
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROVER AGENT: AN AGENT-BASED FRAMEWORK
FOR FORMAL MATHEMATICAL PROOFS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Prover Agent, a novel AI agent for automated theorem proving that in-
tegrates large language models (LLMs) with a formal proof assistant, Lean. Prover
Agent coordinates an informal reasoning LLM, a formal prover model, and feed-
back from Lean while also generating auxiliary lemmas. These auxiliary lemmas
are not limited to subgoals in the formal proof but can also include special cases or
potentially useful facts derived from the assumptions, which help in discovering
a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F bench-
mark and solves 25 problems on the PutnamBench with a smaller sample budget
than previous approaches, establishing a new state-of-the-art on both benchmarks
among methods using small language models (SLMs). We also present theoretical
analyses and case studies that illustrate how these generated lemmas contribute to
solving challenging problems.

100 101 102 103 104 105 106 107

Sample Budget

50

55

60

65

70

75

80

85

Pa
ss

Ra
te

(%
)

Prover Agent (Ours)
Goedel-Prover-V2
Leanabell-Prover-V2-DS
Leanabell-Prover-V2-KM
DeepSeek-Prover-V2
Kimina-Prover-Preview-Distill
STP
Leanabell-Prover-GD-RL
Goedel-Prover-SFT
BFS-Prover
InternLM2.5-StepProver-BF+CG

(a) MiniF2F Results

102 103 104

Sample Budget

6

9

12

15

18

21

24
Nu

m
So

lve
d

Prover Agent (Ours)
Goedel-Prover-V2
DeepSeek-Prover-V2
Kimina-Prover-Preview-Distill
STP
Goedel-Prover-SFT
InternLM2.5-StepProver-BF+CG

(b) PutnamBench Results

Figure 1: Comparison of theorem-proving performance on MiniF2F (Zheng et al., 2022) and Put-
namBench (Tsoukalas et al., 2024b) among methods using SLMs. On both benchmarks, our ap-
proach achieves a higher success rate with a smaller sample budget, establishing a new state-of-the-
art at this scale.

1 INTRODUCTION

Recent advances in the reasoning capabilities of large language models (LLMs) have driven remark-
able progress across many areas of artificial intelligence, including mathematical theorem proving
and problem solving (OpenAI, 2024; DeepSeek-AI, 2025; Yang et al., 2025a; Lewkowycz et al.,
2022). However, LLMs are prone to errors and hallucinations that can undermine their reliability (Ji
et al., 2023; Huang et al., 2025; Xu et al., 2025). Inference-time scaling techniques such as chain-
of-thought have greatly enhanced their reasoning performance by allowing models to reflect on and
correct faulty reasoning steps (Wei et al., 2022). Nonetheless, eliminating mistakes entirely remains
challenging, especially for more difficult problems (Wei et al., 2022; Zeng et al., 2025).

Formal proof assistants such as Lean (Moura & Ullrich, 2021), The Rocq Prover (previously known
as Coq) (Barras et al., 1999), and Isabelle (Paulson, 1994) rigorously verify by computer that every

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

inference step in mathematical proofs written in their respective languages is correct, based on the
Curry–Howard correspondence. This helps mathematicians verify the correctness of proofs. Here,
no errors, omissions of detail, implicit assumptions, or ambiguities are permitted. However, working
with formal proof assistants typically requires painstaking manual effort and meticulous detail. As
a result, automating mathematical theorem proving has long been a grand challenge in artificial
intelligence and formal methods (Newell & Simon, 1956; Irving et al., 2016; Polu & Sutskever,
2020; Jiang et al., 2023; Lu et al., 2023).

Consequently, formal theorem proving with LLMs has become increasingly important in recent
years, leading to a growing body of research in this area (Wang et al., 2024b; Wu et al., 2024a; Xin
et al., 2025b; Li et al., 2025; Xin et al., 2025a; Dong & Ma, 2025; Lin et al., 2025b; Zhang et al.,
2025; Wang et al., 2025; Ren et al., 2025; Ji et al., 2025; Lin et al., 2025c; Cao et al., 2025; Zhou
et al., 2025; Chen et al., 2025). This not only provides a way to guarantee the correctness of mathe-
matical reasoning by LLMs, but also marks a major breakthrough in automated theorem proving. A
key point is the complementary strengths of LLMs and formal proof assistants: LLMs excel in rea-
soning and generation but may produce errors and lack guarantees of correctness, whereas formal
proof assistants, such as Lean, possess perfect verification capabilities grounded in mathematical
logic but are not generative.

Yet, significant hurdles remain in bridging informal reasoning and formal proving (Yang et al.,
2025b). For instance, prompting o3-mini (OpenAI, 2025) to directly generate a complete Lean
proof for a competition-level problem succeeds in only 6.0% of cases in a single attempt, despite its
strong performance on competition-level mathematical reasoning in natural language (Yousefzadeh
& Cao, 2025). Even when fine-tuned on mathematical data, trained with reinforcement learning, or
allowed chain-of-thought, purely neural approaches fail to produce correct formal proofs, and their
formal proving capabilities still lag far behind their informal reasoning skills in natural language.

To bridge this gap between informal reasoning and formal proving, we propose a novel agent frame-
work (Prover Agent) that coordinates an informal reasoning LLM, a formal prover model, and
the Lean verification system. To tackle difficult problems that cannot be solved directly, the agent
generates auxiliary lemmas to assist in discovering a viable proof strategy. These lemmas are not
limited to subgoals that can be directly inserted into a formal proof, but may also include special
cases or potentially useful facts derived from the assumptions. Such lemmas are particularly useful
when the overall proof strategy is not apparent from the outset, as they help in constructing a vi-
able plan. It achieves an 88.1% success rate on the MiniF2F benchmark (Zheng et al., 2022) and
solves 25 problems on the PutnamBench (Tsoukalas et al., 2024b), establishing a new state-of-the-
art on both benchmarks among methods using small language models (SLMs). Notably, it uses only
SLMs with a smaller sample budget and a smaller token budget than previous high-performing ap-
proaches, making it much more efficient in terms of inference-time cost. Furthermore, we provide
both a theoretical analysis and a case study to demonstrate the effectiveness of our agent’s approach
to generating auxiliary lemmas.

Our contributions are summarized as follows:
• Coordination of Informal and Formal Reasoning with Lean Feedback: Our agent com-

bines an informal LLM and a formal prover under Lean’s verification. The LLM produces
natural language reasoning and lemmas, which the prover formalizes and Lean checks.
Errors detected by Lean are immediately fed back, enabling iterative refinement of con-
structed proofs.

• Auxiliary Lemma Generation for Strategy Discovery: For challenging problems that
cannot be solved directly, our agent generates auxiliary lemmas, such as special cases,
potentially useful facts, or hypothesis-driven conjectures, which are then formally proved.
By reconsidering the overall proof in light of the verified lemmas, the system uncovers
viable proof strategies even when the solution path is not apparent at first.

• State-of-the-Art Theorem-Proving Performance: On the MiniF2F benchmark (Zheng
et al., 2022), a standard benchmark for formal theorem proving that consists of 488
problems drawn from mathematics Olympiads and advanced mathematics, our agent
achieves 88.1% pass rate, establishing a new state-of-the-art among methods using SLMs.
Furthermore, our agent successfully solves 25 problems on more challenging Putnam-
Bench (Tsoukalas et al., 2024b), also achieving state-of-the-art performance among SLM-
based methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Efficiency in Inference-Time Cost: These scores are achieved using only SLMs with a
smaller sample budget and a smaller token budget than previous state-of-the-art approaches,
emphasizing the efficiency of our approach in terms of inference-time cost.

2 RELATED WORK

In this section, we provide a brief overview of recent advancements in automated formal theorem
proving. Details of representative systems are provided in Appendix A.

Tree-Search-based Formal Proving. Tree-search methods construct Lean proofs tactic-by-tactic
and navigate the proof space with explicit search, such as best-first search or Monte-Carlo tree
search (MCTS) (Lample et al., 2022; Wang et al., 2023; Wu et al., 2024a; Zhou et al., 2024; Li et al.,
2025; Xin et al., 2025a;b). This line began with stepwise tactic prediction guided by a goal state,
and matured into systems that optimize the tactic policy, the search heuristic, and data curation for
longer proofs.

Whole-Proof Generation. A complementary line to tree-search methods is whole-proof genera-
tion (First et al., 2023), where a model emits an entire Lean script in one shot, often accompanied by
a long chain-of-thought reasoning trace. This approach has progressed via expert-iteration pipelines
that recycle verified proofs back into training (Polu et al., 2023; Wu et al., 2021; 2024a; Lin et al.,
2025a; Dong & Ma, 2025; Lin et al., 2025b;c) and via reinforcement learning with formal verifier
feedback (Kaliszyk et al., 2018; Xin et al., 2025a; Zhang et al., 2025; Wang et al., 2025; Ren et al.,
2025; Gloeckle et al., 2024; Ji et al., 2025; Lin et al., 2025c).

Formal Theorem Proving with Retrieval-Augmented Generation. Another emerging direction is
to combine LLM-based provers with retrieval-augmented generation (RAG), where external knowl-
edge sources or proof libraries are queried at inference time to supplement the model’s reason-
ing (Yang et al., 2023; Shen et al., 2025)

Proof Refinement and Subgoal Decomposition. Some work has explored proof refinement, where
an initial proof attempt is improved based on feedback from the proof assistant (Thakur et al., 2024;
Zhou et al., 2025; Chen et al., 2025; Lin et al., 2025c). Another line of work involves subgoal
decomposition, where a complex theorem is broken down into simpler subgoals that are easier to
prove (Dong et al., 2025; Wang et al., 2024a; Ren et al., 2025; Zhou et al., 2025), often guided by
natural-language sketches (Jiang et al., 2023; Cao et al., 2025).

The subgoal decomposition approach shares certain similarities with ours, but our method adopts a
more comprehensive strategy that subsumes it. In these works, the full sketch of the proof must be
correctly envisioned upfront, which is often challenging. In contrast, our approach does not assume
that the overall proof strategy is fully visible from the beginning. Rather than limiting decomposition
to subgoals directly aligned with a pre-defined proof plan, we also consider auxiliary lemmas, such
as special cases or potentially useful facts, to help develop a strategy in a bottom-up manner.

3 METHOD

The overall workflow is illustrated in Figure 2 and the corresponding pseudocode is shown in Al-
gorithm 1. Given a formal math problem, our agent first attempts a direct proof, which is often
sufficient for simpler problems. For more difficult problems that cannot be solved directly, it gen-
erates auxiliary lemmas to uncover a viable proof strategy. These lemmas are then formalized and
proved individually, and the resulting proven lemmas are used to synthesize a final proof of the orig-
inal problem. Throughout this process, feedback from Lean is used to iteratively refine constructed
proofs. We describe each stage below, highlighting how the informal LLM, formal prover model,
and Lean coordinate to construct formal proofs.

3.1 FORMAL PROOF CONSTRUCTION GUIDED BY INFORMAL REASONING AND ITERATIVE
FEEDBACK

The agent first attempts to directly prove the given problem or a generated lemma without decom-
position. To leverage the stronger mathematical reasoning ability of the informal LLM compared to
that of the formal prover model, we first generate an informal proof in natural language for the given

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Direct proving (Initial attempt)

Problem

If direct
proving fails Informal LLM Formalizer

Lemma Generation

Informal Lemmas
Formalized
Lemmas

Informal LLM

Prover Model Lean

Formal Proof Construction

Iterative Refinement

Proved
Lemmas

Prover Model Lean

Final Proof Synthesis

Iterative Refinement

Formal
Proof

Figure 2: Overall workflow of Prover Agent. The agent coordinates informal reasoning, formal
proving, and Lean verification. It first attempts direct proving; if unsuccessful, it generates auxiliary
lemmas to guide the discovery of a viable proof strategy. These lemmas are then formally proved,
and the successfully proved lemmas are subsequently used to synthesize the final proof.

problem or lemma using the informal LLM. The formal prover model then uses the informal proof
as contextual guidance to generate a formal proof, which is subsequently verified by Lean. If the
proof is successful, this step is complete. If the proof fails, these steps are repeated until a successful
proof is found or the maximum number of attempts Ninit is reached. This process helps establish a
better initial outline for the subsequent iterative refinement process.

If the proof still fails, the agent enters an iterative refinement stage. The proof with the fewest
Lean verification errors among the prior attempts is selected as the initial draft. This proof is then
iteratively refined based on the feedback from Lean. In each iteration, the previous proof attempt,
along with the error locations and corresponding error messages, is provided to the prover model,
which revises and generates a corrected version of the proof. This process is repeated until the proof
is successfully verified by Lean or the maximum number of attempts Nrefine is reached.

This iterative refinement process leverages Lean’s verification to identify and correct mistakes. It
serves as a form of self-correction through in-context learning, akin to how humans improve their
understanding from feedback. This provides an efficient remedy to a key limitation of inference-
time scaling with chain-of-thought, where simply increasing the number of reasoning steps does not
guarantee better results due to the model’s limited ability of self-correction (Zeng et al., 2025; Song
et al., 2025; Stechly et al., 2025; Huang et al., 2024).

It is accessible if a generated lemma cannot be proven. This mirrors how human mathematicians
often approach problems: when the overall strategy is unclear at the beginning, they may explore
several directions, some of which turn out to be unproductive and are eventually discarded in favor
of more promising ones. Alternatively, to handle cases where the lemma is still too challenging to
prove, the system may recursively introduce smaller auxiliary lemmas, up to a depth limit D.

3.2 LEMMA GENERATION VIA INFORMAL REASONING

When the direct proving approach fails to solve the problem, the agent generates several auxiliary
lemmas. These are not limited to subgoals that can be directly inserted into a final proof; they
may also include special cases or potentially useful facts derived from the assumptions that help in
developing a proof strategy. This represents a key difference from prior work, which typically relies
on decomposing the problem into subgoals based on a pre-defined proof sketch (Jiang et al., 2023;
Wang et al., 2024a; Ren et al., 2025; Cao et al., 2025; Zhou et al., 2025). In such approaches, it is
necessary to come up with the correct overall proof strategy beforehand, which is often a challenging
task. Indeed, these methods often rely on larger, stronger models such as DeepSeek-V3 (DeepSeek-
AI, 2024) and DeepSeek-R1 (DeepSeek-AI, 2025) to accurately predict the entire proof plan from
the outset. In contrast, our approach does not assume that the proof strategy is visible from the
outset. Instead, by generating auxiliary lemmas, the agent can gradually construct an effective proof
strategy in a bottom-up manner, even when the full structure is not initially apparent.

For example, when trying to prove that n2 + an is even for a natural number n and an odd number
a, it may be helpful to first consider special cases such as a = 1 or a = 3, i.e., n2 + n or n2 + 3n.
These special cases can help reveal patterns and guide the overall proof strategy for n2 + an, even
though expressions like n2 + n or n2 + 3n may not explicitly appear as steps within the final proof.

This approach mirrors how human mathematicians typically work. When the overall strategy is not
clear at the beginning, they often explore special cases or consider what can be derived from the
assumptions. Through such trial and error, they gradually discover the overall proof strategy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The system first generates lemmas in natural language to leverage the stronger mathematical reason-
ing capabilities of the informal LLM. These lemmas are then converted into formal statements by a
formalizer model, which formalizes only their assumptions and conclusions with no proof attempt.
Lean is also used here to verify the syntactic correctness of the formalized statements, which are
regenerated until they become valid. These formally stated lemmas are then proved using the proof
construction process described in Section 3.1.

3.3 FINAL PROOF SYNTHESIS GUIDED BY VERIFIED LEMMAS AND ITERATIVE FEEDBACK

After attempting to prove each of these lemmas individually, the agent reconsiders the overall proof.
With the verified lemmas as context, it attempts to construct a proof up to Ninit times, followed by
iterative refinement for up to Nrefine attempts, as described in Section 3.1.

4 THEORETICAL ANALYSIS

We present theoretical analyses to justify the effectiveness of our approach described in Section 3.
The use of lemmas serves two key purposes: (i) decomposing proof steps under a given strategy to
make them more manageable, and (ii) helping discover proof strategies when the appropriate one is
not initially clear (e.g., by testing special cases). Prior work has largely focused only on (i), often
requiring larger models to directly devise an overall strategy (Wang et al., 2024a; Jiang et al., 2023;
Ren et al., 2025; Cao et al., 2025; Zhou et al., 2025), whereas our approach leverages both (i) and (ii)
to solve difficult problems more effectively. Sections 4.1 and 4.2 present brief results of theoretical
analyses on lemma usage in cases (i) and (ii), respectively. See Appendix C for the details.

4.1 BENEFITS OF LEMMAS FOR STRUCTURED PROOF DECOMPOSITION

Assumption 4.1. For a certain class of theorems, it is necessary to satisfy m intermediate facts
F1, . . . , Fm, which correspond to subgoals that would typically appear as have statements in Lean.
Assumption 4.2. The probability pi that the model correctly produces each Fi in a single attempt
is independent across i within one global generation.
Assumption 4.3. Given a set of completed intermediate facts {Fi}i∈S with S ⊆ [m]1, the probabil-
ity of proving their composition FS (e.g., simply concatenating them) is higher than the probability
of proving FS without being given those facts: P(FS | {Fi}i∈S) > P(FS).

Assuming p = p1 = · · · = pm for simplicity, the following theorems hold. Rigorous versions
without this simplification and without asymptotic notation are provided in Appendix C.1.
Theorem 4.4 (Required Number of Trials). Let Ndir denote the number of trials required to directly
prove a problem T with probability at least 1−δ. Let Nlem denote the total number of trials required
to complete the proof of T with probability at least 1− δ, when lemmas L1, . . . , Ln are introduced
with an allowed failure probability δlem. Suppose each lemma Li contains a subset of the essential
intermediate facts {Fi}i∈Si

with Si ⊆ [m]. Then the following holds:

Ndir = Θ(p−m), E[Nlem] = Θ̃(p−s),

where s := max{maxi |Si|, |R0|} ≤ m, R0 := [m] \
⋃n

i=1 Si, and Θ̃ indicates asymptotic order
ignoring higher-order terms in δlem, which vanish when δlem is sufficiently small.
Theorem 4.5 (Threshold Condition for Lemma Efficiency). There exists a threshold τ ∈ [0, 1] such
that if p ≤ τ , then E[Nlem] ≤ Ndir holds for any δ, δlem ∈ (0, 1).
Theorem 4.6 (Optimal Partition of Lemma Coverage). Under the fixed lemma coverage U :=⋃n

i=1 Si ⊆ [m], E[Nlem] is minimized when |Si| = ⌈|U |/n⌉ or ⌊|U |/n⌋ for all i ∈ [n].

The proofs are provided in Appendix C.1. Theorem 4.4 shows that lemma-based decomposition
yields an exponential improvement in the order of required trials, while Theorem 4.5 indicates that
for small p (i.e., difficult problems), lemma usage reduces the required number of trials. This jus-
tifies our approach of generating lemmas for difficult problems while solving easy ones directly.
Furthermore, Theorem 4.6 suggests that the optimal lemmas are those that divide the problem into
subproblems of approximately equal difficulty.

1[m] denotes the set {1, 2, . . . ,m}.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 BENEFITS OF LEMMAS FOR DISCOVERING PROOF STRATEGIES (E.G., SPECIAL CASES)

Let S be the set of possible proof strategies (e.g., induction, bounding with monotonicity, or case
analysis with known results). Let π0 denote the prior distribution over strategies that the model
possesses, from which a strategy is chosen in the absence of any additional information. Our agent
conducts experiments with lemmas L1, . . . , Ln and verifies them in Lean, thereby obtaining obser-
vations Y1, . . . , Yn. By incorporating these observations into the context, the distribution is updated
to the posterior πn(·) := π(· | Y1:n), where Y1:n := {Y1, . . . , Yn}, aiming to increase the probability
of selecting the correct proof strategy.

Let p(z) ∈ [0, 1] denote the model’s success probability under a given strategy z ∈ S, and define
r := infz p(z). As shown in Section 4.1, this quantity can be increased by using decomposition-type
lemmas. Define the entropy of the prior distribution as H0 := H(Z) = −

∑
z∈S π0(z) log π0(z).

Theorem 4.7 (Success Probability Improvement by Lemmas). The success probability of perform-
ing one trial of final proving by sampling a strategy from the posterior distribution πn is bounded as
follows: E[P(succ@1)] ≥ r exp

(
−H0 + I(Z;Y1:n)

)
.

The proof is provided in Appendix C.2. This shows that the success probability improves expo-
nentially in the mutual information contributed by lemmas, I(Z;Y1:n). In particular, it exceeds the
no-lemma case, where I(Z;Y1:n) = 0.

Furthermore, this result implies that not only lemmas but any information in the context that shares
mutual information with the final correct proof can similarly improve the success probability, thereby
justifying our use of natural language proofs and Lean feedback.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our approach on both the MiniF2F benchmark (Zheng et al., 2022) and Putnam-
Bench (Tsoukalas et al., 2024b), two widely used datasets for assessing formal theorem-proving sys-
tems. We use DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI, 2025) for the informal reasoning
LLM and DeepSeek-Prover-V2-7B (Ren et al., 2025) and Goedel-Prover-V2-8B (Lin
et al., 2025c) for the prover model. We set Ninit = Nrefine = 50. Thus, the sample budget at
the initial direct proving stage is 50 at the first iteration, and 100 in total when including itera-
tive refinement. For lemmas, we use Ninit = Nrefine = 10 for each of the three lemmas. In the
final synthesis stage, Ninit = Nrefine = 50 is used again, resulting in a total sample budget of
50 + 50 + (10 + 10)× 3 + 50 + 50 = 260. The maximum decomposition depth D is set to 1. All
prompts used in our experiments are provided in Appendix F. All runs are performed on NVIDIA
40GB A100 GPUs with vLLM (Kwon et al., 2023). See Appendix D for further details.

There are several bugs that may result in invalid Lean proofs being incorrectly accepted, such as
the user-interference bug related to the apply? tactic discussed in Ren et al. (2025), and a bug in
REPL2. To avoid these issues and prevent invalid proofs from being mistakenly judged as correct, we
check proofs with lake build instead of REPL and additionally verified that the apply? tactic
is not used. Also, to avoid this bug and obtain reliable baseline results, we re-run the experiments
for Goedel-Prover-V2-8B. We use the official prompts provided on GitHub3 and Hugging Face6,
while keeping all other experimental settings strictly identical to those used in our method, thereby
ensuring a fair comparison. For DeepSeek-Prover-V2, we relied on the results reported in (Ren
et al., 2025), in which this bug has been fixed. See Appendix D for further details.

5.2 MAIN RESULT: COMPARISON WITH THE PREVIOUS STATE-OF-THE-ART

The results are shown in Table 1, Table 2, and Figure 1. On the MiniF2F benchmark, our agent
achieves an 88.1% success rate, establishing a new state-of-the-art among methods using small lan-
guage models (SLMs). Note that our agent achieves this result with a sample budget of only 260,

2https://github.com/leanprover-community/repl/issues/44
3https://github.com/Goedel-LM/Goedel-Prover-V2

6

https://github.com/leanprover-community/repl/issues/44
https://github.com/Goedel-LM/Goedel-Prover-V2

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of formal theorem-proving performance on miniF2F-test. The results are re-
ported as the percentage of theorems proved correctly. For Prover Agent, sample budget includes all
proof attempts across the full pipeline, including initial direct proving, iterative refinement, lemma
proving, and final proof synthesis. The best results within each model scale are highlighted in bold.

Prover System Method Model Size Sample Budget Success Rate

Large Language Models

DSP+ (Cao et al., 2025)
w/ QwQ, DeepSeek-V3, and BFS-Prover

w/ DeepSeek-R1, DeepSeek-V3, and BFS-Prover

Informal
+

Tree search
671B

1 52.5%
128 74.2%

1024 79.5%

1024 80.7%

DeepSeek-Prover-V2 (Ren et al., 2025) Whole-proof 671B
1 61.9%

1024 86.6%
8192 88.9%

Delta-Prover (Zhou et al., 2025) w/ Gemini 2.5 Pro Agent unknown 16384 95.9%

Seed-Prover (Chen et al., 2025) Whole-proof unknown unknown 99.6%

Medium Language Models

Kimina-Prover-Preview (Wang et al., 2025) Whole-proof 72B
1 52.9%

1024 77.9%
8192 80.7%

Goedel-Prover-V2 (Lin et al., 2025c) Whole-proof 32B
32 88.1%

1024 91.8%
8192 92.2%

Small Language Models

DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) Tree search 7B 32× 16× 400 63.5%
InternLM2.5-StepProver-BF + CG (Wu et al., 2024a) Tree search 7B 256× 32× 600 65.9%
HunyuanProver v16 + BFS + DC (Li et al., 2025) Tree search 7B 600× 8× 400 68.4%
BFS-Prover (Xin et al., 2025b) Tree search 7B 2048× 2× 600 70.8%

Leanabell-Prover-GD-RL (Zhang et al., 2025) Whole-proof 7B 128 61.1%
Goedel-Prover-SFT (Lin et al., 2025b) Whole-proof 7B 25600 64.7%
STP (Dong & Ma, 2025) Whole-proof 7B 25600 67.6%

Kimina-Prover-Preview-Distill (Wang et al., 2025) Whole-proof 7B
1 52.5%

32 63.1%
1024 70.8%

DeepSeek-Prover-V2 (Ren et al., 2025) Whole-proof 7B

1 58.6%
32 75.6%

1024 79.9%
8192 82.0%

Leanabell-Prover-V2-KM (Ji et al., 2025)
Whole-proof 7B

32 68.4%
128 70.4%

Leanabell-Prover-V2-DS (Ji et al., 2025) 32 76.6%
128 78.2%

Goedel-Prover-V2 (Lin et al., 2025c) Whole-proof 8B

1 60.8%
64 83.3%
256 85.2%
512 85.7%

Prover Agent
(Ours)

w/ DeepSeek-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

w/ Goedel-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

w/ Ensemble of
Goedel-Prover-V2 and
DeepSeek-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

Agent 8B

1 61.5%
50 79.9%
100 82.0%
260 82.8%

1 64.3%
50 84.4%
100 85.7%
260 86.5%

1 64.3%
50 85.7%
100 86.9%
260 88.1%

far smaller than that of prior work, highlighting its efficiency in inference-time cost. Moreover, even
when evaluated in terms of the total token budget consumed across all LLM calls, our approach
achieves higher success rates with a smaller token budget than the baselines, demonstrating its over-
all efficiency (see Appendix D.6 for details). Furthermore, on the more challenging PutnamBench,
Prover Agent solves 25 problems with a sample budget of only 110. This surpasses the baseline
score despite using fewer samples, establishing a new state-of-the-art among methods based on
SLMs. The consistent improvements observed across both MiniF2F and PutnamBench underscore
the robustness and generality of our approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of formal theorem-proving performance on PutnamBench. The results are
reported as the number of theorems proved correctly. For Prover Agent, sample budget includes all
proof attempts across the full pipeline, including initial direct proving, iterative refinement, lemma
proving, and final proof synthesis. The best results within each model scale are highlighted in bold.

Prover System Method Model Size Sample Budget # Solved

Large Language Models

DSP+ (Cao et al., 2025) Informal
+ Tree search 671B 1024 25/644

DeepSeek-Prover-V2 (Ren et al., 2025) Whole-proof 671B
32 22/658

128 33/658
1024 47/658

Medium Language Models

Goedel-Prover-V2 (Lin et al., 2025c) Whole-proof 32B 32 57/644
184 86/644

Small Language Models

InternLM2.5-StepProver-BF + CG (Wu et al., 2024a) Tree search 7B 2× 32× 600 6/640
STP (Dong & Ma, 2025) Whole-proof 7B 3200 8/644

Goedel-Prover-SFT (Lin et al., 2025b) Whole-proof 7B 32 6/644
512 7/644

Kimina-Prover-Preview-Distill (Wang et al., 2025) Whole-proof 7B 192 10/644

DeepSeek-Prover-V2 (Ren et al., 2025) Whole-proof 7B
32 9/658

128 10/658
1024 11/658

Goedel-Prover-V2 (Lin et al., 2025c) Whole-proof 8B 32 18/659
128 22/659

Prover Agent (Ours)
w/ Goedel-Prover-V2

(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma) Agent 8B 40 20/659

110 25/659

5.3 MODULAR AND SCALABLE DESIGN

To demonstrate the robustness of our approach, we conduct experiments across several models,
namely DeepSeek-Prover-V2 and Goedel-Prover-V2. In both settings, our approach achieves higher
success rates with a smaller sample budget than the vanilla versions of these models, as shown in
Table 1. Furthermore, our approach can also ensemble these models. In experiments where the
sample budget is split evenly between them, our agent achieves an even higher success rate, where
the models complement each other on problems that one alone cannot solve. Unlike monolithic
approaches that train a single large model end-to-end, our method takes an orthogonal approach by
combining an existing LLM and a prover model without any training. This modular design provides
a practical benefit, allowing the system to immediately take advantage of improvements in LLMs
and prover models by simply replacing components and to scale easily with future advancements.

5.4 EFFECTIVENESS OF INFORMAL, FORMAL, AND LEAN COORDINATION

Table 1 shows that in both model settings, our approach outperforms the corresponding vanilla
baselines even before the iterative refinement, highlighting the benefit of collaboration with the
informal LLM. Moreover, the scores increase even further after iterative refinement.

5.5 ABLATION STUDIES: ANALYZING THE CONTRIBUTION OF EACH STAGE

We conduct ablation studies to illustrate the contribution of each stage of our agent. Results for
different Ninit and Nrefine are shown in Figure 3a. When Ninit is set to 1 or 10, the success rate
remains significantly lower than that without iterative refinement, even after Nrefine = 100 refine-
ment steps. This highlights the importance of the quality of the initial draft used to start refinement:
if the initial proof is poor, subsequent refinement becomes significantly more difficult (The case
study in Appendix E.2 shows that refinement depends on the original Lean code and addresses its
errors). Comparing Ninit = 1, 10, 50 under the same sample budget shows a clear improvement in
performance in this order, indicating the effectiveness of our approach of selecting the proof with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400
Sample Budget

65

70

75

80

85

Pa
ss

 R
at

e
(%

)

w/o Iterative Refinement
w/ Iterative Refinement (Ninit = 1)
w/ Iterative Refinement (Ninit = 10)
w/ Iterative Refinement (Ninit = 50)
w/ Iterative Refinement (Ninit = 100)
w/ Final proof synthesis w/ lemmas (Ninit =Nrefine = 50)
w/ Final proof synthesis w/ lemmas (Ninit =Nrefine = 100)

(a) Results for different Ninit and Nrefine. The dotted lines indicate
that the corresponding sample budget are used in the proof of lemmas.

0

8

16

24
Ninit = 1

0

10

20

30 Ninit = 10

0 8 16 24
0

10

20

30 Ninit = 50

Number of Lean errors

N
um

be
r o

f T
he

or
em

s

(b) Histogram of Lean error counts
after Ninit.

Figure 3: Ablation study results on Ninit and Nrefine. These results highlight the importance of
initial draft selection and indicate that iterative refinement and lemma-based proving helps overcome
saturation from the model’s inherent limitations.

the fewest Lean errors. As shown in Figure 3b, the histograms of the minimum number of errors
after Ninit = 1, 10, 50 confirm this trend: the error count decreases substantially, and for Ninit = 50
most problems have only one or two errors. Although the number of Lean errors may not perfectly
measure proof quality, since a single error can still correspond to a mathematically challenging gap,
it nevertheless exhibits a strong correlation and serves as a useful proxy for evaluation.

As shown in Figure 3a, the runs without iterative refinement saturate around a sample budget of 80.
In contrast, when iterative refinement is applied after Ninit = 50 or 100, this saturation is overcome
and the success rate improves, outperforming the setting that simply continues generation with-
out refinement. This demonstrates the effectiveness of the iterative refinement: whereas repeated
generation alone eventually saturates due to the inherent ability limits of the model, incorporating
external feedback through in-context learning enables the model to improve and overcome this lim-
itation. Also, Ninit = 50 and 100 yield almost identical results in the final performance. Since
the model had already saturated in this regime, increasing Ninit did not improve the quality of the
selected initial drafts. Furthermore, Figure 3a shows that final synthesis with lemmas improves the
score even after iterative refinement has saturated, demonstrating the effectiveness of our lemma-
based approach. This indicates that the model’s capability is further enhanced by incorporating
information beyond mere error feedback.

5.6 CASE STUDY: SUCCESS WITH LEMMA-GUIDED PROOFS AND ITERATIVE REFINEMENT

We next present a case study to demonstrate that our approach with auxiliary lemmas is indeed
effective in practice. The detailed discussion and the outputs for this problem, such as the generated
lemmas, final formal proof, and the associated reasoning process, are provided in Appendix E.1. We
analyze the output and reasoning process for the problem where the direct proof attempt failed but
the use of auxiliary lemmas led to a successful proof. The case study illustrating an example that
succeeds through iterative refinement is described in detail in Appendix E.2, where it demonstrates
how providing feedback about Lean’s limitations helps guide the model toward constructing an
effective proof.

In this case, our agent generates a lemma corresponding to the special case of substituting n = 3 into
the given problem, as well as additional lemmas that may be potentially relevant for solving the prob-
lem. As observed in the chain-of-thought process when this lemma is used (see Appendix E.1.5),
the agent immediately considers the n = 3 case and then quickly comes up with mathematical in-
duction as the proof strategy. This allows it to quickly transition to filling in the details under a clear
proof plan and ultimately complete the proof. Moreover, tactics and proof techniques considered in
the auxiliary lemmas reappear in the reasoning process and final proof: even when a lemma itself
is not directly used, the techniques explored during lemma generation provide valuable hints for the
overall proof construction.

Next, for comparison, we examine the reasoning process without using lemmas, focusing on the
trajectory with the fewest final errors (see Appendix E.1.6). Compared to the successful case with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Comparison of formal theorem-proving performance by problem category on MiniF2F-test.
The results are reported as the percentage of theorems proved. The best results in each model setting
for each of the three categories, demarcated by double lines, are highlighted in bold.

Olympiad MATH Custom
Model
Size

Sample
Budget IMO AIME AMC Sum Algebra Number

Theory Sum Algebra Number
Theory Induction Sum

Number of Problems 20 15 45 80 70 60 130 18 8 8 34

DeepSeek-Prover-V2 (Ren et al., 2025) 671B 8192 50.0 93.3 77.8 73.8 100.0 96.7 98.5 83.3 87.5 100.0 88.2

Prover Agent (Ours)
w/ DeepSeek-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B

1 40.0 53.3 62.2 55.0 71.4 60.0 66.2 55.6 75.0 50.0 58.8
50 70.0 80.0 82.2 78.8 80.0 88.3 83.8 66.7 75.0 62.5 67.6
100 70.0 80.0 86.7 81.3 84.3 88.3 86.2 66.7 75.0 62.5 67.6
260 70.0 80.0 88.9 82.5 84.3 88.3 86.2 66.7 75.0 75.0 70.6

Goedel-Prover-V2 (Lin et al., 2025c) 8B

1 50.0 60.0 53.3 53.8 71.4 63.3 67.7 50.0 62.5 50.0 52.9
64 80.0 80.0 88.9 85.0 84.3 91.7 87.7 77.8 75.0 87.5 79.4
256 80.0 80.0 88.9 85.0 84.3 91.7 87.7 77.8 75.0 87.5 79.4
512 80.0 80.0 88.9 85.0 84.3 91.7 87.7 77.8 75.0 87.5 79.4

Prover Agent (Ours)
w/ Goedel-Prover-V2

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B

1 50.0 73.3 57.8 58.8 68.6 70.0 69.2 55.6 62.5 62.5 58.8
50 80.0 80.0 86.7 83.8 84.3 90.0 86.9 77.8 75.0 75.0 76.5
100 80.0 80.0 88.9 85.0 87.1 90.0 88.5 77.8 75.0 75.0 76.5
260 80.0 80.0 88.9 85.0 88.6 90.0 89.2 77.8 75.0 87.5 79.4

Prover Agent (Ours)
w/ Ensenble

(Direct proving w/o iterative refinement)
(Direct proving w/o iterative refinement)
(Direct proving w/ iterative refinement)
(Final proof synthesis w/ lemma)

8B

1 50.0 73.3 57.8 58.8 68.6 70.0 69.2 55.6 62.5 62.5 58.8
50 80.0 80.0 88.9 85.0 87.1 90.0 88.5 77.8 75.0 75.0 76.5
100 80.0 80.0 91.1 86.3 90.0 90.0 90.0 77.8 75.0 75.0 76.5
260 80.0 80.0 93.3 87.5 91.4 90.0 90.8 77.8 75.0 87.5 79.4

lemmas, the proof strategy here is far less clear, with the model wandering without a coherent plan.
As a result, even when it eventually reaches the idea of using mathematical induction, it fails to
elaborate on the details, and the proof does not succeed. This comparison highlights the effectiveness
of our auxiliary-lemma approach, which goes beyond the simple decomposition of previous work.

5.7 PERFORMANCE ON OLYMPIAD-LEVEL PROBLEMS

Table 3 shows the results for each category on the MiniF2F-test dataset. These results demonstrate
that our approach with DeepSeek-Prover-V2 setting performs particularly well on Olympiad-level
problems, even surpassing DeepSeek-Prover-V2 (Ren et al., 2025), which uses a significantly larger
671B model and a much higher sample budget of 8192. Given that our direct proving method with-
out iterative refinement and with a sample budget of only 100 already surpasses DeepSeek-Prover-
V2, this suggests that coordination with natural language-based informal reasoning may be the key.
Olympiad-level problems require a high degree of mathematical reasoning, and the strong reasoning
abilities of the informal LLM likely played a crucial role in solving them effectively. On the other
hand, our agent does not outperform DeepSeek-Prover-V2 in the MATH and Custom categories.
The consistent gap in these categories suggests that model size and sample budget may play a more
significant role here. Since DeepSeek-Prover-V2 also possesses a certain level of mathematical rea-
soning ability, it can handle these relatively mathematically easier problems on its own. In contrast,
with the Goedel-Prover-V2 setting, no substantial differences are observed across categories. This
is likely because Goedel-Prover-V2 already possesses a certain level of the required mathematical
capability for all these categories, and thus category-specific variation does not emerge as clearly.

5.8 BROADER APPLICABILITY AND FUTURE POTENTIAL

Nothing in our pipeline is specific to mathematics competition problems. The same approach could
be applied to formal proofs in other domains, such as learning theory or physics, as long as the LLM
has relevant knowledge or is provided with an appropriate knowledge base. This offers the potential
for AI-driven construction of mathematical theories without hallucinations or logical errors.

6 CONCLUSION

We introduced Prover Agent, a modular framework that coordinates an informal reasoning LLM,
a formal prover model, and Lean verification. By generating auxiliary lemmas and leveraging
feedback-driven refinement, our method achieved state-of-the-art performance among methods us-
ing SLMs on both MiniF2F PutnamBench. Future work includes developing mechanisms to gener-
ate more effective lemmas tailored to different types of problems, and extending our framework to
domains beyond mathematics that require formal verification, such as software verification.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. In Advances in Neural Information Processing Systems, volume 30, 2017.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
and Jeremy Avigad. ProofNet: Autoformalizing and formally proving undergraduate-level math-
ematics. arXiv preprint arXiv:2302.12433, 2023.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq proof assistant reference manual. INRIA, version, 6(11):17–21, 1999.

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Re-
viving DSP for advanced theorem proving in the era of reasoning models. arXiv preprint
arXiv:2506.11487, 2025.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen
Zhu. Seed-Prover: Deep and broad reasoning for automated theorem proving. arXiv preprint
arXiv:2507.23726, 2025.

DeepSeek-AI. DeepSeek-V3 technical report. arXiv preprint arXiv:2412.19437, 2024.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Kefan Dong and Tengyu Ma. STP: Self-play llm theorem provers with iterative conjecturing and
proving. arXiv preprint arXiv:2502.00212, 2025.

Kefan Dong, Arvind Mahankali, and Tengyu Ma. Formal theorem proving by rewarding llms to
decompose proofs hierarchically. arXiv preprint arXiv:2411.01829, 2025.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. ESEC/FSE 2023, pp. 1229–1241. Association for Computing
Machinery, 2023. ISBN 9798400703270. doi: 10.1145/3611643.3616243.

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. ABEL: Sample efficient
online reinforcement learning for neural theorem proving. In The 4th Workshop on Mathematical
Reasoning and AI at NeurIPS’24, 2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. In International Conference on Learning
Representations, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on
Information Systems, 43(2), 2025. ISSN 1046-8188. doi: 10.1145/3703155.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef Ur-
ban. DeepMath - deep sequence models for premise selection. In Advances in Neural Information
Processing Systems, volume 29, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng
Zhang, Guorui Zhou, and Kun Gai. Leanabell-Prover-V2: Verifier-integrated reasoning for formal
theorem proving via reinforcement learning. arXiv preprint arXiv:2507.08649, 2025.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12), 2023. ISSN 0360-0300. doi: 10.1145/3571730.

Albert Q. Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. LISA: Language models of isabelle
proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, 2021.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh International Conference on Learning Represen-
tations, 2023.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák. Reinforcement learning
of theorem proving. In Advances in Neural Information Processing Systems, volume 31, 2018.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626. Association for Computing Machinery, 2023. ISBN 9798400702297. doi:
10.1145/3600006.3613165.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Advances in Neural Information Processing Systems, volume 35, pp. 26337–26349,
2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. In Advances in Neural Information Processing Systems, volume 35, pp. 3843–
3857, 2022.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hunyuan-
Prover: A scalable data synthesis framework and guided tree search for automated theorem prov-
ing. arXiv preprint arXiv:2412.20735, 2025.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-STaR: Learning to interleave
thinking and proving. In The Thirteenth International Conference on Learning Representations,
2025a.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover: A frontier model for open-source
automated theorem proving. arXiv preprint arXiv:2502.07640, 2025b.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover-V2: Scal-
ing formal theorem proving with scaffolded data synthesis and self-correction. arXiv preprint
arXiv:2508.03613, 2025c.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 14605–14631. Association for Compu-
tational Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.817.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, pp. 367–381. Association for
Computing Machinery, 2020. ISBN 9781450370974. doi: 10.1145/3372885.3373824.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Pure Mathematics,
2019. URL http://us.metamath.org/downloads/metamath.pdf.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming lan-
guage. In Automated Deduction—CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, LNCS 12699, pp. 625–635. Springer-Verlag, 2021. doi: 10.1007/
978-3-030-79876-5 37.

A. Newell and H. Simon. The logic theory machine–a complex information processing system. IRE
Transactions on Information Theory, 2(3):61–79, 1956. doi: 10.1109/TIT.1956.1056797.

OpenAI. OpenAI o1 system card. arXiv preprint arXiv:2412.16720, 2024.

OpenAI. OpenAI o3-mini, 2025. URL https://openai.com/index/
openai-o3-mini/.

Lawrence C. Paulson. Isabelle a Generic Theorem Prover. Springer Verlag, 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In The Eleventh International
Conference on Learning Representations, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Ad-
vances in Neural Information Processing Systems, volume 36, pp. 53728–53741, 2023.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yux-
uan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. DeepSeek-Prover-V2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition. arXiv preprint
arXiv:2504.21801, 2025.

Ziju Shen, Naohao Huang, Fanyi Yang, Yutong Wang, Guoxiong Gao, Tianyi Xu, Jiedong Jiang,
Wanyi He, Pu Yang, Mengzhou Sun, Haocheng Ju, Peihao Wu, Bryan Dai, and Bin Dong.
REAL-Prover: Retrieval augmented Lean prover for mathematical reasoning. arXiv preprint
arXiv:2505.20613, 2025.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M. Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limita-
tions of large language models on reasoning and planning tasks. In The Thirteenth International
Conference on Learning Representations, 2025.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
context learning agent for formal theorem-proving. In First Conference on Language Modeling,
2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition. In Advances in Neural Information Processing Systems, vol-
ume 37, pp. 11545–11569, 2024a.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on the
putnam mathematical competition. In The Thirty-eight Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2024b.

13

http://us.metamath.org/downloads/metamath.pdf
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-solver: Automated theorem
proving with dynamic-tree sampling guided by proof-level value function. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 12632–12646. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.
acl-long.706.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang,
Jing Tang, Jian Yin, Zhenguo Li, and Xiaodan Liang. Proving theorems recursively. In Advances
in Neural Information Processing Systems, volume 37, pp. 86720–86748, 2024a.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforce-
ment learning. arXiv preprint arXiv:2504.11354, 2025.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theo-
remLlama: Transforming general-purpose LLMs into lean4 experts. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 11953–11974. Associa-
tion for Computational Linguistics, 2024b. doi: 10.18653/v1/2024.emnlp-main.667.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, 2020.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. Tacticzero: Learning to prove
theorems from scratch with deep reinforcement learning. In Advances in Neural Information
Processing Systems, volume 34, pp. 9330–9342, 2021.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
InternLM2.5-StepProver: Advancing automated theorem proving via expert iteration on large-
scale lean problems. arXiv preprint arXiv:2410.15700, 2024a.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. LEAN-GitHub: Compiling github lean reposi-
tories for a versatile lean prover. arXiv preprint arXiv:2407.17227, 2024b.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. International Conference on Learning
Representations, 2025a.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. BFS-Prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025b.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models. arXiv preprint arXiv:2401.11817, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-Math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-
augmented language models. In Advances in Neural Information Processing Systems, volume 36,
pp. 21573–21612, 2023.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin E. Lauter, Swarat Chaudhuri, and
Dawn Song. Position: Formal mathematical reasoning—a new frontier in AI. In Forty-second
International Conference on Machine Learning Position Paper Track, 2025b.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. In Advances in
Neural Information Processing Systems, volume 37, pp. 105848–105863, 2024.

Roozbeh Yousefzadeh and Xuenan Cao. A lean dataset for international math olympiad: Small steps
towards writing math proofs for hard problems. Transactions on Machine Learning Research,
2025. ISSN 2835-8856.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? arXiv
preprint arXiv:2502.12215, 2025.

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
Zhou, and Kun Gai. Leanabell-Prover: Posttraining scaling in formal reasoning. arXiv preprint
arXiv:2504.06122, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Proceedings of
the 41st International Conference on Machine Learning, volume 235, pp. 62138–62160. PMLR,
2024.

Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,
Haowei Chen, Allan Jie, Xinbo Zhang, Haocheng Wang, Luong Trung, Rong Ye, Phan Nhat
Hoang, Huishuai Zhang, Peng Sun, and Hang Li. Solving formal math problems by decomposi-
tion and iterative reflection. arXiv preprint arXiv:2507.15225, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

We briefly summarized related work in Section 2. Here we provide details of representative systems.

A.1 LANGUAGE MODELS FOR FORMAL THEOREM PROVING

The use of language models for guiding formal theorem provers has gained momentum recently.
Early work like GPT-f (Polu & Sutskever, 2020) applied transformers to produce proofs in formal
systems, such as Metamath (Megill & Wheeler, 2019) and Lean (Moura & Ullrich, 2021), by gen-
erating one proof step (tactic) at a time, guided by a goal state. Subsequent efforts in Lean, such as
lean-gptf4 and PACT (Han et al., 2022), fine-tuned LLMs on large corpora of proof data, achieving
moderate success in automatically discovering proofs.

A.2 TREE-SEARCH-BASED FORMAL PROVING

BFS-Prover (Xin et al., 2025b) proposed a scalable best-first tree search framework for Lean 4 that
incorporates three key innovations: strategic data filtering during expert iterations, direct preference
optimization (DPO) (Rafailov et al., 2023) on state-tactic pairs using Lean compiler feedback, and
length normalization to encourage exploration of deeper proof paths. InternLM2.5-StepProver (Wu
et al., 2024a) combined expert iteration with BFS and critic-guided sampling, while Hunyuan-
Prover (Li et al., 2025) integrated large-scale data synthesis and guided search. Reinforcement-
enhanced variants such as DeepSeek-Prover-V1.5 (Xin et al., 2025a) proposed the use of RMaxTS,
a variant of Monte-Carlo tree search (MCTS), to diversify exploration and improve success rates.

A.3 WHOLE-PROOF GENERATION

Representative systems in this strand have advanced two complementary mechanisms: (i) expert-
iteration bootstrapping, which cycles model-generated proofs through a formal verifier to curate
training trajectories, and (ii) reinforcement learning (RL) with verifier feedback that directly opti-
mizes long, one-shot scripts (often with a long chain-of-thought).

Polu et al. (2023) introduced expert iteration for formal mathematics, alternating proof search with
learning. They showed expert iteration outperforms search-only at fixed compute, discovered an
automatically paced curriculum from problem statements, and showed improved performance on
the miniF2F (Zheng et al., 2022) benchmark without requiring ground-truth proofs. InternLM2.5-
StepProver (Wu et al., 2024a) scaled expert iteration on Lean-Workbook (Ying et al., 2024), trained a
critic to prioritize easier instances and guide deeper proofs, and paired expert iteration with best-first
exploration, achieving strong results on several benchmarks, such as miniF2F (Zheng et al., 2022),
ProofNet (Azerbayev et al., 2023), PutnamBench (Tsoukalas et al., 2024a), and Lean-Workbook-
Plus (Ying et al., 2024). Lean-STaR (Lin et al., 2025a) trained a model to interleave informal
natural-language thoughts with formal tactic steps. The model is trained by expert iteration, and
at inference time, it generates informal reasoning prior to each tactic, enhancing theorem-proving
performance. Goedel-Prover (Lin et al., 2025b) tackled data scarcity by training statement formal-
izers to translate Numina problems into Lean 4, building a 1.64M-statement corpus, and iteratively
bootstrapping provers whose new proofs are added to training. The resulting SFT-centered expert
iteration pipeline surpasses prior open-source baselines. Goedel-Prover-V2 (Lin et al., 2025c) ex-
tended expert iteration with scaffolded data synthesis, verifier-guided self-correction, and model
averaging, delivering large gains on the MiniF2F benchmark (Zheng et al., 2022) at 8–32B scales
under constrained test-time budgets.

Kaliszyk et al. (2018) formulated theorem proving as reinforcement learning for connection-style
proof search, using Monte Carlo simulations guided by rewards from previous attempts to re-
place hand-crafted heuristics and improve held-out performance. DeepSeek-Prover-V1.5 (Xin et al.,
2025a) utilized reinforcement learning from proof assistant feedback (RLPAF) and a novel Monte-
Carlo tree search variant, RMaxTS, which employs an intrinsic-reward-driven strategy to explore
diverse proof paths. Leanabell-Prover (Zhang et al., 2025) demonstrated the effectiveness of post-
training in formal theorem proving by applying continual training with data emulating human cog-

4https://github.com/jesse-michael-han/lean-gptf

16

https://github.com/jesse-michael-han/lean-gptf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

nitive behaviors and reinforcement learning with compiler feedback to existing models. Kimina-
Prover Preview (Wang et al., 2025) employed a large-scale reinforcement learning pipeline and a
structured “formal reasoning pattern,” emulating human problem-solving strategies. It achieves an
80.7% pass rate on MiniF2F (Zheng et al., 2022) with a 72B-parameter model. Leanabell-Prover-
V2 (Ji et al., 2025) is built on Kimina-Prover-Preview-Distill-7B(Wang et al., 2025) and DeepSeek-
Prover-V2-7B (Ren et al., 2025) as base models, and further improved through post-training with
reinforcement learning.

A.4 FORMAL THEOREM PROVING WITH RETRIEVAL-AUGMENTED GENERATION

Retrieval-augmented provers query large formal libraries at inference time and condition generation
on the retrieved items, typically relevant lemmas, theorems, or proof patterns from mathlib (math-
lib Community, 2020). This mitigates the limits of parametric memory by injecting on-demand
knowledge and can be applied to both stepwise tactic generation and whole-proof scripts. Lean-
Dojo (Yang et al., 2023) established the core infrastructure for RAG in Lean, including fine-grained
premise annotations, a gym-like interactive environment, and a retrieval-augmented prover that se-
lects premises for each proof state. REAL-Prover (Shen et al., 2025) integrated a semantic premise
selector (LeanSearch-PS) with a fine-tuned Lean 4 prover and reports gains on challenging bench-
marks such as ProofNet (Azerbayev et al., 2023).

A.5 PROOF REFINEMENT AND SUBGOAL DECOMPOSITION

Jiang et al. (2023) introduced Draft, Sketch, and Prove (DSP), a novel three-stage method that lever-
ages informal proofs to guide automated theorem provers. The process involves drafting an informal
proof (either by a human or an LLM), using a language model to convert it into a high-level formal
sketch with verifiable steps, and finally employing an off-the-shelf prover to automatically solve
the remaining logical gaps. This approach of guiding a formal prover with an informal-to-formal
sketch significantly improved its success rate, boosting performance on the miniF2F benchmark
from 20.9% to 39.3%.

Wang et al. (2024a) introduced POETRY, a novel method that proves theorems recursively to over-
come the limitations of short-sighted, step-by-step search in automated theorem proving. By first
finding a verifiable high-level proof sketch and deferring detailed sub-proofs to subsequent lev-
els using a sorry tactic, POETRY can solve more complex problems and find significantly longer
proofs, leading to superior results on the miniF2F (Zheng et al., 2022) and PISA (Jiang et al., 2021)
benchmarks.

Cao et al. (2025) introduced DSP+, an improved Draft, Sketch, and Prove framework Jiang et al.
(2023) that achieves high performance in automated theorem proving without requiring any model
training or fine-tuning. By carefully coordinating existing off-the-shelf reasoning models and step
provers with fine-grained neuro-symbolic enhancements at each stage, DSP+ solved 80.7% of the
miniF2F benchmark (Zheng et al., 2022), which was comparable to top models that rely on extensive
reinforcement learning, and even proved a previously unsolved IMO problem.

DeepSeek-Prover-V2 (Ren et al., 2025) used a powerful general-purpose model, DeepSeek-
V3 (DeepSeek-AI, 2024), to break down complex theorems into simpler subgoals, which are then
recursively solved and synthesized into a cold-start dataset for the final prover. The resulting model
achieved an 88.9% pass rate on the MiniF2F benchmark (Zheng et al., 2022).

Delta Prover (Zhou et al., 2025) is an agent-based framework that enables a general-purpose LLM to
solve formal math problems without any specialized fine-tuning. The agent orchestrated the LLM’s
interaction with the Lean 4 environment through a novel process of reflective decomposition and
iterative proof repair, where the model breaks down complex problems and corrects its own errors
based on compiler feedback. This training-free approach achieved a 95.9% success rate on the
miniF2F benchmark (Zheng et al., 2022), surpassing all previous methods, including those requiring
extensive specialized training.

Chen et al. (2025) introduced Seed-Prover, a whole-proof reasoning model that uses a novel lemma-
style approach to solve complex formal math problems. Seed-Prover iteratively refined its proofs
using compiler feedback and a shared pool of proved lemmas, employing a powerful three-tiered
test-time inference strategy for both deep and broad reasoning. This method significantly surpassed

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 The overall architecture of our lemma-based theorem-proving agent coordinating in-
formal reasoning, formal reasoning, and Lean.

Input: Problem T with hyperparameters Ninit (max initial proof attempts) and Nrefine (max refinement attempts)
Output: Formal proof of T or failure

function MAIN(T): Overall proof process for problem T

Pdirect ←PROVE(T): Attempt to prove theorem T directly
if Pdirect succeeds then

return Pdirect

end if
// Generate lemmas
Informal LLM generates lemmas L1, L2, . . . , Ln in natural

language
for each lemma Li do

AutoFormalizer converts Li into Lean statement Fi

Lean checks Fi. If failing, regenerate Fi until syntactically
correct

end for
// Prove each lemma
for each lemma Fi do

Pi ←PROVE(Fi): Attempt to prove lemma Fi

end for
// Collect proven lemmas
Pproven ← {Pi | Pi is succeeded}
// Synthesize final proof using proven lemmas
for k = 1 to Ninit do

Pfinal ← Prover synthesizes proof of T using Pproven

Lean checks Pfinal

if the check succeeds then
return Pfinal

end if
end for
// Iterative refinement of final proof
Pbest ← Best previous proof attempt with the fewest Lean

errors
return ITERATIVEREFINE(Pbest)

end function

function PROVE(S): Attempt to generate an informal proof of S
// Initial proof attempt
for k = 1 to Ninit do

Informal LLM generates informal proof Pinf of S
Prover attempts to formalize Pinf into Pform

Lean checks Pform

if the check succeeds then
return Pform

end if
end for
// Iterative refinement
Pbest ← Best previous proof attempt with the fewest Lean

errors
return ITERATIVEREFINE(Pbest)

end function

function ITERATIVEREFINE(P): Refine proof P based on Lean
feedback

for k = 1 to Nrefine do
Prover generates revised proof P ′ based on Lean feedback
Lean checks P ′

if the check succeeds then
return P ′

else
P ← P ′ // Update best proof

end if
end for
return failure // No proof found after max attempts

end function

all previous state-of-the-art results, saturating the MiniF2F benchmark (Zheng et al., 2022), proving
78.1% of past IMO problems, and solving 5 out of 6 problems at the IMO 2025 competition.

B PSEUDOCODE OF THE OVERALL WORKFLOW

The pseudocode of our overall workflow is shown in Algorithm 1.

C DETAILED THEORETICAL ANALYSIS

We briefly discussed the theoretical analysis of our approach in Section 4. In this section, we provide
a detailed theoretical analysis of our approach.

C.1 BENEFITS OF LEMMAS FOR STRUCTURED PROOF DECOMPOSITION

We begin by stating a lemma required for the following analysis:

Lemma C.1 (Number of Trials for Success). Let p denote the probability that the model successfully
proves a theorem T . Then the expected number of trials until the first success, N , and the number
of trials required to succeed with probability at least 1− δ, denoted Nδ , satisfy the following:

E[N] =
1

p
, log(1/δ)

(
1

p
− 1

)
<

log δ

log(1− p)
< Nδ =

⌈
log δ

log(1− p)

⌉
<

log(1/δ)

p
+ 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Since each trial is an independent Bernoulli experiment with success probability p, the num-
ber of trials N until the first success follows a geometric distribution. It is well known that

E[N] =

∞∑
n=1

n(1− p)n−1p =
1

p
.

Next, we consider Nδ . Since the probability of at least one success in n trials is 1 − (1 − p)n, the
condition for achieving success with probability at least 1− δ is:

1− (1− p)n = 1− δ ⇔ (1− p)n = δ ⇔ n =
log δ

log(1− p)
.

Recalling the standard inequalities p ≤ − log(1− p) ≤ p
1−p , which is valid for 0 < p < 1, together

with the basic ceiling inequality x ≤ ⌈x⌉ < x+ 1, we obtain:

log(1/δ)

(
1

p
− 1

)
<

log δ

log(1− p)
< Nδ =

⌈
log δ

log(1− p)

⌉
<

log(1/δ)

p
+ 1.

This completes the proof.

For simplicity, we henceforth relax Nδ to be continuous and write:

log(1/δ)

(
1

p
− 1

)
< Nδ =

log δ

log(1− p)
<

log(1/δ)

p
.

The difference from the actual integer-valued Nδ is at most less than 1.

As rigorous versions of Theorems 4.4 to 4.5 described in Section 4.1, we obtain the following
Theorems C.2 to C.3, under the same Assumptions 4.1 to 4.3:

Theorem C.2 (Required Number of Trials). Let Ndir denote the number of trials required to directly
prove a problem T with probability at least 1−δ. Let Nlem denote the total number of trials required
to complete the proof of T with probability at least 1− δ, when lemmas L1, . . . , Ln are introduced
with an allowed failure probability δlem. Suppose each lemma Li contains a subset of the essential
intermediate facts {Fi}i∈Si with Si ⊆ [m]. Then the following holds:

Φdir(p)− log(1/δ) < Ndir < Φdir(p),

Φlem(p)− log(1/δ)− n log(1/δlem) < E[Nlem] < Φlem(p),

where

Φdir(p) := log(1/δ)

m∏
i=1

1

pi
,

Φlem(p) := log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
+

log(1/δ)

r0

(∏
i∈R0

1

pi

)
n∏

i=1

(1− δlem) + δlem
∏
j∈Si

1

pj

 .

Here, we denote U :=
⋃n

i=1 Si, R0 := [m] \ U , and r0 := minP (FS |{Fi}i∈S).

Proof. By Assumption 4.2, the probability that all F1, . . . , Fm succeed and the problem T is solved
equals

∏m
i=1 pi. Hence, by Lemma C.1, we obtain:

Φdir(p)− log(1/δ) < Ndir < Φdir(p).

Similarly, since the probability that all Fj with j ∈ Si succeed and lemma Li is proved equals∏
j∈Si

pj , the number of trials required for lemma Li, denoted NLi
, satisfies:

log(1/δlem)
∏
j∈Si

1

pj
− log(1/δlem) < NLi

< log(1/δlem)
∏
j∈Si

1

pj
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore, the total number of trials required to prove all n lemmas L1, . . . , Ln is bounded by the
sum of the bounds above, i.e.,

log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
− n log(1/δlem) <

n∑
i=1

NLi < log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
. (1)

The probability that the composition of all lemmas succeeds is r0, while the probability of proving
the uncovered facts {Fi}i∈R0 is

∏
i∈R0

pi. If a lemma Li fails with probability δlem, then in the final
proof it must be reproved directly, which succeeds with probability

∏
j∈Si

pj . Thus, the expected
success probability of lemma Li in the final stage is: (1− δlem) + δlem

∏
j∈Si

pj .

Therefore, since the expected success probability in the final stage is given by the product above, the
number of trials required to complete the proof of the whole problem T using lemmas in the final
stage, denoted Nfinal, satisfies:

Φfinal(p)− log(1/δ) < E[Nfinal] < Φfinal(p), (2)

where

Φfinal(p) :=
log(1/δ)

r0

(∏
i∈R0

1

pi

)
n∏

i=1

(1− δlem) + δlem
∏
j∈Si

1

pj

 .

Hence, by combining Equations (1) and (2), we obtain the desired result, completing the proof of
Theorem C.2.

From Theorem C.2, we see that decomposing the problem into lemmas transforms the corresponding
leading term from a product into a sum, thereby significantly reducing the order of the required
number of trials.

Theorem C.3 (Threshold Condition for Lemma Efficiency). There exists a threshold τ ∈ [0, 1] such
that if pi ≤ τ for all i ∈ [m], then E[Nlem] ≤ Ndir holds for any δ, δlem ∈ (0, 1).

Proof. Consider the condition E[Nlem]
Ndir

< 1. By Theorem C.2, this condition is satisfied if the
following holds:

Φlem(p)

Φdir(p)− log(1/δ)
< 1

⇔
log(1/δlem)

∑n
i=1

∏
j∈Si

1
pj

log(1/δ)
∏m

i=1

(
1
pi

− 1
)

+

log(1/δ)
r0

(∏
i∈R0

1
pi

)∏n
i=1

(
(1− δlem) + δlem

∏
j∈Si

1
pj

)
log(1/δ)

∏m
i=1

(
1
pi

− 1
) < 1. (3)

The first term on the left-hand side (LHS) of Equation (3) can be rewritten as:

log(1/δlem)
∑n

i=1

∏
j∈Si

1
pj

log(1/δ)
∏m

i=1

(
1
pi

− 1
) =

log(1/δlem)

log(1/δ)

n∑
i=1

∏
j∈Si

1
pj

∏m
j=1 pj

1−
∏m

j=1 pj

=
log(1/δlem)

log(1/δ)

n∑
i=1

∏
j /∈Si

pj

1−
∏m

j=1 pj
. (4)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The second term on the LHS of Equation (3) can be rewritten as:

log(1/δ)
r0

(∏
i∈R0

1
pi

)∏n
i=1

(
(1− δlem) + δlem

∏
j∈Si

1
pj

)
log(1/δ)

∏m
i=1

(
1
pi

− 1
)

=
1

r0

(∏
i∈R0

1

pi

) n∏
i=1

(1− δlem) + δlem
∏
j∈Si

1

pj

 ∏m
j=1 pj

1−
∏m

j=1 pj

=
1

r0

n∏
i=1

(1− δlem)
∏
j∈Si

pj + δlem

 1

1−
∏m

j=1 pj
. (5)

From Equations (4) and (5), both the first and second terms on the LHS of Equation (3) are monotoni-
cally increasing with respect to pi. Hence, the LHS of Equation (3) itself is monotonically increasing
w.r.t. pi. Therefore, by bounding the LHS of Equation (3) from above by using pmax := maxi pi
and solving for pmax, we obtain a sufficient condition, completing the proof.

From Theorem C.3, it follows that lemma generation is effective for difficult problems. Therefore,
our strategy of generating lemmas for difficult problems and solving easy problems directly is justi-
fied.

Theorem C.4 (Optimal Partition of Lemma Coverage). Under the fixed lemma coverage U :=⋃n
i=1 Si ⊆ [m], E[Nlem] is minimized when log p(Si) is as close as possible to 1

n log p(U) for all
i ∈ [n], where p(Si) :=

∏
j∈Si

pj and p(U) :=
∏

j∈U pj .

Proof. From Theorem C.2, we consider minimizing Φlem(p). Let W :=
∏

i∈U
1
pi

.

By Jensen’s inequality, the first term of Φlem(p) can be bounded as follows:

log(1/δlem)

n∑
i=1

∏
j∈Si

1

pj
= log(1/δlem)

n∑
i=1

exp(
∑
j∈Si

log
1

pj
)

≥ log(1/δlem)n exp

 1

n

n∑
i=1

∑
j∈Si

log
1

pj


= log(1/δlem)n exp

(
1

n
logW

)
with equality if and only if log p(Si) =

1
n log p(U) for all i ∈ [n].

Noting that f(x) = log((1−d)+d exp(x)) is convex for d ∈ (0, 1), we can apply Jensen’s inequality
to bound the second term of Φlem(p) as follows:

log(1/δ)

r0

(∏
i∈R0

1

pi

)
n∏

i=1

(1− δlem) + δlem
∏
j∈Si

1

pj


=

log(1/δ)

r0

(∏
i∈R0

1

pi

)
exp

 n∑
i=1

log

(1− δlem) + δlem exp

∑
j∈Si

log
1

pj


≥ log(1/δ)

r0

(∏
i∈R0

1

pi

)
exp

n log

(1− δlem) + δlem exp

 1

n

n∑
i=1

∑
j∈Si

log
1

pj


=

log(1/δ)

r0

(∏
i∈R0

1

pi

)
exp

(
n log

(
(1− δlem) + δlem exp

(
1

n
logW

)))
with equality if and only if log p(Si) =

1
n log p(U) for all i ∈ [n].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Therefore, since both the first and second terms of Φlem(p) attain their minimum under the same
condition, namely:

log p(Si) =
1

n
log p(U) for all i ∈ [n],

it follows that Φlem(p) itself is minimized under this condition. In the discrete case, the minimum is
achieved at the partition closest to this balanced condition. This completes the proof.

Theorem C.4 suggests that the optimal lemmas are those that divide the problem into subproblems
of approximately equal difficulty.

C.2 BENEFITS OF LEMMAS FOR DISCOVERING PROOF STRATEGIES (E.G., SPECIAL CASES)

Theorem C.5 (Success Probability Improvement by Lemmas (Restated)). The success probability
of performing one trial of final proving by sampling a strategy from the posterior distribution πn is
bounded as follows:

E[P(succ@1)] ≥ r exp
(
−H0 + I(Z;Y1:n)

)
.

Proof. We begin with:

P(succ@1 | Z = z, Y = y) = p(z)π(z | y).

Taking expectation, we obtain:

EZ,Y

[
P(succ@1 | Z, Y)

]
= EZ,Y

[
p(Z)π(Z | Y)

]
= EZ,Y

[
p(Z)πn(Z)

]
≥ rEZ,Y [πn(Z)]. (6)

It remains to lower-bound EZ,Y [πn(Z)].

For fixed Y = y, we have:

EZ

[
πn(Z) | Y = y

]
=
∑
z∈S

πn(z)P(Z = z | Y = y)

=
∑
z∈S

πn(z)
2.

Taking expectation over Y yields:

EZ,Y [πn(Z)] = EY

[
EZ [πn(Z) | Y]

]
= EY

[∑
z∈S

πn(z)
2

]
.

By Lemma C.6, we have: ∑
z∈S

π(z | y)2 ≥ exp
(
−H(π(· | y))

)
.

Averaging both sides over Y and applying Jensen’s inequality (since x 7→ e−x is convex), we obtain:

EZ,Y [πn(Z)] = EY

[∑
z∈S

π(z | Y)2
]

≥ EY

[
exp(−H(π(· | Y)))

]
≥ exp(−EY [H(π(· | Y))])

= exp(−H(Z | Y))

= exp(−H0 + I(Z;Y)),

where the last step uses the definition of mutual information.

Combining this with Equation (6) proves the claim.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Theorem C.5 shows that the success probability improves exponentially in the amount of mutual
information gained through the lemmas, I(Z;Y1:n). In particular, the success probability is strictly
larger than in the case without lemmas, where I(Z;Y1:n) = 0.

The following lemma was used in the proof of Theorem C.5:

Lemma C.6 (Relation Between Squared Sum and Entropy). For any probability distribution p =
(pi)i, the following inequality holds:∑

i

p2i ≥ exp(−H(p)),

where H(p) = −
∑

i pi log pi denotes the Shannon entropy (with natural logarithm).

Proof. The log-sum inequality states that for nonnegative sequences {ai}, {bi}, the following holds:

∑
i

ai log
ai
bi

≥

(∑
i

ai

)
log

∑
i ai∑
i bi

.

Let ai = pi and bi = p2i . Then the LHS becomes:∑
i

pi log
pi
p2i

=
∑
i

pi log
1

pi
= −

∑
i

pi log pi = H(p).

On the other hand, the right-hand side (RHS) becomes:(∑
i

pi

)
log

∑
i pi∑
i p

2
i

= 1 · log 1∑
i p

2
i

= − log
(∑

i

p2i

)
.

Hence, the log-sum inequality gives:

H(p) ≥ − log
(∑

i

p2i

)
.

Exponentiating both sides yields: ∑
i

p2i ≥ exp(−H(p)).

This completes the proof.

D DETAILED EXPERIMENTAL SETUP

D.1 BENCHMARKING DATASET

We use the MiniF2F (Zheng et al., 2022) dataset, which consists of 488 mathematical problems
formalized in Lean. These problems originate from sources such as AIME (American Invitational
Mathematics Examination), AMC (American Mathematics Competitions), and IMO (International
Math Olympiad) competitions, along with selected problems from the MATH dataset (Hendrycks
et al., 2021), covering topics such as algebra, number theory, geometry, and analysis. Each problem
is given as a Lean theorem statement. The benchmark is split into 244 validation and 244 test
problems. We use the validation set during development (e.g., for tuning prompt formats) and report
the final results on the test set. We use the revised version of miniF2F released by Wang et al. (2025);
Ren et al. (2025).

Also, we observed that for problem names like algebra 2varlineareq fp3zeq11 3tfm1m
5zeqn68 feqn10 zeq7, the LLM often struggled to reliably reproduce the latter part of the
name due to its unintelligible character sequence. Therefore, we modified such problem names by
removing the less interpretable suffixes and replacing them with simpler, more memorable labels
such as algebra for our experiments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 USED MODELS

For the informal LLM, we use DeepSeek-R1-0528-Qwen3-8B5 (DeepSeek-AI, 2025), a
model obtained by distilling the chain-of-thought outputs of DeepSeek-R1-0528 (DeepSeek-
AI, 2025) into the Qwen3-8B (Yang et al., 2025a). This model surpasses Qwen3-8B
on the AIME benchmark for natural language reasoning and achieves state-of-the-art per-
formance at this scale. For the prover model, we use Goedel-Prover-V2-7B6 (Lin
et al., 2025c) and DeepSeek-Prover-V2-7B7 (Ren et al., 2025), the state-of-the-art
and second-best Lean 4 provers at this scale, respectively. For the formalizer model, we
use Goedel-Formalizer-V2-8B8 (Lin et al., 2025c) in the Goedel-Prover setup and
Kimina-Autoformalizer-7B9 (Wang et al., 2025). All of them are publicly available on
Hugging Face (Wolf et al., 2020).

D.3 IMPLEMENTATION DETAILS

All models are invoked via vLLM (Kwon et al., 2023), a high-performance inference engine for
large language models. We set max num batched tokens and max model len parameters
to 16384 to accommodate the long context lengths required for theorem proving, while keeping all
other settings at their vLLM defaults. The models are run on NVIDIA A100 GPUs with 40GB of
memory. We use Lean version 4.9.0 (Moura & Ullrich, 2021) throughout all experiments, following
the same setup in Xin et al. (2025a); Ren et al. (2025); Lin et al. (2025c).

There are several bugs that may result in invalid Lean proofs being incorrectly accepted, such as
the user-interference bug related to the apply? tactic discussed in version 2 of the arXiv paper
by Ren et al. (2025), and a bug in REPL10. To avoid these issues and prevent invalid proofs from
being mistakenly judged as correct, we check proofs with lake build instead of REPL and
additionally verified that the apply? tactic is not used. Also, to avoid this bug and obtain reliable
baseline results, we re-ran the experiments for Goedel-Prover-V2-8B. We used the official prompts
provided on GitHub11 and Hugging Face6, while keeping all other experimental settings strictly
identical to those used in our method, thereby ensuring a fair comparison. For DeepSeek-Prover-
V2, we relied on the results reported in version 2 of the arXiv paper (Ren et al., 2025), in which this
bug has been fixed. All other baseline results are sourced from their respective papers.

D.4 SUMPLE BUDGET

MiniF2F. We set Ninit = Nrefine = 50. Thus, the sample budget at the initial direct proving stage
is 50 at the first iteration, and 100 in total when including iterative refinement. For lemmas, we use
Ninit = Nrefine = 10 for each of the three lemmas. In the final synthesis stage, Ninit = Nrefine = 50
is used again, resulting in a total sample budget of 50 + 50 + (10 + 10)× 3 + 50 + 50 = 260.

PutnamBench. We set Ninit = Nrefine = 20. Thus, the sample budget at the initial direct proving
stage is 20 at the first iteration, and 40 in total when including iterative refinement. For lemmas, we
use Ninit = Nrefine = 5 for each of the three lemmas. In the final synthesis stage, Ninit = Nrefine =
20 is used again, resulting in a total sample budget of 20 + 20 + (5 + 5)× 3 + 20 + 20 = 110.

D.5 BASELINE METHODS

We compare our approach against several baseline methods, categorized into two main classes:
tree search methods and whole-proof generation methods. Tree search methods construct proofs
incrementally by predicting individual tactics step by step, often guided by search algorithms such as
best-first search or Monte Carlo Tree Search (MCTS). In contrast, whole-proof generation methods

5https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
6https://huggingface.co/Goedel-LM/Goedel-Prover-V2-8B
7https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
8https://huggingface.co/Goedel-LM/Goedel-Formalizer-V2-8B
9https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B

10https://github.com/leanprover-community/repl/issues/44
11https://github.com/Goedel-LM/Goedel-Prover-V2

24

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
https://huggingface.co/Goedel-LM/Goedel-Prover-V2-8B
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
https://huggingface.co/Goedel-LM/Goedel-Formalizer-V2-8B
https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B
https://github.com/leanprover-community/repl/issues/44
https://github.com/Goedel-LM/Goedel-Prover-V2

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

attempt to generate an entire proof script in a single forward pass, relying on the model’s ability to
plan the proof holistically.

The overview of the baseline methods used in our experiments is as follows:

Tree Search Method:

• DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2025a) uses DeepSeek-Prover-V1.5-
RL (Xin et al., 2025a), a 7B model trained with reinforcement learning, combined with
RMaxTS (Xin et al., 2025a), a variant of MCTS that uses intrinsic rewards to explore
diverse proof paths.

• InternLM2.5-StepProver-BF + CG (Wu et al., 2024a) uses InternLM2.5-StepProver (Wu
et al., 2024a), a 7B model trained via expert iteration (Anthony et al., 2017; Polu et al.,
2023) starting with InternLM2-StepProver (Wu et al., 2024b), combined with a best-first
search (BFS) strategy and a critic-guided (CG) sampling technique to explore longer proofs
effectively.

• HunyuanProver v1.6 + BFS + DC (Li et al., 2025) uses HunyuanProver, a 7B model fine-
tuned via a scalable data synthesis pipeline, in conjunction with best-first search guided by
the distance critic (DC) to efficiently navigate complex Lean 4 proof search spaces.

• BFS-Prover (Xin et al., 2025b) uses a fine-tuned model of Qwen2.5-Math-7B model (Yang
et al., 2024), trained through an expert-iteration pipeline. During inference, it employs a
best-first search strategy to navigate the proof space efficiently.

Whole-Proof Generation Methods:

• Leanabell-Prover-GD-RL (Zhang et al., 2025) is a 7B model post-trained through con-
tinual training on statement-proof pairs and reinforcement learning using Lean 4 outcome
rewards. This model is a fine-tuned version of Goedel-Prover-SFT (Lin et al., 2025b).

• Goedel-Prover-SFT (Lin et al., 2025b) is a 7B-parameter model obtained by supervised
fine-tuning on DeepSeek-Prover-V1.5-Base (Xin et al., 2025a) with expert-iteration.

• STP: Self-Play Theorem Prover (Dong & Ma, 2025) employs a self-play framework that
simultaneously takes on two roles, conjecturer and prover. The conjecturer is iteratively
trained on statements that are barely provable by the current prover, incentivizing it to
generate increasingly challenging conjectures. The prover uses standard expert iteration to
verify and prove the generated conjectures. This model is a fine-tuned version of DeepSeek-
Prover-V1.5-SFT (Xin et al., 2025a), which is a 7B-parameter model.

• Kimina-Prover-Preview (Wang et al., 2025) is a 72B-parameter reasoning model that
learns specialized formal reasoning patterns via reinforcement learning. It is pretrained on
a large corpus of formal proofs and fine-tuned with a binary correctness reward and consis-
tency penalty. They also provide Kimina-Prover-Preview-Distill-7B, a distilled version
from the 72B model.

• DeepSeek-Prover-V2 (Ren et al., 2025) uses DeepSeek-V3 to decompose each theorem
into subgoals and then employs the proofs of those subgoals as cold-start data for rein-
forcement learning using binary correctness rewards and a consistency penalty to ensure
that every subgoal appears in the final proof. It is implemented as a 671B-parameter model,
and a distilled 7B-parameter variant is also provided.

• Leanabell-Prover-V2 (Ji et al., 2025) is a 7B-parameter prover obtained by post-training
existing models with verifier-integrated reinforcement learning. Two variants are pro-
vided: Leanabell-Prover-V2-KM, which is post-trained from Kimina-Prover-Preview-
Distill-7B (Wang et al., 2025), and Leanabell-Prover-V2-DS, which is post-trained from
DeepSeek-Prover-V2-7B (Ren et al., 2025).

• Goedel-Prover-V2 (Lin et al., 2025c) is a series of open-source provers built on expert-
iteration and reinforcement learning, augmented with (i) scaffolded data synthesis (curric-
ula of increasingly difficult synthetic theorems), (ii) verifier-guided self-correction using
Lean feedback, and (iii) model averaging.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.6 COMPARISON IN TERMS OF TOTAL TOKEN BUDGET

In our pipeline, the informal LLM is used only in three places: (i) Initial direct proving without
iterative refinement, which is invoked 50 times (once for each generation), (ii) Lemma generation,
which is invoked once, and (iii) Initial direct proving for each generated lemma without iterative
refinement, which is invoked 10 times for each of the three lemmas. The formalizer model is used
only three times to formalize the three generated lemmas. Outside of these calls, the pipeline does
not invoke any additional LLMs; the remaining stages only execute Lean or reuse already proved
lemmas without consuming new tokens.

Thus, in addition to the 260 prover calls reported in Table 1, Prover Agent uses only 50 + 1 + 3 ×
10 + 3 = 84 extra LLM calls, resulting in a total of 260 + 84 = 344 LLM executions. Because the
context length is fixed for all calls, the total token budget is effectively proportional to this number
of LLM invocations. Also, when informal proofs, Lean feedback, or proved lemmas occupy part of
the prompt, the corresponding output token length simply decreases, since the context size of the
model is predefined. Thus, the total token consumption is governed by the number of LLM calls.

Importantly, with this total token budget corresponding to 344 LLM calls, Prover Agent achieves:
88.1% in the ensemble setting, 86.5% in the GoedelProver-V2 setting, and 82.8% in the DeepSeek-
Prover-V2 setting. These results surpass the corresponding baseline performance of GoedelProver-
V2, which uses 512 LLM calls, as well as the corresponding baselines of DeepSeek-Prover-V2,
which use 1,024 and 8,192 LLM calls. Therefore, even when measured in total token budget, Prover
Agent achieves a higher success rate using fewer tokens than the corresponding baselines.

E EXAMPLES OF SUCCESSFUL CASES ENABLED BY LEMMAS AND
ITERATIVE REFINEMENT

In Appendices E.1 and E.2, we present and analyze an example successfully solved via a lemma and
an example successfully solved through iterative refinement, respectively.

E.1 CASE STUDY OF SUCCESSFUL EXAMPLE WITH LEMMAS

E.1.1 DETAILED ANALYSIS

We analyze in detail the reasoning process for the problem induction nfactltnexp
nm1ngt3, a case where the direct proof attempt failed but the use of auxiliary lemmas led to a
successful proof. This problem asks for a formal proof that, for all natural numbers n > 3, the
inequality n! < nn−1 always holds.

The outputs for this problem, such as the generated lemmas, final formal proof, and the associated
reasoning process, are provided in Appendix E.1.2 and after.

In this case, the agent generated the following three lemmas: The first states that 3! < 33−1; the
second states that for any natural number n ≥ 2, nn−1 < (n + 1)n−1; and the third states that for
any natural number n ≥ 3, n! < (n+ 1)n−1. The first is a special case of the original problem with
n = 3, while the second may provide a helpful hint toward solving the original problem. Both were
easily proven in a single direct proof attempt. The third lemma generated in this case asserts that for
any natural number n ≥ 3, n! < (n + 1)n−1. This lemma closely resembles the original problem,
as it is a slightly weaker version of its conclusion. Due to its similarity and retained difficulty, the
agent failed to construct a direct proof for it.

By examining the final successful reasoning trace in Appendix E.1.5, we see that the special case
for n = 3, considered as the first lemma, appears explicitly on line 7. The reasoning also checks the
cases for n = 4 and n = 5, following a similar pattern. Furthermore, as stated on line 13, the use of
mathematical induction is clearly identified as the intended proof strategy. Then, the reasoning trace
from line 14 to line 80 further elaborates the proof process within the framework of mathematical
induction. Furthermore, in the final proof, the proof technique used in Lemma 2 is explicitly applied
at lines 195–196.

Next, as a comparison, we analyze the reasoning process from the initial direct proving attempt
without using any lemmas, as shown in Appendix E.1.6. Here, we present the reasoning trace that

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

resulted in the fewest Lean errors among all initial direct attempts. Compared to the successful case
with lemmas, we see that the proof strategy is much less clear in this direct attempt. In the “Key
Observations” section (lines 6 to 14), there is no indication of using mathematical induction, unlike
in the lemma-assisted case. Although the system explores several ideas from lines 15 to 63, the
reasoning appears less focused and more exploratory, lacking a concrete plan. As a result, while it
eventually leans toward using induction, the lack of a clear and structured approach prevents it from
working out the necessary details, ultimately leading to failure in the formal proof, which tolerates
no ambiguity.

This detailed case study highlights the effectiveness of our lemma-generation approach in uncov-
ering viable proof strategies. This marks a significant advance over prior methods that decompose
problems into subgoals, which often assume the overall proof strategy is known in advance. Identi-
fying an initial proof strategy is often a challenging part of solving difficult problems. Indeed, Ren
et al. (2025) employs a decomposition-based approach but relies on the much larger and stronger
DeepSeek-V3 (DeepSeek-AI, 2024) to formulate the initial proof sketch. In contrast, our agent fol-
lows a reasoning process similar to that of human mathematicians when the proof strategy is not
apparent at first glance, exploring special cases or hypothesizing intermediate steps to discover a
promising direction and ultimately uncover the overall proof strategy.

E.1.2 LEAN ENVIRONMENT SETUP

All Lean code was executed with the following header, following Xin et al. (2025a); Ren et al.
(2025), which is omitted in the examples for brevity:

1 import Mathlib
2 import Aesop
3

4 set_option maxHeartbeats 0
5

6 open BigOperators Real Nat Topology Rat

Note that the following Lean code works correctly with Lean version 4.9.0, the environment used
in our experiments, which strictly follows the same setup in Xin et al. (2025a); Ren et al. (2025).
However, Nat.pow_lt_pow_of_lt_left has been deprecated in newer versions of Lean, so
it must be replaced with Nat.pow_lt_pow_left to work with the latest environment.

E.1.3 THE PROBLEM

The following problem asks for a formal proof that, for all natural numbers n greater than 3, the
inequality n! < nn−1 holds:

1 theorem induction_nfactltnexpnm1ngt3
2 (n : N)
3 (h0 : 3 ≤ n) :
4 (n)! < nˆ(n - 1) := by sorry

E.1.4 THE GENERATED LEMMAS

The generated lemmas are shown below, each presented with both its original natural language form
and the corresponding Lean formalization. The first and second lemmas were successfully proved
and are presented with their proofs. The third lemma could not be proved and is therefore presented
with a sorry placeholder.

1 ### Lemma 1: base_case_3
2 **Assumptions**:
3 None
4

5 **Conclusion**:
6 3! < 3ˆ(3-1)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1 theorem base_case_3 : (3 : N)! < 3ˆ(3 - 1) := by
2 have h_main : (3 : N)! < 3ˆ(3 - 1) := by
3 -- Calculate the factorial and the power step-by-step
4 norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
5 -- Use ‘decide‘ to confirm the inequality
6 <;> decide
7 exact h_main

1 ### Lemma 2: exponent_inequality
2 **Assumptions**:
3 n is a natural number and n ≥ 2
4

5 **Conclusion**:
6 nˆ(n-1) < (n+1)ˆ(n-1)

1 theorem exponent_inequality {n : N} (hn : 2 ≤ n) :
2 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
3 have h_main : nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
4 have h0 : n - 1 + 1 = n := by
5 omega
6 have h1 : n ≥ 2 := by omega
7 have h2 : n - 1 ≥ 1 := by omega
8 have h3 : n < n + 1 := by omega
9 -- Use the fact that if a < b and n > 0, then aˆn < bˆn
10 exact calc
11 nˆ(n - 1) < (n + 1)ˆ(n - 1) := by
12 -- Apply the lemma that if a < b and n > 0, then aˆn < bˆn
13 exact Nat.pow_lt_pow_of_lt_left h3 (by omega)
14 _ = (n + 1)ˆ(n - 1) := by rfl
15 exact h_main

1 ### Lemma 3: factorial_less_than_n_next_power
2 **Assumptions**:
3 n is a natural number and n ≥ 3
4

5 **Conclusion**:
6 n! < (n+1)ˆ(n-1)

1 theorem factorial_lt_n_next_power {n : N} (hn : 3 ≤ n) :
2 n ! < (n + 1) ˆ (n - 1) := by sorry

E.1.5 THE FINAL PROOF AND ITS REASONING TRACE

We present below the final Lean proof, successfully constructed by taking the previously verified
lemmas into account. Alongside the code, we also include the corresponding reasoning trace gener-
ated by the prover model that guided the overall proof construction.

1 ### Detailed Proof and Analysis
2

3 We are tasked with proving that for all natural numbers ‘n ≥ 3‘,
the factorial of ‘n‘, i.e., ‘n!‘, is less than ‘nˆ(n - 1)‘.

4

5 #### Key Observations:
6 1. **Base Cases**:
7 - For ‘n = 3‘: ‘3! = 6‘ and ‘3ˆ(3 - 1) = 32 = 9‘. So, ‘6 < 9‘

holds.
8 - For ‘n = 4‘: ‘4! = 24‘ and ‘4ˆ(4 - 1) = 43 = 64‘. So, ‘24 <

64‘ holds.
9 - For ‘n = 5‘: ‘5! = 120‘ and ‘5ˆ(5 - 1) = 54 = 625‘. So, ‘120

< 625‘ holds.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

10 - The pattern suggests that this holds for all ‘n ≥ 3‘.
11

12 2. **General Proof Idea**:
13 - The proof can proceed by mathematical induction. We first

check the base case ‘n = 3‘, and then for the inductive step, we
assume the statement holds for ‘n = k‘ (i.e., ‘k! < kˆ(k - 1)‘)
and show that it also holds for ‘n = k + 1‘ (i.e., ‘(k + 1)! < (k +
1)ˆk‘).

14 - The inductive step involves showing that ‘(k + 1)! = (k + 1) *
k! < (k + 1) * kˆ(k - 1)‘. The last expression is ‘(k + 1)ˆk‘

because ‘kˆ(k - 1) = kˆk / k‘ when multiplying by ‘(k + 1)‘ is not
clean. Instead, we can directly use the fact that ‘(k + 1)! = (k +
1) * k!‘ and ‘k! < kˆ(k - 1)‘ by the inductive hypothesis, but we
must also ensure ‘k + 1 < k + 1 + 1‘ is not relevant here. Wait,
perhaps the best approach is to directly manipulate the inequality
‘(k + 1)! < (k + 1)ˆk‘.

15

16 However, this seems messy. A simpler way is to compare ‘(k +
1)!‘ and ‘(k + 1)ˆk‘ directly. For ‘k ≥ 3‘, we have ‘(k + 1)! = (k
+ 1) * k! < (k + 1) * kˆk‘.

17

18 But this is not obviously true because ‘k! < kˆk‘ is equivalent
to ‘k < k + 1‘, which is trivially true.

19

20 Alternatively, ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘
by IH, and ‘(k + 1) * kˆ(k - 1) = kˆk + kˆ(k - 1)‘, which is less
than ‘(k + 1)ˆk = kˆk + k * kˆ(k - 1) + . . .‘, but this is getting
complicated.

21

22 A much better approach is to use induction directly. For ‘n =
3‘, we already checked this. Assume ‘k! < kˆ(k - 1)‘ for some ‘k ≥
3‘. Then:

23 ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘. Now, ‘(k + 1) *
kˆ(k - 1) = kˆk + kˆ(k - 1)‘. We need this to be ‘< (k + 1)ˆk =

kˆk + k * kˆ(k - 1) + . . .‘.
24

25 But ‘kˆk‘ cancels out, and we need ‘kˆ(k - 1) < k * kˆ(k - 1) +
. . .‘, i.e., ‘1 < k + . . .‘, which is true for ‘k ≥ 3‘.

26

27 However, the last step is not straightforward, and it might be
simpler to use induction concretely.

28

29 #### Step 1: Abstract Plan
30

31 1. **Base Case (‘n = 3‘)**:
32 - Compute ‘3! = 6‘ and ‘3 ˆ (3 - 1) = 9‘. Since ‘6 < 9‘, the

base case holds.
33

34 2. **Inductive Step (‘n = k + 1‘)**:
35 - Assume ‘k! < kˆ(k - 1)‘ holds for some ‘k ≥ 3‘.
36 - We need to show ‘(k + 1)! < (k + 1)ˆk‘.
37 - ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by the

inductive hypothesis.
38 - Next, we need to compare ‘(k + 1) * kˆ(k - 1)‘ to ‘(k + 1)ˆk =

(k + 1) * kˆk / k‘.
39 - The inequality ‘k * (k + 1) ≤ k * k + k * k = 2 * kˆ2‘ for ‘k
≥ 1‘ is too loose. A better approach is as follows:

40 - We want ‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘.
41 - Divide both sides by ‘(k + 1)‘: ‘kˆ(k - 1) < (k + 1)ˆ(k -

1)‘.
42 - But:
43 - This is false for ‘k = 3‘: ‘3ˆ2 = 9 < 4ˆ2 = 16‘ holds.

For ‘k = 4‘: ‘4ˆ3 = 64 < 5ˆ3 = 125‘ holds, etc. But we need ‘(k +
1) * kˆ(k - 1) < (k + 1)ˆk‘, not ‘kˆ(k - 1) < (k + 1)ˆ(k - 1)‘.

44 - Alternatively, perhaps a direct proof is better:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

45 - ‘(k + 1) * kˆ(k - 1) = kˆk + kˆ(k - 1)‘.
46 - We must show ‘kˆk + kˆ(k - 1) < (k + 1)ˆk = kˆk + k * kˆ(k

- 1) + . . . + 1‘.
47 - Since ‘k ≥ 3‘, ‘kˆ(k - 1) < k * kˆ(k - 1)‘ and ‘0 < kˆk‘

(which cancels), we get ‘kˆ(k - 1) < k * kˆ(k - 1)‘ because ‘1 <
k‘ when ‘k ≥ 2‘, so ‘kˆk + kˆ(k - 1) < kˆk + k * kˆ(k - 1) + . . .‘
is justified.

48

49 But the above is still messy. A better way is to prove ‘(k + 1) *
kˆ{k - 1} < (k + 1)ˆk‘ for ‘k ≥ 3‘:

50 ‘(k + 1) * kˆ{k - 1} = kˆk + kˆ{k - 1}‘, and ‘(k + 1)ˆk = kˆk + k *
kˆ{k - 1} + . . .‘.

51 Subtract:
52 ‘(k + 1)ˆk - (k + 1) * kˆ{k - 1} = kˆk + k * kˆ{k - 1} + . . .} -

(kˆk + kˆ{k - 1}) = k * kˆ{k - 1} + . . .‘ which is clearly positive
because all terms are positive.

53 Alternatively, just note that ‘kˆk > 0‘ when ‘k ≥ 1‘ is sufficient
because ‘(k + 1)ˆk = kˆk + . . . ≥ kˆk > kˆ{k - 1}‘.

54

55 However, the direct approach is to compute ‘(k + 1)ˆk = (k + 1) *
((k + 1) * . . . * 1) ≥ (k + 1) * (k * . . . * 1) = (k + 1) * kˆ(k -
1)‘, which would work except for the last factor.

56

57 Wait, we need ‘(k + 1)ˆk > (k + 1) * kˆ{k - 1}‘. But ‘(k + 1)ˆk =
(k + 1) * (k + 1)ˆ{k - 1}‘.

58

59 But ‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘ is not immediately obvious (and
may even be false for ‘k = 3‘ (‘42 = 16 ≥ 8 = 32‘ is true, but
‘4ˆ3 = 64 ≥ 3ˆ3 = 27‘ is true)).

60

61 This seems correct, but we instead keep it simple:
62

63 #### Inductive Proof Sketch:
64 1. Base Case (‘n = 3‘): ‘6 < 9‘ is true.
65 2. Inductive Step (‘n = k + 1‘ assuming ‘k! < kˆ(k - 1)‘):
66 - We have ‘(k + 1)! < (k + 1) * kˆ(k - 1)‘.
67 - We need ‘(k + 1) * kˆ(k - 1) ≤ (k + 1)ˆk = (k + 1) * kˆ(k -

1)‘ + . . .
68 - Alternatively, the most straightforward induction is simply

to use that ‘(k + 1) * kˆ(k - 1) < (k + 1)ˆk‘ when ‘k ≥ 3‘.
69

70 This can be proved as follows:
71 ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}‘ and ‘(k + 1)ˆ{k - 1} ≥

kˆ{k - 1}‘ for ‘k ≥ 3‘ because:
72 ‘(k + 1)ˆ2 = kˆ2 + 2k + 1 ≥ kˆ2‘ for all ‘k ≥ 1‘,
73 ‘(k + 1)ˆ3 = kˆ3 + 3kˆ2 + 3k + 1 ≥ kˆ3 + 3kˆ2 ≥ kˆ3 + 2kˆ2 ≥ kˆ3‘

for ‘k ≥ 2‘, etc.
74 But we get ‘(k + 1)ˆk ≥ (k + 1) * kˆ{k - 1}‘, which is not what we

want! This is because we made a miscount. The correct relation is:
75 ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}.‘, and ‘(k + 1)ˆ{k - 1} >

kˆ{k - 1}‘ for ‘k ≥ 3‘ (since ‘l < m‘ implies ‘lˆ{n} < mˆ{n}‘ for
‘l, m > 1‘). That is, ‘(k + 1)ˆk > (k + 1) * kˆ{k - 1} > (k + 1) *
kˆ{k - 1} - kˆ{k - 1}‘ is not true.

76

77 Instead, ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1} ≥ (k + 1) * kˆ{k -
1}‘ because ‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘ for ‘k ≥ 3‘.

78

79 Therefore, the full chain is:
80 ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1) ≤ (k + 1)ˆk.‘
81

82 Thus, we can prove the inductive step using the above reasoning.
83

84 #### Abstract Plan:
85 1. Base Case:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

86 - Verify the inequality for ‘n = 3‘.
87 2. Inductive Step:
88 - Assume the inequality holds for ‘n = k‘, i.e., ‘k! < kˆ(k -

1)‘ for ‘k ≥ 3‘.
89 - Prove for ‘n = k + 1‘, i.e., ‘(k + 1)! < (k + 1)ˆk = (k + 1) *

kˆ(k - 1)‘.
90 - But it is enough to prove ‘(k + 1)ˆk ≥ (k + 1) * kˆ(k - 1)‘:
91 - Since ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1}‘, we must show

‘(k + 1)ˆ{k - 1} ≥ kˆ{k - 1}‘.
92 - This is true for ‘k ≥ 4‘ since ‘(k + 1)/k ≥ k/(k - 1)‘.
93 - Check ‘k = 3‘ separately: ‘4ˆ2 = 16 ≥ 3ˆ2 = 9‘ and ‘4ˆ3 =

64 ≥ 3ˆ3 = 27‘, etc.
94

95 #### Lean 4 Proof Sketch with ‘have‘ Statements
96

97 ‘‘‘lean4
98 theorem induction
99 (n : N)

100 (h0 : 3 ≤ n) :
101 (n)! < nˆ(n - 1) := by
102 -- Base case: n = 3
103 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by sorry
104 -- Inductive step: assume (k)! < kˆ(k - 1) for some k ≥ 3, prove

(k + 1)! < (k + 1)ˆ((k + 1) - 1)
105 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) →

(k + 1)! < (k + 1) ˆ ((k + 1) - 1) := by sorry
106 -- Combine base case and inductive step to get the general result
107 have h_general : (n)! < n ˆ (n - 1) := by sorry
108 sorry
109 ‘‘‘
110

111 This sets up the scaffolding of the proof using ‘have‘ statements
with ‘sorry‘.

112

113 ### Step-by-Step Abstract Plan
114

115 1. **Base Case (‘n = 3‘)**:
116 - Directly check ‘3! = 6‘ and ‘3ˆ(3 - 1) = 9‘, hence ‘6 < 9‘.
117

118 2. **Inductive Hypothesis (‘n = k‘)**:
119 - Assume ‘k! < kˆ(k - 1)‘ for some ‘k ≥ 3‘.
120

121 3. **Inductive Step (‘n = k + 1‘)**:
122 - Prove ‘(k + 1)! < (k + 1)ˆ((k + 1) - 1)‘ using:
123 - ‘(k + 1)! = (k + 1) * k! < (k + 1) * kˆ(k - 1)‘ by IH.
124 - ‘(k + 1)ˆk = (k + 1) * (k + 1)ˆ{k - 1} ≥ (k + 1) * kˆ(k -

1)‘ if ‘(k + 1)ˆ{k - 1} ≥ kˆ(k - 1)‘. This holds for ‘k ≥ 3‘
because ‘(k + 1) ≥ k‘ and functions are increasing.

125

126 4. **Conclusion**:
127 - By induction, the statement holds for all ‘n ≥ 3‘.
128

129 ### Lean 4 Proof Sketch with ‘have‘ Statements and ‘sorry‘s
130

131 ‘‘‘lean4
132 theorem induction
133 (n : N)
134 (h0 : 3 ≤ n) :
135 (n)! < nˆ(n - 1) := by
136 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by sorry
137 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) →

(k + 1)! < (k + 1) ˆ ((k + 1) - 1) := by sorry
138 have h_general : (n)! < n ˆ (n - 1) := by sorry
139 sorry
140 ‘‘‘

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

141

142 (Note: The ‘have‘ statements are used to sketch the high-level
structure of the proof. The actual Lean 4 proof would fill in the
‘sorry‘ placeholders with detailed reasoning.)

143

144 ### Complete Lean 4 Proof
145

146 ‘‘‘lean4
147 theorem induction
148 (n : N)
149 (h0 : 3 ≤ n) :
150 (n)! < nˆ(n - 1) := by
151 have h_base : (3 : N)! < 3 ˆ (3 - 1) := by
152 norm_num
153 <;> decide
154

155 have h_inductive_step : ∀ (k : N), 3 ≤ k → (k)! < k ˆ (k - 1) →
(k + 1)! < (k + 1) ˆ ((k + 1) - 1) := by

156 intro k hk’ hk’’
157 have h1 : (k + 1)! = (k + 1) * k ! := by
158 simp [Nat.factorial_succ, Nat.mul_comm]
159 <;> ring
160 <;> simp_all [Nat.factorial]
161 <;> ring
162 <;> simp_all [Nat.factorial]
163 rw [h1]
164 have h2 : (k + 1 : N) * k ! < (k + 1 : N) * k ˆ (k - 1) := by
165 -- Apply the inductive hypothesis to get the inequality for

‘k! < k ˆ (k - 1)‘
166 have h3 : k ! < k ˆ (k - 1) := hk’’
167 have h4 : (k + 1 : N) > 0 := by linarith
168 have h5 : (k + 1 : N) * k ! < (k + 1 : N) * k ˆ (k - 1) := by
169 exact Nat.mul_lt_mul_of_pos_left h3 (by linarith)
170 exact h5

171 have h3 : (k + 1 : N) ˆ ((k + 1) - 1) = (k + 1) ˆ k := by
172 simp [Nat.sub_add_cancel (by linarith : 1 ≤ k + 1)]
173 <;> ring_nf
174 <;> simp_all
175 rw [h3]
176 -- Use the fact that ‘(k + 1) * k ˆ (k - 1) < (k + 1) ˆ k‘ to

conclude the proof
177 have h4 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) ˆ k := by
178 have h5 : k ≥ 3 := by exact_mod_cast hk’
179 have h6 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) ˆ k := by
180 have h7 : (k + 1 : N) ˆ k = (k + 1) * (k + 1) ˆ (k - 1) :=

by
181 cases k with
182 | zero => contradiction
183 | succ k’ =>
184 cases k’ with
185 | zero => contradiction
186 | succ k’’ =>
187 cases k’’ with
188 | zero => contradiction
189 | succ k’’’ =>
190 simp [Nat.pow_succ, Nat.mul_assoc]
191 <;> ring_nf at *
192 <;> omega
193 rw [h7]
194 have h8 : (k + 1 : N) * k ˆ (k - 1) < (k + 1) * ((k + 1) ˆ

(k - 1)) := by
195 have h9 : k ˆ (k - 1) < (k + 1) ˆ (k - 1) := by
196 exact Nat.pow_lt_pow_of_lt_left (by linarith) (by
197 have h10 : k - 1 ≥ 2 := by
198 omega

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

199 omega)
200 nlinarith
201 nlinarith
202 exact h6

203 nlinarith
204

205 have h_general : (n)! < n ˆ (n - 1) := by
206 have h1 : ∀ n : N, 3 ≤ n → (n)! < n ˆ (n - 1) := by
207 intro n hn
208 induction’ hn with k hk IH
209 · -- Base case: k = 3
210 simp [Nat.factorial]
211 <;> norm_num
212 · -- Inductive step: assume the statement holds for k, prove

for k + 1
213 cases k with
214 | zero => contradiction
215 | succ k’ =>
216 cases k’ with
217 | zero => contradiction
218 | succ k’’ =>
219 cases k’’ with
220 | zero => contradiction
221 | succ k’’’ =>
222 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
223 -- Use the inductive hypothesis and the lemma

‘h_inductive_step‘ to prove the next step
224 <;>
225 (try omega) <;>
226 (try nlinarith) <;>
227 (try
228 {
229 have h2 := h_inductive_step (k’’’ + 3) (by

linarith) (by simpa [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
using IH)

230 simp_all [Nat.factorial, Nat.pow_succ,
Nat.mul_assoc]

231 <;>
232 (try omega) <;>
233 (try nlinarith)
234 })
235 <;>
236 (try
237 {
238 aesop
239 })
240 <;>
241 (try
242 {
243 nlinarith [pow_pos (by norm_num : (0 : N) < 2)

k’’’, pow_pos (by norm_num : (0 : N) < 2) (k’’’ + 1), pow_pos (by
norm_num : (0 : N) < 2) (k’’’ + 2)]

244 })
245 exact h1 n h0

246

247 exact h_general
248 ‘‘‘

E.1.6 COMPARISON: DIRECT PROOF ATTEMPT WITHOUT LEMMAS

For comparison, we present below the reasoning process and generated Lean code from a direct
proof attempt without using auxiliary lemmas. Among the 100 initial direct proof attempts (Ninit =
100), we show the one that resulted in the fewest Lean errors.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

1 ### Detailed Proof and Analysis
2

3 **Problem Analysis:**
4 We need to prove that for all integers ‘n ≥ 3‘, ‘n! < nˆ(n - 1)‘.
5

6 **Key Observations:**
7 1. For ‘n ≥ 3‘, ‘n - 1 ≥ 2‘ (since ‘3 - 1 = 2‘), so ‘nˆ(n - 1)‘

grows faster than ‘n!‘ as ‘n‘ increases.
8 2. The factorial ‘n!‘ is the product of all integers from ‘1‘ to

‘n‘, while ‘nˆ(n - 1)‘ is a product of ‘n - 1‘ copies of ‘n‘
(assuming ‘n ≥ 3‘).

9 3. The inequality ‘n! < nˆ(n - 1)‘ can be compared term by term,
but a more precise estimate is needed.

10 4. For ‘n ≥ 3‘, we have ‘n! < (n + 1 - 1)! = n!‘? Wait, this is
not helpful. Instead, we can compare ‘n!‘ with ‘nˆ(n - 1)‘:

11 - The inequality ‘n! < nˆ(n - 1)‘ is equivalent to ‘(n - 1)! <
nˆ(n - 2)‘, but this is not directly useful either.

12 5. A better idea is to directly compare ‘n!‘ with ‘n*(n -
1)*. . .*(2)‘ and ‘nˆ(n - 1) = n * n * . . . * n‘.

13 - For ‘n ≥ 3‘, each term ‘k‘ in the product ‘2 * 3 * . . . * (n -
1)‘ is ‘≥ 1‘ (except ‘2 * 1‘ is skipped if ‘n ≥ 4‘, but ‘n ≥ 3‘
is given), and each is ‘≤ n - 1‘ for ‘k ≤ n - 2‘. However,
comparing ‘k‘ to ‘n‘ is complicated.

14 - Alternatively, ‘n!‘ is the product of ‘n‘ factors, each ‘≤
n‘, but ‘n!‘ is a product of all numbers from ‘1‘ to ‘n‘, whereas
‘nˆ(n - 1)‘ is a product of ‘n - 1‘ copies of ‘n‘.

15

16 But actually, induction is not straightforward here. The key is to
compare ‘n!‘ with ‘n * (n - 1)ˆ(n - 1)‘, since ‘(n - 1)ˆ(n - 1)‘
grows faster than ‘(n - 1)(n - 2) . . .‘ for ‘n ≥ 3‘.

17

18 But ‘n! < n * (n - 1)!‘ is ‘n! < n * (n - 1)!‘, which is true
except for ‘n = 1‘. So is ‘n * (n - 1)! < nˆ(n - 1)‘? Not
obviously, because for ‘n = 4‘, ‘4 * 3! = 24‘ and ‘4ˆ3 = 64‘, but
for ‘n = 3‘, ‘3! = 6‘ and ‘3ˆ2 = 9‘.

19

20 Instead, let’s recall the definition of ‘n!‘ and think about how
many times ‘n!‘ is compared to ‘nˆ(n - 1)‘.

21

22 For ‘n ≥ 3‘, each time you compare ‘n!‘ with ‘n * (n - 1)!‘, and
this is ‘< n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)} ? Seems
wrong because ‘(n - 1)! < nˆ(n - 2)}‘ would be true for ‘n ≥ 2‘ by
induction, which is not a problem since we’re proving it.

23

24 Perhaps a better approach is to use telescoping inequalities.
Consider ‘n! = n * (n - 1) * . . . * 2 * 1‘, and ‘nˆ(n - 1)‘ is the
product of ‘n - 1‘ copies of ‘n‘.

25

26 For ‘n ≥ 3‘, each term in the factorial is smaller than ‘n‘ (‘k ≤
n - 1‘).

27

28 But more precisely, ‘n! = n * (n - 1)!‘ and ‘(n - 1)! < nˆ(n - 2)‘
for ‘n ≥ 3‘ (since ‘n - 1 ≥ 2‘).

29

30 Let’s try to prove ‘(n - 1)! < nˆ(n - 2)}‘. If ‘(n - 1)! < nˆ(n -
2)}‘ holds, then ‘n! = n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 2)}‘.

31

32 But is ‘n * nˆ(n - 2)} = nˆ(n - 1)}‘ ? Yes, because ‘n * nˆ(n -
2)} = nˆ(1 + n - 2)} = nˆ(n - 1)}‘.

33

34 Thus, ‘n! < nˆ(n - 1)}‘, provided that ‘(n - 1)! < nˆ(n - 2)}‘.
35

36 Wait, ‘nˆ(n - 2)}‘ is ‘n * nˆ(n - 3)}‘ if ‘n ≥ 3‘.
37

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

38 So the induction is:
39 - Base case ‘n = 3‘: ‘2! = 2‘ and ‘3ˆ2 = 9‘, ‘2 < 9‘ holds.
40 - Inductive step: Assume for ‘n‘, ‘(n - 1)! < nˆ(n - 2)}‘. Then ‘n

* (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)}‘? But ‘n * nˆ(n - 2)} =
nˆ(n - 2 + 1)} = nˆ(n - 1)}‘. So ‘n! = n * (n - 1)! < nˆ(n - 1)}‘.

41

42 This is a valid induction, provided that ‘(n - 1)! < nˆ(n - 2)}‘
is true for ‘n ≥ 3‘.

43

44 Now, recall that for ‘n ≥ 3‘:
45 ‘n! = n * (n - 1)!‘ and ‘(n - 1)! < nˆ(n - 2)‘ if ‘n ≥ 3‘.
46

47 But is ‘(n - 1)! < nˆ(n - 2)}‘ true for ‘n ≥ 3‘?
48

49 For ‘n = 3‘, LHS = 2, RHS = 1. False. Hmm, ‘3! = 6‘ and ‘3ˆ(3 -
3)‘ = 1? No, ‘3 ≥ 3‘ and ‘3ˆ(3 - 2)} = 3ˆ{1}} = 3‘, ‘2 < 3‘, so
true.

50

51 Wait no. For ‘n = 4‘, ‘(3)! = 6‘, and ‘4ˆ{4 - 2}} = 4ˆ{2}} = 16‘,
‘6 < 16‘ true.

52

53 For ‘n = 5‘, ‘(4)! = 24‘, ‘5ˆ{5 - 2}} = 5ˆ3 = 125‘, ‘24 < 125‘
true.

54

55 Hypothesis that ‘(n - 1)! < nˆ(n - 2)}‘ for all ‘n ≥ 3‘.
56

57 Base case ‘n = 3‘, ‘2! = 2 < 3ˆ{1} = 3‘ true.
58

59 Inductive step: Assume ‘(n - 1)! < nˆ(n - 2)}‘ for ‘n ≥ 4‘.
60

61 We need ‘n! < (n + 1)ˆ(n - 1)}‘:
62 ‘n! = n * (n - 1)! < n * nˆ(n - 2)} = nˆ(n - 1)}‘, since ‘(n - 1)!

< nˆ(n - 2)}‘ holds by the inductive hypothesis for ‘n ≥ 3‘.
63

64 This works!
65

66 **Conclusion:** The inequality ‘n! < nˆ{n - 1}‘ holds for all ‘n ≥
3‘ (‘n >= 3‘).

67

68 But wait, the original Lean statement is ‘n : N‘ and ‘3 ≤ n‘, so
indices are clear.

69

70 We can proceed directly using induction. The ‘have‘ statements
will reflect the proof.

71

72 **Lean 4 Proof Sketch:**
73

74 1. **Base Case (‘n = 3‘)**: Check that ‘3! < 3ˆ{3 - 1}‘ or ‘6 < 9‘.
75 2. **Inductive Step**: Assume ‘(k)! < kˆ{k - 1}‘ for some ‘k ≥ 3‘,

and prove ‘(k + 1)! < (k + 1)ˆ{k}‘ using the assumption ‘k! < kˆ{k
- 1}‘.

76

77 ### Abstract Step-by-Step Plan
78

79 1. **Base Case (‘n = 3‘)**:
80 - Compute ‘3! = 6‘.
81 - Compute ‘3ˆ{3 - 1} = 3ˆ2 = 9‘.
82 - Since ‘6 < 9‘, the statement holds.
83

84 2. **Inductive Step (‘n → n + 1‘)**:
85 - Assume ‘n! < nˆ{n - 1}‘ for some ‘n ≥ 3‘ (induction

hypothesis).
86 - Prove ‘(n + 1)! < (n + 1)ˆn‘:
87 - ‘(n + 1)! = (n + 1) * n!‘ (by definition).
88 - By hypothesis, ‘n! < nˆ{n - 1}‘.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

89 - Thus, ‘(n + 1)! < (n + 1) * nˆ{n - 1}‘.
90 - It remains to prove ‘(n + 1) * nˆ{n - 1} ≤ (n + 1)ˆn‘,

i.e., ‘nˆ{n - 1} ≤ (n + 1)ˆ{n - 1}‘ (if ‘n + 1 ≥ 2‘? Always true
since ‘n ≥ 2‘).

91 * Since ‘n ≥ 2‘, ‘nˆ{n - 1} ≤ (n + 1)ˆ{n - 1}‘ because ‘n ≤
n + 1‘ and the exponent is ‘n - 1 ≥ 2‘, making the term ‘(n +
1)ˆ{n - 1}‘ strictly greater than ‘nˆ{n - 1}}‘.

92

93 ### Lean 4 ‘have‘ Statements
94

95 ‘‘‘lean4
96 theorem induction
97 (n : N)
98 (h0 : 3 ≤ n) :
99 (n)! < nˆ(n - 1) := by

100 have h_main : (n)! < nˆ(n - 1) := by
101 sorry
102 sorry
103 ‘‘‘
104

105 ### Explanation of ‘have‘ Statements:
106 1. The ‘have‘ statement ‘h_main‘ directly encodes our goal ‘(n)! <

nˆ(n - 1)‘. Inside the proof, we would perform induction, but in a
structured Lean proof, we break it into a single ‘have h_main‘.

107 - The actual proof would expand on ‘h_main‘ by leveraging
induction, but for this sketch, it suffices to rely on the good
old induction hypothesis.

108

109 ### Complete Lean 4 Proof
110

111 ‘‘‘lean4
112 theorem induction
113 (n : N)
114 (h0 : 3 ≤ n) :
115 (n)! < nˆ(n - 1) := by
116 have h_main : (n)! < nˆ(n - 1) := by
117 have h1 : ∀ n : N, 3 ≤ n → (n)! < n ˆ (n - 1) := by
118 intro n hn
119 induction’ hn with n hn IH
120 · -- Base case: n = 3
121 norm_num [Nat.factorial]
122 · -- Inductive step: assume the statement holds for n, prove

for n + 1
123 cases n with
124 | zero => contradiction -- n cannot be zero since 3 ≤ n
125 | succ n =>
126 cases n with
127 | zero => contradiction -- n cannot be one since 3 ≤ n
128 | succ n =>
129 cases n with
130 | zero => contradiction -- n cannot be two since 3 ≤ n
131 | succ n =>
132 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_comm,

Nat.mul_assoc, Nat.mul_left_comm]
133 <;>
134 (try omega) <;>
135 (try
136 {
137 nlinarith [pow_pos (by decide : (0 : N) < 2)

n, pow_pos (by decide : (0 : N) < 2) (n - 1)]
138 }) <;>
139 (try
140 {
141 ring_nf at *
142 <;>

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

143 nlinarith [pow_pos (by decide : (0 : N) < 2)
n, pow_pos (by decide : (0 : N) < 2) (n - 1)]

144 }) <;>
145 (try
146 {
147 simp_all [Nat.factorial_succ, Nat.mul_comm,

Nat.mul_assoc, Nat.mul_left_comm]
148 <;>
149 norm_num at *
150 <;>
151 ring_nf at *
152 <;>
153 nlinarith [pow_pos (by decide : (0 : N) < 2)

n, pow_pos (by decide : (0 : N) < 2) (n - 1)]
154 })
155 exact h1 n h0

156 exact h_main
157 ‘‘‘

E.2 CASE STUDY OF SUCCESSFUL EXAMPLE WITH ITERATIVE REFINEMENT

E.2.1 DETAILED ANALYSIS

We analyze in detail the reasoning process and the output for the problem mathd algebra 275,
a case where direct proof without iterative refinement failed, but iterative refinement succeeded
after three iterations. This problem asks to find the value of the expression

(
111/4

)6x+2
given the

equation
(
111/4

)3x−3
= 1/5.

We analyze the final successful iteration of the iterative refinement process for this problem. The
prompt used in this final iteration along with the corresponding output is shown in Appendix E.2.4.

In this case, the input prompt highlights two failures: a linarith error and an unsolved
goals state. Both errors originated from the model’s initial attempt to resolve complex non-linear
expressions using standard automated tactics, which were insufficient for the structural complexity
involved. Crucially, the model interpreted these error messages as indicators of the limitations of
the automated tools. Consequently, instead of attempting superficial fixes, the model adopted a fun-
damentally more robust mathematical strategy. This demonstrates how explicit feedback regarding
the boundaries of automated proving effectively guides the model toward a successful resolution.
Below, we analyze the failures in detail, explaining their root causes and how the final successful
proof overcomes them.

The first Lean error message is as follows (as shown in the prompt used in the final refinement step):
linarith failed to find a contradiction

The goal state at the point of failure involved complex nested exponentiation of real numbers, specifi-
cally terms such as ((111/4)3x−3)2. The failure stems from the misapplication of a linear arithmetic
solver to a fundamentally non-linear problem. In this instance, the validity of the equality relied
on the algebraic properties of exponentiation, specifically the power rule (ab)c = abc. However,
linarith does not have built-in knowledge of these non-linear identities. Because the solver
could not peer inside the Real.rpow terms to see that the left-hand side and right-hand side were
algebraically equivalent, it treated them as distinct, unrelated variables, thus failing to derive the
necessary contradiction.

Upon receiving this error message, the model declares its intention to fix the code on line 3, and
immediately proceeds to analyze this first error in the “Observations” section on line 10. Here, the
model devises a corrective strategy that switches to applying the natural logarithm (Real.log) to
both sides, instead of attempting to manipulate the exponents directly (which leads to the non-linear
structures that baffled linarith). This transformation converts the exponentiation operations into
multiplication, and the problem is mapped from a non-linear domain into a linear domain where
the constraints on x become simple linear equations. The model elaborates on the details of this
logarithmic strategy in the “Rewriting the Hypothesis” section, starting from line 11.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

The second error, flagged as unsolved goals, arose from the tactics’ inability to verify a commutativ-
ity relation (A×B = B×A) involving complex nested exponential terms. The standard ring tactic
failed to normalize these opaque structures, leaving the proof in an incomplete state. The resolution
of this error emerges organically as a byproduct of the primary strategy shift. Consequently, while
the “Observations” section commencing on line 10 does not explicitly address this specific error, the
model naturally analyzes the details and resolves the issue during the formulation of the corrected
version, specifically within the “Rewriting the Goal” section (starting on line 16) and the “Correct
Approach” section (starting on line 46).

For comparison, Appendix E.2.5 presents the output generated without iterative refinement. As ob-
served in this output, due to the absence of error feedback, the model makes no attempt to resolve
specific failure points; instead, its activity is limited to formulating a general strategy and construct-
ing the Lean proof.

E.2.2 LEAN ENVIRONMENT SETUP

All Lean code is executed in exactly the same environment as described in Appendix E.1.2. Each
code snippet is preceded by the same Lean header shown in Appendix E.1.2, which we omit in the
subsequent examples for conciseness.

E.2.3 THE PROBLEM

This problem asks you to find the value of the expression
(
111/4

)6x+2
given the equation(

111/4
)3x−3

= 1/5:

1 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ
(3 * x - 3) = 1 / 5) :

2 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by sorry

E.2.4 FINAL ITERATIVE REFINEMENT STEP

This problem could not be solved by direct proving, but it succeeds after three iterations of iter-
ative refinement. Below, we show the prompt used in the final refinement step and the model’s
corresponding output.

The prompt used in the final refinement step is as follows:

1 Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

2

3 ‘‘‘lean4
4 import Mathlib
5 import Aesop
6

7 set_option maxHeartbeats 0
8

9 open BigOperators Real Nat Topology Rat
10

11

12 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ
(3 * x - 3) = 1 / 5) :

13 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
14 ‘‘‘
15

16 Your proof is as follows:
17 ‘‘‘lean4
18 import Mathlib
19 import Aesop
20

21 set_option maxHeartbeats 0
22

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

23 open BigOperators Real Nat Topology Rat
24

25

26 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ
(3 * x - 3) = 1 / 5) :

27 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
28 have h1 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R) ˆ

(1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) := by
29 have h1 : (6 * x + 2 : R) = 2 * (3 * x - 3) + 8 := by
30 ring_nf
31 <;>
32 linarith
33 rw [h1]
34 <;>
35 norm_num
36 <;>
37 linarith
38

39 have h2 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) =
(((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 * ((11 : R) ˆ (1 / 4
: R)) ˆ 8 := by

40 have h3 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) =
((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) * ((11 : R) ˆ (1 / 4
: R)) ˆ 8 := by

41 have h4 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) =
((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) * ((11 : R) ˆ (1 / 4
: R)) ˆ 8 := by

42 rw [show (2 * (3 * x - 3) + 8 : R) = (2 * (3 * x - 3) : R)
+ 8 by ring]

43 rw [Real.rpow_add (by positivity)]
44 <;> ring_nf
45 <;> norm_num
46 <;> linarith
47 exact h4

48 rw [h3]
49 have h5 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) = (((11

: R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 := by
50 have h6 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) =

(((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 := by
51 have h7 : (2 * (3 * x - 3) : R) = (3 * x - 3) + (3 * x -

3) := by ring
52 rw [h7]
53 have h8 : ((11 : R) ˆ (1 / 4 : R)) ˆ ((3 * x - 3) + (3 * x

- 3)) = ((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3) * ((11 : R) ˆ (1 /
4 : R)) ˆ (3 * x - 3) := by

54 rw [Real.rpow_add (by positivity)]
55 <;> ring_nf
56 <;> norm_num
57 <;> linarith
58 rw [h8]
59 <;> ring_nf
60 <;> field_simp
61 <;> ring_nf
62 <;> norm_num
63 <;> linarith
64 exact h6

65 rw [h5]
66 <;> ring_nf
67 <;> norm_num
68 <;> linarith
69

70 have h3 : (((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 = (1 / 5
: R) ˆ 2 := by

71 have h3 : ((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3) = 1 / 5 := h
72 rw [h3]

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

73 <;> norm_num
74

75 have h4 : ((11 : R) ˆ (1 / 4 : R)) ˆ 8 = 121 := by
76 have h4 : ((11 : R) ˆ (1 / 4 : R)) ˆ 8 = 121 := by
77 have h5 : ((11 : R) ˆ (1 / 4 : R)) ˆ 8 = (11 : R) ˆ ((1 / 4

: R) * 8) := by
78 rw [← Real.rpow_nat_cast]
79 rw [← Real.rpow_mul] <;> ring_nf <;> norm_num
80 <;> positivity
81 rw [h5]
82 have h6 : (11 : R) ˆ ((1 / 4 : R) * 8) = (11 : R) ˆ (2 : R)

:= by
83 norm_num
84 <;> ring_nf
85 <;> field_simp
86 <;> ring_nf
87 rw [h6]
88 have h7 : (11 : R) ˆ (2 : R) = 121 := by
89 norm_num [Real.rpow_two]
90 <;> ring_nf
91 <;> norm_num
92 rw [h7]
93 <;> norm_num
94 exact h4

95

96 have h5 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
97 calc
98 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R) ˆ (1 / 4

: R)) ˆ (2 * (3 * x - 3) + 8) := by rw [h1]
99 _ = (((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 * ((11 : R)

ˆ (1 / 4 : R)) ˆ 8 := by rw [h2]
100 _ = (1 / 5 : R) ˆ 2 * ((11 : R) ˆ (1 / 4 : R)) ˆ 8 := by rw

[h3]
101 _ = (1 / 5 : R) ˆ 2 * 121 := by rw [h4]
102 _ = 121 / 25 := by
103 norm_num
104 <;> ring_nf
105 <;> norm_num
106 <;> linarith
107

108 rw [h5]
109 <;> norm_num
110 ‘‘‘
111

112 The proof failed to compile with errors.
113 The error occurred at the following line(s):
114

115 Error line (line 29):
116 ‘‘‘lean4
117 <;> linarith
118 ‘‘‘
119 Error message:
120 ‘‘‘lean4
121 linarith failed to find a contradiction
122 case h1.h
123 x : R
124 h : (11 ˆ (1 / 4)) ˆ (3 * x - 3) = 1 / 5
125 h1 : (11 ˆ (1 / 4)) ˆ (6 * x + 2) = (11 ˆ (1 / 4)) ˆ (2 * (3 * x -

3) + 8)
126 a : (11 ˆ (1 / 4)) ˆ (-6 + x * 6) * (11 ˆ (1 / 4)) ˆ 8 < (11 ˆ (1

/ 4)) ˆ 8 * (11 ˆ (1 / 4)) ˆ (-6 + x * 6)
127 ⊢ False
128 failed
129 ‘‘‘
130

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

131

132 Error line (line 24):
133 ‘‘‘lean4
134 have h4 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) =

((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) * ((11 : R) ˆ (1 / 4
: R)) ˆ 8 := by

135 rw [show (2 * (3 * x - 3) + 8 : R) = (2 * (3 * x - 3) : R)
+ 8 by ring]

136 rw [Real.rpow_add (by positivity)]
137 <;> ring_nf
138 <;> norm_num
139 <;> linarith
140 ‘‘‘
141 Error message:
142 ‘‘‘lean4
143 unsolved goals
144 x : R
145 h : (11 ˆ (1 / 4)) ˆ (3 * x - 3) = 1 / 5
146 h1 : (11 ˆ (1 / 4)) ˆ (6 * x + 2) = (11 ˆ (1 / 4)) ˆ (2 * (3 * x -

3) + 8)
147 ⊢ (11 ˆ (1 / 4)) ˆ (-6 + x * 6) * (11 ˆ (1 / 4)) ˆ 8 = (11 ˆ (1 /

4)) ˆ 8 * (11 ˆ (1 / 4)) ˆ (-6 + x * 6)
148 ‘‘‘
149

150

151 Fix these errors and complete the following Lean 4 code:
152

153 ‘‘‘lean4
154 import Mathlib
155 import Aesop
156

157 set_option maxHeartbeats 0
158

159 open BigOperators Real Nat Topology Rat
160

161

162 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ
(3 * x - 3) = 1 / 5) :

163 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
164 ‘‘‘
165

166 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

167 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

The corresponding output from the prover model is as follows:

1 ## Detailed Proof and Analysis
2

3 First, let’s carefully analyze the given problem and the Lean 4
statement to understand where the errors might have occurred.

4

5 #### Problem Breakdown:
6 We are given:
7 1. ‘((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3) = 1 / 5‘
8 2. We need to prove that ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) =

121 / 25‘.
9

10 #### Observations:
11 1. The expression ‘(11 : R) ˆ (1 / 4 : R)‘ is a real number raised

to the power of ‘1/4‘, which is not a standard exponentiation

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

operation in Lean 4. In Lean 4, ‘a ˆ b‘ for ‘a : R‘ and ‘b : R‘ is
interpreted as ‘Real.rpow a b‘, i.e., ‘a ˆ b = exp (b * log a)‘.

12 2. The exponent ‘3 * x - 3‘ is real-valued, and the exponentiation
is ‘Real.rpow‘ (real power). Similarly, ‘6 * x + 2‘ is real-valued.

13 3. The hypothesis ‘h‘ is ‘((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3) =
1 / 5‘, which is not a standard exponentiation operation unless we
are interpreting ‘ˆ‘ as ‘Real.rpow‘.

14 4. The Lean 4 code uses ‘Real.rpow‘ implicitly, and ‘h‘ is a
statement about real powers.

15

16 #### Rewriting the Hypothesis:
17 Given ‘h : ((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3) = 1 / 5‘, we can

take the natural logarithm of both sides to find a relationship
involving ‘x‘.

18

19 First, note that:
20 ‘(11 : R) ˆ (1 / 4 : R) > 0‘, so the logarithm is well-defined.
21

22 Taking the natural logarithm of both sides of ‘h‘:
23 ‘log (((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) = log (1 / 5)‘.
24

25 Using the logarithm power rule:
26 ‘(3 * x - 3) * log ((11 : R) ˆ (1 / 4 : R)) = log (1 / 5)‘.
27

28 Since ‘log (1 / 5) = - log 5‘, we have:
29 ‘(3 * x - 3) * log ((11 : R) ˆ (1 / 4 : R)) = - log 5‘.
30

31 But ‘log ((11 : R) ˆ (1 / 4 : R)) = (1 / 4) * log 11‘, so:
32 ‘(3 * x - 3) * (1 / 4) * log 11 = - log 5‘.
33

34 Multiply both sides by 4:
35 ‘(3 * x - 3) * log 11 = -4 * log 5‘.
36

37 Divide both sides by ‘log 11‘ (assuming ‘log 11 ̸= 0‘, which is
true since ‘11 > 1‘):

38 ‘3 * x - 3 = -4 * (log 5 / log 11)‘.
39

40 Thus:
41 ‘3 * x = 3 - 4 * (log 5 / log 11)‘.
42

43 Therefore:
44 ‘x = 1 - (4 / 3) * (log 5 / log 11)‘.
45

46 #### Rewriting the Goal:
47 We need to find ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2)‘.
48

49 First, note that:
50 ‘6 * x + 2 = 6 * (1 - (4 / 3) * (log 5 / log 11)) + 2 = 6 - 8 *

(log 5 / log 11) + 2 = 8 - 8 * (log 5 / log 11)‘.
51

52 Thus:
53 ‘6 * x + 2 = 8 * (1 - (log 5 / log 11))‘.
54

55 Therefore:
56 ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R) ˆ (1 / 4 : R

)) ˆ (8 * (1 - (log 5 / log 11)))‘.
57

58 But ‘((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1 - (log 5 / log 11))) =
((11 : R) ˆ (1 / 4 : R)) ˆ 8 * ((11 : R) ˆ (1 / 4 : R)) ˆ (-8 *
(log 5 / log 11))‘.

59

60 But ‘((11 : R) ˆ (1 / 4 : R)) ˆ 8 = (11 : R) ˆ 2 = 121‘, and ‘((11
: R) ˆ (1 / 4 : R)) ˆ (-8 * (log 5 / log 11)) = 1 / ((11 : R) ˆ (1
/ 4 : R)) ˆ (8 * (log 5 / log 11))‘.

61

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

62 But ‘((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (log 5 / log 11)) = (11 : R)
ˆ (8 * (log 5 / log 11) * (1 / 4)) = (11 : R) ˆ (2 * (log 5 / log
11)) = (11 : R) ˆ (log 5 / log 11 * 2) = exp (log 5 / log 11 * 2 *
log 11) = exp (2 * log 5) = exp (log 25) = 25‘.

63

64 Thus:
65 ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 * (1 / 25) = 121 /

25‘.
66

67 However, this is not correct because ‘((11 : R) ˆ (1 / 4 : R)) ˆ
(8 * (log 5 / log 11))‘ is not ‘25‘.

68

69 #### Correct Approach:
70 We can directly compute ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2)‘

using the relationship we derived for ‘x‘.
71

72 Recall that ‘x = 1 - (4 / 3) * (log 5 / log 11)‘.
73

74 Thus:
75 ‘6 * x + 2 = 6 * (1 - (4 / 3) * (log 5 / log 11)) + 2 = 6 - 8 *

(log 5 / log 11) + 2 = 8 - 8 * (log 5 / log 11)‘.
76

77 But ‘8 - 8 * (log 5 / log 11) = 8 * (1 - (log 5 / log 11)) = 8 *
(log 11 / log 11 - log 5 / log 11) = 8 * (log (11 / 5) / log 11)‘.

78

79 But ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R) ˆ (1 / 4 :
R)) ˆ (8 * (log 11 / log 11 - log 5 / log 11)) = ((11 : R) ˆ (1 /
4 : R)) ˆ (8 * (log (11 / 5) / log 11)) = (11 : R) ˆ ((1 / 4 : R) *
8 * (log (11 / 5) / log 11)) = (11 : R) ˆ (2 * (log (11 / 5) /

log 11)) = (11 : R) ˆ (log (11 / 5) / (log 11 / 2)) = exp (log (11
/ 5) / (log 11 / 2) * log 11) = exp (2 * log (11 / 5)) = exp (log
((11 / 5) ˆ 2)) = (11 / 5) ˆ 2 = 121 / 25‘.

80

81 But wait, ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R) ˆ (1
/ 4 : R)) ˆ (8 * (log (11 / 5) / log 11)) = (11 : R) ˆ ((1 / 4 : R
) * 8 * (log (11 / 5) / log 11)) = (11 : R) ˆ (2 * (log (11 / 5) /
log 11)) = (11 : R) ˆ (log (11 / 5) / (log 11 / 2)) = exp (log (11
/ 5) / (log 11 / 2) * log 11) = exp (2 * log (11 / 5)) = (11 / 5)
ˆ 2 = 121 / 25‘.

82

83 This is correct because ‘(11 / 5) ˆ 2 = 121 / 25‘.
84

85 #### Step-by-Step Plan:
86 1. From ‘h‘, derive ‘x = 1 - (4 / 3) * (log 5 / log 11)‘.
87 2. Substitute ‘x‘ into ‘6 * x + 2‘ to get ‘6 * x + 2 = 8 - 8 *

(log 5 / log 11)‘.
88 3. Compute ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2)‘:
89 - ‘6 * x + 2 = 8 * (1 - (log 5 / log 11))‘.
90 - ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R) ˆ (1 / 4

: R)) ˆ (8 * (1 - (log 5 / log 11))) = ((11 : R) ˆ (1 / 4 : R)) ˆ
8 * ((11 : R) ˆ (1 / 4 : R)) ˆ (-8 * (log 5 / log 11))‘.

91 - But ‘((11 : R) ˆ (1 / 4 : R)) ˆ 8 = (11 : R) ˆ 2 = 121‘.
92 - ‘((11 : R) ˆ (1 / 4 : R)) ˆ (-8 * (log 5 / log 11)) = 1 /

((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (log 5 / log 11))‘.
93 - ‘((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (log 5 / log 11)) = (11 : R)

ˆ (8 * (log 5 / log 11) * (1 / 4)) = (11 : R) ˆ (2 * (log 5 / log
11)) = (11 : R) ˆ (log 5 / log 11 * 2) = exp (log 5 / log 11 * 2 *
log 11) = exp (2 * log 5) = exp (log 25) = 25‘.

94 - Therefore, ‘((11 : R) ˆ (1 / 4 : R)) ˆ (-8 * (log 5 / log
11)) = 1 / 25‘.

95 - Hence, ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 * (1 /
25) = 121 / 25‘.

96

97 But wait, this seems incorrect because ‘((11 : R) ˆ (1 / 4 : R)) ˆ
(6 * x + 2) = ((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (log (11 / 5) / log

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

11)) = (11 : R) ˆ (2 * (log (11 / 5) / log 11)) = (11 : R) ˆ (log
(11 / 5) / (log 11 / 2)) = exp (log (11 / 5) / (log 11 / 2) * log
11) = exp (2 * log (11 / 5)) = (11 / 5) ˆ 2 = 121 / 25‘.

98

99 This is correct because ‘(11 : R) ˆ (1 / 4 : R) > 0‘, and ‘log
((11 : R) ˆ (1 / 4 : R)) = (1 / 4) * log 11‘.

100

101 ### Step 1: Abstract Plan
102

103 1. **Find ‘x‘ in terms of logarithms**:
104 - Take the natural logarithm of both sides of ‘h‘ to find ‘x‘

in terms of ‘log 5‘ and ‘log 11‘.
105

106 2. **Substitute ‘x‘ into the goal**:
107 - Substitute ‘x = 1 - (4 / 3) * (log 5 / log 11)‘ into ‘6 * x +

2‘ to find ‘6 * x + 2 = 8 - 8 * (log 5 / log 11)‘.
108

109 3. **Simplify the exponent**:
110 - Rewrite ‘((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2)‘ as ‘((11 : R

) ˆ (1 / 4 : R)) ˆ (8 * (1 - (log 5 / log 11)))‘.
111

112 4. **Simplify using logarithms**:
113 - Use the logarithm power rule to find ‘((11 : R) ˆ (1 / 4 : R

)) ˆ (8 * (1 - (log 5 / log 11))) = 121 / 25‘.
114

115 ### Step 2: Lean 4 ‘have‘ Statements
116

117 ‘‘‘lean4
118 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ

(3 * x - 3) = 1 / 5) :
119 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
120 have h_main : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25

:= by
121 sorry
122 sorry
123 ‘‘‘
124

125 ### Complete Lean 4 Proof
126

127 ‘‘‘lean4
128 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ

(3 * x - 3) = 1 / 5) :
129 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
130 have h_main : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25

:= by
131 have h1 : Real.log (((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) =

Real.log (1 / 5) := by rw [h]
132 have h2 : (3 * x - 3) * Real.log ((11 : R) ˆ (1 / 4 : R)) =

Real.log (1 / 5) := by
133 have h3 : Real.log (((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) =

(3 * x - 3) * Real.log ((11 : R) ˆ (1 / 4 : R)) := by
134 rw [Real.log_rpow (by positivity)]
135 <;> ring_nf
136 <;> field_simp
137 <;> ring_nf
138 rw [h3] at h1

139 linarith
140 have h3 : (3 * x - 3) * Real.log ((11 : R) ˆ (1 / 4 : R)) =

Real.log (1 / 5) := by linarith
141 have h4 : Real.log ((11 : R) ˆ (1 / 4 : R)) = (1 / 4 : R) *

Real.log 11 := by
142 rw [Real.log_rpow (by positivity)]
143 <;> ring_nf
144 <;> field_simp
145 <;> ring_nf

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

146 rw [h4] at h3

147 have h5 : (3 * x - 3) * ((1 / 4 : R) * Real.log 11) = Real.log
(1 / 5) := by linarith

148 have h6 : (3 * x - 3) * ((1 / 4 : R) * Real.log 11) = Real.log
(1 / 5) := by linarith

149 have h7 : Real.log (1 / 5) = - Real.log 5 := by
150 have h71 : Real.log (1 / 5) = Real.log 1 - Real.log 5 := by
151 rw [Real.log_div (by norm_num) (by norm_num)]
152 <;> simp
153 rw [h71]
154 have h72 : Real.log 1 = 0 := by norm_num
155 rw [h72]
156 <;> ring
157 <;> linarith
158 rw [h7] at h6

159 have h8 : (3 * x - 3) * ((1 / 4 : R) * Real.log 11) = -
Real.log 5 := by linarith

160 have h9 : x = 1 - (4 / 3) * (Real.log 5 / Real.log 11) := by
161 have h91 : (3 * x - 3) * ((1 / 4 : R) * Real.log 11) = -

Real.log 5 := by linarith
162 have h92 : 3 * x - 3 = - (4 : R) * (Real.log 5 / Real.log

11) := by
163 have h93 : Real.log 11 ̸= 0 := by
164 exact Real.log_ne_zero_of_pos_of_ne_one (by norm_num)

(by norm_num)
165 field_simp at h91 ⊢
166 nlinarith
167 have h93 : x = 1 - (4 / 3) * (Real.log 5 / Real.log 11) := by
168 have h94 : 3 * x - 3 = - (4 : R) * (Real.log 5 / Real.log

11) := by linarith
169 have h95 : x = 1 - (4 / 3) * (Real.log 5 / Real.log 11) :=

by
170 have h96 : 3 * x - 3 = - (4 : R) * (Real.log 5 /

Real.log 11) := by linarith
171 have h97 : x = 1 - (4 / 3) * (Real.log 5 / Real.log 11) :=

by
172 apply Eq.symm
173 field_simp at h96 ⊢
174 nlinarith
175 exact h97

176 exact h95

177 exact h93

178 have h10 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 :=
by

179 rw [h9]
180 have h11 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * (1 - (4 / 3) *

(Real.log 5 / Real.log 11)) + 2) = 121 / 25 := by
181 have h12 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * (1 - (4 / 3) *

(Real.log 5 / Real.log 11)) + 2) = ((11 : R) ˆ (1 / 4 : R)) ˆ (8 *
(1 - (Real.log 5 / Real.log 11))) := by

182 ring_nf
183 <;> field_simp
184 <;> ring_nf
185 <;> norm_num
186 <;> linarith
187 rw [h12]
188 have h13 : ((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1 - (Real.log

5 / Real.log 11))) = 121 / 25 := by
189 have h14 : Real.log (((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1

- (Real.log 5 / Real.log 11)))) = Real.log (121 / 25) := by
190 have h15 : Real.log (((11 : R) ˆ (1 / 4 : R)) ˆ (8 *

(1 - (Real.log 5 / Real.log 11)))) = (8 * (1 - (Real.log 5 /
Real.log 11))) * Real.log ((11 : R) ˆ (1 / 4 : R)) := by

191 rw [Real.log_rpow (by positivity)]
192 <;> ring_nf

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

193 <;> field_simp
194 <;> ring_nf
195 rw [h15]
196 have h16 : Real.log ((11 : R) ˆ (1 / 4 : R)) = (1 / 4

: R) * Real.log 11 := by
197 rw [Real.log_rpow (by positivity)]
198 <;> ring_nf
199 <;> field_simp
200 <;> ring_nf
201 rw [h16]
202 have h17 : Real.log (121 / 25) = Real.log (121 / 25) :=

by rfl
203 have h18 : (8 * (1 - (Real.log 5 / Real.log 11))) * ((1

/ 4 : R) * Real.log 11) = Real.log (121 / 25) := by
204 have h19 : Real.log (121 / 25) = Real.log (121 / 25)

:= by rfl
205 have h20 : Real.log 121 = Real.log (11 ˆ 2) := by

norm_num
206 have h21 : Real.log (11 ˆ 2) = 2 * Real.log 11 := by
207 rw [Real.log_pow] <;> norm_num
208 have h22 : Real.log 25 = Real.log (5 ˆ 2) := by

norm_num
209 have h23 : Real.log (5 ˆ 2) = 2 * Real.log 5 := by
210 rw [Real.log_pow] <;> norm_num
211 have h24 : Real.log (121 / 25) = Real.log 121 -

Real.log 25 := by
212 rw [Real.log_div (by positivity) (by positivity)]
213 <;> ring_nf
214 <;> field_simp
215 <;> ring_nf
216 rw [h24, h20, h21, h22, h23]
217 have h25 : (8 * (1 - (Real.log 5 / Real.log 11))) *

((1 / 4 : R) * Real.log 11) = 2 * Real.log 11 - 2 * Real.log 5 :=
by

218 field_simp
219 <;> ring_nf
220 <;> field_simp
221 <;> ring_nf
222 <;> nlinarith
223 linarith
224 linarith
225 have h15 : Real.log (((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1

- (Real.log 5 / Real.log 11)))) = Real.log (121 / 25) := by
226 exact h14

227 have h16 : ((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1 -
(Real.log 5 / Real.log 11))) > 0 := by positivity

228 have h17 : Real.log (((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1
- (Real.log 5 / Real.log 11)))) = Real.log (121 / 25) := by

229 exact h15

230 have h18 : ((11 : R) ˆ (1 / 4 : R)) ˆ (8 * (1 -
(Real.log 5 / Real.log 11))) = 121 / 25 := by

231 apply Real.log_injOn_pos (Set.mem_Ioi.mpr (by
positivity)) (Set.mem_Ioi.mpr (by positivity))

232 linarith
233 exact h18

234 rw [h13]
235 <;> norm_num
236 <;> linarith
237 exact h11

238 exact h10

239 exact h_main
240 ‘‘‘

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

E.2.5 COMPARISON: DIRECT PROOF ATTEMPT WITHOUT ITERATIVE REFINEMENT

For comparison, we present below the reasoning process and generated Lean code from a direct
proof attempt without using auxiliary lemmas. Among the Ninit initial direct proof attempts, we
show the one that resulted in the fewest Lean errors and used as a initial draft for the iterative
refinement process.

1 ### Detailed Proof and Analysis
2

3 First, let’s recall the problem:
4 We have \(x \in \mathbb{R}\) and the equation:
5 \[\left(11ˆ{1/4}\right)ˆ{3x - 3} = \frac{1}{5}. \]
6 We need to prove that:
7 \[\left(11ˆ{1/4}\right)ˆ{6x + 2} = \frac{121}{25}. \]
8

9 Let \(a = 11ˆ{1/4}\). Then the given equation is:
10 \[aˆ{3x - 3} = \frac{1}{5}. \]
11 The goal is to find \(aˆ{6x + 2}\).
12

13 #### Step 1: Express \(6x + 2\) in terms of \(3x - 3\)
14 Notice that:
15 \[6x + 2 = 2(3x - 3) + 8. \]
16 This is because:
17 \[2(3x - 3) + 8 = 6x - 6 + 8 = 6x + 2. \]
18

19 #### Step 2: Rewrite the Goal Using the Exponent Identity
20 Using the exponent rule \((aˆm)ˆn = aˆ{m \cdot n}\), we have:
21 \[aˆ{6x + 2} = aˆ{2(3x - 3) + 8} = (aˆ{3x - 3})ˆ2 \cdot aˆ8. \]
22 Substituting the given value \(aˆ{3x - 3} = \frac{1}{5}\), we get:
23 \[aˆ{6x + 2} = \left(\frac{1}{5}\right)ˆ2 \cdot aˆ8 =

\frac{1}{25} \cdot aˆ8. \]
24

25 #### Step 3: Compute \(aˆ8\)
26 Since \(a = 11ˆ{1/4}\), we have:
27 \[aˆ4 = 11. \]
28 Therefore:
29 \[aˆ8 = (aˆ4)ˆ2 = 11ˆ2 = 121. \]
30 Thus:
31 \[aˆ{6x + 2} = \frac{1}{25} \cdot 121 = \frac{121}{25}. \]
32

33 This completes the proof.
34

35 ### Step-by-Step Abstract Plan
36

37 1. **Define \(a\)**:
38 - Let \(a = 11ˆ{1/4}\).
39

40 2. **Rewrite the Given Equation**:
41 - The given equation is \(aˆ{3x - 3} = \frac{1}{5}\).
42

43 3. **Express the Goal Exponent**:
44 - Express \(6x + 2\) as \(2(3x - 3) + 8\).
45

46 4. **Use Exponent Rules**:
47 - Rewrite \(aˆ{6x + 2}\) as \((aˆ{3x - 3})ˆ2 \cdot aˆ8\).
48

49 5. **Substitute the Given Value**:
50 - Substitute \(aˆ{3x - 3} = \frac{1}{5}\) to get \(\frac{1}{25}

\cdot aˆ8\).
51

52 6. **Compute \(aˆ8\)**:
53 - Since \(aˆ4 = 11\), we have \(aˆ8 = 121\).
54

55 7. **Final Calculation**:

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

56 - Multiply to get \(\frac{121}{25}\).
57

58 ### Lean 4 Proof Sketch with ‘have‘ Statements
59

60 ‘‘‘lean4
61 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ

(3 * x - 3) = 1 / 5) :
62 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
63 have h_main : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25

:= by
64 sorry
65 sorry
66 ‘‘‘
67

68 ### Explanation of ‘have‘ Statements
69

70 1. **‘h_main‘**: This is the main goal of the proof. The proof
will directly use the steps outlined above to derive the result.
The actual Lean 4 proof would fill in the ‘sorry‘ by carefully
applying exponent rules and arithmetic simplifications.

71

72 ### Complete Lean 4 Proof
73

74 ‘‘‘lean4
75 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ˆ (1 / 4 : R)) ˆ

(3 * x - 3) = 1 / 5) :
76 ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25 := by
77 have h_main : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = 121 / 25

:= by
78 have h1 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = (((11 : R)

ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 * ((11 : R) ˆ (1 / 4 : R)) ˆ 8 :=
by

79 have h2 : ((11 : R) ˆ (1 / 4 : R)) ˆ (6 * x + 2) = ((11 : R)
ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) := by

80 ring_nf
81 <;>
82 field_simp
83 <;>
84 ring_nf
85 <;>
86 norm_num
87 <;>
88 linarith
89 rw [h2]
90 have h3 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8) =

(((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 * ((11 : R) ˆ (1 / 4
: R)) ˆ 8 := by

91 have h4 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3) + 8)
= ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) * ((11 : R) ˆ (1 /
4 : R)) ˆ 8 := by

92 rw [Real.rpow_add (by positivity)]
93 <;> ring_nf
94 rw [h4]
95 have h5 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) =

(((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 := by
96 have h6 : ((11 : R) ˆ (1 / 4 : R)) ˆ (2 * (3 * x - 3)) =

(((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 := by
97 rw [show 2 * (3 * x - 3) = (3 * x - 3) + (3 * x - 3)

by ring]
98 rw [show ((11 : R) ˆ (1 / 4 : R)) ˆ ((3 * x - 3) + (3 *

x - 3)) = ((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3) * ((11 : R) ˆ (1
/ 4 : R)) ˆ (3 * x - 3) by

99 rw [Real.rpow_add (by positivity)] <;> ring_nf]
100 <;> ring_nf
101 <;>

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

102 field_simp
103 <;>
104 ring_nf
105 <;>
106 norm_num
107 <;>
108 linarith
109 rw [h6]
110 rw [h5]
111 <;> ring_nf
112 <;>
113 field_simp
114 <;>
115 ring_nf
116 <;>
117 norm_num
118 <;>
119 linarith
120 rw [h3]
121 <;> ring_nf
122 <;>
123 field_simp
124 <;>
125 ring_nf
126 <;>
127 norm_num
128 <;>
129 linarith
130 rw [h1]
131 have h2 : (((11 : R) ˆ (1 / 4 : R)) ˆ (3 * x - 3)) ˆ 2 = (1 /

5) ˆ 2 := by
132 rw [h]
133 <;> ring_nf
134 <;> norm_num
135 rw [h2]
136 have h3 : ((11 : R) ˆ (1 / 4 : R)) ˆ 8 = 121 := by
137 have h4 : ((11 : R) ˆ (1 / 4 : R)) ˆ 8 = 121 := by
138 have h5 : ((11 : R) ˆ (1 / 4 : R)) ˆ 8 = (11 : R) ˆ ((1 /

4 : R) * 8) := by
139 rw [← Real.rpow_nat_cast]
140 rw [← Real.rpow_mul] <;> ring_nf <;> norm_num
141 <;> positivity
142 rw [h5]
143 have h6 : (11 : R) ˆ ((1 / 4 : R) * 8) = (11 : R) ˆ (2 : R

) := by
144 norm_num
145 <;> ring_nf
146 <;> field_simp
147 <;> ring_nf
148 rw [h6]
149 have h7 : (11 : R) ˆ (2 : R) = 121 := by
150 norm_num [Real.rpow_two]
151 <;> ring_nf
152 <;> norm_num
153 rw [h7]
154 <;> norm_num
155 rw [h4]
156 rw [h3]
157 <;> norm_num
158 <;> ring_nf
159 <;> field_simp
160 <;> ring_nf
161 <;> norm_num
162 <;> linarith
163 exact h_main

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

164 ‘‘‘

F PROMPTS USED IN OUR EXPERIMENTS

In this section, we provide the prompts used in our experiments for the various stages of the Prover
Agent pipeline.

F.1 THE PROMPT FOR INITIAL DIRECT PROVING

The prompt provided to the informal LLM at the initial direct proving stage is as follows:

1 Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

2

3 ‘‘‘lean4
4 {lean_header}
5

6

7 {theorem}
8 ‘‘‘
9

10 First, provide a step-by-step proof in English.
11 DO NOT write Lean code here yet--just write the proof in English.

F.2 THE PROMPT FOR INITIAL DIRECT PROVING

The prompt provided to the prove model at the initial direct proving stage is as follows:

1 Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

2

3 ‘‘‘lean4
4 {lean_header}
5

6

7 {theorem}
8 ‘‘‘
9

10 The English proof is as follows:
11

12 ‘‘‘text
13 {nl_proof}
14 ‘‘‘
15

16 Complete the following Lean 4 code:
17

18 ‘‘‘lean4
19 {lean_header}
20

21

22 {theorem}
23 ‘‘‘
24

25 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

26 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, “nl proof” is the output from the informal LLM at the initial direct proving stage.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

F.3 THE PROMPT FOR ITERATIVE REFINEMENT IN DIRECT PROVING

The prompt for the iterative refinement stage in direct proving is as follows:

1 Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

2

3 ‘‘‘lean4
4 {lean_header}
5

6

7 {theorem}
8 ‘‘‘
9

10 Your proof is as follows:
11

12 ‘‘‘lean4
13 {prev_code}
14 ‘‘‘
15

16 The proof failed to compile with errors.
17 The error occurred at the following line(s):
18

19 {error_line_messages}
20

21 Fix these errors and complete the following Lean 4 code:
22

23 ‘‘‘lean4
24 {lean_header}
25

26

27 {theorem}
28 ‘‘‘
29

30 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

31 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, the “prev code” is the previous Lean code generated by the prove model. The “er-
ror line messages” is formatted as follows, and this block is repeated for every error:

1 Error line (line {error_line}):
2 ‘‘‘lean4
3 {error_code}
4 ‘‘‘
5 Error message:
6 ‘‘‘lean4
7 {error_message}
8 ‘‘‘

F.4 THE PROMPT FOR LEMMA GENERATION

The prompt provided to the informal LLM for lemma generation is as follows:

1 I am trying to code (prove) the following theorem in Lean 4.
2

3 ‘‘‘lean4
4 {lean_header}
5

6

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

7 {theorem}
8 ‘‘‘
9

10 Derive {num_lemmas} lemmas related to the theorem.
11 The related lemmas are those that could serve as subpropositions,

subgoals, or specific cases for he theorem.
12 For example, consider treating the case where a specific value is

substituted for one of the variables appearing in the theorem as a
lemma.

13 For each lemma, clearly state the assumptions and the conclusion
using mathematical expressions in English.

14 Include any assumptions from the original theorem as needed in
each lemma, so that each lemma contains all the necessary and
sufficient assumptions to be provable on its own.

15 You do not need to write the proofs or the Lean code for each
lemma at this point.

16 Follow the format below for each lemma:
17

18 ‘‘‘
19 ### Lemma 1: <Lemma Name>
20 **Assumptions**:
21 <Assumptions in English>
22

23 **Conclusion**:
24 <Conclusion in English>
25 ‘‘‘
26 Do not include any explanations or additional text outside of the

specified format.

Here, “num lemmas” is set to 3 in our experiments.

F.5 THE PROMPT FOR LEMMA FORMALIZATION

The prompt provided to the formalizer model for lemma formalization is as follows:

1 Please autoformalize the following natural language problem
statement in Lean 4. Use the following theorem name: {problem_name}

2 The natural language statement is:
3 {nl_statement}
4

5 Think before you provide the lean statement.

Here, “problem name” is the name of the lemma taken directly from the <Lemma Name> field in
the output of the lemma generation step.

F.6 THE PROMPT FOR FINAL SYNTHESIS

The prompt provided to the prover model at the final synthesis stage is as follows:

1 Based on these lemmas, construct and complete the following Lean 4
code:

2

3 ‘‘‘lean4
4 {lean_header}
5

6

7 {lemmas}
8

9 {theorem}
10 ‘‘‘
11

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

12 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

13 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, “lemmas” is the concatenation of the proved lemmas.

F.7 THE PROMPT FOR ITERATIVE REFINEMENT IN FINAL SYNTHESIS

The prompt provided to the prover model at the iterative refinement stage in final synthesis is as
follows:

1 Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

2

3 ‘‘‘lean4
4 {lean_header}
5

6

7 {theorem}
8 ‘‘‘
9

10 Based on lemmas, you are trying to construct the proof for the
theorem.

11 Your proof is as follows:
12

13 ‘‘‘lean4
14 {prev_code}
15 ‘‘‘
16

17 The proof failed to compile with errors.
18 The error occurred at the following line(s):
19

20 {error_line_messages}
21

22 Fix the errors and complete the following Lean 4 code
23

24 ‘‘‘lean4
25 {lean_header}
26

27

28 {lemmas}
29

30 {theorem}
31 ‘‘‘
32

33 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

34 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, “lemmas” is the concatenation of the proved lemmas, “prev code” is the previous Lean code
generated by the prover model, and “error line messages” is formatted in the same way as in the
iterative refinement stage in direct proving.

53

	Introduction
	Related Work
	Method
	Formal Proof Construction Guided by Informal Reasoning and Iterative Feedback
	Lemma Generation via Informal Reasoning
	Final Proof Synthesis Guided by Verified Lemmas and Iterative Feedback

	Theoretical Analysis
	Benefits of Lemmas for Structured Proof Decomposition
	Benefits of Lemmas for Discovering Proof Strategies (e.g., Special Cases)

	Experiments
	Experimental Setup
	Main Result: Comparison with the Previous State-of-the-Art
	Modular and Scalable Design
	Effectiveness of Informal, Formal, and Lean Coordination
	Ablation Studies: Analyzing the Contribution of Each Stage
	Case Study: Success with Lemma-Guided Proofs and Iterative Refinement
	Performance on Olympiad-Level Problems
	Broader Applicability and Future Potential

	Conclusion
	Extended Related Work
	Language Models for Formal Theorem Proving
	Tree-Search-based Formal Proving
	Whole-Proof Generation
	Formal Theorem Proving with Retrieval-Augmented Generation
	Proof Refinement and Subgoal Decomposition

	Pseudocode of the overall workflow
	Detailed Theoretical Analysis
	Benefits of Lemmas for Structured Proof Decomposition
	Benefits of Lemmas for Discovering Proof Strategies (e.g., Special Cases)

	Detailed Experimental Setup
	Benchmarking Dataset
	Used Models
	Implementation Details
	Sumple Budget
	Baseline Methods
	Comparison in Terms of Total Token Budget

	Examples of Successful Cases Enabled by Lemmas and Iterative Refinement
	Case Study of Successful Example with Lemmas
	Detailed Analysis
	Lean Environment Setup
	The Problem
	The Generated Lemmas
	The Final Proof and Its Reasoning Trace
	Comparison: Direct Proof Attempt without Lemmas

	Case Study of Successful Example with Iterative Refinement
	Detailed Analysis
	Lean Environment Setup
	The Problem
	Final Iterative Refinement Step
	Comparison: Direct Proof Attempt without Iterative Refinement

	Prompts used in our experiments
	The Prompt for Initial Direct Proving
	The Prompt for Initial Direct Proving
	The Prompt for Iterative Refinement in Direct Proving
	The Prompt for Lemma Generation
	The Prompt for Lemma Formalization
	The Prompt for Final Synthesis
	The Prompt for Iterative Refinement in Final Synthesis

