 shows that in both model settings, our approach outperforms the corresponding vanilla
baselines even before the iterative refinement, highlighting the benefit of collaboration with the
informal LLM. Moreover, the scores increase even further after iterative refinement.
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Figure 3: Ablation study results on Ninit and Nrefine. These results highlight the importance of
initial draft selection and indicate that iterative refinement and lemma-based proving helps overcome
saturation from the model’s inherent limitations.

5.5 ABLATION STUDY: ANALYZING THE CONTRIBUTION OF EACH STAGE

We conduct an ablation study to illustrate the contribution of each stage of our agent. Results
for different Ninit and Nrefine are shown in Figure 3a. When Ninit is set to 1 or 10, the success
rate remains significantly lower than that without iterative refinement, even after Nrefine = 100
refinement steps. This highlights the importance of the quality of the initial draft used to start
refinement: if the initial proof is poor, subsequent corrections become difficult. Comparing Ninit =
1, 10, 50 under the same sample budget shows a clear improvement in performance in this order,
indicating the effectiveness of our approach of selecting the proof with the fewest Lean errors. As
shown in Figure 3b, the histograms of the minimum number of errors after Ninit = 1, 10, 50 confirm
this trend: the error count decreases substantially, and for Ninit = 50 most problems have only one
or two errors. Although the number of Lean errors may not perfectly measure proof quality, since
a single error can still correspond to a mathematically challenging gap, it nevertheless exhibits a
strong correlation and serves as a useful proxy for evaluation.

As shown in Figure 3a, the runs without iterative refinement saturate around a sample budget of 80.
In contrast, when iterative refinement is applied after Ninit = 50 or 100, this saturation is overcome
and the success rate improves, outperforming the setting that simply continues generation without
refinement. This demonstrates the effectiveness of the iterative refinement: whereas repeated gen-
eration alone eventually saturates due to the inherent capacity limits of the model, incorporating
external feedback through in-context learning enables the model to improve and overcome this lim-
itation. Also, Ninit = 50 and 100 yield almost identical results in the final performance. Since
the model had already saturated in this regime, increasing Ninit did not improve the quality of the
selected initial drafts. Furthermore, Figure 3a shows that final synthesis with lemmas improves the
score even after iterative refinement has saturated, demonstrating the effectiveness of our lemma-
based approach. This indicates that the model’s capability is further enhanced by incorporating
information beyond mere error feedback.

5.6 CASE STUDY: SUCCESS WITH LEMMA-GUIDED PROOFS

We next present a case study to demonstrate that our approach with auxiliary lemmas is indeed
effective in practice. The detailed discussion and the outputs for this problem, such as the generated
lemmas, final formal proof, and the associated reasoning process, are provided in Appendix E. We
analyze the output and reasoning process for the problem where the direct proof attempt failed but
the use of auxiliary lemmas led to a successful proof. In this case, our agent generates a lemma
corresponding to the special case of substituting n = 3 into the given problem, as well as additional
lemmas that may be potentially relevant for solving the problem. As observed in the chain-of-
thought process when this lemma is used (see Appendix E.5), the agent immediately considers the
n = 3 case and then quickly comes up with mathematical induction as the proof strategy. This allows
it to quickly transition to filling in the details under a clear proof plan and ultimately complete the
proof. Moreover, tactics and proof techniques considered in the auxiliary lemmas reappear in the
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Table 2: Comparison of formal theorem-proving performance by problem category on MiniF2F-test.
The results are reported as the percentage of theorems proved. The best results in each model setting
for each of the three categories, demarcated by double lines, are highlighted in bold.

Olympiad MATH Custom
Model
Size

Sample
Budget IMO AIME AMC Sum Algebra Number

Theory Sum Algebra Number
Theory Induction Sum

Number of Problems 20 15 45 80 70 60 130 18 8 8 34

DeepSeek-Prover-V2 (Ren et al., 2025) 671B 8192 50.0 93.3 77.8 73.8 100.0 96.7 98.5 83.3 87.5 100.0 88.2

Prover Agent (Ours)
w/ DeepSeek-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B

1 40.0 53.3 62.2 55.0 71.4 60.0 66.2 55.6 75.0 50.0 58.8
50 70.0 80.0 82.2 78.8 80.0 88.3 83.8 66.7 75.0 62.5 67.6

100 70.0 80.0 86.7 81.3 84.3 88.3 86.2 66.7 75.0 62.5 67.6
260 70.0 80.0 88.9 82.5 84.3 88.3 86.2 66.7 75.0 75.0 70.6

Goedel-Prover-V2 (Lin et al., 2025c) 8B

1 50.0 60.0 53.3 53.8 71.4 63.3 67.7 50.0 62.5 50.0 52.9
64 80.0 80.0 88.9 85.0 84.3 91.7 87.7 77.8 75.0 87.5 79.4

256 80.0 80.0 88.9 85.0 84.3 91.7 87.7 77.8 75.0 87.5 79.4
512 80.0 80.0 88.9 85.0 84.3 91.7 87.7 77.8 75.0 87.5 79.4

Prover Agent (Ours)
w/ Goedel-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B

1 50.0 73.3 57.8 58.8 68.6 70.0 69.2 55.6 62.5 62.5 58.8
50 80.0 80.0 86.7 83.8 84.3 90.0 86.9 77.8 75.0 75.0 76.5

100 80.0 80.0 88.9 85.0 87.1 90.0 88.5 77.8 75.0 75.0 76.5
260 80.0 80.0 88.9 85.0 88.6 90.0 89.2 77.8 75.0 87.5 79.4

Prover Agent (Ours)
w/ Ensenble

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B

1 50.0 73.3 57.8 58.8 68.6 70.0 69.2 55.6 62.5 62.5 58.8
50 80.0 80.0 88.9 85.0 87.1 90.0 88.5 77.8 75.0 75.0 76.5

100 80.0 80.0 91.1 86.3 90.0 90.0 90.0 77.8 75.0 75.0 76.5
260 80.0 80.0 93.3 87.5 91.4 90.0 90.8 77.8 75.0 87.5 79.4

reasoning process and final proof: even when a lemma itself is not directly used, the techniques
explored during lemma generation provide valuable hints for the overall proof construction. Next,
for comparison, we examine the reasoning process without using lemmas, focusing on the trajectory
with the fewest final errors (see Appendix E.6). Compared to the successful case with lemmas,
the proof strategy here is far less clear, with the model wandering without a coherent plan. As a
result, even when it eventually reaches the idea of using mathematical induction, it fails to elaborate
the details and the proof does not succeed. This comparison highlights the effectiveness of our
auxiliary-lemma approach, which goes beyond simple decomposition of previous work.

5.7 PERFORMANCE ON OLYMPIAD-LEVEL PROBLEMS

Table 2 shows the results for each category on the MiniF2F-test dataset. These results demonstrate
that our approach with DeepSeek-Prover setting performs particularly well on Olympiad-level prob-
lems, even surpassing DeepSeek-Prover-V2 (Ren et al., 2025), which uses a significantly larger
671B model and a much higher sample budget of 8192. Given that our direct proving method
without iterative refinement and with a sample budget of only 100 already surpasses DeepSeek-
Prover-V2, this suggests that coordination with natural language-based informal reasoning may be
the key. Olympiad-level problems require a high degree of mathematical reasoning, and the strong
reasoning abilities of the informal LLM likely played a crucial role in solving them effectively. On
the other hand, our agent does not outperform DeepSeek-Prover-V2 in the MATH and Custom cate-
gories. The consistent gap in these categories suggests that model size and sample budget may play
a more significant role here. Since DeepSeek-Prover-V2 also possesses a certain level of mathemat-
ical reasoning ability, it can handle these relatively mathematically easier problems on its own. In
contrast, with the Goedel-Prover setting, no substantial differences are observed across categories.
This is likely because Goedel-Prover already possesses a certain level of the required mathematical
capability, and thus category-specific variation does not emerge as clearly.

5.8 BROADER APPLICABILITY AND FUTURE POTENTIAL

Nothing in our pipeline is specific to mathematics competition problems. The same approach could
be applied to formal proofs in other domains, such as learning theory or physics, as long as the LLM
has relevant knowledge or is provided with an appropriate knowledge base. This offers the potential
for AI-driven construction of mathematical theories without hallucinations or logical errors.

6 CONCLUSION

We introduced Prover Agent, a modular framework that coordinates an informal reasoning LLM,
a formal prover model, and Lean verification. By generating auxiliary lemmas and leveraging
feedback-driven refinement, our method achieved state-of-the-art performance among SLMs on the
MiniF2F benchmark.
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A EXTENDED RELATED WORK

We briefly summarized related work in Section 2. Here we provide details of representative systems.

A.1 LANGUAGE MODELS FOR FORMAL THEOREM PROVING

The use of language models for guiding formal theorem provers has gained momentum recently.
Early work like GPT-f (Polu & Sutskever, 2020) applied transformers to produce proofs in formal
systems, such as Metamath (Megill & Wheeler, 2019) and Lean (Moura & Ullrich, 2021), by gen-
erating one proof step (tactic) at a time, guided by a goal state. Subsequent efforts in Lean, such as
lean-gptf4 and PACT (Han et al., 2022), fine-tuned LLMs on large corpora of proof data, achieving
moderate success in automatically discovering proofs.

A.2 TREE-SEARCH-BASED FORMAL PROVING

BFS-Prover (Xin et al., 2025b) proposed a scalable best-first tree search framework for Lean 4 that
incorporates three key innovations: strategic data filtering during expert iterations, direct preference
optimization (DPO) (Rafailov et al., 2023) on state-tactic pairs using Lean compiler feedback, and
length normalization to encourage exploration of deeper proof paths. InternLM2.5-StepProver (Wu
et al., 2024a) combined expert iteration with BFS and critic-guided sampling, while Hunyuan-
Prover (Li et al., 2025) integrated large-scale data synthesis and guided search. Reinforcement-
enhanced variants such as DeepSeek-Prover-V1.5 (Xin et al., 2025a) proposed the use of RMaxTS,
a variant of Monte-Carlo tree search (MCTS), to diversify exploration and improve success rates.

A.3 WHOLE-PROOF GENERATION

Representative systems in this strand have advanced two complementary mechanisms: (i) expert-
iteration bootstrapping, which cycles model-generated proofs through a formal verifier to curate
training trajectories, and (ii) reinforcement learning (RL) with verifier feedback that directly opti-
mizes long, one-shot scripts (often with a long chain-of-thought).

Polu et al. (2023) introduced expert iteration for formal mathematics, alternating proof search with
learning. They showed expert iteration outperforms search-only at fixed compute, discovered an
automatically paced curriculum from problem statements, and showed improved performance on
the miniF2F (Zheng et al., 2022) benchmark without requiring ground-truth proofs. InternLM2.5-
StepProver (Wu et al., 2024a) scaled expert iteration on Lean-Workbook (Ying et al., 2024), trained a
critic to prioritize easier instances and guide deeper proofs, and paired expert iteration with best-first
exploration, achieving strong results on several benchmarks, such as miniF2F (Zheng et al., 2022),
ProofNet (Azerbayev et al., 2023), PutnamBench (Tsoukalas et al., 2024), and Lean-Workbook-
Plus (Ying et al., 2024). Lean-STaR (Lin et al., 2025a) trained a model to interleave informal
natural-language thoughts with formal tactic steps. The model is trained by expert iteration, and
at inference time, it generates informal reasoning prior to each tactic, enhancing theorem-proving
performance. Goedel-Prover (Lin et al., 2025b) tackled data scarcity by training statement formal-
izers to translate Numina problems into Lean 4, building a 1.64M-statement corpus, and iteratively
bootstrapping provers whose new proofs are added to training. The resulting SFT-centered expert
iteration pipeline surpasses prior open-source baselines. Goedel-Prover-V2 (Lin et al., 2025c) ex-
tended expert iteration with scaffolded data synthesis, verifier-guided self-correction, and model
averaging, delivering large gains on the MiniF2F benchmark (Zheng et al., 2022) at 8–32B scales
under constrained test-time budgets.

Kaliszyk et al. (2018) formulated theorem proving as reinforcement learning for connection-style
proof search, using Monte Carlo simulations guided by rewards from previous attempts to re-
place hand-crafted heuristics and improve held-out performance. DeepSeek-Prover-V1.5 (Xin et al.,
2025a) utilized reinforcement learning from proof assistant feedback (RLPAF) and a novel Monte-
Carlo tree search variant, RMaxTS, which employs an intrinsic-reward-driven strategy to explore
diverse proof paths. Leanabell-Prover (Zhang et al., 2025) demonstrated the effectiveness of post-
training in formal theorem proving by applying continual training with data emulating human cog-

4https://github.com/jesse-michael-han/lean-gptf
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nitive behaviors and reinforcement learning with compiler feedback to existing models. Kimina-
Prover Preview (Wang et al., 2025) employed a large-scale reinforcement learning pipeline and a
structured “formal reasoning pattern,” emulating human problem-solving strategies. It achieves an
80.7% pass rate on MiniF2F (Zheng et al., 2022) with a 72B-parameter model. Leanabell-Prover-
V2 (Ji et al., 2025) is built on Kimina-Prover-Preview-Distill-7B(Wang et al., 2025) and DeepSeek-
Prover-V2-7B (Ren et al., 2025) as base models, and further improved through post-training with
reinforcement learning.

A.4 FORMAL THEOREM PROVING WITH RETRIEVAL-AUGMENTED GENERATION

Retrieval-augmented provers query large formal libraries at inference time and condition generation
on the retrieved items, typically relevant lemmas, theorems, or proof patterns from mathlib (math-
lib Community, 2020). This mitigates the limits of parametric memory by injecting on-demand
knowledge and can be applied to both stepwise tactic generation and whole-proof scripts. Lean-
Dojo (Yang et al., 2023) established the core infrastructure for RAG in Lean, including fine-grained
premise annotations, a gym-like interactive environment, and a retrieval-augmented prover that se-
lects premises for each proof state. REAL-Prover (Shen et al., 2025) integrated a semantic premise
selector (LeanSearch-PS) with a fine-tuned Lean 4 prover and reports gains on challenging bench-
marks such as ProofNet (Azerbayev et al., 2023).

A.5 PROOF REFINEMENT AND SUBGOAL DECOMPOSITION

Jiang et al. (2023) introduced Draft, Sketch, and Prove (DSP), a novel three-stage method that lever-
ages informal proofs to guide automated theorem provers. The process involves drafting an informal
proof (either by a human or an LLM), using a language model to convert it into a high-level formal
sketch with verifiable steps, and finally employing an off-the-shelf prover to automatically solve
the remaining logical gaps. This approach of guiding a formal prover with an informal-to-formal
sketch significantly improved its success rate, boosting performance on the miniF2F benchmark
from 20.9% to 39.3%.

Wang et al. (2024a) introduced POETRY, a novel method that proves theorems recursively to over-
come the limitations of short-sighted, step-by-step search in automated theorem proving. By first
finding a verifiable high-level proof sketch and deferring detailed sub-proofs to subsequent lev-
els using a sorry tactic, POETRY can solve more complex problems and find significantly longer
proofs, leading to superior results on the miniF2F (Zheng et al., 2022) and PISA (Jiang et al., 2021)
benchmarks.

Cao et al. (2025) introduced DSP+, an improved Draft, Sketch, and Prove framework Jiang et al.
(2023) that achieves high performance in automated theorem proving without requiring any model
training or fine-tuning. By carefully coordinating existing off-the-shelf reasoning models and step
provers with fine-grained neuro-symbolic enhancements at each stage, DSP+ solved 80.7% of the
miniF2F benchmark (Zheng et al., 2022), which was comparable to top models that rely on extensive
reinforcement learning, and even proved a previously unsolved IMO problem.

DeepSeek-Prover-V2 (Ren et al., 2025) used a powerful general-purpose model, DeepSeek-
V3 (DeepSeek-AI, 2024), to break down complex theorems into simpler subgoals, which are then
recursively solved and synthesized into a cold-start dataset for the final prover. The resulting model
achieved an 88.9% pass rate on the MiniF2F benchmark (Zheng et al., 2022).

Delta Prover (Zhou et al., 2025) is an agent-based framework that enables a general-purpose LLM to
solve formal math problems without any specialized fine-tuning. The agent orchestrated the LLM’s
interaction with the Lean 4 environment through a novel process of reflective decomposition and
iterative proof repair, where the model breaks down complex problems and corrects its own errors
based on compiler feedback. This training-free approach achieved a 95.9% success rate on the
miniF2F benchmark (Zheng et al., 2022), surpassing all previous methods, including those requiring
extensive specialized training.

Chen et al. (2025) introduced Seed-Prover, a whole-proof reasoning model that uses a novel lemma-
style approach to solve complex formal math problems. Seed-Prover iteratively refined its proofs
using compiler feedback and a shared pool of proved lemmas, employing a powerful three-tiered
test-time inference strategy for both deep and broad reasoning. This method significantly surpassed
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Algorithm 1 The overall architecture of our lemma-based theorem-proving agent coordinating in-
formal reasoning, formal reasoning, and Lean.

Input: Problem T with hyperparameters Ninit (max initial proof attempts) and Nrefine (max refinement attempts)
Output: Formal proof of T or failure
function MAIN(T ): Overall proof process for problem T

Pdirect ←PROVE(T ): Attempt to prove theorem T

directly
if Pdirect succeeds then

return Pdirect

end if
// Generate lemmas
Informal LLM generates lemmas L1, L2, . . . , Ln in

natural language
for each lemma Li do

AutoFormalizer converts Li into Lean statement
Fi

Lean checks Fi. If failing, regenerate Fi until syn-
tactically correct

end for
// Prove each lemma
for each lemma Fi do

Pi ←PROVE(Fi): Attempt to prove lemma Fi

end for
// Collect proven lemmas
Pproven ← {Pi | Pi is succeeded}
// Synthesize final proof using proven lemmas
for k = 1 to Ninit do

Pfinal ← Prover synthesizes proof of T using
Pproven

Lean checks Pfinal

if the check succeeds then
return Pfinal

end if
end for
// Iterative refinement of final proof
Pbest ← Best previous proof attempt with the fewest

Lean errors
return ITERATIVEREFINE(Pbest)

end function

function PROVE(S): Attempt to generate an informal
proof of S

// Initial proof attempt
for k = 1 to Ninit do

Informal LLM generates informal proof Pinf of S
Prover attempts to formalize Pinf into Pform

Lean checks Pform

if the check succeeds then
return Pform

end if
end for
// Iterative refinement
Pbest ← Best previous proof attempt with the fewest

Lean errors
return ITERATIVEREFINE(Pbest)

end function

function ITERATIVEREFINE(P ): Refine proof P based on
Lean feedback

for k = 1 to Nrefine do
Prover generates revised proof P ′ based on Lean

feedback
Lean checks P ′

if the check succeeds then
return P ′

else
P ← P ′ // Update best proof

end if
end for
return failure // No proof found after max attempts

end function

all previous state-of-the-art results, saturating the MiniF2F benchmark (Zheng et al., 2022), proving
78.1% of past IMO problems, and solving 5 out of 6 problems at the IMO 2025 competition.

B PSEUDOCODE OF THE OVERALL WORKFLOW

The pseudocode of our overall workflow is shown in Algorithm 1.

C DETAILED THEORETICAL ANALYSIS

We briefly discussed the theoretical analysis of our approach in Section 4. In this section, we provide
a detailed theoretical analysis of our approach.

C.1 BENEFITS OF LEMMAS FOR STRUCTURED PROOF DECOMPOSITION

We begin by stating a lemma required for the following analysis:

Lemma C.1 (Number of Trials for Success). Let p denote the probability that the model successfully
proves a theorem T . Then the expected number of trials until the first success, N , and the number
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of trials required to succeed with probability at least 1− δ, denoted Nδ , satisfy the following:

E[N ] =
1

p
, log(1/δ)

(
1

p
− 1

)
<

log δ

log(1− p)
< Nδ =

⌈
log δ

log(1− p)

⌉
<

log(1/δ)

p
+ 1.

Proof. Since each trial is an independent Bernoulli experiment with success probability p, the num-
ber of trials N until the first success follows a geometric distribution. It is well known that

E[N ] =

∞∑
n=1

n(1− p)n−1p =
1

p
.

Next, we consider Nδ . Since the probability of at least one success in n trials is 1 − (1 − p)n, the
condition for achieving success with probability at least 1− δ is:

1− (1− p)n = 1− δ ⇔ (1− p)n = δ ⇔ n =
log δ

log(1− p)
.

Recalling the standard inequalities p ≤ − log(1− p) ≤ p
1−p , which is valid for 0 < p < 1, together

with the basic ceiling inequality x ≤ ⌈x⌉ < x+ 1, we obtain:

log(1/δ)

(
1

p
− 1

)
<

log δ

log(1− p)
< Nδ =

⌈
log δ

log(1− p)

⌉
<

log(1/δ)

p
+ 1.

This completes the proof.

For simplicity, we henceforth relax Nδ to be continuous and write:

log(1/δ)

(
1

p
− 1

)
< Nδ =

log δ

log(1− p)
<

log(1/δ)

p
.

The difference from the actual integer-valued Nδ is at most less than 1.

As rigorous versions of Theorems 4.4 to 4.5 described in Section 4.1, we obtain the following
Theorems C.2 to C.3, under the same Assumptions 4.1 to 4.3:
Theorem C.2 (Required Number of Trials). Let Ndir denote the number of trials required to directly
prove a problem T with probability at least 1−δ. Let Nlem denote the total number of trials required
to complete the proof of T with probability at least 1− δ, when lemmas L1, . . . , Ln are introduced
with an allowed failure probability δlem. Suppose each lemma Li contains a subset of the essential
intermediate facts {Fi}i∈Si

with Si ⊆ [m]. Then the following holds:

Φdir(p)− log(1/δ) < Ndir < Φdir(p),

Φlem(p)− log(1/δ)− n log(1/δlem) < E[Nlem] < Φlem(p),

where

Φdir(p) := log(1/δ)

m∏
i=1

1

pi
,

Φlem(p) := log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
+

log(1/δ)

r0

(∏
i∈R0

1

pi

)
n∏

i=1

(1− δlem) + δlem
∏
j∈Si

1

pj

 .

Here, we denote U :=
⋃n

i=1 Si, R0 := [m] \ U , and r0 := minP (FS |{Fi}i∈S).

Proof. By Assumption 4.2, the probability that all F1, . . . , Fm succeed and the problem T is solved
equals

∏m
i=1 pi. Hence, by Lemma C.1, we obtain:

Φdir(p)− log(1/δ) < Ndir < Φdir(p).

Similarly, since the probability that all Fj with j ∈ Si succeed and lemma Li is proved equals∏
j∈Si

pj , the number of trials required for lemma Li, denoted NLi
, satisfies:

log(1/δlem)
∏
j∈Si

1

pj
− log(1/δlem) < NLi

< log(1/δlem)
∏
j∈Si

1

pj
.
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Therefore, the total number of trials required to prove all n lemmas L1, . . . , Ln is bounded by the
sum of the bounds above, i.e.,

log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
− n log(1/δlem) <

n∑
i=1

NLi < log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
. (1)

The probability that the composition of all lemmas succeeds is r0, while the probability of proving
the uncovered facts {Fi}i∈R0 is

∏
i∈R0

pi. If a lemma Li fails with probability δlem, then in the final
proof it must be reproved directly, which succeeds with probability

∏
j∈Si

pj . Thus, the expected
success probability of lemma Li in the final stage is: (1− δlem) + δlem

∏
j∈Si

pj .

Therefore, since the expected success probability in the final stage is given by the product above, the
number of trials required to complete the proof of the whole problem T using lemmas in the final
stage, denoted Nfinal, satisfies:

Φfinal(p)− log(1/δ) < E[Nfinal] < Φfinal(p), (2)

where

Φfinal(p) :=
log(1/δ)

r0

(∏
i∈R0

1

pi

)
n∏

i=1

(1− δlem) + δlem
∏
j∈Si

1

pj

 .

Hence, by combining Equations (1) and (2), we obtain the desired result, completing the proof of
Theorem C.2.

From Theorem C.2, we see that decomposing the problem into lemmas transforms the corresponding
leading term from a product into a sum, thereby significantly reducing the order of the required
number of trials.

Theorem C.3 (Threshold Condition for Lemma Efficiency). There exists a threshold τ ∈ [0, 1] such
that if pi ≤ τ for all i ∈ [m], then E[Nlem] ≤ Ndir holds for any δ, δlem ∈ (0, 1).

Proof. Consider the condition E[Nlem]
Ndir

< 1. By Theorem C.2, this condition is satisfied if the
following holds:

Φlem(p)

Φdir(p)− log(1/δ)
< 1

⇔
log(1/δlem)

∑n
i=1

∏
j∈Si

1
pj

log(1/δ)
∏m

i=1

(
1
pi

− 1
)

+

log(1/δ)
r0

(∏
i∈R0

1
pi

)∏n
i=1

(
(1− δlem) + δlem

∏
j∈Si

1
pj

)
log(1/δ)

∏m
i=1

(
1
pi

− 1
) < 1. (3)

The first term on the left-hand side (LHS) of Equation (3) can be rewritten as:

log(1/δlem)
∑n

i=1

∏
j∈Si

1
pj

log(1/δ)
∏m

i=1

(
1
pi

− 1
) =

log(1/δlem)

log(1/δ)

n∑
i=1

∏
j∈Si

1
pj

∏m
j=1 pj

1−
∏m

j=1 pj

=
log(1/δlem)

log(1/δ)

n∑
i=1

∏
j /∈Si

pj

1−
∏m

j=1 pj
. (4)
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The second term on the LHS of Equation (3) can be rewritten as:

log(1/δ)
r0

(∏
i∈R0

1
pi

)∏n
i=1

(
(1− δlem) + δlem

∏
j∈Si

1
pj

)
log(1/δ)

∏m
i=1

(
1
pi

− 1
)

=
1

r0

(∏
i∈R0

1

pi

) n∏
i=1

(1− δlem) + δlem
∏
j∈Si

1

pj

 ∏m
j=1 pj

1−
∏m

j=1 pj

=
1

r0

n∏
i=1

(1− δlem)
∏
j∈Si

pj + δlem

 1

1−
∏m

j=1 pj
. (5)

From Equations (4) and (5), both the first and second terms on the LHS of Equation (3) are monotoni-
cally increasing with respect to pi. Hence, the LHS of Equation (3) itself is monotonically increasing
w.r.t. pi. Therefore, by bounding the LHS of Equation (3) from above by using pmax := maxi pi
and solving for pmax, we obtain a sufficient condition, completing the proof.

From Theorem C.3, it follows that lemma generation is effective for difficult problems. Therefore,
our strategy of generating lemmas for difficult problems and solving easy problems directly is justi-
fied.

Theorem C.4 (Optimal Partition of Lemma Coverage). Under the fixed lemma coverage U :=⋃n
i=1 Si ⊆ [m], E[Nlem] is minimized when log p(Si) is as close as possible to 1

n log p(U) for all
i ∈ [n], where p(Si) :=

∏
j∈Si

pj and p(U) :=
∏

j∈U pj .

Proof. From Theorem C.2, we consider minimizing Φlem(p). Let W :=
∏

i∈U
1
pi

.

By Jensen’s inequality, the first term of Φlem(p) can be bounded as follows:

log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
= log(1/δlem)

n∑
i=1

exp(
∑
j∈Si

log
1

pj
)

≥ log(1/δlem)n exp

 1

n

n∑
i=1

∑
j∈Si

log
1

pj


= log(1/δlem)n exp

(
1

n
logW

)
with equality if and only if log p(Si) =

1
n log p(U) for all i ∈ [n].

Noting that f(x) = log((1−d)+d exp(x)) is convex for d ∈ (0, 1), we can apply Jensen’s inequality
to bound the second term of Φlem(p) as follows:

log(1/δ)

r0

(∏
i∈R0

1

pi

)
n∏

i=1

(1− δlem) + δlem
∏
j∈Si

1

pj


=

log(1/δ)

r0

(∏
i∈R0

1

pi

)
exp

 n∑
i=1

log

(1− δlem) + δlem exp

∑
j∈Si

log
1

pj


≥ log(1/δ)

r0

(∏
i∈R0

1

pi

)
exp

n log

(1− δlem) + δlem exp

 1

n

n∑
i=1

∑
j∈Si

log
1

pj


=

log(1/δ)

r0

(∏
i∈R0

1

pi

)
exp

(
n log

(
(1− δlem) + δlem exp

(
1

n
logW

)))
with equality if and only if log p(Si) =

1
n log p(U) for all i ∈ [n].
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Therefore, since both the first and second terms of Φlem(p) attain their minimum under the same
condition, namely:

log p(Si) =
1

n
log p(U) for all i ∈ [n],

it follows that Φlem(p) itself is minimized under this condition. In the discrete case, the minimum is
achieved at the partition closest to this balanced condition. This completes the proof.

Theorem C.4 suggests that the optimal lemmas are those that divide the problem into subproblems
of approximately equal difficulty.

C.2 BENEFITS OF LEMMAS FOR DISCOVERING PROOF STRATEGIES (E.G., SPECIFIC CASES)

Theorem C.5 (Success Probability Improvement by Lemmas (Restated)). The success probability
of performing one trial of final proving by sampling a strategy from the posterior distribution πn is
bounded as follows:

E[P(succ@1)] ≥ r exp
(
−H0 + I(Z;Y1:n)

)
.

Proof. We begin with:

P(succ@1 | Z = z, Y = y) = p(z)π(z | y).

Taking expectation, we obtain:

EZ,Y

[
P(succ@1 | Z, Y )

]
= EZ,Y

[
p(Z)π(Z | Y )

]
= EZ,Y

[
p(Z)πn(Z)

]
≥ rEZ,Y [πn(Z)]. (6)

It remains to lower-bound EZ,Y [πn(Z)].

For fixed Y = y, we have:

EZ

[
πn(Z) | Y = y

]
=
∑
z∈S

πn(z)P(Z = z | Y = y)

=
∑
z∈S

πn(z)
2.

Taking expectation over Y yields:

EZ,Y [πn(Z)] = EY

[
EZ [πn(Z) | Y ]

]
= EY

[∑
z∈S

πn(z)
2

]
.

By Lemma C.6, we have: ∑
z∈S

π(z | y)2 ≥ exp
(
−H(π(· | y))

)
.

Averaging both sides over Y and applying Jensen’s inequality (since x 7→ e−x is convex), we obtain:

EZ,Y [πn(Z)] = EY

[∑
z∈S

π(z | Y )2
]

≥ EY

[
exp(−H(π(· | Y )))

]
≥ exp(−EY [H(π(· | Y ))])

= exp(−H(Z | Y ))

= exp(−H0 + I(Z;Y )),

where the last step uses the definition of mutual information.

Combining this with Equation (6) proves the claim.
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Theorem C.5 shows that the success probability improves exponentially in the amount of mutual
information gained through the lemmas, I(Z;Y1:n). In particular, the success probability is strictly
larger than in the case without lemmas, where I(Z;Y1:n) = 0.

The following lemma was used in the proof of Theorem C.5:

Lemma C.6 (Relation Between Squared Sum and Entropy). For any probability distribution p =
(pi)i, the following inequality holds:∑

i

p2i ≥ exp(−H(p)),

where H(p) = −
∑

i pi log pi denotes the Shannon entropy (with natural logarithm).

Proof. The log-sum inequality states that for nonnegative sequences {ai}, {bi}, the following holds:

∑
i

ai log
ai
bi

≥

(∑
i

ai

)
log

∑
i ai∑
i bi

.

Let ai = pi and bi = p2i . Then the LHS becomes:∑
i

pi log
pi
p2i

=
∑
i

pi log
1

pi
= −

∑
i

pi log pi = H(p).

On the other hand, the right-hand side (RHS) becomes:(∑
i

pi

)
log

∑
i pi∑
i p

2
i

= 1 · log 1∑
i p

2
i

= − log
(∑

i

p2i

)
.

Hence, the log-sum inequality gives:

H(p) ≥ − log
(∑

i

p2i

)
.

Exponentiating both sides yields: ∑
i

p2i ≥ exp(−H(p)).

This completes the proof.

D DETAILED EXPERIMENTAL SETUP

D.1 BENCHMARKING DATASET

We use the MiniF2F (Zheng et al., 2022) dataset, which consists of 488 mathematical problems
formalized in Lean. These problems originate from sources such as AIME (American Invitational
Mathematics Examination), AMC (American Mathematics Competitions), and IMO (International
Math Olympiad) competitions, along with selected problems from the MATH dataset (Hendrycks
et al., 2021), covering topics such as algebra, number theory, geometry, and analysis. Each problem
is given as a Lean theorem statement. The benchmark is split into 244 validation and 244 test
problems. We use the validation set during development (e.g., for tuning prompt formats) and report
the final results on the test set. We use the revised version of miniF2F released by Wang et al. (2025);
Ren et al. (2025).

Also, we observed that for problem names like algebra 2varlineareq fp3zeq11 3tfm1m
5zeqn68 feqn10 zeq7, the LLM often struggled to reliably reproduce the latter part of the
name due to its unintelligible character sequence. Therefore, we modified such problem names by
removing the less interpretable suffixes and replacing them with simpler, more memorable labels
such as algebra for our experiments.
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D.2 USED MODELS

For the informal LLM, we use DeepSeek-R1-0528-Qwen3-8B5 (DeepSeek-AI, 2025), a
model obtained by distilling the chain-of-thought outputs of DeepSeek-R1-0528 (DeepSeek-
AI, 2025) into the Qwen3-8B (Yang et al., 2025a). This model surpasses Qwen3-8B
on the AIME benchmark for natural language reasoning and achieves state-of-the-art per-
formance at this scale. For the prover model, we use Goedel-Prover-V2-7B6 (Lin
et al., 2025c) and DeepSeek-Prover-V2-7B7 (Ren et al., 2025), the state-of-the-art
and second-best Lean 4 provers at this scale, respectively. For the formalizer model, we
use Goedel-Formalizer-V2-8B8 (Lin et al., 2025c) in the Goedel-Prover setup and
Kimina-Autoformalizer-7B9 (Wang et al., 2025). All of them are publicly available on
Hugging Face (Wolf et al., 2020).

D.3 IMPLEMENTATION DETAILS

All models are invoked via vLLM (Kwon et al., 2023), a high-performance inference engine for
large language models. We set max num batched tokens and max model len parameters
to 16384 to accommodate the long context lengths required for theorem proving, while keeping all
other settings at their vLLM defaults. The models are run on NVIDIA A100 GPUs with 40GB of
memory. We use Lean version 4.9.0 (Moura & Ullrich, 2021) throughout all experiments, following
the same setup in Xin et al. (2025a); Ren et al. (2025); Lin et al. (2025c).

There are several bugs that may result in invalid Lean proofs being incorrectly accepted, such as
the user-interference bug related to the apply? tactic discussed in version 2 of the arXiv paper
by Ren et al. (2025), and a bug in REPL10. To avoid these issues and prevent invalid proofs from
being mistakenly judged as correct, we check proofs with lake build instead of REPL and
additionally verified that the apply? tactic is not used. Also, to avoid this bug and obtain reliable
baseline results, we re-ran the experiments for Goedel-Prover-V2-8B. We used the official prompts
provided on GitHub11 and Hugging Face6, while keeping all other experimental settings strictly
identical to those used in our method, thereby ensuring a fair comparison. For DeepSeek-Prover-
V2, we relied on the results reported in version 2 of the arXiv paper (Ren et al., 2025), in which this
bug has been fixed. All other baseline results are sourced from their respective papers.

D.4 SUMPLE BUDGET

We set Ninit = Nrefine = 50. Thus, the sample budget at the initial direct proving stage is 50
at the first iteration, and 100 in total when including iterative refinement. For lemmas, we use
Ninit = Nrefine = 10 for each of the three lemmas. In the final synthesis stage, Ninit = Nrefine = 50
is used again, resulting in a total sample budget of 50 + 50 + (10 + 10)× 3 + 50 + 50 = 260.

D.5 BASELINE METHODS

We compare our approach against several baseline methods, categorized into two main classes:
tree search methods and whole-proof generation methods. Tree search methods construct proofs
incrementally by predicting individual tactics step by step, often guided by search algorithms such as
best-first search or Monte Carlo Tree Search (MCTS). In contrast, whole-proof generation methods
attempt to generate an entire proof script in a single forward pass, relying on the model’s ability to
plan the proof holistically.

The overview of the baseline methods used in our experiments is as follows:

Tree Search Method:
5https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
6https://huggingface.co/Goedel-LM/Goedel-Prover-V2-8B
7https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
8https://huggingface.co/Goedel-LM/Goedel-Formalizer-V2-8B
9https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B

10https://github.com/leanprover-community/repl/issues/44
11https://github.com/Goedel-LM/Goedel-Prover-V2
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• DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) uses DeepSeek-Prover-V1.5-
RL (Xin et al., 2025a), a 7B model trained with reinforcement learning, combined with
RMaxTS (Xin et al., 2025a), a variant of MCTS that uses intrinsic rewards to explore
diverse proof paths.

• InternLM2.5-StepProver + BFS + CG (Wu et al., 2024a) uses InternLM2.5-
StepProver (Wu et al., 2024a), a 7B model trained via expert iteration (Anthony et al.,
2017; Polu et al., 2023) starting with InternLM2-StepProver (Wu et al., 2024b), combined
with a best-first search (BFS) strategy and a critic-guided (CG) sampling technique to ex-
plore longer proofs effectively.

• HunyuanProver v1.6 + BFS + DC (Li et al., 2025) uses HunyuanProver, a 7B model fine-
tuned via a scalable data synthesis pipeline, in conjunction with best-first search guided by
the distance critic (DC) to efficiently navigate complex Lean 4 proof search spaces.

• BFS-Prover (Xin et al., 2025b) uses a fine-tuned model of Qwen2.5-Math-7B model (Yang
et al., 2024), trained through an expert-iteration pipeline. During inference, it employs a
best-first search strategy to navigate the proof space efficiently.

Whole-Proof Generation Methods:
• Leanabell-Prover-GD-RL (Zhang et al., 2025) is a 7B model post-trained through con-

tinual training on statement-proof pairs and reinforcement learning using Lean 4 outcome
rewards. This model is a fine-tuned version of Goedel-Prover-SFT (Lin et al., 2025b).

• Goedel-Prover-SFT (Lin et al., 2025b) is a 7B-parameter model obtained by supervised
fine-tuning on DeepSeek-Prover-V1.5-Base (Xin et al., 2025a) with expert-iteration.

• STP: Self-Play Theorem Prover (Dong & Ma, 2025) employs a self-play framework that
simultaneously takes on two roles, conjecturer and prover. The conjecturer is iteratively
trained on statements that are barely provable by the current prover, incentivizing it to
generate increasingly challenging conjectures. The prover uses standard expert iteration to
verify and prove the generated conjectures. This model is a fine-tuned version of DeepSeek-
Prover-V1.5-SFT (Xin et al., 2025a), which is a 7B-parameter model.

• Kimina-Prover-Preview (Wang et al., 2025) is a 72B-parameter reasoning model that
learns specialized formal reasoning patterns via reinforcement learning. It is pretrained on
a large corpus of formal proofs and fine-tuned with a binary correctness reward and consis-
tency penalty. They also provide Kimina-Prover-Preview-Distill-7B, a distilled version
from the 72B model.

• DeepSeek-Prover-V2 (Ren et al., 2025) uses DeepSeek-V3 to decompose each theorem
into subgoals and then employs the proofs of those subgoals as cold-start data for rein-
forcement learning using binary correctness rewards and a consistency penalty to ensure
that every subgoal appears in the final proof. It is implemented as a 671B-parameter model,
and a distilled 7B-parameter variant is also provided.

E EXAMPLES OF SUCCESSFUL CASES ENABLED BY LEMMAS

E.1 DETAILED ANALYSIS

We analyze in detail the reasoning process for the problem induction nfactltnexp
nm1ngt3, a case where the direct proof attempt failed but the use of auxiliary lemmas led to a
successful proof. This problem asks for a formal proof that, for all natural numbers n > 3, the
inequality n! < nn−1 always holds.

The outputs for this problem, such as the generated lemmas, final formal proof, and the associated
reasoning process, are provided in Appendix E.2 and after.

In this case, the agent generated the following three lemmas: The first states that 3! < 33−1; the
second states that for any natural number n ≥ 2, nn−1 < (n + 1)n−1; and the third states that for
any natural number n ≥ 3, n! < (n+1)n−1. The first is a specific case of the original problem with
n = 3, while the second may provide a helpful hint toward solving the original problem. Both were
easily proven in a single direct proof attempt. The third lemma generated in this case asserts that for
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any natural number n ≥ 3, n! < (n + 1)n−1. This lemma closely resembles the original problem,
as it is a slightly weaker version of its conclusion. Due to its similarity and retained difficulty, the
agent failed to construct a direct proof for it.

By examining the final successful reasoning trace in Appendix E.5, we see that the specific case for
n = 3, considered as the first lemma, appears explicitly on line 7. The reasoning also checks the
cases for n = 4 and n = 5, following a similar pattern. Furthermore, as stated on line 13, the use of
mathematical induction is clearly identified as the intended proof strategy. Then, the reasoning trace
from line 14 to line 80 further elaborates the proof process within the framework of mathematical
induction. Furthermore, in the final proof, the proof technique used in Lemma 2 is explicitly applied
at lines 195–196.

Next, as a comparison, we analyze the reasoning process from the initial direct proving attempt
without using any lemmas, as shown in Appendix E.6. Here, we present the reasoning trace that
resulted in the fewest Lean errors among all initial direct attempts. Compared to the successful case
with lemmas, we see that the proof strategy is much less clear in this direct attempt. In the “Key
Observations” section (lines 6 to 14), there is no indication of using mathematical induction, unlike
in the lemma-assisted case. Although the system explores several ideas from lines 15 to 63, the
reasoning appears less focused and more exploratory, lacking a concrete plan. As a result, while it
eventually leans toward using induction, the lack of a clear and structured approach prevents it from
working out the necessary details, ultimately leading to failure in the formal proof, which tolerates
no ambiguity.

This detailed case study highlights the effectiveness of our lemma-generation approach in uncov-
ering viable proof strategies. This marks a significant advance over prior methods that decompose
problems into subgoals, which often assume the overall proof strategy is known in advance. Identi-
fying an initial proof strategy is often a challenging part of solving difficult problems. Indeed, Ren
et al. (2025) employs a decomposition-based approach but relies on the much larger and stronger
DeepSeek-V3 (DeepSeek-AI, 2024) to formulate the initial proof sketch. In contrast, our agent fol-
lows a reasoning process similar to that of human mathematicians when the proof strategy is not
apparent at first glance, exploring specific cases or hypothesizing intermediate steps to discover a
promising direction and ultimately uncover the overall proof strategy.

E.2 LEAN ENVIRONMENT SETUP

All Lean code was executed with the following header, following Xin et al. (2025a); Ren et al.
(2025), which is omitted in the examples for brevity:

1 import Mathlib
2 import Aesop
3

4 set_option maxHeartbeats 0
5

6 open BigOperators Real Nat Topology Rat

Note that the following Lean code works correctly with Lean version 4.9.0, the environment used
in our experiments, which strictly follows the same setup in Xin et al. (2025a); Ren et al. (2025).
However, Nat.pow_lt_pow_of_lt_left has been deprecated in newer versions of Lean, so
it must be replaced with Nat.pow_lt_pow_left to work with the latest environment.

E.3 THE PROBLEM

The following problem asks for a formal proof that, for all natural numbers n greater than 3, the
inequality n! < nn−1 holds:

1 theorem induction_nfactltnexpnm1ngt3
2 (n : N)
3 (h0 : 3 ≤ n) :
4 (n)! < nˆ(n - 1) := by sorry
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E.4 THE GENERATED LEMMAS

The generated lemmas are shown below, each presented with both its original natural language form
and the corresponding Lean formalization. The first and second lemmas were successfully proved
and are presented with their proofs. The third lemma could not be proved and is therefore presented
with a sorry placeholder.

1 ### Lemma 1: base_case_3
2 **Assumptions**:
3 None
4

5 **Conclusion**:
6 3! < 3ˆ(3-1)

1 theorem base_case_3 : (3 : N)! < 3ˆ(3 - 1) := by
2 have h_main : (3 : N)! < 3ˆ(3 - 1) := by
3 -- Calculate the factorial and the power step-by-step
4 norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
5 -- Use ‘decide‘ to confirm the inequality
6 <;> decide
7 exact h_main

1 ### Lemma 2: exponent_inequality
2 **Assumptions**:
3 n is a natural number and n ≥ 2
4

5 **Conclusion**:
6 nˆ(n-1) < (n+1)ˆ(n-1)

1 theorem exponent_inequality {n : N} (hn : 2 ≤ n) :
2 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
3 have h_main : nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
4 have h0 : n - 1 + 1 = n := by
5 omega
6 have h1 : n ≥ 2 := by omega
7 have h2 : n - 1 ≥ 1 := by omega
8 have h3 : n < n + 1 := by omega
9 -- Use the fact that if a < b and n > 0, then aˆn < bˆn
10 exact calc
11 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
12 -- Apply the lemma that if a < b and n > 0, then aˆn < bˆn
13 exact Nat.pow_lt_pow_of_lt_left h3 (by omega)
14 _ = (n + 1)ˆ(n - 1) := by rfl
15 exact h_main

1 ### Lemma 3: factorial_less_than_n_next_power
2 **Assumptions**:
3 n is a natural number and n ≥ 3
4

5 **Conclusion**:
6 n! < (n+1)ˆ(n-1)

1 theorem factorial_lt_n_next_power {n : N} (hn : 3 ≤ n) :
2 n ! < (n + 1) ˆ (n - 1) := by sorry
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E.5 THE FINAL PROOF AND ITS REASONING TRACE

We present below the final Lean proof, successfully constructed by taking the previously verified
lemmas into account. Alongside the code, we also include the corresponding reasoning trace gener-
ated by the prover model that guided the overall proof construction.

1 ### Detailed Proof and Analysis
2

3 We are tasked with proving that for all natural numbers ‘n ≥ 3‘,
the factorial of ‘n‘, i.e., ‘n!‘, is less than ‘nˆ(n - 1)‘.

4

5 #### Key Observations:
6 1. **Base Cases**:
7 - For ‘n = 3‘: ‘3! = 6‘ and ‘3ˆ(3 - 1) = 32 = 9‘. So, ‘6 < 9‘

holds.
8 - For ‘n = 4‘: ‘4! = 24‘ and ‘4ˆ(4 - 1) = 43 = 64‘. So, ‘24 <

64‘ holds.
9 - For ‘n = 5‘: ‘5! = 120‘ and ‘5ˆ(5 - 1) = 54 = 625‘. So, ‘120

< 625‘ holds.
10 - The pattern suggests that this holds for all ‘n ≥ 3‘.
11

12 2. **General Proof Idea**:
13 - The proof can proceed by mathematical induction. We first

check the base case ‘n = 3‘, and then for the inductive step,
we assume the statement holds for ‘n = k‘ (i.e., ‘k! < kˆ(k -
1)‘) and show that it also holds for ‘n = k + 1‘ (i.e., ‘(k +
1)! < (k + 1)ˆk‘).

14 - The inductive step involves showing that ‘(k + 1)! = (k + 1) *
k! < (k + 1) * kˆ(k - 1)‘. The last expression is ‘(k + 1)ˆk‘

because ‘kˆ(k - 1) = kˆk / k‘ when multiplying by ‘(k + 1)‘ is
not clean. Instead, we can directly use the fact that ‘(k +
1)! = (k + 1) * k!‘ and ‘k! < kˆ(k - 1)‘ by the inductive
hypothesis, but we must also ensure ‘k + 1 < k + 1 + 1‘ is not
relevant here. Wait, perhaps the best approach is to directly
manipulate the inequality ‘(k + 1)! < (k + 1)ˆk‘.

15

16 However, this seems messy. A simpler way is to compare ‘(k +
1)!‘ and ‘(k + 1)ˆk‘ directly. For ‘k ≥ 3‘, we have ‘(k + 1)! =
(k + 1) * k! < (k + 1) * kˆk‘.

17

18 But this is not obviously true because ‘k! < kˆk‘ is equivalent
to ‘k < k + 1‘, which is trivially true.

19

20 Alternatively, ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘
by IH, and ‘(k + 1) * kˆ(k - 1) = kˆk + kˆ(k - 1)‘, which is
less than ‘(k + 1)ˆk = kˆk + k * kˆ(k - 1) + . . .‘, but this is
getting complicated.

21

22 A much better approach is to use induction directly. For ‘n =
3‘, we already checked this. Assume ‘k! < kˆ(k - 1)‘ for some
‘k ≥ 3‘. Then:

23 ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘. Now, ‘(k + 1) *
kˆ(k - 1) = kˆk + kˆ(k - 1)‘. We need this to be ‘< (k + 1)ˆk

= kˆk + k * kˆ(k - 1) + . . .‘.
24

25 But ‘kˆk‘ cancels out, and we need ‘kˆ(k - 1) < k * kˆ(k - 1) +
. . .‘, i.e., ‘1 < k + . . .‘, which is true for ‘k ≥ 3‘.

26

27 However, the last step is not straightforward, and it might be
simpler to use induction concretely.

28

29 #### Step 1: Abstract Plan
30

31 1. **Base Case (‘n = 3‘)**:

27
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32 - Compute ‘3! = 6‘ and ‘3 ˆ (3 - 1) = 9‘. Since ‘6 < 9‘, the
base case holds.

33

34 2. **Inductive Step (‘n = k + 1‘)**:
35 - Assume ‘k! < kˆ(k - 1)‘ holds for some ‘k ≥ 3‘.
36 - We need to show ‘(k + 1)! < (k + 1)ˆk‘.
37 - ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by the

inductive hypothesis.
38 - Next, we need to compare ‘(k + 1) * kˆ(k - 1)‘ to ‘(k + 1)ˆk =

(k + 1) * kˆk / k‘.
39 - The inequality ‘k * (k + 1) ≤ k * k + k * k = 2 * kˆ2‘ for ‘k

≥ 1‘ is too loose. A better approach is as follows:
40 - We want ‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘.
41 - Divide both sides by ‘(k + 1)‘: ‘kˆ(k - 1) < (k + 1)ˆ(k -

1)‘.
42 - But:
43 - This is false for ‘k = 3‘: ‘3ˆ2 = 9 < 4ˆ2 = 16‘ holds.

For ‘k = 4‘: ‘4ˆ3 = 64 < 5ˆ3 = 125‘ holds, etc. But we need
‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘, not ‘kˆ(k - 1) < (k + 1)ˆ(k
- 1)‘.

44 - Alternatively, perhaps a direct proof is better:
45 - ‘(k + 1) * kˆ(k - 1) = kˆk + kˆ(k - 1)‘.
46 - We must show ‘kˆk + kˆ(k - 1) < (k + 1)ˆk = kˆk + k * kˆ(k

- 1) + . . . + 1‘.
47 - Since ‘k ≥ 3‘, ‘kˆ(k - 1) < k * kˆ(k - 1)‘ and ‘0 < kˆk‘

(which cancels), we get ‘kˆ(k - 1) < k * kˆ(k - 1)‘ because ‘1
< k‘ when ‘k ≥ 2‘, so ‘kˆk + kˆ(k - 1) < kˆk + k * kˆ(k - 1) +
. . .‘ is justified.

48

49 But the above is still messy. A better way is to prove ‘(k + 1) *
kˆ{k - 1} < (k + 1)ˆk‘ for ‘k ≥ 3‘:

50 ‘(k + 1) * kˆ{k - 1} = kˆk + kˆ{k - 1}‘, and ‘(k + 1)ˆk = kˆk + k *
kˆ{k - 1} + . . .‘.

51 Subtract:
52 ‘(k + 1)ˆk - (k + 1) * kˆ{k - 1} = kˆk + k * kˆ{k - 1} + . . .} -

(kˆk + kˆ{k - 1}) = k * kˆ{k - 1} + . . .‘ which is clearly
positive because all terms are positive.

53 Alternatively, just note that ‘kˆk > 0‘ when ‘k ≥ 1‘ is sufficient
because ‘(k + 1)ˆk = kˆk + . . . ≥ kˆk > kˆ{k - 1}‘.

54

55 However, the direct approach is to compute ‘(k + 1)ˆk = (k + 1) *
((k + 1) * . . . * 1) ≥ (k + 1) * (k * . . . * 1) = (k + 1) * kˆ(k -
1)‘, which would work except for the last factor.

56

57 Wait, we need ‘(k + 1)ˆk > (k + 1) * kˆ{k - 1}‘. But ‘(k + 1)ˆk =
(k + 1) * (k + 1)ˆ{k - 1}‘.

58

59 But ‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘ is not immediately obvious (and
may even be false for ‘k = 3‘ (‘42 = 16 ≥ 8 = 32‘ is true, but
‘4ˆ3 = 64 ≥ 3ˆ3 = 27‘ is true)).

60

61 This seems correct, but we instead keep it simple:
62

63 #### Inductive Proof Sketch:
64 1. Base Case (‘n = 3‘): ‘6 < 9‘ is true.
65 2. Inductive Step (‘n = k + 1‘ assuming ‘k! < kˆ(k - 1)‘):
66 - We have ‘(k + 1)! < (k + 1) * kˆ(k - 1)‘.
67 - We need ‘(k + 1) * kˆ(k - 1) ≤ (k + 1)ˆk = (k + 1) * kˆ(k -

1)‘ + . . .
68 - Alternatively, the most straightforward induction is simply

to use that ‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘ when ‘k ≥ 3‘.
69

70 This can be proved as follows:
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71 ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}‘ and ‘(k + 1)ˆ{k - 1} ≥
kˆ{k - 1}‘ for ‘k ≥ 3‘ because:

72 ‘(k + 1)ˆ2 = kˆ2 + 2k + 1 ≥ kˆ2‘ for all ‘k ≥ 1‘,
73 ‘(k + 1)ˆ3 = kˆ3 + 3kˆ2 + 3k + 1 ≥ kˆ3 + 3kˆ2 ≥ kˆ3 + 2kˆ2 ≥ kˆ3‘

for ‘k ≥ 2‘, etc.
74 But we get ‘(k + 1)ˆk ≥ (k + 1) * kˆ{k - 1}‘, which is not what we

want! This is because we made a miscount. The correct relation
is:

75 ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}.‘, and ‘(k + 1)ˆ{k - 1} >
kˆ{k - 1}‘ for ‘k ≥ 3‘ (since ‘l < m‘ implies ‘lˆ{n} < mˆ{n}‘
for ‘l, m > 1‘). That is, ‘(k + 1)ˆk > (k + 1) * kˆ{k - 1} >
(k + 1) * kˆ{k - 1} - kˆ{k - 1}‘ is not true.

76

77 Instead, ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1} ≥ (k + 1) * kˆ{k -
1}‘ because ‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘ for ‘k ≥ 3‘.

78

79 Therefore, the full chain is:
80 ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1) ≤ (k + 1)ˆk.‘
81

82 Thus, we can prove the inductive step using the above reasoning.
83

84 #### Abstract Plan:
85 1. Base Case:
86 - Verify the inequality for ‘n = 3‘.
87 2. Inductive Step:
88 - Assume the inequality holds for ‘n = k‘, i.e., ‘k! < kˆ(k -

1)‘ for ‘k ≥ 3‘.
89 - Prove for ‘n = k + 1‘, i.e., ‘(k + 1)! < (k + 1)ˆk = (k + 1) *

kˆ(k - 1)‘.
90 - But it is enough to prove ‘(k + 1)ˆk ≥ (k + 1) * kˆ(k - 1)‘:
91 - Since ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}‘, we must show

‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘.
92 - This is true for ‘k ≥ 4‘ since ‘(k + 1)/k ≥ k/(k - 1)‘.
93 - Check ‘k = 3‘ separately: ‘4ˆ2 = 16 ≥ 3ˆ2 = 9‘ and ‘4ˆ3 =

64 ≥ 3ˆ3 = 27‘, etc.
94

95 #### Lean 4 Proof Sketch with ‘have‘ Statements
96

97 ‘‘‘lean4
98 theorem induction
99 (n : N)

100 (h0 : 3 ≤ n) :
101 (n)! < nˆ(n - 1) := by
102 -- Base case: n = 3
103 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by sorry
104 -- Inductive step: assume (k)! < kˆ(k - 1) for some k ≥ 3, prove

(k + 1)! < (k + 1)ˆ((k + 1) - 1)
105 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) →

(k + 1)! < (k + 1) ˆ ((k + 1) - 1) := by sorry
106 -- Combine base case and inductive step to get the general result
107 have h_general : (n)! < n ˆ (n - 1) := by sorry
108 sorry
109 ‘‘‘
110

111 This sets up the scaffolding of the proof using ‘have‘ statements
with ‘sorry‘.

112

113 ### Step-by-Step Abstract Plan
114

115 1. **Base Case (‘n = 3‘)**:
116 - Directly check ‘3! = 6‘ and ‘3ˆ(3 - 1) = 9‘, hence ‘6 < 9‘.
117

118 2. **Inductive Hypothesis (‘n = k‘)**:
119 - Assume ‘k! < kˆ(k - 1)‘ for some ‘k ≥ 3‘.
120
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121 3. **Inductive Step (‘n = k + 1‘)**:
122 - Prove ‘(k + 1)! < (k + 1)ˆ((k + 1) - 1)‘ using:
123 - ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by IH.
124 - ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1} ≥ (k + 1) * kˆ(k -

1)‘ if ‘(k + 1)ˆ{k - 1} ≥ kˆ(k - 1)‘. This holds for ‘k ≥ 3‘
because ‘(k + 1) ≥ k‘ and functions are increasing.

125

126 4. **Conclusion**:
127 - By induction, the statement holds for all ‘n ≥ 3‘.
128

129 ### Lean 4 Proof Sketch with ‘have‘ Statements and ‘sorry‘s
130

131 ‘‘‘lean4
132 theorem induction
133 (n : N)
134 (h0 : 3 ≤ n) :
135 (n)! < nˆ(n - 1) := by
136 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by sorry
137 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) →

(k + 1)! < (k + 1) ˆ ((k + 1) - 1) := by sorry
138 have h_general : (n)! < n ˆ (n - 1) := by sorry
139 sorry
140 ‘‘‘
141

142 (Note: The ‘have‘ statements are used to sketch the high-level
structure of the proof. The actual Lean 4 proof would fill in
the ‘sorry‘ placeholders with detailed reasoning.)

143

144 ### Complete Lean 4 Proof
145

146 ‘‘‘lean4
147 theorem induction
148 (n : N)
149 (h0 : 3 ≤ n) :
150 (n)! < nˆ(n - 1) := by
151 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by
152 norm_num
153 <;> decide
154

155 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) →
(k + 1)! < (k + 1) ˆ ((k + 1) - 1) := by

156 intro k hk’ hk’’
157 have h1 : (k + 1)! = (k + 1) * k ! := by
158 simp [Nat.factorial_succ, Nat.mul_comm]
159 <;> ring
160 <;> simp_all [Nat.factorial]
161 <;> ring
162 <;> simp_all [Nat.factorial]
163 rw [h1]
164 have h2 : (k + 1 : N) * k ! < (k + 1 : N) * k ˆ (k - 1) := by
165 -- Apply the inductive hypothesis to get the inequality for

‘k! < k ˆ (k - 1)‘
166 have h3 : k ! < k ˆ (k - 1) := hk’’
167 have h4 : (k + 1 : N) > 0 := by linarith
168 have h5 : (k + 1 : N) * k ! < (k + 1 : N) * k ˆ (k - 1) := by
169 exact Nat.mul_lt_mul_of_pos_left h3 (by linarith)
170 exact h5

171 have h3 : (k + 1 : N) ˆ ((k + 1) - 1) = (k + 1) ˆ k := by
172 simp [Nat.sub_add_cancel (by linarith : 1 ≤ k + 1)]
173 <;> ring_nf
174 <;> simp_all
175 rw [h3]
176 -- Use the fact that ‘(k + 1) * k ˆ (k - 1) < (k + 1) ˆ k‘ to

conclude the proof
177 have h4 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) ˆ k := by
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178 have h5 : k ≥ 3 := by exact_mod_cast hk’
179 have h6 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) ˆ k := by
180 have h7 : (k + 1 : N) ˆ k = (k + 1) * (k + 1) ˆ (k - 1) :=

by
181 cases k with
182 | zero => contradiction
183 | succ k’ =>
184 cases k’ with
185 | zero => contradiction
186 | succ k’’ =>
187 cases k’’ with
188 | zero => contradiction
189 | succ k’’’ =>
190 simp [Nat.pow_succ, Nat.mul_assoc]
191 <;> ring_nf at *
192 <;> omega
193 rw [h7]
194 have h8 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) * ((k + 1) ˆ

(k - 1)) := by
195 have h9 : k ˆ (k - 1) < (k + 1) ˆ (k - 1) := by
196 exact Nat.pow_lt_pow_of_lt_left (by linarith) (by
197 have h10 : k - 1 ≥ 2 := by
198 omega
199 omega)
200 nlinarith
201 nlinarith
202 exact h6

203 nlinarith
204

205 have h_general : (n)! < n ˆ (n - 1) := by
206 have h1 : ∀ n : N, 3 ≤ n → (n)! < n ˆ (n - 1) := by
207 intro n hn
208 induction’ hn with k hk IH
209 · -- Base case: k = 3
210 simp [Nat.factorial]
211 <;> norm_num
212 · -- Inductive step: assume the statement holds for k, prove

for k + 1
213 cases k with
214 | zero => contradiction
215 | succ k’ =>
216 cases k’ with
217 | zero => contradiction
218 | succ k’’ =>
219 cases k’’ with
220 | zero => contradiction
221 | succ k’’’ =>
222 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
223 -- Use the inductive hypothesis and the lemma

‘h_inductive_step‘ to prove the next step
224 <;>
225 (try omega) <;>
226 (try nlinarith) <;>
227 (try
228 {
229 have h2 := h_inductive_step (k’’’ + 3) (by

linarith) (by simpa [Nat.factorial, Nat.pow_succ,
Nat.mul_assoc] using IH)

230 simp_all [Nat.factorial, Nat.pow_succ,
Nat.mul_assoc]

231 <;>
232 (try omega) <;>
233 (try nlinarith)
234 })
235 <;>
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236 (try
237 {
238 aesop
239 })
240 <;>
241 (try
242 {
243 nlinarith [pow_pos (by norm_num : (0 : N) < 2)

k’’’, pow_pos (by norm_num : (0 : N) < 2) (k’’’ + 1), pow_pos
(by norm_num : (0 : N) < 2) (k’’’ + 2)]

244 })
245 exact h1 n h0

246

247 exact h_general
248 ‘‘‘

E.6 COMPARISON: DIRECT PROOF ATTEMPT WITHOUT LEMMAS

For comparison, we present below the reasoning process and generated Lean code from a direct
proof attempt without using auxiliary lemmas. Among the 100 initial direct proof attempts (Ninit =
100), we show the one that resulted in the fewest Lean errors.

1 ### Detailed Proof and Analysis
2

3 **Problem Analysis:**
4 We need to prove that for all integers ‘n ≥ 3‘, ‘n! < nˆ(n - 1)‘.
5

6 **Key Observations:**
7 1. For ‘n ≥ 3‘, ‘n - 1 ≥ 2‘ (since ‘3 - 1 = 2‘), so ‘nˆ(n - 1)‘

grows faster than ‘n!‘ as ‘n‘ increases.
8 2. The factorial ‘n!‘ is the product of all integers from ‘1‘ to

‘n‘, while ‘nˆ(n - 1)‘ is a product of ‘n - 1‘ copies of ‘n‘
(assuming ‘n ≥ 3‘).

9 3. The inequality ‘n! < nˆ(n - 1)‘ can be compared term by term,
but a more precise estimate is needed.

10 4. For ‘n ≥ 3‘, we have ‘n! < (n + 1 - 1)! = n!‘? Wait, this is
not helpful. Instead, we can compare ‘n!‘ with ‘nˆ(n - 1)‘:

11 - The inequality ‘n! < nˆ(n - 1)‘ is equivalent to ‘(n - 1)! <
nˆ(n - 2)‘, but this is not directly useful either.

12 5. A better idea is to directly compare ‘n!‘ with ‘n*(n -
1)*. . .*(2)‘ and ‘nˆ(n - 1) = n * n * . . . * n‘.

13 - For ‘n ≥ 3‘, each term ‘k‘ in the product ‘2 * 3 * . . . * (n -
1)‘ is ‘≥ 1‘ (except ‘2 * 1‘ is skipped if ‘n ≥ 4‘, but ‘n ≥
3‘ is given), and each is ‘≤ n - 1‘ for ‘k ≤ n - 2‘. However,
comparing ‘k‘ to ‘n‘ is complicated.

14 - Alternatively, ‘n!‘ is the product of ‘n‘ factors, each ‘≤
n‘, but ‘n!‘ is a product of all numbers from ‘1‘ to ‘n‘,
whereas ‘nˆ(n - 1)‘ is a product of ‘n - 1‘ copies of ‘n‘.

15

16 But actually, induction is not straightforward here. The key is to
compare ‘n!‘ with ‘n * (n - 1)ˆ(n - 1)‘, since ‘(n - 1)ˆ(n -
1)‘ grows faster than ‘(n - 1)(n - 2) . . .‘ for ‘n ≥ 3‘.

17

18 But ‘n! < n * (n - 1)!‘ is ‘n! < n * (n - 1)!‘, which is true
except for ‘n = 1‘. So is ‘n * (n - 1)! < nˆ(n - 1)‘? Not
obviously, because for ‘n = 4‘, ‘4 * 3! = 24‘ and ‘4ˆ3 = 64‘,
but for ‘n = 3‘, ‘3! = 6‘ and ‘3ˆ2 = 9‘.

19

20 Instead, let’s recall the definition of ‘n!‘ and think about how
many times ‘n!‘ is compared to ‘nˆ(n - 1)‘.

21

22 For ‘n ≥ 3‘, each time you compare ‘n!‘ with ‘n * (n - 1)!‘, and
this is ‘< n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)} ? Seems
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wrong because ‘(n - 1)! < nˆ(n - 2)}‘ would be true for ‘n ≥
2‘ by induction, which is not a problem since we’re proving it.

23

24 Perhaps a better approach is to use telescoping inequalities.
Consider ‘n! = n * (n - 1) * . . . * 2 * 1‘, and ‘nˆ(n - 1)‘ is
the product of ‘n - 1‘ copies of ‘n‘.

25

26 For ‘n ≥ 3‘, each term in the factorial is smaller than ‘n‘ (‘k ≤
n - 1‘).

27

28 But more precisely, ‘n! = n * (n - 1)!‘ and ‘(n - 1)! < nˆ(n - 2)‘
for ‘n ≥ 3‘ (since ‘n - 1 ≥ 2‘).

29

30 Let’s try to prove ‘(n - 1)! < nˆ(n - 2)}‘. If ‘(n - 1)! < nˆ(n -
2)}‘ holds, then ‘n! = n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n -
2)}‘.

31

32 But is ‘n * nˆ(n - 2)} = nˆ(n - 1)}‘ ? Yes, because ‘n * nˆ(n -
2)} = nˆ(1 + n - 2)} = nˆ(n - 1)}‘.

33

34 Thus, ‘n! < nˆ(n - 1)}‘, provided that ‘(n - 1)! < nˆ(n - 2)}‘.
35

36 Wait, ‘nˆ(n - 2)}‘ is ‘n * nˆ(n - 3)}‘ if ‘n ≥ 3‘.
37

38 So the induction is:
39 - Base case ‘n = 3‘: ‘2! = 2‘ and ‘3ˆ2 = 9‘, ‘2 < 9‘ holds.
40 - Inductive step: Assume for ‘n‘, ‘(n - 1)! < nˆ(n - 2)}‘. Then ‘n

* (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)}‘? But ‘n * nˆ(n - 2)}
= nˆ(n - 2 + 1)} = nˆ(n - 1)}‘. So ‘n! = n * (n - 1)! < nˆ(n -
1)}‘.

41

42 This is a valid induction, provided that ‘(n - 1)! < nˆ(n - 2)}‘
is true for ‘n ≥ 3‘.

43

44 Now, recall that for ‘n ≥ 3‘:
45 ‘n! = n * (n - 1)!‘ and ‘(n - 1)! < nˆ(n - 2)‘ if ‘n ≥ 3‘.
46

47 But is ‘(n - 1)! < nˆ(n - 2)}‘ true for ‘n ≥ 3‘?
48

49 For ‘n = 3‘, LHS = 2, RHS = 1. False. Hmm, ‘3! = 6‘ and ‘3ˆ(3 -
3)‘ = 1? No, ‘3 ≥ 3‘ and ‘3ˆ(3 - 2)} = 3ˆ{1}} = 3‘, ‘2 < 3‘,
so true.

50

51 Wait no. For ‘n = 4‘, ‘(3)! = 6‘, and ‘4ˆ{4 - 2}} = 4ˆ{2}} = 16‘,
‘6 < 16‘ true.

52

53 For ‘n = 5‘, ‘(4)! = 24‘, ‘5ˆ{5 - 2}} = 5ˆ3 = 125‘, ‘24 < 125‘
true.

54

55 Hypothesis that ‘(n - 1)! < nˆ(n - 2)}‘ for all ‘n ≥ 3‘.
56

57 Base case ‘n = 3‘, ‘2! = 2 < 3ˆ{1} = 3‘ true.
58

59 Inductive step: Assume ‘(n - 1)! < nˆ(n - 2)}‘ for ‘n ≥ 4‘.
60

61 We need ‘n! < (n + 1)ˆ(n - 1)}‘:
62 ‘n! = n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)}‘, since ‘(n - 1)!

< nˆ(n - 2)}‘ holds by the inductive hypothesis for ‘n ≥ 3‘.
63

64 This works!
65

66 **Conclusion:** The inequality ‘n! < nˆ{n - 1}‘ holds for all ‘n ≥
3‘ (‘n >= 3‘).

67
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68 But wait, the original Lean statement is ‘n : N‘ and ‘3 ≤ n‘, so
indices are clear.

69

70 We can proceed directly using induction. The ‘have‘ statements
will reflect the proof.

71

72 **Lean 4 Proof Sketch:**
73

74 1. **Base Case (‘n = 3‘)**: Check that ‘3! < 3ˆ{3 - 1}‘ or ‘6 < 9‘.
75 2. **Inductive Step**: Assume ‘(k)! < kˆ{k - 1}‘ for some ‘k ≥ 3‘,

and prove ‘(k + 1)! < (k + 1)ˆ{k}‘ using the assumption ‘k! <
kˆ{k - 1}‘.

76

77 ### Abstract Step-by-Step Plan
78

79 1. **Base Case (‘n = 3‘)**:
80 - Compute ‘3! = 6‘.
81 - Compute ‘3ˆ{3 - 1} = 3ˆ2 = 9‘.
82 - Since ‘6 < 9‘, the statement holds.
83

84 2. **Inductive Step (‘n → n + 1‘)**:
85 - Assume ‘n! < nˆ{n - 1}‘ for some ‘n ≥ 3‘ (induction

hypothesis).
86 - Prove ‘(n + 1)! < (n + 1)ˆn‘:
87 - ‘(n + 1)! = (n + 1) * n!‘ (by definition).
88 - By hypothesis, ‘n! < nˆ{n - 1}‘.
89 - Thus, ‘(n + 1)! < (n + 1) * nˆ{n - 1}‘.
90 - It remains to prove ‘(n + 1) * nˆ{n - 1} ≤ (n + 1)ˆn‘,

i.e., ‘nˆ{n - 1} ≤ (n + 1)ˆ{n - 1}‘ (if ‘n + 1 ≥ 2‘? Always
true since ‘n ≥ 2‘).

91 * Since ‘n ≥ 2‘, ‘nˆ{n - 1} ≤ (n + 1)ˆ{n - 1}‘ because ‘n ≤
n + 1‘ and the exponent is ‘n - 1 ≥ 2‘, making the term ‘(n +
1)ˆ{n - 1}‘ strictly greater than ‘nˆ{n - 1}}‘.

92

93 ### Lean 4 ‘have‘ Statements
94

95 ‘‘‘lean4
96 theorem induction
97 (n : N)
98 (h0 : 3 ≤ n) :
99 (n)! < nˆ(n - 1) := by

100 have h_main : (n)! < nˆ(n - 1) := by
101 sorry
102 sorry
103 ‘‘‘
104

105 ### Explanation of ‘have‘ Statements:
106 1. The ‘have‘ statement ‘h_main‘ directly encodes our goal ‘(n)! <

nˆ(n - 1)‘. Inside the proof, we would perform induction, but
in a structured Lean proof, we break it into a single ‘have
h_main‘.

107 - The actual proof would expand on ‘h_main‘ by leveraging
induction, but for this sketch, it suffices to rely on the
good old induction hypothesis.

108

109 ### Complete Lean 4 Proof
110

111 ‘‘‘lean4
112 theorem induction
113 (n : N)
114 (h0 : 3 ≤ n) :
115 (n)! < nˆ(n - 1) := by
116 have h_main : (n)! < nˆ(n - 1) := by
117 have h1 : ∀ n : N, 3 ≤ n → (n)! < n ˆ (n - 1) := by
118 intro n hn
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119 induction’ hn with n hn IH
120 · -- Base case: n = 3
121 norm_num [Nat.factorial]
122 · -- Inductive step: assume the statement holds for n, prove

for n + 1
123 cases n with
124 | zero => contradiction -- n cannot be zero since 3 ≤ n
125 | succ n =>
126 cases n with
127 | zero => contradiction -- n cannot be one since 3 ≤ n
128 | succ n =>
129 cases n with
130 | zero => contradiction -- n cannot be two since 3 ≤ n
131 | succ n =>
132 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_comm,

Nat.mul_assoc, Nat.mul_left_comm]
133 <;>
134 (try omega) <;>
135 (try
136 {
137 nlinarith [pow_pos (by decide : (0 : N) < 2)

n, pow_pos (by decide : (0 : N) < 2) (n - 1)]
138 }) <;>
139 (try
140 {
141 ring_nf at *
142 <;>
143 nlinarith [pow_pos (by decide : (0 : N) < 2)

n, pow_pos (by decide : (0 : N) < 2) (n - 1)]
144 }) <;>
145 (try
146 {
147 simp_all [Nat.factorial_succ, Nat.mul_comm,

Nat.mul_assoc, Nat.mul_left_comm]
148 <;>
149 norm_num at *
150 <;>
151 ring_nf at *
152 <;>
153 nlinarith [pow_pos (by decide : (0 : N) < 2)

n, pow_pos (by decide : (0 : N) < 2) (n - 1)]
154 })
155 exact h1 n h0

156 exact h_main
157 ‘‘‘
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