Under review as a conference paper at ICLR 2026

PROVER AGENT: AN AGENT-BASED FRAMEWORK
FOR FORMAL MATHEMATICAL PROOFS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Prover Agent, a novel Al agent for automated theorem proving that in-
tegrates large language models (LLMs) with a formal proof assistant, Lean. Prover
Agent coordinates an informal reasoning LLM, a formal prover model, and feed-
back from Lean while also generating auxiliary lemmas. These auxiliary lemmas
are not limited to subgoals in the formal proof but can also include special cases or
potentially useful facts derived from the assumptions, which help in discovering
a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F bench-
mark and solves 25 problems on the PutnamBench with a smaller sample budget
than previous approaches, establishing a new state-of-the-art on both benchmarks
among methods using small language models (SLMs). We also present theoretical
analyses and case studies that illustrate how these generated lemmas contribute to
solving challenging problems.

rover Agent (Ours)
* :
@ G

A

pos

%
a5

view-Distill

P
G
24 D
Ki
STI
/O ~#~ Goedel-Prover-SFT
21 —& InternLM2.5-StepProver-BF+CG

N

=
b

g 3
2 P =
2" / i i
Z el
=65 & -~ “
17 PR gt
12
w0l ¢ //
e /‘ .
55
w© 4/ 6= — <
100 10! 102 103 104 10% 100 107 102 103 104
Sample Budget Sample Budget
(a) MiniF2F Results (b) PutnamBench Results

Figure 1: Comparison of theorem-proving performance on MiniF2F (Zheng et al., |2022) and Put-
namBench (Tsoukalas et al.l 2024b) among methods using SLMs. On both benchmarks, our ap-
proach achieves a higher success rate with a smaller sample budget, establishing a new state-of-the-
art at this scale.

1 INTRODUCTION

Recent advances in the reasoning capabilities of large language models (LLMs) have driven remark-
able progress across many areas of artificial intelligence, including mathematical theorem proving
and problem solving (OpenAll 2024; DeepSeek-Al, [2025 [Yang et al., [2025a; |[Lewkowycz et al.
2022). However, LLMs are prone to errors and hallucinations that can undermine their reliability (J1
et al., [2023; Huang et al, |2025; | Xu et al., 2025)). Inference-time scaling techniques such as chain-
of-thought have greatly enhanced their reasoning performance by allowing models to reflect on and
correct faulty reasoning steps (Wei et al.,2022). Nonetheless, eliminating mistakes entirely remains
challenging, especially for more difficult problems (Wei et al., 2022 |[Zeng et al.l 2025).

Formal proof assistants such as Lean (Moura & Ullrich, 2021)), The Rocq Prover (previously known
as Coq) (Barras et al.| [1999), and Isabelle (Paulson, |1994) rigorously verify by computer that every

Under review as a conference paper at ICLR 2026

inference step in mathematical proofs written in their respective languages is correct, based on the
Curry—Howard correspondence. This helps mathematicians verify the correctness of proofs. Here,
no errors, omissions of detail, implicit assumptions, or ambiguities are permitted. However, working
with formal proof assistants typically requires painstaking manual effort and meticulous detail. As
a result, automating mathematical theorem proving has long been a grand challenge in artificial
intelligence and formal methods (Newell & Simon, {1956} [Irving et al. 2016} |Polu & Sutskever,
2020; Jiang et al.| |2023; [Lu et al., 2023)).

Consequently, formal theorem proving with LLMs has become increasingly important in recent
years, leading to a growing body of research in this area (Wang et al.,[2024b}; [Wu et al.}|2024a} |Xin
et al.| [2025b; |Li et al., 2025} Xin et al., [2025a; [Dong & Mal [2025} [Lin et al., [2025b} Zhang et al.,
2025; |Wang et al., 2025 Ren et al.| 2025} J1 et al., |2025} [Lin et al., 2025c; |Cao et al.l 2025} [Zhou
et al.| 20255 Chen et al.}[2025)). This not only provides a way to guarantee the correctness of mathe-
matical reasoning by LLMs, but also marks a major breakthrough in automated theorem proving. A
key point is the complementary strengths of LLMs and formal proof assistants: LLMs excel in rea-
soning and generation but may produce errors and lack guarantees of correctness, whereas formal
proof assistants, such as Lean, possess perfect verification capabilities grounded in mathematical
logic but are not generative.

Yet, significant hurdles remain in bridging informal reasoning and formal proving (Yang et al.,
2025b). For instance, prompting o3-mini (OpenAl, 2025) to directly generate a complete Lean
proof for a competition-level problem succeeds in only 6.0% of cases in a single attempt, despite its
strong performance on competition-level mathematical reasoning in natural language (Yousefzadeh
& Caol 2025). Even when fine-tuned on mathematical data, trained with reinforcement learning, or
allowed chain-of-thought, purely neural approaches fail to produce correct formal proofs, and their
formal proving capabilities still lag far behind their informal reasoning skills in natural language.

To bridge this gap between informal reasoning and formal proving, we propose a novel agent frame-
work (Prover Agent) that coordinates an informal reasoning LLM, a formal prover model, and
the Lean verification system. To tackle difficult problems that cannot be solved directly, the agent
generates auxiliary lemmas to assist in discovering a viable proof strategy. These lemmas are not
limited to subgoals that can be directly inserted into a formal proof, but may also include special
cases or potentially useful facts derived from the assumptions. Such lemmas are particularly useful
when the overall proof strategy is not apparent from the outset, as they help in constructing a vi-
able plan. It achieves an 88.1% success rate on the MiniF2F benchmark (Zheng et al., 2022) and
solves 25 problems on the PutnamBench (Tsoukalas et al.| 2024b), establishing a new state-of-the-
art on both benchmarks among methods using small language models (SLMs). Notably, it uses only
SLMs with a smaller sample budget and a smaller token budget than previous high-performing ap-
proaches, making it much more efficient in terms of inference-time cost. Furthermore, we provide
both a theoretical analysis and a case study to demonstrate the effectiveness of our agent’s approach
to generating auxiliary lemmas.

Our contributions are summarized as follows:

* Coordination of Informal and Formal Reasoning with Lean Feedback: Our agent com-
bines an informal LLM and a formal prover under Lean’s verification. The LLM produces
natural language reasoning and lemmas, which the prover formalizes and Lean checks.
Errors detected by Lean are immediately fed back, enabling iterative refinement of con-
structed proofs.

* Auxiliary Lemma Generation for Strategy Discovery: For challenging problems that
cannot be solved directly, our agent generates auxiliary lemmas, such as special cases,
potentially useful facts, or hypothesis-driven conjectures, which are then formally proved.
By reconsidering the overall proof in light of the verified lemmas, the system uncovers
viable proof strategies even when the solution path is not apparent at first.

* State-of-the-Art Theorem-Proving Performance: On the MiniF2F benchmark (Zheng
et al., [2022), a standard benchmark for formal theorem proving that consists of 488
problems drawn from mathematics Olympiads and advanced mathematics, our agent
achieves 88.1% pass rate, establishing a new state-of-the-art among methods using SLMs.
Furthermore, our agent successfully solves 25 problems on more challenging Putnam-
Bench (Tsoukalas et al.l 2024b), also achieving state-of-the-art performance among SLM-
based methods.

Under review as a conference paper at ICLR 2026

* Efficiency in Inference-Time Cost: These scores are achieved using only SLMs with a
smaller sample budget and a smaller token budget than previous state-of-the-art approaches,
emphasizing the efficiency of our approach in terms of inference-time cost.

2 RELATED WORK

In this section, we provide a brief overview of recent advancements in automated formal theorem
proving. Details of representative systems are provided in Appendix [A]

Tree-Search-based Formal Proving. Tree-search methods construct Lean proofs tactic-by-tactic
and navigate the proof space with explicit search, such as best-first search or Monte-Carlo tree
search (MCTS) (Lample et al.,2022;|Wang et al.,2023; Wu et al.,2024a; Zhou et al.,2024; |Li et al.,
2025} Xin et al) 2025agb). This line began with stepwise tactic prediction guided by a goal state,
and matured into systems that optimize the tactic policy, the search heuristic, and data curation for
longer proofs.

Whole-Proof Generation. A complementary line to tree-search methods is whole-proof genera-
tion (First et al., 2023)), where a model emits an entire Lean script in one shot, often accompanied by
a long chain-of-thought reasoning trace. This approach has progressed via expert-iteration pipelines
that recycle verified proofs back into training (Polu et al.l 2023} Wu et al.| 2021} 20244} Lin et al.
2025a; [Dong & Ma, 20255 |Lin et al.| |2025bzc) and via reinforcement learning with formal verifier
feedback (Kaliszyk et al.l 2018} [Xin et al.,|2025a}; |Zhang et al.| 2025 [Wang et al.| 2025} |Ren et al.,
2025; \Gloeckle et al., 2024 J1 et al., 2025; [Lin et al., 2025c).

Formal Theorem Proving with Retrieval-Augmented Generation. Another emerging direction is
to combine LLM-based provers with retrieval-augmented generation (RAG), where external knowl-
edge sources or proof libraries are queried at inference time to supplement the model’s reason-
ing (Yang et al.| {2023} |Shen et al., |2025)

Proof Refinement and Subgoal Decomposition. Some work has explored proof refinement, where
an initial proof attempt is improved based on feedback from the proof assistant (Thakur et al.| | 2024;
Zhou et al., [2025; (Chen et al) 2025} [Lin et al. 2025c). Another line of work involves subgoal
decomposition, where a complex theorem is broken down into simpler subgoals that are easier to
prove (Dong et al., 2025; [Wang et al., 2024a; Ren et al., [2025} Zhou et al.| [2025)), often guided by
natural-language sketches (Jiang et al., [2023; [Cao et al., 2025).

The subgoal decomposition approach shares certain similarities with ours, but our method adopts a
more comprehensive strategy that subsumes it. In these works, the full sketch of the proof must be
correctly envisioned upfront, which is often challenging. In contrast, our approach does not assume
that the overall proof strategy is fully visible from the beginning. Rather than limiting decomposition
to subgoals directly aligned with a pre-defined proof plan, we also consider auxiliary lemmas, such
as special cases or potentially useful facts, to help develop a strategy in a bottom-up manner.

3 METHOD

The overall workflow is illustrated in Figure [2 and the corresponding pseudocode is shown in Al-
gorithm [T} Given a formal math problem, our agent first attempts a direct proof, which is often
sufficient for simpler problems. For more difficult problems that cannot be solved directly, it gen-
erates auxiliary lemmas to uncover a viable proof strategy. These lemmas are then formalized and
proved individually, and the resulting proven lemmas are used to synthesize a final proof of the orig-
inal problem. Throughout this process, feedback from Lean is used to iteratively refine constructed
proofs. We describe each stage below, highlighting how the informal LLM, formal prover model,
and Lean coordinate to construct formal proofs.

3.1 FORMAL PROOF CONSTRUCTION GUIDED BY INFORMAL REASONING AND ITERATIVE
FEEDBACK

The agent first attempts to directly prove the given problem or a generated lemma without decom-
position. To leverage the stronger mathematical reasoning ability of the informal LLM compared to
that of the formal prover model, we first generate an informal proof in natural language for the given

Under review as a conference paper at ICLR 2026

Direct proving (Initial attempt)
Inlormal LM \
Lemma Generation "era“ve sfinomsnt Final Proof SyntheS|s F&’gf‘}'

- (BRE) = R = (@)
rect
proving fails | \Informal LLM Formalizer Formahzed Formal Proof Construction Proved Prover Model | ~—

Informal Lemmas Lemmas Lemmas lterative Refinement

Figure 2: Overall workflow of Prover Agent. The agent coordinates informal reasoning, formal
proving, and Lean verification. It first attempts direct proving; if unsuccessful, it generates auxiliary
lemmas to guide the discovery of a viable proof strategy. These lemmas are then formally proved,
and the successfully proved lemmas are subsequently used to synthesize the final proof.

problem or lemma using the informal LLM. The formal prover model then uses the informal proof
as contextual guidance to generate a formal proof, which is subsequently verified by Lean. If the
proof is successful, this step is complete. If the proof fails, these steps are repeated until a successful
proof is found or the maximum number of attempts NVi,;; is reached. This process helps establish a
better initial outline for the subsequent iterative refinement process.

If the proof still fails, the agent enters an iterative refinement stage. The proof with the fewest
Lean verification errors among the prior attempts is selected as the initial draft. This proof is then
iteratively refined based on the feedback from Lean. In each iteration, the previous proof attempt,
along with the error locations and corresponding error messages, is provided to the prover model,
which revises and generates a corrected version of the proof. This process is repeated until the proof
is successfully verified by Lean or the maximum number of attempts Nyefine 1S reached.

This iterative refinement process leverages Lean’s verification to identify and correct mistakes. It
serves as a form of self-correction through in-context learning, akin to how humans improve their
understanding from feedback. This provides an efficient remedy to a key limitation of inference-
time scaling with chain-of-thought, where simply increasing the number of reasoning steps does not
guarantee better results due to the model’s limited ability of self-correction (Zeng et al., 2025} [Song
et al.,[2025; [Stechly et al., [2025; [Huang et al., 2024).

It is accessible if a generated lemma cannot be proven. This mirrors how human mathematicians
often approach problems: when the overall strategy is unclear at the beginning, they may explore
several directions, some of which turn out to be unproductive and are eventually discarded in favor
of more promising ones. Alternatively, to handle cases where the lemma is still too challenging to
prove, the system may recursively introduce smaller auxiliary lemmas, up to a depth limit D.

3.2 LEMMA GENERATION VIA INFORMAL REASONING

When the direct proving approach fails to solve the problem, the agent generates several auxiliary
lemmas. These are not limited to subgoals that can be directly inserted into a final proof; they
may also include special cases or potentially useful facts derived from the assumptions that help in
developing a proof strategy. This represents a key difference from prior work, which typically relies
on decomposing the problem into subgoals based on a pre-defined proof sketch (Jiang et al.| 2023
Wang et al., [2024a; Ren et al.| 2025}, (Cao et al., [2025; [Zhou et al.| [2025). In such approaches, it is
necessary to come up with the correct overall proof strategy beforehand, which is often a challenging
task. Indeed, these methods often rely on larger, stronger models such as DeepSeek-V3 (DeepSeek-
AL [2024) and DeepSeek-R1 (DeepSeek-Al [2025) to accurately predict the entire proof plan from
the outset. In contrast, our approach does not assume that the proof strategy is visible from the
outset. Instead, by generating auxiliary lemmas, the agent can gradually construct an effective proof
strategy in a bottom-up manner, even when the full structure is not initially apparent.

For example, when trying to prove that n? + an is even for a natural number 7 and an odd number
a, it may be helpful to first consider special cases such as a = 1 or a = 3, i.e., n> + n or n% + 3n.
These special cases can help reveal patterns and guide the overall proof strategy for n? + an, even
though expressions like n? 4+ n or n? + 3n may not explicitly appear as steps within the final proof.

This approach mirrors how human mathematicians typically work. When the overall strategy is not
clear at the beginning, they often explore special cases or consider what can be derived from the
assumptions. Through such trial and error, they gradually discover the overall proof strategy.

Under review as a conference paper at ICLR 2026

The system first generates lemmas in natural language to leverage the stronger mathematical reason-
ing capabilities of the informal LLM. These lemmas are then converted into formal statements by a
formalizer model, which formalizes only their assumptions and conclusions with no proof attempt.
Lean is also used here to verify the syntactic correctness of the formalized statements, which are
regenerated until they become valid. These formally stated lemmas are then proved using the proof
construction process described in Section[3.1]

3.3 FINAL PROOF SYNTHESIS GUIDED BY VERIFIED LEMMAS AND ITERATIVE FEEDBACK

After attempting to prove each of these lemmas individually, the agent reconsiders the overall proof.
With the verified lemmas as context, it attempts to construct a proof up to Ny, times, followed by
iterative refinement for up to Nyefine attempts, as described in Section

4 THEORETICAL ANALYSIS

We present theoretical analyses to justify the effectiveness of our approach described in Section
The use of lemmas serves two key purposes: (i) decomposing proof steps under a given strategy to
make them more manageable, and (ii) helping discover proof strategies when the appropriate one is
not initially clear (e.g., by testing special cases). Prior work has largely focused only on (i), often
requiring larger models to directly devise an overall strategy (Wang et al., 2024a; Jiang et al., |2023};
Ren et al}|[2025;|Cao et al.|, 2025} Zhou et al.,2025)), whereas our approach leverages both (i) and (ii)
to solve difficult problems more effectively. Sections and present brief results of theoretical
analyses on lemma usage in cases (i) and (ii), respectively. See Appendix [C|for the details.

4.1 BENEFITS OF LEMMAS FOR STRUCTURED PROOF DECOMPOSITION

Assumption 4.1. For a certain class of theorems, it is necessary to satisfy m intermediate facts
Fy, ..., F,, which correspond to subgoals that would typically appear as have statements in Lean.

Assumption 4.2. The probability p; that the model correctly produces each F; in a single attempt
is independent across ¢ within one global generation.

Assumption 4.3. Given a set of completed intermediate facts { F; };cs with S C [m]ﬂ the probabil-
ity of proving their composition Fg (e.g., simply concatenating them) is higher than the probability
of proving Fg without being given those facts: P(Fs | {F;}ics) > P(Fs).

Assuming p = p; = --- = p,, for simplicity, the following theorems hold. Rigorous versions
without this simplification and without asymptotic notation are provided in Appendix [C.1]

Theorem 4.4 (Required Number of Trials). Let Ny, denote the number of trials required to directly
prove a problem T with probability at least 1 — 6. Let Ny, denote the total number of trials required
to complete the proof of T with probability at least 1 — 6, when lemmas L, ..., L, are introduced
with an allowed failure probability 0\er,. Suppose each lemma L; contains a subset of the essential
intermediate facts {F; };cs, with S; C [m]. Then the following holds:

Ndir == @(pim)a IE:[A]\/vlem] = é(p75)7

where s = max{max; |S;|, |Ro|} < m, Ro == [m]\ U}, Si, and © indicates asymptotic order
ignoring higher-order terms in 1oy, which vanish when 01y, is sufficiently small.

Theorem 4.5 (Threshold Condition for Lemma Efficiency). There exists a threshold T € [0, 1] such
that if p < 7, then E[Niom| < Ngir holds for any 6, 0jem € (0, 1).

Theorem 4.6 (Optimal Partition of Lemma Coverage). Under the fixed lemma coverage U =
U, Si C [m), E[Niew] is minimized when |S;| = [|U|/n] or ||U|/n] for all i € [n].

The proofs are provided in Appendix Theorem [#.4] shows that lemma-based decomposition
yields an exponential improvement in the order of required trials, while Theorem [4.3]indicates that
for small p (i.e., difficult problems), lemma usage reduces the required number of trials. This jus-
tifies our approach of generating lemmas for difficult problems while solving easy ones directly.
Furthermore, Theorem [{.6| suggests that the optimal lemmas are those that divide the problem into
subproblems of approximately equal difficulty.

![m] denotes the set {1,2,...,m}.

Under review as a conference paper at ICLR 2026

4.2 BENEFITS OF LEMMAS FOR DISCOVERING PROOF STRATEGIES (E.G., SPECIAL CASES)

Let S be the set of possible proof strategies (e.g., induction, bounding with monotonicity, or case
analysis with known results). Let my denote the prior distribution over strategies that the model
possesses, from which a strategy is chosen in the absence of any additional information. Our agent
conducts experiments with lemmas L1, ..., L, and verifies them in Lean, thereby obtaining obser-
vations Y7, ..., Y,. By incorporating these observations into the context, the distribution is updated
to the posterior 7, (-) :== 7(- | Y1.,,), where Y7.,, :== {Y7,..., Y, }, aiming to increase the probability
of selecting the correct proof strategy.

Let p(z) € [0, 1] denote the model’s success probability under a given strategy z € S, and define
r == inf, p(z). As shown in Section this quantity can be increased by using decomposition-type
lemmas. Define the entropy of the prior distribution as Hy := H(Z) = — 3¢ mo(2) log mo(2).

Theorem 4.7 (Success Probability Improvement by Lemmas). The success probability of perform-
ing one trial of final proving by sampling a strategy from the posterior distribution m, is bounded as

follows: E[P(succ@l)] > rexp(—Ho+ I(Z;Y1.)).

The proof is provided in Appendix This shows that the success probability improves expo-
nentially in the mutual information contributed by lemmas, I(Z;Y7.,,). In particular, it exceeds the
no-lemma case, where I(Z;Y1.,) = 0.

Furthermore, this result implies that not only lemmas but any information in the context that shares
mutual information with the final correct proof can similarly improve the success probability, thereby
justifying our use of natural language proofs and Lean feedback.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our approach on both the MiniF2F benchmark (Zheng et al. [2022) and Putnam-
Bench (Tsoukalas et al.|[2024b)), two widely used datasets for assessing formal theorem-proving sys-
tems. We use DeepSeek-R1-0528-Qwen3-8B (DeepSeek-Al |[2025) for the informal reasoning
LLM and DeepSeek-Prover-V2-7B (Ren et al., [2025) and Goedel-Prover-V2-8B (Lin
et al.l 2025c) for the prover model. We set Ninit = Nyefine = 50. Thus, the sample budget at
the initial direct proving stage is 50 at the first iteration, and 100 in total when including itera-
tive refinement. For lemmas, we use Ninit = Nrefine = 10 for each of the three lemmas. In the
final synthesis stage, Ninit = Nrefine = 50 is used again, resulting in a total sample budget of
50 + 50 4 (10 + 10) x 3 4 50 + 50 = 260. The maximum decomposition depth D is set to 1. All
prompts used in our experiments are provided in Appendix |[F| All runs are performed on NVIDIA
40GB A100 GPUs with vLLM (Kwon et al.,[2023). See Appendix @] for further details.

There are several bugs that may result in invalid Lean proofs being incorrectly accepted, such as
the user-interference bug related to the apply? tactic discussed in|Ren et al.| (2025)), and a bug in
REPIH To avoid these issues and prevent invalid proofs from being mistakenly judged as correct, we
check proofs with 1ake build instead of REPL and additionally verified that the apply? tactic
is not used. Also, to avoid this bug and obtain reliable baseline results, we re-run the experiments
for Goedel-Prover-V2-8B. We use the official prompts provided on GitHulﬂ and Hugging Facdd,
while keeping all other experimental settings strictly identical to those used in our method, thereby
ensuring a fair comparison. For DeepSeek-Prover-V2, we relied on the results reported in (Ren
et al.| 2025), in which this bug has been fixed. See Appendix @]for further details.

5.2 MAIN RESULT: COMPARISON WITH THE PREVIOUS STATE-OF-THE-ART

The results are shown in Table |1} Table [2| and Figure |[l} On the MiniF2F benchmark, our agent
achieves an 88.1% success rate, establishing a new state-of-the-art among methods using small lan-
guage models (SLMs). Note that our agent achieves this result with a sample budget of only 260,

Zhttps://github.com/leanprover—community/repl/issues/44
*https://github.com/Goedel-1LM/Goedel-Prover—-v2

https://github.com/leanprover-community/repl/issues/44
https://github.com/Goedel-LM/Goedel-Prover-V2

Under review as a conference paper at ICLR 2026

Table 1: Comparison of formal theorem-proving performance on miniF2F-test. The results are re-
ported as the percentage of theorems proved correctly. For Prover Agent, sample budget includes all
proof attempts across the full pipeline, including initial direct proving, iterative refinement, lemma
proving, and final proof synthesis. The best results within each model scale are highlighted in bold.

Prover System Method Model Size Sample Budget Success Rate
Large Language Models
1 52.5%
. w/QwQ, DeepSeck-V3, and BFS-Prover Informal 128 74.2%
DSP+ (Cao et al.|[2025) + 671B 1024 79.5%
Tree search .
w/ DeepSeek-R1, DeepSeek-V3, and BES-Prover 1024 80.7%
1 61.9%
DeepSeek-Prover-V2 (Ren et al.}[2025) Whole-proof 671B 1024 86.6%
8192 88.9%
Delta-Prover (Zhou et al.}[2025) w/ Gemini 2.5 Pro Agent unknown 16384 95.9%
Seed-Prover (Chen et al.|[2025) Whole-proof unknown unknown 99.6 %
Medium Language Models
1 52.9%
Kimina-Prover-Preview (Wang et al.|[2025) Whole-proof 72B 1024 77.9%
8192 80.7%
32 88.1%
Goedel-Prover-V2 (Lin et al.|[2025¢c) Whole-proof 32B 1024 91.8%
8192 92.2%
Small Language Models
DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al.|[2025a) Tree search 7B 32 x 16x 400 63.5%
InternLM2.5-StepProver-BF + CG (Wu et al.|[2024a) Tree search 7B 256 x 32 x 600 65.9%
HunyuanProver v16 + BFS + DC (L1 et al.[[2025) Tree search 7B 600 x 8 x 400 68.4%
BFS-Prover (Xin et al.{[2025b) Tree search 7B 2048 x 2 x 600 70.8%
Leanabell-Prover-GD-RL (Zhang et al.|[2025) Whole-proof 7B 128 61.1%
Goedel-Prover-SFT (Lin et al.||2025b) ‘Whole-proof 7B 25600 64.7%
STP (Dong & Ma/[2025} ‘Whole-proof 7B 25600 67.6%
1 52.5%
Kimina-Prover-Preview-Distill (Wang et al.|2025) Whole-proof 7B 32 63.1%
1024 70.8%
1 58.6%
; 32 75.6%
DeepSeek-Prover-V2 (Ren et al.|[2025) ‘Whole-proof 7B 1024 79.9%
8192 82.0%
Leanabell-Prover-V2-KM (Ji et al.|[2025) 32 68.4%
128 70.4%
Whole-proof 7B > 6.6
T . ‘0
Leanabell-Prover-V2-DS (Ji et al.|[2025) 128 782%
1 60.8%
- 1 64 83.3%
Goedel-Prover-V2 (Lin et al.|[2025c) ‘Whole-proof 8B 256 85.2%
512 85.7%
(Direct proving w/o iterative refinement) 1 61.5%
: . (Direct proving w/o iterative refinement) 50 79.9%
w/ DeepSeek-Prover-V2 (Direct proving w/ iterative refinement) 100 82.0%
(Final proof synthesis w/ lemma) 260 82.8%
Prover Agent (Direct proving w/o iterative refinement) 1 64.3%
. . (Direct proving w/o iterative refinement) ~ Agent 8B 50 84.4%
(Ours) w/ Goedel-Prover-V2 (Direct proving w/ iterative refinement) 100 85.7%
(Final proof synthesis w/ lemma) 260 86.5%
(Direct proving w/o iterative refinement) 1 64.3%
w/ Ensemble of (Direct proving w/o iterative refinement) 50 85.7%
Goedel-Prover-V2 and
DeepSeck-Prover-V2 (Dlrect proving w/ iterative refinement) 100 86.9%
(Final proof synthesis w/ lemma) 260 88.1%

far smaller than that of prior work, highlighting its efficiency in inference-time cost. Moreover, even
when evaluated in terms of the total token budget consumed across all LLM calls, our approach
achieves higher success rates with a smaller token budget than the baselines, demonstrating its over-
all efficiency (see Appendix [D.6] for details). Furthermore, on the more challenging PutnamBench,
Prover Agent solves 25 problems with a sample budget of only 110. This surpasses the baseline
score despite using fewer samples, establishing a new state-of-the-art among methods based on
SLMs. The consistent improvements observed across both MiniF2F and PutnamBench underscore
the robustness and generality of our approach.

Under review as a conference paper at ICLR 2026

Table 2: Comparison of formal theorem-proving performance on PutnamBench. The results are
reported as the number of theorems proved correctly. For Prover Agent, sample budget includes all
proof attempts across the full pipeline, including initial direct proving, iterative refinement, lemma
proving, and final proof synthesis. The best results within each model scale are highlighted in bold.

Prover System Method Model Size Sample Budget # Solved
Large Language Models
DSP-+ (Cao et al.] 2025) Informal ' = 71 1024 25/644
+ Tree search
32 22/658
DeepSeek-Prover-V2 (Ren et al.|[2025) Whole-proof 671B 128 33/658
1024 47/658
Medium Language Models
-] 32 57/644
Goedel-Prover-V2 (Lin et al.}[2025c) Whole-proof 32B 184 86/644
Small Language Models
InternLM?2.5-StepProver-BF + CG (Wu et al.|[2024a) Tree search 7B 2 x 32 x 600 6/640
STP (Dong & Ma[2025) Whole-proof 7B 3200 8/644
- 3 32 6/644
Goedel-Prover-SFT (Lin et al.|[2025b) Whole-proof 7B 512 7/644
Kimina-Prover-Preview-Distill (Wang et al.|[2025) Whole-proof 7B 192 10/644
32 9/658
DeepSeek-Prover-V2 (Ren et al.|[2025) Whole-proof 7B 128 10/658
1024 11/658
- -] 32 18/659
Goedel-Prover-V2 (Lin et al.}[2025c) Whole-proof 8B 128 22/659
Prover Agent (Ours) (Direct proving w/ iterative refinement) Agent SB 40 20/659
w/ Goedel-Prover-V2 (Final proof synthesis w/ lemma) & 110 25/659

5.3 MODULAR AND SCALABLE DESIGN

To demonstrate the robustness of our approach, we conduct experiments across several models,
namely DeepSeek-Prover-V2 and Goedel-Prover-V2. In both settings, our approach achieves higher
success rates with a smaller sample budget than the vanilla versions of these models, as shown in
Table [T Furthermore, our approach can also ensemble these models. In experiments where the
sample budget is split evenly between them, our agent achieves an even higher success rate, where
the models complement each other on problems that one alone cannot solve. Unlike monolithic
approaches that train a single large model end-to-end, our method takes an orthogonal approach by
combining an existing LLM and a prover model without any training. This modular design provides
a practical benefit, allowing the system to immediately take advantage of improvements in LLMs
and prover models by simply replacing components and to scale easily with future advancements.

5.4 EFFECTIVENESS OF INFORMAL, FORMAL, AND LEAN COORDINATION

Table [T] shows that in both model settings, our approach outperforms the corresponding vanilla
baselines even before the iterative refinement, highlighting the benefit of collaboration with the
informal LLM. Moreover, the scores increase even further after iterative refinement.

5.5 ABLATION STUDIES: ANALYZING THE CONTRIBUTION OF EACH STAGE

We conduct ablation studies to illustrate the contribution of each stage of our agent. Results for
different Nt and Niefine are shown in Figure When Nj,i; is set to 1 or 10, the success rate
remains significantly lower than that without iterative refinement, even after Ny, = 100 refine-
ment steps. This highlights the importance of the quality of the initial draft used to start refinement:
if the initial proof is poor, subsequent refinement becomes significantly more difficult (The case
study in Appendix [E.2] shows that refinement depends on the original Lean code and addresses its
errors). Comparing Ni,iy = 1, 10, 50 under the same sample budget shows a clear improvement in
performance in this order, indicating the effectiveness of our approach of selecting the proof with

Under review as a conference paper at ICLR 2026

_pgiaggae 16

%
3

8
=z
I
o
=

oW
S

<
by
15

Pass Rate (%)

o

=@~ wo Iterative Refinement
w/ Iterative Refinement (N = 1)

Number of Theorems

2
=

1 w/ Iterative Refinement (
1' —#— w/ lterative Refinement (
1 w/ Iterative Refinement (
! —h— w/ Final proof synthesis w/ lemmas (IV;

65 ¢ wi/ Final proof synthesis w/ lemmas (N,
0

v
S
Il
o
=)

1)
S

o o

0 8 16 24

T T
100 200 300
Number of Lean errors

Sample Budget

(a) Results for different Ninit and Nyefine. The dotted lines indicate (b) Histogram of Lean error counts
that the corresponding sample budget are used in the proof of lemmas. after Ninit.

Figure 3: Ablation study results on Nip;¢ and Nyeane. These results highlight the importance of
initial draft selection and indicate that iterative refinement and lemma-based proving helps overcome
saturation from the model’s inherent limitations.

the fewest Lean errors. As shown in Figure [3b] the histograms of the minimum number of errors
after Vinie = 1, 10, 50 confirm this trend: the error count decreases substantially, and for Nj,;; = 50
most problems have only one or two errors. Although the number of Lean errors may not perfectly
measure proof quality, since a single error can still correspond to a mathematically challenging gap,
it nevertheless exhibits a strong correlation and serves as a useful proxy for evaluation.

As shown in Figure|3al the runs without iterative refinement saturate around a sample budget of 80.
In contrast, when iterative refinement is applied after /V;,;y = 50 or 100, this saturation is overcome
and the success rate improves, outperforming the setting that simply continues generation with-
out refinement. This demonstrates the effectiveness of the iterative refinement: whereas repeated
generation alone eventually saturates due to the inherent ability limits of the model, incorporating
external feedback through in-context learning enables the model to improve and overcome this lim-
itation. Also, Niyix = 50 and 100 yield almost identical results in the final performance. Since
the model had already saturated in this regime, increasing Ni,;; did not improve the quality of the
selected initial drafts. Furthermore, Figure [3a] shows that final synthesis with lemmas improves the
score even after iterative refinement has saturated, demonstrating the effectiveness of our lemma-
based approach. This indicates that the model’s capability is further enhanced by incorporating
information beyond mere error feedback.

5.6 CASE STUDY: SUCCESS WITH LEMMA-GUIDED PROOFS AND ITERATIVE REFINEMENT

We next present a case study to demonstrate that our approach with auxiliary lemmas is indeed
effective in practice. The detailed discussion and the outputs for this problem, such as the generated
lemmas, final formal proof, and the associated reasoning process, are provided in Appendix[E.I] We
analyze the output and reasoning process for the problem where the direct proof attempt failed but
the use of auxiliary lemmas led to a successful proof. The case study illustrating an example that
succeeds through iterative refinement is described in detail in Appendix [E.2] where it demonstrates
how providing feedback about Lean’s limitations helps guide the model toward constructing an
effective proof.

In this case, our agent generates a lemma corresponding to the special case of substituting n = 3 into
the given problem, as well as additional lemmas that may be potentially relevant for solving the prob-
lem. As observed in the chain-of-thought process when this lemma is used (see Appendix [E.I.5),
the agent immediately considers the n = 3 case and then quickly comes up with mathematical in-
duction as the proof strategy. This allows it to quickly transition to filling in the details under a clear
proof plan and ultimately complete the proof. Moreover, tactics and proof techniques considered in
the auxiliary lemmas reappear in the reasoning process and final proof: even when a lemma itself
is not directly used, the techniques explored during lemma generation provide valuable hints for the
overall proof construction.

Next, for comparison, we examine the reasoning process without using lemmas, focusing on the
trajectory with the fewest final errors (see Appendix [E.I1.6). Compared to the successful case with

Under review as a conference paper at ICLR 2026

Table 3: Comparison of formal theorem-proving performance by problem category on MiniF2F-test.
The results are reported as the percentage of theorems proved. The best results in each model setting
for each of the three categories, demarcated by double lines, are highlighted in bold.

Olympiad MATH Custom

‘Vé(i’geﬂ E{gg: IMO AIME AMC Sum | Algebra]\1'.‘}‘":?5 Sum | Algebra '}'-'I;':‘::r“\', Induction Sum

Number of Problems ‘ ‘ ‘ 20 15 45 80 ‘ 70 60 130 ‘ 18 8 8 34
DeepSeek-Prover-V2 (Ren et al.||2025) | 671B | 8192 | 500 933 778 73.8 | 100.0 96.7 98.5 | 83.3 875 100.0 88.2
(Direct proving w/o iterative refinement) 1 40.0 533 622 550 | 714 600 662 | 556 750 500 588
Prover Agent (Ours) (Direct proving w/o iterative refinement) SB 50 70.0 80.0 822 788 | 80.0 883 838 | 667 750 625 67.6
w/ DeepSeek-Prover-V2 (Direct proving w/ iterative refinement) 100 | 70.0 80.0 86.7 813 | 843 883 862 | 66.7 750 625 67.6
(Final proof synthesis w/ lemma) 260 | 70.0 80.0 889 825 | 843 883 862 | 667 750 750 70.6

1 500 60.0 533 538 | 714 633 677 | 500 625 500 529
64 80.0 80.0 889 850 | 843 91.7 877 | 778 750 875 794

Goedel-Prover-V2 {Lin et al. JP025c} 88 | 256 | 80.0 800 889 850 | 843 917 877 | 778 750 875 794
512 | 80.0 800 889 850 | 843 917 877 | 77.8 750 875 794

(Direct proving w/o iterative refinement) 1 500 733 578 588 | 686 700 692 | 556 625 625 588

Prover Agent (Ours) (Direct proving w/o iterative refinement) | g1 50 80.0 80.0 86.7 838 | 843 90.0 869 | 77.8 750 750 765
w/ Goedel-Prover-V2 (Direct proving w/ iterative refinement) 100 | 80.0 800 889 850 | 87.1 90.0 885 | 77.8 750 750 765
(Final proof synthesis w/ lemma) 260 | 80.0 80.0 889 850 | 88.6 90.0 89.2 | 77.8 750 875 794

(Direct proving w/o iterative refinement) 1 | 500 733 578 588 | 686 700 692 | 556 625 625 588

Prover Agent (Ours) (Direct proving who itratve reinemeny | oo | 50 | 80.0 80.0 889 850 | 87.1 900 885|778 750 750 765
w/ Ensenble (Direct proving w/ iterative refinement) 100 | 80.0 800 911 863 | 900 90.0 900 | 77.8 750 750 765
(Final proof synthesis w/ lemma) 260 | 80.0 80.0 933 875 | 914 90.0 90.8 | 77.8 750 87.5 794

lemmas, the proof strategy here is far less clear, with the model wandering without a coherent plan.
As a result, even when it eventually reaches the idea of using mathematical induction, it fails to
elaborate on the details, and the proof does not succeed. This comparison highlights the effectiveness
of our auxiliary-lemma approach, which goes beyond the simple decomposition of previous work.

5.7 PERFORMANCE ON OLYMPIAD-LEVEL PROBLEMS

Table [3| shows the results for each category on the MiniF2F-test dataset. These results demonstrate
that our approach with DeepSeek-Prover-V2 setting performs particularly well on Olympiad-level
problems, even surpassing DeepSeek-Prover-V2 (Ren et al., 2025)), which uses a significantly larger
671B model and a much higher sample budget of 8192. Given that our direct proving method with-
out iterative refinement and with a sample budget of only 100 already surpasses DeepSeek-Prover-
V2, this suggests that coordination with natural language-based informal reasoning may be the key.
Olympiad-level problems require a high degree of mathematical reasoning, and the strong reasoning
abilities of the informal LLM likely played a crucial role in solving them effectively. On the other
hand, our agent does not outperform DeepSeek-Prover-V2 in the MATH and Custom categories.
The consistent gap in these categories suggests that model size and sample budget may play a more
significant role here. Since DeepSeek-Prover-V2 also possesses a certain level of mathematical rea-
soning ability, it can handle these relatively mathematically easier problems on its own. In contrast,
with the Goedel-Prover-V2 setting, no substantial differences are observed across categories. This
is likely because Goedel-Prover-V2 already possesses a certain level of the required mathematical
capability for all these categories, and thus category-specific variation does not emerge as clearly.

5.8 BROADER APPLICABILITY AND FUTURE POTENTIAL

Nothing in our pipeline is specific to mathematics competition problems. The same approach could
be applied to formal proofs in other domains, such as learning theory or physics, as long as the LLM
has relevant knowledge or is provided with an appropriate knowledge base. This offers the potential
for Al-driven construction of mathematical theories without hallucinations or logical errors.

6 CONCLUSION

We introduced Prover Agent, a modular framework that coordinates an informal reasoning LLM,
a formal prover model, and Lean verification. By generating auxiliary lemmas and leveraging
feedback-driven refinement, our method achieved state-of-the-art performance among methods us-
ing SLMs on both MiniF2F PutnamBench. Future work includes developing mechanisms to gener-
ate more effective lemmas tailored to different types of problems, and extending our framework to
domains beyond mathematics that require formal verification, such as software verification.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. In Advances in Neural Information Processing Systems, volume 30, 2017.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radeyv,
and Jeremy Avigad. ProofNet: Autoformalizing and formally proving undergraduate-level math-
ematics. arXiv preprint arXiv:2302.12433, 2023.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq proof assistant reference manual. INRIA, version, 6(11):17-21, 1999.

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Re-
viving DSP for advanced theorem proving in the era of reasoning models. arXiv preprint
arXiv:2506.11487, 2025.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen
Zhu. Seed-Prover: Deep and broad reasoning for automated theorem proving. arXiv preprint
arXiv:2507.23726, 2025.

DeepSeek-Al. DeepSeek-V3 technical report. arXiv preprint arXiv:2412.19437, 2024.

DeepSeek-Al DeepSeek-R1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Kefan Dong and Tengyu Ma. STP: Self-play 1lm theorem provers with iterative conjecturing and
proving. arXiv preprint arXiv:2502.00212, 2025.

Kefan Dong, Arvind Mahankali, and Tengyu Ma. Formal theorem proving by rewarding 1lms to
decompose proofs hierarchically. arXiv preprint arXiv:2411.01829, 2025.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. ESEC/FSE 2023, pp. 1229-1241. Association for Computing
Machinery, 2023. ISBN 9798400703270. doi: 10.1145/3611643.3616243.

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. ABEL: Sample efficient
online reinforcement learning for neural theorem proving. In The 4th Workshop on Mathematical
Reasoning and Al at NeurIPS 24, 2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. In International Conference on Learning
Representations, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on
Information Systems, 43(2), 2025. ISSN 1046-8188. doi: 10.1145/3703155.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef Ur-
ban. DeepMath - deep sequence models for premise selection. In Advances in Neural Information
Processing Systems, volume 29, 2016.

11

Under review as a conference paper at ICLR 2026

Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng
Zhang, Guorui Zhou, and Kun Gai. Leanabell-Prover-V2: Verifier-integrated reasoning for formal
theorem proving via reinforcement learning. arXiv preprint arXiv:2507.08649, 2025.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12), 2023. ISSN 0360-0300. doi: 10.1145/3571730.

Albert Q. Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. LISA: Language models of isabelle
proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, 2021.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem

provers with informal proofs. In The Eleventh International Conference on Learning Represen-
tations, 2023.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav OlI§dk. Reinforcement learning
of theorem proving. In Advances in Neural Information Processing Systems, volume 31, 2018.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611-626. Association for Computing Machinery, 2023. ISBN 9798400702297. doi:
10.1145/3600006.3613165.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Advances in Neural Information Processing Systems, volume 35, pp. 26337-26349,
2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. In Advances in Neural Information Processing Systems, volume 35, pp. 3843—
3857, 2022.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hunyuan-
Prover: A scalable data synthesis framework and guided tree search for automated theorem prov-
ing. arXiv preprint arXiv:2412.20735, 2025.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-STaR: Learning to interleave
thinking and proving. In The Thirteenth International Conference on Learning Representations,
2025a.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqgi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover: A frontier model for open-source
automated theorem proving. arXiv preprint arXiv:2502.07640, 2025b.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqgi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover-V2: Scal-
ing formal theorem proving with scaffolded data synthesis and self-correction. arXiv preprint
arXiv:2508.03613, 2025c.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 14605-14631. Association for Compu-
tational Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.817.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, pp. 367-381. Association for
Computing Machinery, 2020. ISBN 9781450370974. doi: 10.1145/3372885.3373824.

12

Under review as a conference paper at ICLR 2026

Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Pure Mathematics,
2019. URL http://us.metamath.org/downloads/metamath.pdf.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming lan-
guage. In Automated Deduction—CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, LNCS 12699, pp. 625-635. Springer-Verlag, 2021. doi: 10.1007/
978-3-030-79876-5_37.

A. Newell and H. Simon. The logic theory machine—a complex information processing system. /IRE
Transactions on Information Theory, 2(3):61-79, 1956. doi: 10.1109/TIT.1956.1056797.

OpenAl OpenAl ol system card. arXiv preprint arXiv:2412.16720, 2024.

OpenAl OpenAl o03-mini, 2025. URL https://openai.com/index/
openal—-o3-mini/.

Lawrence C. Paulson. Isabelle a Generic Theorem Prover. Springer Verlag, 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In The Eleventh International
Conference on Learning Representations, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Ad-
vances in Neural Information Processing Systems, volume 36, pp. 53728-53741, 2023.

Z.Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang, Yux-
uan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. DeepSeek-Prover-V2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decomposition. arXiv preprint
arXiv:2504.21801, 2025.

Ziju Shen, Naohao Huang, Fanyi Yang, Yutong Wang, Guoxiong Gao, Tianyi Xu, Jiedong Jiang,
Wanyi He, Pu Yang, Mengzhou Sun, Haocheng Ju, Peihao Wu, Bryan Dai, and Bin Dong.
REAL-Prover: Retrieval augmented Lean prover for mathematical reasoning. arXiv preprint
arXiv:2505.20613, 2025.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M. Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limita-
tions of large language models on reasoning and planning tasks. In The Thirteenth International
Conference on Learning Representations, 2025.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
context learning agent for formal theorem-proving. In First Conference on Language Modeling,
2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition. In Advances in Neural Information Processing Systems, vol-
ume 37, pp. 11545-11569, 2024a.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on the
putnam mathematical competition. In The Thirty-eight Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2024b.

13

http://us.metamath.org/downloads/metamath.pdf
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/

Under review as a conference paper at ICLR 2026

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-solver: Automated theorem
proving with dynamic-tree sampling guided by proof-level value function. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 12632-12646. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.
acl-long.706.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jiangiao Lu, Zhicheng Yang,
Jing Tang, Jian Yin, Zhenguo Li, and Xiaodan Liang. Proving theorems recursively. In Advances
in Neural Information Processing Systems, volume 37, pp. 86720-86748, 2024a.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforce-
ment learning. arXiv preprint arXiv:2504.11354, 2025.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theo-
remLlama: Transforming general-purpose LLMs into lean4 experts. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 11953-11974. Associa-
tion for Computational Linguistics, 2024b. doi: 10.18653/v1/2024.emnlp-main.667.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, volume 35, pp. 24824-24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38—45. Association for Computational Lin-
guistics, 2020.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. Tacticzero: Learning to prove
theorems from scratch with deep reinforcement learning. In Advances in Neural Information
Processing Systems, volume 34, pp. 9330-9342, 2021.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
InternLM2.5-StepProver: Advancing automated theorem proving via expert iteration on large-
scale lean problems. arXiv preprint arXiv:2410.15700, 2024a.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. LEAN-GitHub: Compiling github lean reposi-
tories for a versatile lean prover. arXiv preprint arXiv:2407.17227, 2024b.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wau, Fuli Luo, and Chong Ruan. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. International Conference on Learning
Representations, 2025a.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. BFS-Prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025b.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models. arXiv preprint arXiv:2401.11817, 2025.

14

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-Math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-
augmented language models. In Advances in Neural Information Processing Systems, volume 360,
pp- 21573-21612, 2023.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin E. Lauter, Swarat Chaudhuri, and
Dawn Song. Position: Formal mathematical reasoning—a new frontier in Al. In Forty-second
International Conference on Machine Learning Position Paper Track, 2025b.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. In Advances in
Neural Information Processing Systems, volume 37, pp. 105848-105863, 2024.

Roozbeh Yousefzadeh and Xuenan Cao. A lean dataset for international math olympiad: Small steps
towards writing math proofs for hard problems. Transactions on Machine Learning Research,
2025. ISSN 2835-8856.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of ol-like models: Do they truly possess test-time scaling capabilities? arXiv
preprint arXiv:2502.12215, 2025.

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
Zhou, and Kun Gai. Leanabell-Prover: Posttraining scaling in formal reasoning. arXiv preprint
arXiv:2504.06122, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Proceedings of
the 41st International Conference on Machine Learning, volume 235, pp. 62138-62160. PMLR,
2024.

Yichi Zhou, Jianqgiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang,
Haowei Chen, Allan Jie, Xinbo Zhang, Haocheng Wang, Luong Trung, Rong Ye, Phan Nhat
Hoang, Huishuai Zhang, Peng Sun, and Hang Li. Solving formal math problems by decomposi-
tion and iterative reflection. arXiv preprint arXiv:2507.15225, 2025.

15

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORK

We briefly summarized related work in Section 2] Here we provide details of representative systems.

A.1 LANGUAGE MODELS FOR FORMAL THEOREM PROVING

The use of language models for guiding formal theorem provers has gained momentum recently.
Early work like GPT-f (Polu & Sutskever, [2020) applied transformers to produce proofs in formal
systems, such as Metamath (Megill & Wheeler, 2019) and Lean (Moura & Ullrich, [2021)), by gen-
erating one proof step (tactic) at a time, guided by a goal state. Subsequent efforts in Lean, such as
lean—gptiﬂ and PACT (Han et al.,|2022), fine-tuned LLMs on large corpora of proof data, achieving
moderate success in automatically discovering proofs.

A.2 TREE-SEARCH-BASED FORMAL PROVING

BFS-Prover (Xin et al., [2025b) proposed a scalable best-first tree search framework for Lean 4 that
incorporates three key innovations: strategic data filtering during expert iterations, direct preference
optimization (DPO) (Rafailov et al., 2023)) on state-tactic pairs using Lean compiler feedback, and
length normalization to encourage exploration of deeper proof paths. InternLM?2.5-StepProver (Wu
et al. [2024a) combined expert iteration with BFS and critic-guided sampling, while Hunyuan-
Prover (Li et all 2025) integrated large-scale data synthesis and guided search. Reinforcement-
enhanced variants such as DeepSeek-Prover-V1.5 (Xin et al.l 2025a) proposed the use of RMaxTsS,
a variant of Monte-Carlo tree search (MCTS), to diversify exploration and improve success rates.

A.3 WHOLE-PROOF GENERATION

Representative systems in this strand have advanced two complementary mechanisms: (i) expert-
iteration bootstrapping, which cycles model-generated proofs through a formal verifier to curate
training trajectories, and (ii) reinforcement learning (RL) with verifier feedback that directly opti-
mizes long, one-shot scripts (often with a long chain-of-thought).

Polu et al.[(2023)) introduced expert iteration for formal mathematics, alternating proof search with
learning. They showed expert iteration outperforms search-only at fixed compute, discovered an
automatically paced curriculum from problem statements, and showed improved performance on
the miniF2F (Zheng et al.| [2022) benchmark without requiring ground-truth proofs. InternLM2.5-
StepProver (Wu et al.,|2024a)) scaled expert iteration on Lean-Workbook (Ying et al.,|2024)), trained a
critic to prioritize easier instances and guide deeper proofs, and paired expert iteration with best-first
exploration, achieving strong results on several benchmarks, such as miniF2F (Zheng et al.| [2022),
ProofNet (Azerbayev et al., 2023), PutnamBench (Tsoukalas et al., [2024a)), and Lean-Workbook-
Plus (Ying et al., 2024). Lean-STaR (Lin et all [2025a) trained a model to interleave informal
natural-language thoughts with formal tactic steps. The model is trained by expert iteration, and
at inference time, it generates informal reasoning prior to each tactic, enhancing theorem-proving
performance. Goedel-Prover (Lin et al.,[2025b)) tackled data scarcity by training statement formal-
izers to translate Numina problems into Lean 4, building a 1.64M-statement corpus, and iteratively
bootstrapping provers whose new proofs are added to training. The resulting SFT-centered expert
iteration pipeline surpasses prior open-source baselines. Goedel-Prover-V2 (Lin et al., [2025c) ex-
tended expert iteration with scaffolded data synthesis, verifier-guided self-correction, and model
averaging, delivering large gains on the MiniF2F benchmark (Zheng et al. [2022) at 8-32B scales
under constrained test-time budgets.

Kaliszyk et al.| (2018)) formulated theorem proving as reinforcement learning for connection-style
proof search, using Monte Carlo simulations guided by rewards from previous attempts to re-
place hand-crafted heuristics and improve held-out performance. DeepSeek-Prover-V1.5 (Xin et al.|
20254) utilized reinforcement learning from proof assistant feedback (RLPAF) and a novel Monte-
Carlo tree search variant, RMaxTS, which employs an intrinsic-reward-driven strategy to explore
diverse proof paths. Leanabell-Prover (Zhang et al.l |2025) demonstrated the effectiveness of post-
training in formal theorem proving by applying continual training with data emulating human cog-

*nttps://github.com/jesse-michael-han/lean—-gptf

16

https://github.com/jesse-michael-han/lean-gptf

Under review as a conference paper at ICLR 2026

nitive behaviors and reinforcement learning with compiler feedback to existing models. Kimina-
Prover Preview (Wang et al., |[2025) employed a large-scale reinforcement learning pipeline and a
structured “formal reasoning pattern,” emulating human problem-solving strategies. It achieves an
80.7% pass rate on MiniF2F (Zheng et al.| |2022) with a 72B-parameter model. Leanabell-Prover-
V2 (Ji et al.; 2025) is built on Kimina-Prover-Preview-Distill-7B(Wang et al., [2025)) and DeepSeek-
Prover-V2-7B (Ren et al.| [2025) as base models, and further improved through post-training with
reinforcement learning.

A.4 FORMAL THEOREM PROVING WITH RETRIEVAL-AUGMENTED GENERATION

Retrieval-augmented provers query large formal libraries at inference time and condition generation
on the retrieved items, typically relevant lemmas, theorems, or proof patterns from mathlib (math-
lib Communityl 2020). This mitigates the limits of parametric memory by injecting on-demand
knowledge and can be applied to both stepwise tactic generation and whole-proof scripts. Lean-
Dojo (Yang et al., [2023)) established the core infrastructure for RAG in Lean, including fine-grained
premise annotations, a gym-like interactive environment, and a retrieval-augmented prover that se-
lects premises for each proof state. REAL-Prover (Shen et al., |2025) integrated a semantic premise
selector (LeanSearch-PS) with a fine-tuned Lean 4 prover and reports gains on challenging bench-
marks such as ProofNet (Azerbayev et al., [2023).

A.5 PROOF REFINEMENT AND SUBGOAL DECOMPOSITION

Jiang et al.|(2023) introduced Draft, Sketch, and Prove (DSP), a novel three-stage method that lever-
ages informal proofs to guide automated theorem provers. The process involves drafting an informal
proof (either by a human or an LLM), using a language model to convert it into a high-level formal
sketch with verifiable steps, and finally employing an off-the-shelf prover to automatically solve
the remaining logical gaps. This approach of guiding a formal prover with an informal-to-formal
sketch significantly improved its success rate, boosting performance on the miniF2F benchmark
from 20.9% to 39.3%.

Wang et al.| (2024a)) introduced POETRY, a novel method that proves theorems recursively to over-
come the limitations of short-sighted, step-by-step search in automated theorem proving. By first
finding a verifiable high-level proof sketch and deferring detailed sub-proofs to subsequent lev-
els using a sorry tactic, POETRY can solve more complex problems and find significantly longer
proofs, leading to superior results on the miniF2F (Zheng et al., 2022) and PISA (Jiang et al.| 2021)
benchmarks.

Cao et al.| (2025) introduced DSP+, an improved Draft, Sketch, and Prove framework Jiang et al.
(2023) that achieves high performance in automated theorem proving without requiring any model
training or fine-tuning. By carefully coordinating existing off-the-shelf reasoning models and step
provers with fine-grained neuro-symbolic enhancements at each stage, DSP+ solved 80.7% of the
miniF2F benchmark (Zheng et al.,[2022)), which was comparable to top models that rely on extensive
reinforcement learning, and even proved a previously unsolved IMO problem.

DeepSeek-Prover-V2 (Ren et al., 2025) used a powerful general-purpose model, DeepSeek-
V3 (DeepSeek-All 2024), to break down complex theorems into simpler subgoals, which are then
recursively solved and synthesized into a cold-start dataset for the final prover. The resulting model
achieved an 88.9% pass rate on the MiniF2F benchmark (Zheng et al., [2022]).

Delta Prover (Zhou et al.|[2025) is an agent-based framework that enables a general-purpose LLM to
solve formal math problems without any specialized fine-tuning. The agent orchestrated the LLM’s
interaction with the Lean 4 environment through a novel process of reflective decomposition and
iterative proof repair, where the model breaks down complex problems and corrects its own errors
based on compiler feedback. This training-free approach achieved a 95.9% success rate on the
miniF2F benchmark (Zheng et al.,2022), surpassing all previous methods, including those requiring
extensive specialized training.

Chen et al.[(2025) introduced Seed-Prover, a whole-proof reasoning model that uses a novel lemma-
style approach to solve complex formal math problems. Seed-Prover iteratively refined its proofs
using compiler feedback and a shared pool of proved lemmas, employing a powerful three-tiered
test-time inference strategy for both deep and broad reasoning. This method significantly surpassed

17

Under review as a conference paper at ICLR 2026

Algorithm 1 The overall architecture of our lemma-based theorem-proving agent coordinating in-
formal reasoning, formal reasoning, and Lean.

Input: Problem 7" with hyperparameters Nini¢ (max initial proof attempts) and Nyefine (max refinement attempts)
Output: Formal proof of T" or failure

function MAIN(T"): Overall proof process for problem T function PROVE(S): Attempt to generate an informal proof of S
Pyirect < PROVE(T): Attempt to prove theorem 7" directly // Initial proof attempt
if Pyirect succeeds then for £ = 1to Ninit do
return Pgirect Informal LLM generates informal proof P;¢ of .S
end if Prover attempts to formalize Pin¢ into Prorm
/I Generate lemmas Lean checks Prorm
Informal LLM generates lemmas L1, Lo, ..., L, in natural if the check succeeds then
language return Pgop
for each lemma L; do end if
AutoFormalizer converts L; into Lean statement F3; end for
Lean checks F;. If failing, regenerate F; until syntactically // Iterative refinement
correct Ppest < Best previous proof attempt with the fewest Lean
end for errors
/] Prove each lemma return ITERATIVEREFINE(Ppest)
for each lemma F; do end function
P; <—PROVE(F}): Attempt to prove lemma F};
end for function ITERATIVEREFINE(P): Refine proof P based on Lean
// Collect proven lemmas feedback
Pproven < {Pi | P; is succeeded} for k = 1t0 Nycfine do
// Synthesize final proof using proven lemmas Prover generates revised proof P’ based on Lean feedback
for £ = 1to Njnit do Lean checks P’
Prina1 < Prover synthesizes proof of 1" using Pproven if the check succeeds then
Lean checks Pripa) return P’
if the check succeeds then else
return P, a1 P < P’ // Update best proof
end if end if
end for end for
/I Tterative refinement of final proof return failure // No proof found after max attempts

Phest < Best previous proof attempt with the fewest Lean end function
errors

return ITERATIVEREFINE(Ppest)
end function

all previous state-of-the-art results, saturating the MiniF2F benchmark (Zheng et al.| |2022), proving
78.1% of past IMO problems, and solving 5 out of 6 problems at the IMO 2025 competition.

B PSEUDOCODE OF THE OVERALL WORKFLOW

The pseudocode of our overall workflow is shown in Algorithm [T}

C DETAILED THEORETICAL ANALYSIS

We briefly discussed the theoretical analysis of our approach in Section4] In this section, we provide
a detailed theoretical analysis of our approach.

C.1 BENEFITS OF LEMMAS FOR STRUCTURED PROOF DECOMPOSITION

We begin by stating a lemma required for the following analysis:

Lemma C.1 (Number of Trials for Success). Let p denote the probability that the model successfully
proves a theorem T. Then the expected number of trials until the first success, N, and the number
of trials required to succeed with probability at least 1 — §, denoted Ny, satisfy the following:

log & -‘ log(1/4)
< +1.
log(1 —p) P

E[N] = %, log(1/5) (; - 1> < 10;(01%5;0) < Ny = [

18

Under review as a conference paper at ICLR 2026

Proof. Since each trial is an independent Bernoulli experiment with success probability p, the num-
ber of trials IV until the first success follows a geometric distribution. It is well known that

BIN] = 3 on(1-=p)"p = o

Next, we consider Nj. Since the probability of at least one success in n trials is 1 — (1 — p)™, the

condition for achieving success with probability at least 1 — § is:

log 0

1-1-p"=1-0 & 1-p)"=6§ & n=—-="—"—.
(1-7) (1-7) log(1 — p)

Recalling the standard inequalities p < —log(1 — p) < &, which is valid for 0 < p < 1, together
with the basic ceiling inequality = < [2] < = + 1, we obtain:

1 log § { log & -‘ log(1/4)
log(1/0) | = —1]| < ———— < N; = < + 1L
8(1/0) (p) p) " |log(1—p) p
This completes the proof. O

For simplicity, we henceforth relax Ns to be continuous and write:

_ logé log(1/96)
log(1 —p) P

1og(1/5)<; - 1) < N

The difference from the actual integer-valued Nj is at most less than 1.

As rigorous versions of Theorems [.4] to [4.5] described in Section 4.1} we obtain the following
Theorems [C.2]to under the same Assumptions [4.1]to

Theorem C.2 (Required Number of Trials). Let Nyi, denote the number of trials required to directly
prove a problem T with probability at least 1 —§. Let Njoy, denote the total number of trials required
to complete the proof of T with probability at least 1 — §, when lemmas L+, ..., L, are introduced
with an allowed failure probability d\er,. Suppose each lemma L; contains a subset of the essential
intermediate facts { F; }ics, with S; C [m]. Then the following holds:

Pair(p) — log(1/6) < Nair < Pair(p),
q)lem(p) - IOg(l/é‘) - nlOg(l/élem) < E[Nlem] < q)lem(p)v

where

m

;. (p) = log(1/6) H %,

(I)lem(p) = log(l/alem) Z H ;j + % (H 1) H (1 - 5lem) + 6lem H i .

i=1 jes; ier, V1) i21 jes; HI

Here, we denote U == J;_, S;, Ry = [m]\ U, and ro := min P(Fs|{F;}ics).

Proof. By Assumption the probability that all Fy, ..., F}, succeed and the problem T is solved
equals []:"; p;. Hence, by Lemma we obtain:

(Pdir(p> - log(l/é) < Ngir < (I)dir(p).

Similarly, since the probability that all F; with j € S; succeed and lemma L; is proved equals
I jes: Di» the number of trials required for lemma L;, denoted Ny, satisfies:

log(1/iem) [~ — log(1/diem) < Ni, < log(1/6em) [—

jes; jes;

19

Under review as a conference paper at ICLR 2026

Therefore, the total number of trials required to prove all n lemmas Ly, ..., L, is bounded by the
sum of the bounds above, i.e.,

1og(1/81em) Z H — —110g(1/81em) < ZNL < log(1/81em) Z H — (1)

i= 1]€S = 1J€S

The probability that the composition of all lemmas succeeds is rg, while the probability of proving
the uncovered facts { F; }icr, is [[;¢ R, Pi- If alemma L; fails with probability Olem, then in the final
proof it must be reproved directly, which succeeds with probability || jes, Pj- Thus, the expected
success probability of lemma L; in the final stage is: (1 — djem) + Olem | | jes, Pi-

Therefore, since the expected success probability in the final stage is given by the product above, the
number of trials required to complete the proof of the whole problem 7" using lemmas in the final
stage, denoted Ngp,), satisfies:

(Dﬁnal(p) - log(l/(;) < E[Nﬁnal] < (I)ﬁnal(p)a (2)

where

il (p) = logfi/) (H 1) T bom) + 6 [T -

i€Ro pi)i JES;

Hence, by combining Equations (I and (2)), we obtain the desired result, completing the proof of
Theorem[C2] 0

From Theorem|[C.2] we see that decomposing the problem into lemmas transforms the corresponding
leading term from a product into a sum, thereby significantly reducing the order of the required
number of trials.

Theorem C.3 (Threshold Condition for Lemma Efficiency). There exists a threshold T € [0, 1] such
that if p; < 7 for all i € [m)], then E[Njem] < Nair holds for any 6, 01em € (0, 1).

Proof. Consider the condition]E[J]\yi:‘"] < 1. By Theorem this condition is satisfied if the
following holds:

(I)lem (p>
Pair(p) — log(1/9)
lOg(l/(Slem) ZZLZI HjESi i

log(1/9) [T, (pi - 1)
P (e)T (0) i)
log(1/6) ITi~, (E - 1)

<1

<1. 3)

The first term on the left-hand side (LHS) of Equation (3] can be rewritten as:

log(1/5lem) Z?:l Hjes,i i log(l/(slem) Zn: H]ESZ pl] H] 1Dj

log(1/8) [T, (i - 1) ~ log(1/9) 1-1T7% p;

_ log(1/d1em) - H;gs pj
~ log(1/9) Zl*HJ 175

“4)

20

Under review as a conference paper at ICLR 2026

The second term on the LHS of Equation (3) can be rewritten as:

A ([) T (1 o)+ L)
tos(1/0) [T, (£ — 1)

m D;
1_5lem +6lem H H] =

1 1 -
=1l) — || &=
"o <i€Ro pl) i=1 jES; pJ 1- Hj:] Dj

1 1
= (1 - 6lem) pj + 6lem T TTm -
0 jg 1- H;n:1 bj

From Equations (@) and (5), both the first and second terms on the LHS of Equation (3) are monotoni-
cally increasing with respect to p;. Hence, the LHS of Equation (3) itself is monotonically increasing
w.r.t. p;. Therefore, by bounding the LHS of Equation (3) from above by using pyax = max; p;
and solving for p,ax, We obtain a sufficient condition, completing the proof. O

s

®)

From Theorem [C.3] it follows that lemma generation is effective for difficult problems. Therefore,
our strategy of generating lemmas for difficult problems and solving easy problems directly is justi-
fied.

Theorem C.4 (Optimal Partition of Lemma Coverage). Under the fixed lemma coverage U =
U, Si C [m], E[Niew) is minimized when log p(S;) is as close as possible to +log p(U) for all
i € [n], where p(S;) == [];cs, pj and p(U) = [[;cr; pj-

Proof. From Theorem we consider minimizing ®jom (p). Let W =[], p .

By Jensen’s inequality, the first term of @y, (p) can be bounded as follows:

log(1/d1em) Z H = log(1/d1em) Zexp Z log —

i= 1]65’ JES;

> log(1/81em)nexp | — Z Z log —

i=1j€ES;
= log(1/01em)n exp (n log W)

with equality if and only if log p(S;) = L log p(U) for all i € [n].

Noting that f(z) = log((1—d)+dexp(x)) is convex for d € (0, 1), we can apply Jensen’s inequality
to bound the second term of @i, (p) as follows:

“ﬂﬁﬁlﬁﬁ<h%w%mﬂ

i€Ro pi)5 jes;

log(1/6) - 1
- v H exp Zlog — Olem) + Olem €XP Z log —

i€Ry JES; Pj

log(1/6) 1
2 T H 7 exp | nlog | (1 = dlem) + Slem €XP *Z Z log—

i€ R i=1j€S;
log(1 1 1
= M H — | exp (n log ((1 — lem) + Olem €XP (log W)))
70 icRo Pi n

with equality if and only if log p(S;) = 2 log p(U) for all i € [n].

21

Under review as a conference paper at ICLR 2026

Therefore, since both the first and second terms of ®je, (p) attain their minimum under the same
condition, namely:

1
log p(S;) = —logp(U) foralli € [n],
n
it follows that @y, (p) itself is minimized under this condition. In the discrete case, the minimum is

achieved at the partition closest to this balanced condition. This completes the proof. O

Theorem [C.4] suggests that the optimal lemmas are those that divide the problem into subproblems
of approximately equal difficulty.

C.2 BENEFITS OF LEMMAS FOR DISCOVERING PROOF STRATEGIES (E.G., SPECIAL CASES)

Theorem C.5 (Success Probability Improvement by Lemmas (Restated)). The success probability
of performing one trial of final proving by sampling a strategy from the posterior distribution T, is
bounded as follows:

E[P(succ@l)] > rexp(—Ho+ 1(Z;Y1m)).

Proof. We begin with:

P(succ@l | Z =2, Y =y) = p(2) n(z | y).
Taking expectation, we obtain:

EZ,Y [P(SUCC@]. | Z, Y)] =]EZ,Y [p(Z) 71'(Z ‘ Y)]

=Ezy[p(Z) 7 (2)]
Z TEZ,Y[7T71,(Z)]~ (6)
It remains to lower-bound Ez y [7,,(Z)].
For fixed Y = y, we have:
Ez[mn(Z)|Y =y] =Y m(2)P(Z=2]Y =y)
z€S
= Z T (2)?
z€S

Taking expectation over Y yields:

Ezy|m(Z)] = Ey [Ez[ﬂ'n(Z) | Y]} =Ey lz Wn(z)zl .

z€S

By Lemma|C.6] we have:

> w(zly)? = exp(—H(x(| y))).

z€S

Averaging both sides over Y and applying Jensen’s inequality (since x — e~ is convex), we obtain:

]Ezyﬁn :Ey Z|Y]

Vv \\/

y[H(7(- | Y))])
H(Z|Y))
(_HO+I(27Y))3

p

2

Ey [exp(—H (x(| Y)))]
(-E

p(—

ex
ex
ex

where the last step uses the definition of mutual information.

Combining this with Equation () proves the claim. O

22

Under review as a conference paper at ICLR 2026

Theorem [C.5] shows that the success probability improves exponentially in the amount of mutual
information gained through the lemmas, I(Z; Y1.,,). In particular, the success probability is strictly
larger than in the case without lemmas, where I(Z;Y7.,,) = 0.

The following lemma was used in the proof of Theorem [C.5}

Lemma C.6 (Relation Between Squared Sum and Entropy). For any probability distribution p =
(pi)i, the following inequality holds:

> v} > exp(—H(p)),
where H(p) = — . p; log p; denotes the Shannon entropy (with natural logarithm).
Proof. The log-sum inequality states that for nonnegative sequences {a; }, {b; }, the following holds:
ai >
; a; log b—z > (; al-) log ﬁ
Let a; = p; and b; = p?. Then the LHS becomes:
Di 1
> pilog ol > pilog P > pilogp; = H(p).
On the other hand, the right-hand side (RHS) becomes:
Zi D 1 2
p; | log :1~10g7:—10g(pi).
Hence, the log-sum inequality gives:

H(p) > —log (ZP?)

Exponentiating both sides yields:

> pi > exp(—H(p)).

i

This completes the proof. O

D DETAILED EXPERIMENTAL SETUP

D.1 BENCHMARKING DATASET

We use the MiniF2F (Zheng et al., [2022) dataset, which consists of 488 mathematical problems
formalized in Lean. These problems originate from sources such as AIME (American Invitational
Mathematics Examination), AMC (American Mathematics Competitions), and IMO (International
Math Olympiad) competitions, along with selected problems from the MATH dataset (Hendrycks
et al.,|2021)), covering topics such as algebra, number theory, geometry, and analysis. Each problem
is given as a Lean theorem statement. The benchmark is split into 244 validation and 244 test
problems. We use the validation set during development (e.g., for tuning prompt formats) and report
the final results on the test set. We use the revised version of miniF2F released by |(Wang et al.[(2025));
Ren et al.|(2025)).

Also, we observed that for problem names like algebra_2varlineareq_fp3zeqgll 3tfmlm
5zeqn68_feqnlO_zeqg7, the LLM often struggled to reliably reproduce the latter part of the
name due to its unintelligible character sequence. Therefore, we modified such problem names by
removing the less interpretable suffixes and replacing them with simpler, more memorable labels
such as algebra for our experiments.

23

Under review as a conference paper at ICLR 2026

D.2 USED MODELS

For the informal LLM, we use DeepSeek—Rl—OSZ8—Qwen3—88E] (DeepSeek-AlL 2025), a
model obtained by distilling the chain-of-thought outputs of DeepSeek-R1-0528 (DeepSeek-
AL 2025) into the Qwen3-8B (Yang et all [2025a). This model surpasses Qwen3-8B
on the AIME benchmark for natural language reasoning and achieves state-of-the-art per-
formance at this scale. For the prover model, we use GoedelfProver7V277Bﬂ (Lin
et al) [2025c¢) and DeepSeek—Prover—V2—7B[Z] (Ren et al., 2025), the state-of-the-art
and second-best Lean 4 provers at this scale, respectively. For the formalizer model, we
use GoedelfFormalizer7V278Eﬂ (Lin et al., [2025c) in the Goedel-Prover setup and
Kimina—Autoformalizer—7 (Wang et al. [2025). All of them are publicly available on
Hugging Face (Wolf et al., 2020).

D.3 IMPLEMENTATION DETAILS

All models are invoked via vVLLM (Kwon et al., |2023)), a high-performance inference engine for
large language models. We set max_num batched_tokens and max_model_len parameters
to 16384 to accommodate the long context lengths required for theorem proving, while keeping all
other settings at their vLLM defaults. The models are run on NVIDIA A100 GPUs with 40GB of
memory. We use Lean version 4.9.0 (Moura & Ullrich, |[2021) throughout all experiments, following
the same setup in Xin et al.| (2025a)); Ren et al.|(2025); [Lin et al.| (2025c).

There are several bugs that may result in invalid Lean proofs being incorrectly accepted, such as
the user-interference bug related to the apply? tactic discussed in version 2 of the arXiv paper
by Ren et al.[(2025), and a bug in REP To avoid these issues and prevent invalid proofs from
being mistakenly judged as correct, we check proofs with lake build instead of REPL and
additionally verified that the apply? tactic is not used. Also, to avoid this bug and obtain reliable
baseline results, we re-ran the experiments for Goedel-Prover-V2-8B. We used the official prompts
provided on GitHutEr] and Hugging Facd8, while keeping all other experimental settings strictly
identical to those used in our method, thereby ensuring a fair comparison. For DeepSeek-Prover-
V2, we relied on the results reported in version 2 of the arXiv paper (Ren et al.,[2025)), in which this
bug has been fixed. All other baseline results are sourced from their respective papers.

D.4 SUMPLE BUDGET

MiniF2F. We set Ninit = Niefine = 50. Thus, the sample budget at the initial direct proving stage
is 50 at the first iteration, and 100 in total when including iterative refinement. For lemmas, we use
Ninit = Nieine = 10 for each of the three lemmas. In the final synthesis stage, Ninit = Nrefine = 50
is used again, resulting in a total sample budget of 50 + 50 + (10 + 10) x 3 + 50 + 50 = 260.

PutnamBench. We set Ni,it = Nyefine = 20. Thus, the sample budget at the initial direct proving
stage is 20 at the first iteration, and 40 in total when including iterative refinement. For lemmas, we
use Ninit = Nrefine = D for each of the three lemmas. In the final synthesis stage, Ninit = Nrefine =
20 is used again, resulting in a total sample budget of 20 4+ 20 + (5 4+ 5) x 3 4+ 20 + 20 = 110.

D.5 BASELINE METHODS

We compare our approach against several baseline methods, categorized into two main classes:
tree search methods and whole-proof generation methods. Tree search methods construct proofs
incrementally by predicting individual tactics step by step, often guided by search algorithms such as
best-first search or Monte Carlo Tree Search (MCTS). In contrast, whole-proof generation methods

Shttps://huggingface.co/deepseek-ai/DeepSeek-R1-0528—-Qwen3—8B
®https://huggingface.co/Goedel-LM/Goedel-Prover-v2-8B
"nttps://huggingface.co/deepseek-ai/DeepSeek-Prover—v2-7B
$https://huggingface.co/Goedel-LM/Goedel-Formalizer-V2-8B
https://huggingface.co/AI-MO/Kimina-Autoformalizer—7B
Uhttps://github.com/leanprover—-community/repl/issues/44
"https://github.com/Goedel-LM/Goedel-Prover-v2

24

https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
https://huggingface.co/Goedel-LM/Goedel-Prover-V2-8B
https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
https://huggingface.co/Goedel-LM/Goedel-Formalizer-V2-8B
https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B
https://github.com/leanprover-community/repl/issues/44
https://github.com/Goedel-LM/Goedel-Prover-V2

Under review as a conference paper at ICLR 2026

attempt to generate an entire proof script in a single forward pass, relying on the model’s ability to
plan the proof holistically.

The overview of the baseline methods used in our experiments is as follows:

Tree Search Method:

* DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al.} [2025a)) uses DeepSeek-Prover-V1.5-
RL (Xin et al.| [2025a), a 7B model trained with reinforcement learning, combined with
RMaxTS (Xin et al.| 2025a)), a variant of MCTS that uses intrinsic rewards to explore
diverse proof paths.

* InternL.M2.5-StepProver-BF + CG (Wu et al., 2024a)) uses InternLM2.5-StepProver (Wu
et al., [2024a)), a 7B model trained via expert iteration (Anthony et al., 2017} [Polu et al.,
2023) starting with InternLM2-StepProver (Wu et al., 2024b), combined with a best-first
search (BFS) strategy and a critic-guided (CG) sampling technique to explore longer proofs
effectively.

* HunyuanProver v1.6 + BFS + DC (Li et al., 2025) uses HunyuanProver, a 7B model fine-
tuned via a scalable data synthesis pipeline, in conjunction with best-first search guided by
the distance critic (DC) to efficiently navigate complex Lean 4 proof search spaces.

* BFS-Prover (Xin et al.,[2025b) uses a fine-tuned model of Qwen2.5-Math-7B model (Yang
et al., 2024), trained through an expert-iteration pipeline. During inference, it employs a
best-first search strategy to navigate the proof space efficiently.

Whole-Proof Generation Methods:

* Leanabell-Prover-GD-RL (Zhang et al.| [2025)) is a 7B model post-trained through con-
tinual training on statement-proof pairs and reinforcement learning using Lean 4 outcome
rewards. This model is a fine-tuned version of Goedel-Prover-SFT (Lin et al.,[2025b).

* Goedel-Prover-SFT (Lin et al.l 2025b) is a 7B-parameter model obtained by supervised
fine-tuning on DeepSeek-Prover-V1.5-Base (Xin et al., [2025a)) with expert-iteration.

* STP: Self-Play Theorem Prover (Dong & Ma, |[2025) employs a self-play framework that
simultaneously takes on two roles, conjecturer and prover. The conjecturer is iteratively
trained on statements that are barely provable by the current prover, incentivizing it to
generate increasingly challenging conjectures. The prover uses standard expert iteration to
verify and prove the generated conjectures. This model is a fine-tuned version of DeepSeek-
Prover-V1.5-SFT (Xin et al.| 2025a), which is a 7B-parameter model.

* Kimina-Prover-Preview (Wang et al. 2025) is a 72B-parameter reasoning model that
learns specialized formal reasoning patterns via reinforcement learning. It is pretrained on
a large corpus of formal proofs and fine-tuned with a binary correctness reward and consis-
tency penalty. They also provide Kimina-Prover-Preview-Distill-7B, a distilled version
from the 72B model.

* DeepSeek-Prover-V2 (Ren et al., [2025)) uses DeepSeek-V3 to decompose each theorem
into subgoals and then employs the proofs of those subgoals as cold-start data for rein-
forcement learning using binary correctness rewards and a consistency penalty to ensure
that every subgoal appears in the final proof. It is implemented as a 671B-parameter model,
and a distilled 7B-parameter variant is also provided.

* Leanabell-Prover-V2 (Ji et al., 2025) is a 7B-parameter prover obtained by post-training
existing models with verifier-integrated reinforcement learning. Two variants are pro-
vided: Leanabell-Prover-V2-KM, which is post-trained from Kimina-Prover-Preview-
Distill-7B (Wang et al., 2025)), and Leanabell-Prover-V2-DS, which is post-trained from
DeepSeek-Prover-V2-7B (Ren et al., 2025).

* Goedel-Prover-V2 (Lin et al., 2025c¢) is a series of open-source provers built on expert-
iteration and reinforcement learning, augmented with (i) scaffolded data synthesis (curric-
ula of increasingly difficult synthetic theorems), (ii) verifier-guided self-correction using
Lean feedback, and (iii) model averaging.

25

Under review as a conference paper at ICLR 2026

D.6 COMPARISON IN TERMS OF TOTAL TOKEN BUDGET

In our pipeline, the informal LLM is used only in three places: (i) Initial direct proving without
iterative refinement, which is invoked 50 times (once for each generation), (ii) Lemma generation,
which is invoked once, and (iii) Initial direct proving for each generated lemma without iterative
refinement, which is invoked 10 times for each of the three lemmas. The formalizer model is used
only three times to formalize the three generated lemmas. Outside of these calls, the pipeline does
not invoke any additional LLMs; the remaining stages only execute Lean or reuse already proved
lemmas without consuming new tokens.

Thus, in addition to the 260 prover calls reported in Table 1, Prover Agent uses only 50 + 1 + 3 X
10 + 3 = 84 extra LLM calls, resulting in a total of 260 + 84 = 344 LLM executions. Because the
context length is fixed for all calls, the total token budget is effectively proportional to this number
of LLM invocations. Also, when informal proofs, Lean feedback, or proved lemmas occupy part of
the prompt, the corresponding output token length simply decreases, since the context size of the
model is predefined. Thus, the total token consumption is governed by the number of LLM calls.

Importantly, with this total token budget corresponding to 344 LLM calls, Prover Agent achieves:
88.1% in the ensemble setting, 86.5% in the GoedelProver-V2 setting, and 82.8% in the DeepSeek-
Prover-V2 setting. These results surpass the corresponding baseline performance of GoedelProver-
V2, which uses 512 LLM calls, as well as the corresponding baselines of DeepSeek-Prover-V2,
which use 1,024 and 8,192 LLM calls. Therefore, even when measured in total token budget, Prover
Agent achieves a higher success rate using fewer tokens than the corresponding baselines.

E EXAMPLES OF SUCCESSFUL CASES ENABLED BY LEMMAS AND
ITERATIVE REFINEMENT

In Appendices[E.T|and [E.2] we present and analyze an example successfully solved via a lemma and
an example successfully solved through iterative refinement, respectively.

E.1 CASE STUDY OF SUCCESSFUL EXAMPLE WITH LEMMAS
E.1.1 DETAILED ANALYSIS

We analyze in detail the reasoning process for the problem induction_nfactltnexp
nmlngt3, a case where the direct proof attempt failed but the use of auxiliary lemmas led to a
successful proof. This problem asks for a formal proof that, for all natural numbers n > 3, the
inequality n! < n™~! always holds.

The outputs for this problem, such as the generated lemmas, final formal proof, and the associated
reasoning process, are provided in Appendix and after.

In this case, the agent generated the following three lemmas: The first states that 3! < 33~1; the
second states that for any natural number n > 2, n"1 < (n+ 1)”_1; and the third states that for
any natural number n > 3, n! < (n + 1)"~!. The first is a special case of the original problem with
n = 3, while the second may provide a helpful hint toward solving the original problem. Both were
easily proven in a single direct proof attempt. The third lemma generated in this case asserts that for
any natural number 7 > 3, n! < (n + 1)"~!. This lemma closely resembles the original problem,
as it is a slightly weaker version of its conclusion. Due to its similarity and retained difficulty, the
agent failed to construct a direct proof for it.

By examining the final successful reasoning trace in Appendix [E.I.5] we see that the special case
for n = 3, considered as the first lemma, appears explicitly on line 7. The reasoning also checks the
cases for n = 4 and n = 5, following a similar pattern. Furthermore, as stated on line 13, the use of
mathematical induction is clearly identified as the intended proof strategy. Then, the reasoning trace
from line 14 to line 80 further elaborates the proof process within the framework of mathematical
induction. Furthermore, in the final proof, the proof technique used in Lemma 2 is explicitly applied
at lines 195-196.

Next, as a comparison, we analyze the reasoning process from the initial direct proving attempt
without using any lemmas, as shown in Appendix Here, we present the reasoning trace that

26

Under review as a conference paper at ICLR 2026

resulted in the fewest Lean errors among all initial direct attempts. Compared to the successful case
with lemmas, we see that the proof strategy is much less clear in this direct attempt. In the “Key
Observations” section (lines 6 to 14), there is no indication of using mathematical induction, unlike
in the lemma-assisted case. Although the system explores several ideas from lines 15 to 63, the
reasoning appears less focused and more exploratory, lacking a concrete plan. As a result, while it
eventually leans toward using induction, the lack of a clear and structured approach prevents it from
working out the necessary details, ultimately leading to failure in the formal proof, which tolerates
no ambiguity.

This detailed case study highlights the effectiveness of our lemma-generation approach in uncov-
ering viable proof strategies. This marks a significant advance over prior methods that decompose
problems into subgoals, which often assume the overall proof strategy is known in advance. Identi-
fying an initial proof strategy is often a challenging part of solving difficult problems. Indeed, Ren
et al.| (2025)) employs a decomposition-based approach but relies on the much larger and stronger
DeepSeek-V3 (DeepSeek-AllL 2024) to formulate the initial proof sketch. In contrast, our agent fol-
lows a reasoning process similar to that of human mathematicians when the proof strategy is not
apparent at first glance, exploring special cases or hypothesizing intermediate steps to discover a
promising direction and ultimately uncover the overall proof strategy.

E.1.2 LEAN ENVIRONMENT SETUP

All Lean code was executed with the following header, following Xin et al.| (2025a); Ren et al.
(2025), which is omitted in the examples for brevity:

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

Note that the following Lean code works correctly with Lean version 4.9.0, the environment used
in our experiments, which strictly follows the same setup in Xin et al.| (2025a); [Ren et al| (2025).
However, Nat .pow_1t_pow_of_1t_left has been deprecated in newer versions of Lean, so
it must be replaced with Nat . pow_1t_pow_left to work with the latest environment.

E.1.3 THE PROBLEM

The following problem asks for a formal proof that, for all natural numbers n greater than 3, the
inequality n! < n"~! holds:

1 theorem induction_nfactltnexpnmlngt3
2 (n : N)

3 (hp : 3 < n) :

4 (n)! < n”(n - 1) := by sorry

E.1.4 THE GENERATED LEMMAS

The generated lemmas are shown below, each presented with both its original natural language form
and the corresponding Lean formalization. The first and second lemmas were successfully proved
and are presented with their proofs. The third lemma could not be proved and is therefore presented
with a sorry placeholder.

Lemma 1: base_case_3
**xAssumptions*x*:
None

**Conclusionx*x*:
3! < 37(3-1)

o U W N P

27

Under review as a conference paper at ICLR 2026

1 theorem base_case_3 : (3 : N)! < 37(3 - 1) := by
2 have h_main : (3 : N)! < 37(3 - 1) := by
3 —— Calculate the factorial and the power step-by-step
4 norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
5 —-— Use ‘decide' to confirm the inequality
6 <;> decide
7 exact h_main
1 ### Lemma 2: exponent_inequality
2 xxAssumptionsx*x:
3 n is a natural number and n > 2
4
5 xxConclusionx*x:
6 n”"(n-1) < (n+l) "~ (n-1)
1 theorem exponent_inequality {n : N} (hn : 2 < n)
2 n“(n -1) < (n +1)"(n - 1) := by
3 have h_main : n"(n - 1) < (n + 1) " (n - 1) := by
4 have hp : n - 1 + 1 = n := by
5 omega
6 have h; : n > 2 := by omega
7 have hg : n — 1 > 1 := by omega
8 have h3 : n < n + 1 := by omega
9 —— Use the fact that if a < b and n > 0, then a’n < b’n
10 exact calc
11 n“(n -1) < (n +1)"(n - 1) := by
12 —-— Apply the lemma that if a < b and n > 0, then a’n < b'n
13 exact Nat.pow_lt_pow_of_1lt_left hs (by omega)
14 _ = (n+1)"(n - 1) := by rfl
15 exact h_main
1 ### Lemma 3: factorial_ less_than_n_next_power
2 *xAssumptionsxx:
3 n is a natural number and n > 3
4
5 **xConclusion#=x:
6 n! < (n+l) " (n-1)
1 theorem factorial_lt_n_next_power {n : N} (hn : 3 < n)
2 n! < (n+1) ° (n-1) := by sorry

E.1.5 THE FINAL PROOF AND ITS REASONING TRACE

We present below the final Lean proof, successfully constructed by taking the previously verified
lemmas into account. Alongside the code, we also include the corresponding reasoning trace gener-
ated by the prover model that guided the overall proof construction.

1 ### Detailed Proof and Analysis

2

3 We are tasked with proving that for all natural numbers ‘n > 3%,
the factorial of ‘n', i.e., '‘n!', is less than ‘n"(n - 1) ‘.

4

5 #### Key Observations:

6 1. xxBase Casesxx:

7 - For ‘n = 3': ‘3! = 6" and '3°(3 - 1) = 32 = 9", So, ‘6 < 9°
holds.

8 - For ‘n = 4': ‘4! = 24" and ‘4" (4 - 1) = 4% = 64'. So, ‘24 <
64" holds.

9 - For ‘n = 5': ‘5! = 120" and ‘5°(5 - 1) = 5* = 625'. So, ‘120
< 625" holds.

28

Under review as a conference paper at ICLR 2026

10
11
12
13

14

15

17
18

19
20

21
22

23

24
255,

26
27

28
29
30
31
32

33
34
35
36
37

38

39

40
41

42
43

44

- The pattern suggests that this holds for all ‘n > 3°'.

2. *xxGeneral Proof Ideaxx:

— The proof can proceed by mathematical induction. We first
check the base case '‘n = 3', and then for the inductive step, we
assume the statement holds for ‘n = k' (i.e., ‘k! < k“(k - 1))
and show that it also holds for ‘n = k + 1" (i.e., “(k + 1)! < (k +

1) "kY).

— The inductive step involves showing that ‘(k + 1)! = (k + 1) =

k! < (k + 1) » k“(k - 1)'. The last expression is ‘(k + 1) k"
because ‘k”"(k - 1) = k"k / k' when multiplying by ‘(k + 1) ‘' is not
clean. Instead, we can directly use the fact that ‘“(k + 1)! = (k +

1) = k!Y and ‘k! < k“(k - 1) by the inductive hypothesis, but we
must also ensure ‘k + 1 < k + 1 + 1' is not relevant here. Wait,
perhaps the best approach is to directly manipulate the inequality
‘(k + 1)! < (k + 1)k,

However, this seems messy. A simpler way is to compare ‘(k +
1)!Y and ‘(k + 1) "k directly. For ‘k > 3%, we have ‘“(k + 1)! =
+ 1) = k! < (k + 1) %= k“k".

(k

But this is not obviously true because ‘k! < k"k' is equivalent
to ‘k < k + 1%, which is trivially true.

Alternatively, ‘(k + 1)! = (k + 1) = k! < (k + 1) = k™ (k - 1)
by IH, and “(k + 1) » k“(k - 1) = k"k + k“(k — 1), which is less
than “(k + 1)k = k™k + k » k“(k - 1) + .Y, but this is getting
complicated.

A much better approach is to use induction directly. For ‘n =
3', we already checked this. Assume ‘k! < k" (k - 1) for some ‘k >
3'. Then:

Yk + 1) = (k+ 1) » k! < (k +1) » k"(k - 1)'. Now, ‘(k + 1) =«

k“(k - 1) = k“k + k“(k - 1)"'. We need this to be ‘< (k + 1)k =

k"k + k » k“(k - 1) + ...,

But ‘k"k‘ cancels out, and we need ‘k"(k - 1) < k » k“(k - 1) +
Y, i.e., ‘1 < k + ...', which is true for ‘k > 3'.

However, the last step is not straightforward, and it might be
simpler to use induction concretely.

Step 1: Abstract Plan

3Y) x*:

1. **Base Case ('n =
= 6" and ‘3 © (3 - 1) = 9'. Since ‘6 < 9%, the

- Compute ‘3!
base case holds.

2. x*xInductive Step ('n = k + 1) *x*:
— Assume ‘k! < k" (k - 1) holds for some ‘k > 3‘.
- We need to show “(k + 1)! < (k + 1)k .
- Yk + 1) = (k + 1) » k! < (k+1) » k“(k = 1)" by the
inductive hypothesis.
- Next, we need to compare ‘(k + 1) = k“(k - 1)" to “(k + 1)k =
(k + 1) = k“k / k.
— The inequality ‘k » (k + 1) < k » k + k » k = 2 x k2" for ‘k
> 1" is too loose. A better approach is as follows:
- We want ‘(k + 1) » k" (k — 1) < (k + 1) k.
— Divide both sides by ‘(k + 1)': k" (k - 1) < (k + 1) (k -
1) .
- But:
- This is false for ‘k = 3': ‘372 = 9 < 472 = 16" holds.
For ‘k = 4: Y4°3 = 64 < 5°3 = 125" holds, etc. But we need ‘(k +
1) = k"(k = 1) < (k + 1)°k", not k" (k - 1) < (k + 1) (k = 1)".
— Alternatively, perhaps a direct proof is better:

29

Under review as a conference paper at ICLR 2026

47

48
49

50

51
52

53

54
55

56
57

58
59

60
61
62
63
64
65
66
67

68

69
70
71

72
73

74

75

76
77

78
79
80
81
82
83
84
85

- Y(k + 1) » k“(k -— 1) = k"k + kT(k - 1)".

— We must show ‘k"k + k“(k - 1) < (k + 1)k = k"k + k » k™ (k
- 1) + ... + 1.

- Since ‘k > 3', ‘k"(k - 1) < k * k
(which cancels), we get ‘k"(k - 1) < k *
k' when ‘k > 2', so ‘k"k + k" (k - 1) < k
is justified.

“(k - 1) and ‘0 < k"k?}
k“(k — 1) because ‘1 <
"k + k » kT(k - 1) + ...

But the above is still messy. A better way is to prove ‘(k + 1) =
k“{k - 1} < (k + 1)°k" for ‘k > 3‘:

‘(k + 1) » k"{k = 1} = k"k + k“{k - 1}', and “(k + 1) "k = k"k + k =
k"{k - 1} + ...%.

Subtract:

‘(k + 1)k = (k + 1) « k"{k = 1} = k"k + k » k“"{k = 1} + ...} -

(k"k + k“{k - 1}) = k » k"{k = 1} + ..." which is clearly positive

because all terms are positive.

Alternatively, Jjust note that ‘k"k > 0 when ‘k > 1' is sufficient

because ‘(k + 1)°k = k"k + ... > k"k > k“{k - 1}*.

However, the direct approach is to compute ‘(k + 1) "k = (
((k + 1) = ... » 1) > (k +1) (k * ... » 1) = (k + 1) = k™" (k -
1) ', which would work except for the last factor.

Wait, we need ‘(k + 1)°k > (k + 1) = k“{k - 1}'. But ‘(k + 1)k =
(k + 1) « (k + 1) {k = 1}".

But “(k + 1)°{k - 1} > k"{k - 1} is not immediately obvious (and
may even be false for ‘k = 3" (‘42 =16 > 8 = 32y isg true, but
Y4°3 = 64 > 373 = 27" is true)).

This seems correct, but we instead keep it simple:

##4#4# Inductive Proof Sketch:
1. Base Case (‘n = 3Y): ‘6 < 9" is true.
2. Inductive Step ('n = k + 1" assuming ‘k! < k" (k = 1)"):

— We have Y(k + 1)! < (k + 1) = k™ (k — 1)".

- We need “(k + 1) « k" (k - 1) < (k + 1)k = (k + 1) * k" (k -
1) + ...
— Alternatively, the most straightforward induction is simply
to use that “(k + 1) » k“(k - 1) < (k + 1)°k" when ‘k > 3.

This can be proved as follows:

‘(k + 1)’k = (k + 1) = (k +1)°{k — 1} and “(k + 1)°{k - 1} >
k“{k — 1}' for ‘k > 3" because:

‘(k + 1)"2 =k"2 + 2k + 1 > k™2" for all ‘k >
‘(k + 1)°3 = k™3 + 3k"2 + 3k + 1 > k™3 + 3k"2
for ‘k > 2%, etc.

But we get ‘“(k + 1)°k > (k + 1) = k“{k - 1}", which is not what we
want! This is because we made a miscount. The correct relation is:
“(k + 1)k = (k + 1) « (k + 1) {k - 1}.Y, and “(k + 1)°{k = 1} >
k"{k - 1}" for ‘k > 3" (since ‘1l < m' implies ‘17 {n} < m"{n}" for
‘1, m > 1Y) . That is, ‘(k + 1)°k > (k + 1) = k™{k = 1} > (k + 1) =
k“{k = 1} - k“{k - 1}' is not true.

1Y,
> k"3 + 2k"2 > k3"

Instead, ‘(k + 1)°k = (k + 1) » (k + 1)°{k - 1} > (k + 1) = k" {k -
1}" because ‘(k + 1)°{k - 1} > k“{k - 1} for ‘k > 3'.

Therefore, the full chain is:
‘(k +1)! = (k +1) » k! < (k+ 1) » k"(k - 1) < (k +1)7k."

Thus, we can prove the inductive step using the above reasoning.

Abstract Plan:
1. Base Case:

30

Under review as a conference paper at ICLR 2026

31

86 - Verify the inequality for ‘n = 3°

87 2. Inductive Step:

88 — Assume the inequality holds for ‘n = k', i.e., ‘k! < k" (k -
1) for ‘k > 3.

89 - Prove for ‘n =k + 1Y, i.e., ‘Y(k + 1)! < (k + 1)°k = (k + 1) =
k™ (k = 1),

90 - But it is enough to prove ‘(k + 1)°k > (k + 1) » k™ (k - 1) ‘:

91 — Since ‘(k + 1)°k = (k + 1) » (k + 1)°{k — 1}', we must show
‘(k + 1) {k = 1} > k™"{k = 1} .

92 — This is true for ‘k > 4" since ‘(k + 1)/k > k/(k - 1) .

93 — Check ‘k = 3" separately: ‘472 = 16 > 372 = 9" and '4°3 =
64 > 373 = 27", etc.

94

95 #### Lean 4 Proof Sketch with ‘have‘ Statements

96

97 ‘‘‘lean4

98 theorem induction

99 (n N)

100 (ho 3 < n)

101 (n)! < n”(n - 1) := by

102 —-— Base case: n = 3

103 have h_base (3 : N)! <3 " (3 -1) := by sorry

104 —— Inductive step: assume (k)! < k“(k - 1) for some k > 3, prove
(k + 1)! < (k + 1) " ((k + 1) - 1)

105 have h_inductive_step vV (k Ny, 3<k — (k)! <k "~ (k -1) —
(k + 1)! < (k + 1) ° ((k + 1) - 1) = by sorry

106 —— Combine base case and inductive step to get the general result

107 have h_general (n)! <n "~ (n - 1) = by sorry

108 sorry

109 “'©

110

111 This sets up the scaffolding of the proof using ‘have‘' statements
with ‘sorry‘.

112

113 ### Step-by-Step Abstract Plan

114

115 1. xxBase Case ('n = 3%)xx:

116 — Directly check ‘3! = 6" and ‘37 (3 - 1) = 9', hence ‘6 < 9.

117

118 2. xxInductive Hypothesis ('n = k') xx:

119 — Assume ‘k! < k" (k - 1) for some ‘k > 3°'.

120

121 3. *xInductive Step ('‘n = k + 1Y) xx:

122 - Prove ‘(k + 1)! < (k + 1)"((k + 1) - 1)" using:

123 - Yk +1)! = (k+1) » k! < (k + 1) x k“"(k = 1)" by IH.
124 - Yk + 1)k = (k + 1) » (k +1)°{k =1} > (k + 1) » k™ (k -
1) if Y(k + 1)"{k — 1} > k" (k = 1)'. This holds for ‘k > 3"

because ‘(k + 1) > k' and functions are increasing.
125
126 4. *xConclusionxx:
127 — By induction, the statement holds for all ‘n > 3'.
128
129 ### Lean 4 Proof Sketch with ‘have' Statements and ‘sorry'‘s
130
131 “Y‘leand
132 theorem induction
133 (n N)
134 (ho 3 < n)
135 (n)! < n”(n - 1) := by
136 have h_base (3 N)y! <3 ® (3 - 1) := by sorry
137 have h_inductive_step V (k : N, 3<k — (k)! <k~ (k-1) —
(k + 1)! < (k + 1) © ((k + 1) - 1) := by sorry
138 have h_general (n)! <n " (n - 1) := by sorry
139 sorry
140 MY

Under review as a conference paper at ICLR 2026

141
142

143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
lel
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176

177
178
179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198

(Note: The ‘have' statements are used to sketch the high-level
structure of the proof. The actual Lean 4 proof would fill in the
‘sorry' placeholders with detailed reasoning.)

Complete Lean 4 Proof

‘“‘leand
theorem induction
(n : N)
(hp : 3 < n) :
(n)! <n”(n - 1) := by
have h_base : (3 : N)! <3 ° (3 - 1) := by
norm_num
<;> decide

have h_inductive_step : V (k : N), 3 <k — (k)! <k ~ (k - 1)
(k + 1)! < (k + 1) °~ ((k + 1) = 1) := by
intro k hk’ hk’’
have h; : (k + 1)! = (k + 1) » k ! := by
simp [Nat.factorial_succ, Nat.mul_comm]
<;> ring
<;> simp_all [Nat.factorial]
<;> ring
<;> simp_all [Nat.factorial]
rw [hi]
have hs : (k + 1 : N) » k ! < (k +1 :N) »k ~ (k - 1) := by

—— Apply the inductive hypothesis to get the inequality for
k! <k ° (k- 1)"

have hs : k ! <k °~ (k - 1) := hk’’
have hy : (k + 1 : N) > 0 := by linarith
have hs : (k + 1 : N) » k! < (k+1 :N) «~k "~ (k- 1) :=
exact Nat.mul_lt_mul_of_pos_left hz (by linarith)
exact hs
have hg : (k + 1 : N) ~ ((k + 1) - 1) = (k + 1) ~ k := by

simp [Nat.sub_add_cancel (by linarith : 1 < k + 1)]
<;> ring_nf
<;> simp_all
rw [hs]
—— Use the fact that ‘(k + 1) k =~ (k - 1) < (k + 1) = k" to
conclude the proof
have hy : (k + 1 : N) » k ~ (k - 1) < (k + 1) " k := by
have hs : k > 3 := by exact_mod_cast hk’
have hg : (k + 1 : N) » k ~ (k — 1) < (k + 1) = k := by

—

by

have hy : (k + 1 : N) "k = (k + 1) x (k + 1) (k - 1) :=

by
cases k with
| zero => contradiction
| succ k' =>
cases k’ with
| zero => contradiction
| succ k'’ =>
cases k’’ with
| zero => contradiction
| succ k'’"’ =>
simp [Nat.pow_succ, Nat.mul_assoc]
<;> ring_nf at =
<;> omega
rw [h7]
have hg : (k + 1 : N) » k = (k = 1) < (k + 1) = ((k + 1)
(k = 1)) := by
have hg : k = (k - 1) < (k + 1) = (k = 1) := by
exact Nat.pow_lt_pow_of_1t_left (by linarith) (by
have higp : k = 1 > 2 := by
omega

32

Under review as a conference paper at ICLR 2026

199 omega)

200 nlinarith

201 nlinarith

202 exact hsg

203 nlinarith

204

205 have h_general : (n)! <n ° (n - 1) := by

206 have h; : Vn : N, 3<n— (n)! <n " (n-1) := by

207 intro n hn

208 induction’ hn with k hk IH

209 . —— Base case: k = 3

210 simp [Nat.factorial]

211 <;> norm_num

212 - —— Inductive step: assume the statement holds for k, prove
for k + 1

213 cases k with

214 | zero => contradiction

215 | succ k" =>

216 cases k’ with

217 | zero => contradiction

218 | succ k'’ =>

219 cases k'’ with

220 | zero => contradiction

221 | succ k""" =>

222 simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]

223 —— Use the inductive hypothesis and the lemma
‘h_inductive_step' to prove the next step

224 <>

225 (try omega) <;>

226 (try nlinarith) <;>

227 (try

228 {

229 have hs := h_inductive_step (k’’’ + 3) (by
linarith) (by simpa [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
using IH)

230 simp_all [Nat.factorial, Nat.pow_succ,
Nat.mul_assoc]

231 <>

232 (try omega) <;>

233 (try nlinarith)

234 })

235 <;>

236 (try

237 {

238 aesop

239 })

240 <>

241 (try

242 {

243 nlinarith [pow_pos (by norm_num : (0 : N) < 2)
k’’’, pow_pos (by norm_num : (0 : N) < 2) (k’’’" + 1), pow_pos (by
norm_num : (0 : N) < 2) (k""" + 2)]

244 1)

245 exact h; n hg

246

247 exact h_general

248 YWV

E.1.6 COMPARISON: DIRECT PROOF ATTEMPT WITHOUT LEMMAS

For comparison, we present below the reasoning process and generated Lean code from a direct
proof attempt without using auxiliary lemmas. Among the 100 initial direct proof attempts (/Viniy =
100), we show the one that resulted in the fewest Lean errors.

33

Under review as a conference paper at ICLR 2026

< o U W N R

10

11

12

13

14

15

17
18

19
20

21
22

23
24

27
28

29
30

31
32

33
34
35
36

37

Detailed Proof and Analysis

*xProblem Analysis:x*x
We need to prove that for all integers ‘n > 3%,

*xKey Observations:xx

l. For ‘n > 3%, ‘n - 1 > 2" (since ‘3 - 1 =2'), so ‘n"(n - 1)
grows faster than ‘n!‘' as '‘n' increases.

2. The factorial 'n!‘ is the product of all integers from ‘1‘' to

\

ARSERY \ ARSRR

n while ‘n”"(n - 1) ' is a product of ‘n - 1' copies of '‘n
(assuming ‘n > 3').
3. The inequality '‘n! < n"(n - 1) can be compared term by term,
but a more precise estimate is needed.
4. For ‘n > 3', we have 'n! < (n + 1 - 1)! = n!'? Wait, this is
not helpful. Instead, we can compare ‘n!‘' with ‘n"(n - 1) ‘:

- The inequality '‘n! < n”(n - 1)' is equivalent to ‘(n - 1)! <
n"(n - 2)', but this is not directly useful either.
5. A better idea is to directly compare ‘n!‘ with ‘nx(n -
I)x...x(2) Y and ‘n"(n — 1) = n * n * ... * n'.

- For ‘n > 3%, each term ‘k‘ in the product ‘2 % 3 x ... * (n -
1) is > 1' (except ‘2 = 1' is skipped if ‘n > 4', but ‘n > 3}
is given), and each is ‘< n - 1' for ‘k < n - 2'. However,

comparing ‘k' to '‘n' is complicated.
- Alternatively, '‘n!‘ is the product of ‘n‘' factors, each ‘<

n', but '‘n!' is a product of all numbers from ‘1' to ‘n‘', whereas

‘n“(n - 1) is a product of ‘n - 1' copies of '‘n

ARSI

\

But actually, induction is not straightforward here. The key is to

compare ‘n!' with ‘n (n - 1)"(n - 1)', since ‘(n - 1) (n - 1)°
grows faster than ‘(n - 1) (n - 2) ..." for ‘n > 3.

But '‘n! < n x (n - 1)!Ydis ‘n! < n x» (n - 1)!', which is true
except for ‘n = 1'. So is ‘n » (n - 1)! < n”"(n - 1) '? Not
obviously, because for ‘n = 4%, ‘4 % 3! = 24" and ‘4°3 = 64", but
for ‘n = 3', ‘3! = 6" and ‘372 = 9.

Instead, let’s recall the definition of ‘n!' and think about how
many times ‘n!‘' is compared to ‘n"(n - 1)*‘.

For ‘n > 3', each time you compare ‘n!‘ with ‘n * (n - 1)!', and
this is < n » (n - 1)! <n »n”(n - 2)} = n"(n - 1)} ? Seems
wrong because ‘(n - 1)! < n"(n - 2)}" would be true for ‘n > 2' by

induction, which is not a problem since we’re proving it.

Perhaps a better approach is to use telescoping inequalities.

Consider n! = n * (n — 1) » ... * 2 «» 1Y, and ‘n"(n - 1) is the
product of ‘n - 1' copies of ‘'‘n‘

For ‘n > 3%', each term in the factorial is smaller than ‘n' (‘k <
n - 1%Y).

But more precisely, '‘n! = n %« (n - 1)!Y and ‘(n - 1)! < n”(n - 2)"
for ‘n > 3" (since ‘n - 1 > 2%').

Let’s try to prove ‘(n - 1)! <n"(n - 2)}'. If ‘(n - 1)! < n"(n -
2)}" holds, then ‘n! = n » (n - 1)! <n *n"(n - 2)} =n"(n - 2)}".
But is ‘n * n"(n - 2)} = n"(n - 1)} ? Yes, because ‘n * n”(n -
2)} =n" (1l +n-2)} =n"(n - 1)}".

Thus, '‘n! < n"(n - 1)}', provided that ‘(n - 1)! < n"(n - 2)}°.

Wait, ‘n"(n - 2)}'Y is n * n"(n - 3)}' if ‘n > 3.

34

Under review as a conference paper at ICLR 2026

38
39
40

41
42

43
44
45
46
47
48
49

50
51

52
53

54
55
56
57
58
59
60
61
62

63
64
65
66

67
68

69
70

71
72
73
74
75

76
77
78
79
80
81
82
83
84
85

86
87
88

So the induction is:

- Base case ‘n = 3': ‘2! = 2" and ‘372 = 9', ‘2 < 9" holds.

- Inductive step: Assume for ‘n', ‘(n - 1)! < n"(n - 2)}'. Then '‘n
(n —1)! <n*n"(n-2)} =n"(n - 1)} But ‘n » n"(n - 2)} =
n"(n -2+ 1)} =n"(n-1)}'. So 'n! = n % (n - 1)! <n"(n - 1)} .
This is a valid induction, provided that ‘(n - 1)! < n"(n - 2)}"
is true for ‘n > 3‘.

Now, recall that for ‘n > 3‘:

‘n! =n* (n-1)!'Yand ‘(n - 1)! < n”(n - 2)" if ‘n > 3.

But is ‘(n - 1)! < n"(n - 2)}"' true for ‘n > 3'?

For ‘n = 3', LHS = 2, RHS = 1. False. Hmm, ‘3! = 6" and ‘37 (3 -

3) Y = 1?2 No, ‘3 > 3" and '37(3 - 2)} = 37 {1}} = 3, ‘2 < 3Y, so
true.

Wait no. For ‘n = 4', Y(3)! = 6, and '4°{4 - 2}} = 4°{2}} = 16",
‘6 < 16" true.

For ‘n = 5, Y(4)! = 24", *5°{5 - 2}} = 5"3 = 125", ‘24 < 125"
true.

Hypothesis that ‘(n - 1)! < n”(n - 2)}' for all ‘n > 3‘.

Base case ‘n = 3', ‘2! =2 < 37{1} = 3" true.

Inductive step: Assume ‘(n — 1)! < n"(n - 2)}" for ‘n > 4°.

We need ‘n! < (n + 1) (n — 1)} :

‘n! =n=* (n -1)! <n n"(n-2)}) =n"(n - 1)}, since ‘(n - 1)!

< n"(n - 2)}" holds by the inductive hypothesis for ‘n > 3.
This works!

‘n! < n"{n - 1}" holds for all ‘n >

xConclusion:» The inequality
3 ('‘n >= 3Y).

But wait, the original Lean statement is ‘n : N' and '3 < n‘, so
indices are clear.

We can proceed directly using induction. The ‘have‘ statements
will reflect the proof.

*xLean 4 Proof Sketch:xx

1. **Base Case ('n = 3')*%: Check that ‘3! < 37{3 - 1} or ‘6 < 9%'.
2. x*xInductive Step=**: Assume ‘(k)! < k"{k - 1}' for some ‘k > 3%,
and prove ‘(k + 1)! < (k + 1)°{k}" using the assumption ‘k! < k7{k
- 1.
Abstract Step-by-Step Plan
1. xxBase Case ('n = 3Y)xx:

- Compute ‘3! = 6°.

- Compute ‘37{3 - 1} = 372 = 9°.

- Since ‘6 < 9%, the statement holds.

2. **Inductive Step ('‘n — n + 1%Y)*x:

- Assume ‘n! < n"{n - 1} for some ‘n > 3' (induction
hypothesis) .
— Prove ‘(n + 1)! < (n + 1) n":
- ‘Y(n +1)! = (n + 1) n!' (by definition).

- By hypothesis, '‘n! < n"{n - 1}°.

35

Under review as a conference paper at ICLR 2026

89
90

91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132

133
134
135
136
137

138
139
140
141
142

- Thus, ‘(n + 1)! < (n + 1) * n"{n — 1}".

- It remains to prove ‘(n + 1) » n"{n - 1} < (n + 1) n",
i.e., ‘n"{n -1} < (n + 1)°{n - 1} (if ‘n + 1 > 2'? Always true
since ‘n > 2%).

* Since ‘n > 2, ‘n"{n - 1} < (n + 1)"{n - 1} because '‘n <
n + 1' and the exponent is ‘n - 1 > 2', making the term ‘(n +
1) "{n - 1} strictly greater than ‘n"{n - 1}}"‘.

Lean 4 ‘have' Statements

‘YYlean4d
theorem induction
(n : N)
(ho : 3 < n) :
(n)! < n"(n - 1) := by
have h_main : (n)! < n"(n - 1) := by
sorry
sorry

ANANRY

Explanation of ‘have' Statements:
1. The ‘have' statement ‘h_main' directly encodes our goal ‘(n)! <
n"(n - 1)'. Inside the proof, we would perform induction, but in a
structured Lean proof, we break it into a single ‘have h_main‘.

— The actual proof would expand on ‘h_main‘' by leveraging
induction, but for this sketch, it suffices to rely on the good
old induction hypothesis.

Complete Lean 4 Proof

‘“‘Ylean4d
theorem induction
(n : N)
(ho : 3 < n)
(n)! < n”(n - 1) := by
have h_main : (n)! < n"(n - 1) := by
have hy : Vn : N, 3<n—> (n)! <n "~ (n - 1) := by

intro n hn
induction’ hn with n hn IH
—-— Base case: n = 3
norm_num [Nat.factorial]
—— Inductive step: assume the statement holds for n, prove
for n + 1
cases n with
| zero => contradiction —-- n cannot be zero since 3 < n
| succ n =>
cases n with
| zero => contradiction -- n cannot be one since 3 < n
| succ n =>
cases n with
| zero => contradiction -- n cannot be two since 3 < n
| succ n =>
simp_all [Nat.factorial, Nat.pow_succ, Nat.mul_comm,
Nat.mul_assoc, Nat.mul_left_comm]

<;>
(try omega) <;>
(try
{
nlinarith [pow_pos (by decide : (0 : N) < 2)
n, pow_pos (by decide : (0 : N) < 2) (n - 1)]
P <>
(try

{
ring_nf at «
<>

36

Under review as a conference paper at ICLR 2026

143 nlinarith [pow_pos (by decide : (0 : N) < 2)
n, pow_pos (by decide : (0 : N) < 2) (n - 1)]

144 }) <>

145 (try

146 {

147 simp_all [Nat.factorial_succ, Nat.mul_comm,
Nat.mul_assoc, Nat.mul_left_comm]

148 <Lp>

149 norm_num at x*

150 <o >

151 ring_nf at «

152 <LpS

153 nlinarith [pow_pos (by decide : (0 : N) < 2)
n, pow_pos (by decide : (0 : N) < 2) (n - 1)]

154 1)

155 exact hi n hg

156 exact h_main

157 A

E.2 CASE STUDY OF SUCCESSFUL EXAMPLE WITH ITERATIVE REFINEMENT

E.2.1 DETAILED ANALYSIS

We analyze in detail the reasoning process and the output for the problem mathd_-algebra_275,
a case where direct proof without iterative refinement failed, but iterative refinement succeeded

after three iterations. This problem asks to find the value of the expression (111/ 4)6w+2 given the
equation (111/4)31—3 =1/5.

We analyze the final successful iteration of the iterative refinement process for this problem. The
prompt used in this final iteration along with the corresponding output is shown in Appendix

In this case, the input prompt highlights two failures: a linarith error and an unsolved
goals state. Both errors originated from the model’s initial attempt to resolve complex non-linear
expressions using standard automated tactics, which were insufficient for the structural complexity
involved. Crucially, the model interpreted these error messages as indicators of the limitations of
the automated tools. Consequently, instead of attempting superficial fixes, the model adopted a fun-
damentally more robust mathematical strategy. This demonstrates how explicit feedback regarding
the boundaries of automated proving effectively guides the model toward a successful resolution.
Below, we analyze the failures in detail, explaining their root causes and how the final successful
proof overcomes them.

The first Lean error message is as follows (as shown in the prompt used in the final refinement step):

linarith failed to find a contradiction
The goal state at the point of failure involved complex nested exponentiation of real numbers, specifi-
cally terms such as ((11'/4)3#=3)2_ The failure stems from the misapplication of a linear arithmetic
solver to a fundamentally non-linear problem. In this instance, the validity of the equality relied
on the algebraic properties of exponentiation, specifically the power rule (a®)¢ = a®. However,
linarith does not have built-in knowledge of these non-linear identities. Because the solver
could not peer inside the Real . rpow terms to see that the left-hand side and right-hand side were
algebraically equivalent, it treated them as distinct, unrelated variables, thus failing to derive the
necessary contradiction.

Upon receiving this error message, the model declares its intention to fix the code on line 3, and
immediately proceeds to analyze this first error in the “Observations” section on line 10. Here, the
model devises a corrective strategy that switches to applying the natural logarithm (Real. log) to
both sides, instead of attempting to manipulate the exponents directly (which leads to the non-linear
structures that baffled 1inarith). This transformation converts the exponentiation operations into
multiplication, and the problem is mapped from a non-linear domain into a linear domain where
the constraints on x become simple linear equations. The model elaborates on the details of this
logarithmic strategy in the “Rewriting the Hypothesis™ section, starting from line 11.

37

Under review as a conference paper at ICLR 2026

The second error, flagged as unsolved goals, arose from the tactics’ inability to verify a commutativ-
ity relation (A x B = B x A) involving complex nested exponential terms. The standard ring tactic
failed to normalize these opaque structures, leaving the proof in an incomplete state. The resolution
of this error emerges organically as a byproduct of the primary strategy shift. Consequently, while
the “Observations” section commencing on line 10 does not explicitly address this specific error, the
model naturally analyzes the details and resolves the issue during the formulation of the corrected
version, specifically within the “Rewriting the Goal” section (starting on line 16) and the “Correct
Approach” section (starting on line 46).

For comparison, Appendix [E.2.3] presents the output generated without iterative refinement. As ob-
served in this output, due to the absence of error feedback, the model makes no attempt to resolve
specific failure points; instead, its activity is limited to formulating a general strategy and construct-
ing the Lean proof.

E.2.2 LEAN ENVIRONMENT SETUP

All Lean code is executed in exactly the same environment as described in Appendix [E.1.2] Each
code snippet is preceded by the same Lean header shown in Appendix [E-1.2] which we omit in the
subsequent examples for conciseness.

E.2.3 THE PROBLEM

This problem asks you to find the value of the expression (111/ 4)6z+2 given the equation
(11/4)** 7 = 1/5:

1 theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 / 4 : R)) ~
(3 xx~-3) =1/05)
2 ((11 : R) =~ (1 / 4 : R)) ~ (6 » x + 2) = 121 / 25 := by sorry

E.2.4 FINAL ITERATIVE REFINEMENT STEP

This problem could not be solved by direct proving, but it succeeds after three iterations of iter-
ative refinement. Below, we show the prompt used in the final refinement step and the model’s
corresponding output.

The prompt used in the final refinement step is as follows:

1 Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

‘*Y'lean4d
import Mathlib

import Aesop

set_option maxHeartbeats 0

® Jd o U W N

©

open BigOperators Real Nat Topology Rat

o e
N B O

theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 /7 4 : R)) ~
(3 xx-3)=11/15)

13 ((11 : Ry ~ (1 /7 4 : R)) = (6 x +2) =121 / 25 := by
14 AN NAY

15

16 Your proof is as follows:

17 “‘‘leand

18 import Mathlib

19 1import Aesop

20

21 set_option maxHeartbeats 0

22

38

Under review as a conference paper at ICLR 2026

39

23 open BigOperators Real Nat Topology Rat

24

25

26 theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 /7 4 : R)) ~
(3 x x -3) =1/05)

27 ((11 : Ry ~ (1 /7 4 : R)) ~ (6 » x +2) =121 / 25 := by

28 have h; : ((11 : R) =~ (1 / 4 : R)) ©~ (6 *x x + 2) = ((11 : R) ~
(1 /74 : R)) =~ (2 (3 x—-3) +8) :=by

29 have h; : (6 * x + 2 : R) =2 « (3 *x x — 3) + 8 := by

30 ring nf

31 <>

32 linarith

33 rw [hi]

34 <;>

35 norm_num

36 <;>

37 linarith

38

39 have he : ((11 : R) = (1 /7 4 : R)) ~ (2 * (3 » x — 3) + 8) =
(((11 : R) ~ (1 /4 :R)) ~ (3 *x-3)) "2 % ((11 : Ry ~ (1 / 4
: R)) © 8 := by

40 have hg : ((11 : R) =~ (1 /7 4 : R)) ~ (2 * (3 » x — 3) + 8) =
((11 : R) =~ (1 /7 4 : R)) =~ (2 » (3 x —3)) = ((11 : R) =~ (1 / 4
: R)) ~ 8 := by

41 have hs : ((11 : R) = (1 / 4 : R)) =~ (2 « (3 » x — 3) + 8) =
((11 : Ry ~ (1 /4 : R)) ~ (2 » (3 x — 3)) * ((11 : Ry ~ (1 / 4
: R)) ©~ 8 := by

42 rw [show (2 * (3 » x — 3) + 8 : R) = (2 » (3 * x — 3) : R)
+ 8 by ring]

43 rw [Real.rpow_add (by positivity)]

44 <;> ring_nf

45 <;> norm_num

46 <;> linarith

47 exact hg

48 rw [h3]

49 have hs : ((11 : R) =~ (1 / 4 : R)) ~ (2 = (3 » x — 3)) = (((11
: Ry ~ (1 /74 :R)) "~ (3 x—-3)) " 2 :=hby

50 have hg : ((11 : R) =~ (1 / 4 : R)) ©~ (2 * (3 » x — 3)) =
(((11 : Ry ~ (1 /4 :R)) ~ (3 *x-23)) "2 :=by

51 have h7 : (2 * (3 » x — 3) : R) = (3 * x — 3) + (3 » x —
3) := by ring

52 rw [h7]

53 have hg : ((11 : R) = (1L / 4 : R)) = ((3 » x — 3) + (3 * x
- 3)) = ((11 : R) =~ (1 /7 4 : R)) = (3 » x — 3) * ((11 : R) =~ (1 /
4 : R)) ©~ (3 » x — 3) := by

54 rw [Real.rpow_add (by positivity)]

55 <;> ring_nf

56 <;> norm_num

57 <;> linarith

58 rw [hg]

59 <;> ring_nf

60 <;> field_simp

61 <;> ring_nf

62 <;> norm_num

63 <;> linarith

64 exact hg

65 rw [hs]

66 <;> ring_nf

67 <;> norm_num

68 <;> linarith

69

70 have hg : (((11 : R) =~ (1 / 4 : R)) =~ (3 » x — 3)) ~ 2= (1/5
: R) © 2 := by

71 have hg : ((11 : R) ~ (1 / 4 : R)) ~ (3 * x —3) =1/ 5 :=h

72 rw [hs]

Under review as a conference paper at ICLR 2026

73 <;> norm_num

74

75 have hg : ((11 : R) =~ (1 /7 4 : R)) = 8 = 121 := by

76 have hg : ((11 : R) ~ (1 / 4 : R)) ~ 8 = 121 := by

77 have hsy : ((11 : R) =~ (1 /7 4 : R)) =~ 8 = (11 : R) = ((1 / 4
R) x* 8) := by

78 rw [« Real.rpow_nat_cast]

79 rw [+ Real.rpow_mul] <;> ring_nf <;> norm_num

80 <;> positivity

81 rw [hs]

82 have hg : (11 : R) = ((1 / 4 : Ry » 8) = (11 : R) ©~ (2 : R)
= by

83 norm_num

84 <;> ring_nf

85 <;> field_simp

86 <;> ring_nf

87 rw [he]

88 have hy : (11 : R) ~ (2 : R) = 121 := by

89 norm_num [Real.rpow_two]

90 <;> ring_nf

91 <;> norm_num

92 rw [hy]

93 <;> norm_num

94 exact ha

95

96 have hs : ((11 : R) =~ (1 / 4 : R)) ~ (6 » x + 2) = 121 / 25 := by

97 calc

98 ((11 : R) ~ (1 / 4 : R)) = (6 » x + 2) = ((11 : R) =~ (1 / 4
: R)) © (2 « (3 x x - 3) +8) :=Dby rw [h;]

99 = (((11 : Ry ~ (1 / 4 :R)y) ©~ (3 xx—-3)) "2 ((11 : R)
S (1 /4 :R)) " 8 := Dby rw [h2]

100 _=(1/5:R) "2 % ((11 : R) ~ (1 /4 : R)) ~ 8 := by rw
[hs]

101 _=(1 /5 :R) ~ 2 % 121 := by rw [hg4]

102 _ =121 / 25 := by

103 norm_num

104 <;> ring_nf

105 <;> norm_num

106 <;> linarith

107

108 rw [hs]

109 <;> norm_num

110 *Y©

111

112 The proof failed to compile with errors.
113 The error occurred at the following line(s):
114

115 Error line (line 29):

116 ‘‘‘leand

117 <;> linarith

118 Y

119 Error message:

120 “‘‘leand

121 linarith failed to find a contradiction
122 case hl.h

123 x : R

124 h : (11 ~ (1 / 4)) - (3 * x —-3) =1/5

125 hi; : (11 ~ (1 / 4)) ~ (6 * x + 2) = (11 ~ (1L / 4)) = (2 = (3 * x —
3) + 8)

126 a : (11 ©~ (1L / 4)) © (-6 + x * 6) = (11 =~ (1 / 4)) -~ 8 < (11 ~ (1
/ 4)) © 8 % (11 ° (1 / 4)) © (-6 + x x 6)

127 F False
128 failed
129 YW

130

40

Under review as a conference paper at ICLR 2026

131

132 Error line (line 24):

133 “Y'‘lean4d

134 have hg @ ((11 : R) ~ (1 / 4 : R)) = (2 x (3 x — 3) + 8)

R)) ©~ 8 := by

135 rw [show (2 * (3 *x x — 3) + 8 : R) = (2 = (3 » x — 3)
+ 8 by ring]

136 rw [Real.rpow_add (by positivity)]

137 <;> ring_nf

138 <;> norm_num

139 <;> linarith

140 ANRNAY

141 Error message:
142 “Y'‘leand

143 unsolved goals
144 x : R

145 h ¢+ (11 ©~ (1 / 4)) ©~ (3 »x—-3)=1/25

146 hy : (11 ° (1 / 4)) ~ (6 » x + 2) = (11 ~ (1 / 4)) = (2 » (3 » x —
3) + 8)

147 F (11 © (1 / 4)) © (=6 + x * 6) % (11 = (1 / 4)) ~ 8 = (11 ~ (1

4)) © 8 x (11 ©~ (1 / 4)) = (-6 + x x 6)
148 ‘'
149
150
151 Fix these errors and complete the following Lean 4 code:
152
153 ‘‘‘lean4
154 import Mathlib
155 import Aesop

156

157 set_option maxHeartbeats 0

158

159 open BigOperators Real Nat Topology Rat

160

161

162 theorem mathd_algebra_275 (x : R) (h : ((11 : R) ~ (1 / 4 : R))
(3 x x-3) =11/15)

163 ((11 : Ry ~ (1 /4 :R)) "~ (6 x x +2) =121 / 25 := by

164 *'©

165

166 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

167 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

((11 : Ry =~ (1 /7 4 : R)) = (2 (3 x —3)) = ((11 : Ry =~ (1 / 4

The corresponding output from the prover model is as follows:

1 ## Detailed Proof and Analysis

3 First, let’s carefully analyze the given problem and the Lean 4
statement to understand where the errors might have occurred.

4

5 #### Problem Breakdown:

6 We are given:

7 1. (11 : R) ~ (L / 4 : R)) ~ (3 xx—-3) =1/ 5"

8 2. We need to prove that “((11 : R) =~ (1 /7 4 : R)) ~ (6 » x + 2)
121 / 25°.

9

10 #### Observations:

11 1. The expression ‘(11 : R) = (1 / 4 : R)' is a real number raised

to the power of ‘1/4%', which is not a standard exponentiation

41

Under review as a conference paper at ICLR 2026

12

13

14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55

56

57

58

59
60

61

operation in Lean 4. In Lean 4, ‘a ~ b" for ‘a : R and ‘b : R" is
interpreted as ‘Real.rpow a b', i.e., ‘a " b = exp (b * log a)
2. The exponent ‘3 x x - 3' is real-valued, and the exponentiation
is ‘Real.rpow' (real power). Similarly, ‘6 * x + 2' is real-valued.
3. The hypothesis ‘h" is Y((11 : R) =~ (1 / 4 : R)) = (3 » x — 3) =
1 / 5, which is not a standard exponentiation operation unless we
are interpreting ‘"' as ‘Real.rpow‘.

4. The Lean 4 code uses ‘Real.rpow' implicitly, and ‘h' is a
statement about real powers.

\

Rewriting the Hypothesis:

Given ‘h : ((11 : R) =~ (1 / 4 : R)) =~ (3 * x - 3) =1/ 5, we can
take the natural logarithm of both sides to find a relationship
involving ‘x‘.

First, note that:
‘(11 : R) ~ (1 / 4 : R) > 0', so the logarithm is well-defined.

Taking the natural logarithm of both sides of ‘h‘:
‘log (((11 : R) = (1 /4 : R)) ~ (3 » x - 3)) =1log (1 / 5" .

Using the logarithm power rule:

‘(3 x x — 3) x log ((11 : R) =~ (1 / 4 : R)) = log (1 / 5)*.
Since ‘log (1 / 5) = - log 5', we have:

‘(3 x x - 3) x log ((11 : R) =~ (1 / 4 : R)) = - log 5" .

But ‘log ((11 : R) ~ (1 /7 4 : R)) = (1 / 4) % log 11', so:
(3 x x — 3) x (1 / 4) * log 11 = - log 5°.

Multiply both sides by 4:
‘(3 x x = 3) % log 11 = -4 % log 5°'.

Divide both sides by ‘log 11‘ (assuming ‘log 11 # 0', which is
true since ‘11 > 1Y):
‘3 x - 3=-4 % (log 5 / log 11)“.

Thus:
‘3 x x =3 -4 % (log 5 / log 11)°‘.

Therefore:
‘x =1 - (4 / 3) x (log 5/ log 11) .

Rewriting the Goal:
We need to find “((11 : R) = (1 / 4 : R)) ~ (6 = x + 2) .

First, note that:
‘6 x x + 2 =6 * (1 - (4 / 3) * (log 5/ log 11)) + 2 = 6 - 8 =«
(log 5 / log 11) + 2 = 8 - 8 * (log 5 / log 11)‘.

Thus:
‘6 + x + 2 =8 % (1 - (log 5 / log 11)) ‘.

Therefore:
‘(11 : Ry (1 / 4 : R)) © (6 x x+2) = ((11 : Ry ~ (1 / 4 : R
)) T (8 x (1 - (log 5 / log 11))) ‘.

But ‘((11 : R) =~ (1 /7 4 : R)) = (8 * (1 - (log 5 / log 11))) =
((11 : Ry ~ (1 /4 : R)y) ~ 8 % ((11 : R) =~ (1 / 4 : R)) = (-8 =
(log 5 / log 11)) ‘.

But ‘((11 : R) ~ (1 / 4 : R)) ~ 8 = (11 : R) ~ 2 = 121", and ‘((11
Ry ~ (L / 4 :R)) "~ (-8 (log 5/ log 11)) =1 / ((11 : R) ~ (1
/4 : R)) ~ (8 « (log 5 / log 11))" .

42

Under review as a conference paper at ICLR 2026

(8 * (log 5 / log 11))" is not ‘25°'.

68

69 #### Correct Approach:

70 We can directly compute ‘((11 : R) ~ (1 / 4 : R)) ~ (6 * x + 2)°
using the relationship we derived for ‘x°‘.

71

72 Recall that ‘x =1 - (4 / 3) * (log 5 / log 11)°‘.

73

74 Thus:

75 ‘6 x x + 2 =6 % (1 - (4 / 3) * (log 5/ log 11)) + 2 = 6 - 8 =
(log 5 / log 11) + 2 = 8 = 8 * (log 5 / log 11) ‘.

77 But '8 - 8 * (log 5 / log 11) = 8 x (1 - (log 5 / log 11)) =

78

79 But “((11 : R) =~ (1 / 4 : R)) ~ (6 » x + 2) = ((11 : Ry ~ (1 / 4
R)) ~ (8 » (log 11 / log 11 - log 5 / log 11)) = ((11 : R
4 : R)) ©~ (8 » (log (11 / 5) / log 11)) = (11 : R) ~ ((
8 « (log (11 / 5) / log 11)) = (11 : R) ~ (2 % (log (

(SN
-
~

((11 / 5) =~ 2)) = (11 / 5) ~ 2 =121 / 25*.

80

81 But wait, ((11 : R) = (1 / 4 : R)) = (6 » x + 2) = ((11 : R) ~
/ 4 : R)) ~ (8 » (log (11 / 5) / log 11)) = (11 : R) = ((1 / 4
) * 8 * (log (11 / 5) / log 11)) = (11 : R) ~ (2 » (log (11 / 5)

/ 5) / (log 11 / 2) * log 11) = exp (2 * log (11 / 5)) = (11 / 5)
~ 2 =121 / 25*.

82

83 This is correct because ‘(11 / 5) =~ 2 = 121 / 25*.

84

85 #### Step-by-Step Plan:

86 1. From ‘h‘, derive ‘x =1 - (4 / 3) = (log 5 / log 11)*“.

87 2. Substitute ‘x' into ‘6 * x + 2 to get ‘6 ¥ x + 2 = 8 - 8 *
(log 5 / log 11)°.
3

88 . Compute ‘((11 : R) =~ (1 /7 4 : R)) ~ (6 x + 2) :
8 *

43

62 But “((11 : R) =~ (1 / 4 : R)) = (8 * (log 5 / log 11)) = (11 : R)
© (8 * (log 5 / log 11) = (1 / 4)) = (11 : R) = (2 * (log 5 / log
11)) = (11 : R) © (log 5 / log 11 * 2) = exp (log 5 / log 11 x 2 =«
log 11) = exp (2 » log 5) = exp (log 25) = 25°%.

63

64 Thus:

65 Y((11 : R) =~ (1 / 4 : R)) © (6 » x + 2) =121 = (1 / 25) = 121 /
257",

66

67 However, this is not correct because ‘((11 : R) =~ (1 / 4 : R)) ~

1 8 x
(log 11 / log 11 - log 5 / log 11) = 8 x (log (11 / 5) / log 11)‘.

/

log 11)) = (11 : R) ° (log (11 / 5) / (log 11 / 2)) = exp (log (11
/ 5) / (log 11 / 2) % log 11) = exp (2 * log (11 / 5)) = exp (log

(1

: R

/

log 11)) = (11 : R) ~ (log (11 / 5) / (log 11 / 2)) = exp (log (11

89 - Y6 * X + 2 = (1 - (log 5 / log 11)) .

90 - Y((11 : R) ~ (1 / 4 : R)) ~ (6 * x +2) = ((11 : R) =~ (1 / 4
: R)) © (8 * (1 - (log 5/ log 11))) = ((11 : R) =~ (1 /7 4 : R)) ~
8 « ((11 : Ry ~ (1 / 4 : R)) ~ (-8 » (log 5 / log 11))".

91 - But “((11 : R) =~ (1 / 4 : R)) =~ 8 = (11 : R) =~ 2 = 121".

92 - Y((11 : R) ~ (1 / 4 : R)) ©~ (-8 * (log 5/ log 11)) =1 /
((11 : R) =~ (1 / 4 : R)) ~ (8 (log 5 / log 11)) ‘.

93 - Y((11 : Ry ~ (1 / 4 : R)) ©~ (8 » (log 5/ log 11)) = (11 : R)
“~ (8 » (log 5 / log 11) % (1 / 4)) = (11 : R) ~ (2 * (log 5 / log
11)) = (11 : R) © (log 5 / log 11 % 2) = exp (log 5 / log 11 = 2 =«
log 11) = exp (2 = log 5) = exp (log 25) = 25'.

94 — Therefore, “((11 : R) = (1 / 4 : R)) = (-8 * (log 5 / log
11)) =1 / 25*.

95 - Hence, “((11 : R) = (1 / 4 : R)) ~ (6 x + 2) = 121 % (1 /
25) = 121 / 25*.

96

97 But wait, this seems incorrect because ‘((11 : R) =~ (1 / 4 : R)) ~
(6 » x +2) = ((11 : R) ~ (1 /7 4 : R)) = (8 » (log (11 / 5) / log

Under review as a conference paper at ICLR 2026

44

11)) = (11 : R) © (2 x (log (11 / 5) / log 11)) = (11 R) ~ (log
(11 / 5) / (log 11 / 2)) = exp (log (11 / 5) / (log 11 / 2) x log
11) = exp (2 » log (11 / 5)) = (11 / 5) =~ 2 = 121 / 25*.

98

99 This is correct because ‘(11 : R) ~ (1 / 4 R) > 0, and ‘log
((11 : Ry ~ (1 /7 4 : R)) = (1 / 4) * log 11°.

100

101 ### Step 1l: Abstract Plan

102

103 1. *xFind ‘x' in terms of logarithmsxx:

104 — Take the natural logarithm of both sides of ‘h' to find ‘x°
in terms of ‘log 5' and ‘log 11°‘'.

105

106 2. *xSubstitute ‘x' into the goalxx:

107 — Substitute ‘x =1 - (4 / 3) * (log 5 / log 11)"' into ‘6 x x +
2" to find ‘6 * x + 2 =8 - 8 * (log 5 / log 11)°‘.

108

109 3. xxSimplify the exponentxx:

110 - Rewrite “((11 : R) =~ (1 /7 4 : R)) ~ (6 = x + 2)" as ‘((11 R
) © (1 /4 :R)) " (8% (1 - (log 5/ log 11))) .

111

112 4. xxSimplify using logarithmsxx:

113 — Use the logarithm power rule to find ‘((11 R)y =~ (1 / 4 R
)) © (8 x (1 - (log 5 / log 11))) = 121 / 25°.

114

115 ### Step 2: Lean 4 ‘have' Statements

116

117 “Y‘‘lean4

118 theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 / 4 : R)) ~
(3 x —-3) =11/05)

119 ((11 : Ry ~ (1 /7 4 : R)) = (6 » x +2) =121 / 25 := by

120 have h_main : ((11 : R) ~ (1 / 4 : R)) (6 *x x + 2) = 121 / 25
:= by

121 sorry

122 sorry

123 ‘W

124

125 ### Complete Lean 4 Proof

126

127 “Y'‘leand

128 theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 / 4 : R)) ~
(3 x —-3) =11/05)

129 ((11 : Ry ~ (1 /7 4 : R)) = (6 » x +2) =121 / 25 := by

130 have h_main : ((11 : R) ~ (1 / 4 : R)) (6 x x + 2) =121 / 25
:= by

131 have h; : Real.log (((11 : R) = (1 / 4 R)) = (3 » x — 3)) =
Real.log (1 / 5) := by rw [h]

132 have hg : (3 * x = 3) x Real.log ((11 R) = (1 / 4 R)) =
Real.log (1 / 5) := by

133 have hsg : Real.log (((11 : R) = (1 / 4 Ry) = (3 » x - 3)) =
(3 x x — 3) » Real.log ((11 : R) ~ (1 / 4 R)) := by

134 rw [Real.log_rpow (by positivity)]

135 <;> ring_nf

136 <;> field_simp

137 <;> ring_nf

138 rw [h3] at h;

139 linarith

140 have hg : (3 » x — 3) * Real.log ((11 R) =~ (1 / 4 R)) =
Real.log (1 / 5) := by linarith

141 have hg : Real.log ((11 : R) =~ (1 / 4 R)) = (1 / 4 R) =«
Real.log 11 := by

142 rw [Real.log_rpow (by positivity)]

143 <;> ring_nf

144 <;> field_simp

145 <;> ring_nf

Under review as a conference paper at ICLR 2026

146
147

148

149
150
151
152
153
154
155
156
157
158
159

160
161

162

163
164

165
166
167
168

169

170

171

172
173
174
175
176
177
178

179
180

181

182
183
184
185
186
187
188

189

190

191
192

rw [hg] at hs

have hs : (3 » x — 3) * ((1 / 4 : R) « Real.log 11) = Real.log
(1 / 5) := by linarith
have hg : (3 » x — 3) * ((1 / 4 : R) « Real.log 11) = Real.log
(1 / 5) := by linarith
have hy : Real.log (1 / 5) = - Real.log 5 := by
have hy; : Real.log (1 / 5) = Real.log 1 - Real.log 5 := by
rw [Real.log_div (by norm_num) (by norm_num)]
<;> simp
rw [h71]
have h72 : Real.log 1 = 0 := by norm_num
rw [hr72]
<;> ring
<;> linarith
rw [h7y] at hsg
have hg : (3 = x — 3) * ((1 / 4 : R) * Real.log 11) = -
Real.log 5 := by linarith
have hg : x =1 - (4 / 3) * (Real.log 5 / Real.log 11) := by
have hgr : (3 » x — 3) * ((1 / 4 : R) « Real.log 11) = -
Real.log 5 := by linarith
have hge : 3 x x — 3 = - (4 : R) » (Real.log 5 / Real.log
11) := by
have hgs : Real.log 11 # 0 := by

exact Real.log_ne_zero_of_pos_of_ne_one (by norm_num)

(by norm_num)
field_simp at hg; F

nlinarith
have hgs : x = 1 - (4 / 3) * (Real.log 5 / Real.log 11) := Db
have hgg : 3 * x — 3 = - (4 : R) » (Real.log 5 / Real.log
11) := by linarith
have hgs : x =1 - (4 / 3) » (Real.log 5 / Real.log 11) :=
by
have hgg : 3 * x — 3 = - (4 : R) » (Real.log 5 /
Real.log 11) := by linarith
have hg7 : x = 1 - (4 / 3) * (Real.log 5 / Real.log 11)
by
apply Eg.symm
field_simp at hgg F
nlinarith
exact hory
exact hos
exact hogs
have hig : ((11 : R) =~ (1 / 4 : R)) ~ (6 * x + 2) = 121 / 25
by
rw [ho]
have hi; : ((11 : R) =~ (1 /7 4 : R)) ~ (6 = (1L - (4 / 3) «
(Real.log 5 / Real.log 11)) + 2) = 121 / 25 := by
have hia : ((11 : R) = (1 / 4 : R)) ~ (6 = (1 - (4 / 3) =«
(Real.log 5 / Real.log 11)) + 2) = ((11 : R) =~ (1 / 4 : R)) ~ (8
(1 - (Real.log 5 / Real.log 11))) := by
ring_nf
<;> field_simp
<;> ring_nf
<;> norm_num
<;> linarith
rw [hi2]
have hiz : ((11 : R) ~ (1 /7 4 : R)) ~ (8 » (1 - (Real.log
5 / Real.log 11))) = 121 / 25 := by
have his : Real.log (((11 : R) ~ (1 / 4 : R)) = (8 = (1
- (Real.log 5 / Real.log 11)))) = Real.log (121 / 25) = by
have his : Real.log (((11 : R) = (1 / 4 R)) ~ (8 «
(1 - (Real.log 5 / Real.log 11)))) = (8 * (1 - (Real.log 5 /
Real.log 11))) * Real.log ((11 : R) =~ (1 / 4 : R)) := by

rw [Real.log_rpow (by positivity)]
<;> ring_nf

45

y

*

Under review as a conference paper at ICLR 2026

193 <;> field_simp

194 <;> ring_nf

195 rw [his]

196 have hig : Real.log ((11 : R) =~ (1 /7 4 : R)) = (1 / 4

R) x Real.log 11 := by

197 rw [Real.log_rpow (by positivity)]

198 <;> ring_nf

199 <;> field_simp

200 <;> ring_nf

201 rw [hig]

202 have hi7 : Real.log (121 / 25) = Real.log (121 / 25)
by rfl

203 have hig : (8 * (L - (Real.log 5 / Real.log 11))) = ((1
/ 4 : R) » Real.log 11) = Real.log (121 / 25) := by

204 have hjig : Real.log (121 / 25) = Real.log (121 / 25)
:= by rfl

205 have hgp : Real.log 121 = Real.log (11 ~ 2) := by
norm_num

206 have hg; : Real.log (11 © 2) = 2 % Real.log 11 := by

207 rw [Real.log_pow] <;> norm_num

208 have hga : Real.log 25 = Real.log (5 © 2) := by
norm_num

209 have hgz : Real.log (5 © 2) = 2 x Real.log 5 := by

210 rw [Real.log_pow] <;> norm_num

211 have hgs : Real.log (121 / 25) = Real.log 121 -
Real.log 25 := by

212 rw [Real.log_div (by positivity) (by positivity)]

213 <;> ring_nf

214 <;> field_simp

215 <;> ring_nf

216 rw [he24, hgo, h21, h22, ha3]

217 have has : (8 * (1 - (Real.log 5 / Real.log 11))) =
((1 / 4 : R) » Real.log 11) = 2 * Real.log 11 - 2 * Real.log 5 :=
by

218 field_simp

219 <;> ring_nf

220 <;> field_simp

221 <;> ring_nf

222 <;> nlinarith

223 linarith

224 linarith

225 have his : Real.log (((11 : R) ~ (1 / 4 : R)) = (8 * (1
- (Real.log 5 / Real.log 11)))) = Real.log (121 / 25) := by

226 exact hig

227 have hig : ((11 : R) =~ (1 / 4 : R)) = (8 = (1 -
(Real.log 5 / Real.log 11))) > 0 := by positivity

228 have hiz : Real.log (((11 : R) ~ (1 / 4 : R)) = (8 * (1
- (Real.log 5 / Real.log 11)))) = Real.log (121 / 25) := by

229 exact his

230 have hig : ((11 : R) =~ (1 /7 4 : R)) = (8 « (1 -
(Real.log 5 / Real.log 11))) = 121 / 25 := by

231 apply Real.log_injOn_pos (Set.mem_Ioi.mpr (by
positivity)) (Set.mem_Toi.mpr (by positivity))

232 linarith

233 exact hig

234 rw [hi3]

235 <;> norm_num

236 <;> linarith

237 exact hii

238 exact hio

239 exact h_main

240 WV

46

Under review as a conference paper at ICLR 2026

E.2.5 COMPARISON: DIRECT PROOF ATTEMPT WITHOUT ITERATIVE REFINEMENT

For comparison, we present below the reasoning process and generated Lean code from a direct
proof attempt without using auxiliary lemmas. Among the Ny initial direct proof attempts, we
show the one that resulted in the fewest Lean errors and used as a initial draft for the iterative
refinement process.

1 ### Detailed Proof and Analysis

2

3 First, let’s recall the problem:

4 We have \(x \in \mathbb{R}\) and the equation:

5 \[\left(11°{1/4}\right) " {3x - 3} = \frac{1l}{5}. \]

6 We need to prove that:

7 N[\left(11°{1/4}\right) " {6x + 2} = \frac{1l21}{25}. \]

8

9 Let \(a = 11°{1/4}\). Then the given equation is:

10 \[a~{3x - 3} = \frac{1l}{5}. \]

11 The goal is to find \(a"{6x + 2}\).

12

13 #### Step 1: Express \(6x + 2\) in terms of \(3x - 3\)

14 Notice that:

15 \[6x + 2 = 2(3x - 3) + 8. \]

16 This is because:

17 \N[2(3x — 3) + 8 =6x — 6 + 8 =6x + 2. \]

18

19 #### Step 2: Rewrite the Goal Using the Exponent Identity

20 Using the exponent rule \((a"m)"n = a”{m \cdot n}\), we have:

21 \[a“{6x + 2} = a~{2(3x — 3) + 8} = (a"{3x - 3})°2 \cdot a"8. \]

22 Substituting the given value \(a"{3x - 3} = \frac{l}{5}\), we get:

23 \[a"{6x + 2} = \left(\frac{1}{5}\right) "2 \cdot a"8 =
\frac{1} {25} \cdot a”8. \]

24

25 #### Step 3: Compute \ (a"8\)

26 Since \(a = 11°{1/4}\), we have:
27 \[a”4 = 11. \]

28 Therefore:

29 \[a"8 = (a"4)"2 = 1172 = 121. \]
30 Thus:

31 \[a"{6x + 2} = \frac{1l}{25} \cdot 121 = \frac{1l21}{25}. \]
32

33 This completes the proof.

34

35 ### Step-by-Step Abstract Plan

36

37 1. *xDefine \ (a\)*x*:

38 - Let \(a = 11°{1/4}\).

39

40 2. **xRewrite the Given Equationxx:

41 - The given equation is \(a”"{3x — 3} = \frac{l}{5}\).

42
43 3. xxExpress the Goal Exponentxx:

44 - Express \(6x + 2\) as \(2(3x — 3) + 8\).

45

46 4. *xUse Exponent Rulesx*x:

47 — Rewrite \(a"{6x + 2}\) as \((a"{3x - 3})"2 \cdot a”"8\).

48

49 5. xxSubstitute the Given Valuexx:

50 — Substitute \(a"{3x — 3} = \frac{1}{5}\) to get \(\frac{1l}{25}
\cdot a”"8\).

51

52 6. *xCompute \ (a”8\) xx*:

53 — Since \(a"4 = 11\), we have \(a"8 = 121\).

54

55 7. *xxFinal Calculation*x:

47

Under review as a conference paper at ICLR 2026

70 1. xx‘*h_main‘x*x: This is the main goal of the proof. The proof
will directly use the steps outlined above to derive the result.
The actual Lean 4 proof would fill in the ‘sorry' by carefully
applying exponent rules and arithmetic simplifications.

48

56 - Multiply to get \ (\frac{121}{25}\).

57

58 ### Lean 4 Proof Sketch with ‘have' Statements

59

60 ‘*'‘leand

61 theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 / 4 : R)) ~
(3 x —-3)=1/25) :

62 ((11 : Ry ~ (1 /7 4 : R)) ~ (6 » x + 2) =121 / 25 := by

63 have h_main : ((11 : R) = (1 / 4 : R)) = (6 » x + 2) = 121 / 25
= by

64 sorry

65 sorry

66 AN RAY

67

68 ### Explanation of ‘have‘ Statements

69

71

72 ### Complete Lean 4 Proof

73

74 YY‘lean4

75 theorem mathd_algebra_275 (x : R) (h : ((11 : R) =~ (1 / 4 : R)) ~
(3 x —-3)=1/25) :

76 ((11 : R) =~ (1 / 4 : R)) =~ (6 » x + 2) =121 / 25 := by

77 have h_main : ((11 : R) ~ (1 / 4 : R)) ~ (6 » x + 2) = 121 / 25
:= by

78 have h; : ((11 : R) =~ (1 /7 4 : R)) ~ (6 * x + 2) = (((11 : R)
(1 /4 :R)) " (3 xx-23)) "2 ((11L : Ry ~ 1/ 4 :R)) "~ 8
by

79 have hg : ((11 : R) = (1 / 4 : R)) =~ (6 » x + 2) = ((11 : R)
(1 /4 :R)) " (2 x (3% x—-3)+8) :=Dby

80 ring_nf

81 <;>

82 field_simp

83 <;>

84 ring_nf

85 <>

86 norm_num

87 <;>

88 linarith

89 rw [ha]

90 have hg : ((11 : R) ~ (1 / 4 : R)) = (2 x (3 » x — 3) + 8) =
(((11 : Ry ~ (1 / 4 : R)y) = (3 x—-3)) ~ 2 % ((11 : Ry =~ (1 / 4
: R)) ©~ 8 := by

91 have hg : ((11 : R) =~ (1 / 4 : R)) ~ (2 = (3 » x — 3) + 8)
= ((11 : R) ~ (L /7 4 : R)) =~ (2 x (3 x — 3)) = ((11 : Ry ~ (1 /
4 : R)) = 8 := by

92 rw [Real.rpow_add (by positivity)]

93 <;> ring_nf

94 rw [hg]

95 have hs : ((11 : R) =~ (1 / 4 : R)) ~ (2 = (3 » x — 3)) =
(((117 : Ry ~ (1 /4 :R)) ~ (3 *x-23)) " 2 :=by

96 have hg : ((11 : R) =~ (1 /7 4 : R)) ~ (2 = (3 » x — 3)) =
(((117 : R) ~ (1 /4 :R)) °~ (3 *x-23)) " 2 :=by

97 rw [show 2 » (3 * x — 3) = (3 » x — 3) + (3 x — 3)
by ring]

98 rw [show ((11 : R) = (1 / 4 : R)) ~ ((3 = x — 3) + (3
x —3)) = ((11 : Ry ~ (1 /4 :R)) ~ (3 x—-3) ((11 : Ry ~ (1
/ 4 : R)) ~ (3 « x — 3) by

99 rw [Real.rpow_add (by positivity)] <;> ring_nf]

100 <;> ring_nf

101 <;>

*

Under review as a conference paper at ICLR 2026

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138

139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163

S)

field_simp
g
ring nf
g >
norm_num
Lp >
linarith
rw [hg]

rw [hs]

<;> ring_nf

<;>

field simp

<;>

ring_nf

<;>

norm_num

<;>

linarith

rw [hs]

<
<

;> ring_nf
5>

field simp

<

g>

ring nf

<

5>

norm_num

<

g>

linarith

rw

(h1]

have ha : (((11 : Ry =~ (1 / 4 : R)) = (3 x x — 3))

T2

:= by

rw [h]

<
<
rw

have hz : ((11 : R) ~ (1 /
have hg : ((11 1

R)

;> ring_nf
;> norm_num

(ha]

: R) © |
have hs : ((11 : R) = ¢
* 8) := by

rw [Real.rpow_nat_cast]

rw [

<;> positivity
rw [hs]
have hg : (11 : R) ~ ((1 / 4 : R) = 8) =

i
/ 4 : R)) 8l =

norm_num
<;> ring_nf
<;> field_simp
<;> ring_nf

rw [he]

have hy : (11 : R) ~ (2 : R) = 121 := by
norm_num [Real.rpow_two]
<;> ring_nf
<;> norm_num

rw [hr]

<;> norm_num

rw [hq]

rw

[hs]
norm_num
ring_nf
field simp
ring_nf
norm_num
linarith
h_main

49

< Real.rpow_mul] <;> ring_nf <;> norm_num

Under review as a conference paper at ICLR 2026

l64

ANANRY

F PROMPTS USED IN OUR EXPERIMENTS

In this section, we provide the prompts used in our experiments for the various stages of the Prover

Agent pipeline.

F.1

THE PROMPT FOR INITIAL DIRECT PROVING

The prompt provided to the informal LLM at the initial direct proving stage is as follows:

H O ©W © J & U & W N

=

Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

‘“‘Yleand

{lean_header}

{theorem}

ANANRY

First, provide a step-by-step proof in English.
DO NOT write Lean code here yet-—-just write the proof in English.

F.2 THE PROMPT FOR INITIAL DIRECT PROVING

The prompt provided to the prove model at the initial direct proving stage is as follows:

® J o0 U W N

I T N T N R e T e e e
O W N RFE O WOow-Io & WM KF O W

26

Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

‘“‘Ylean4d
{lean_header}

{theorem}

ANANRY

The English proof is as follows:

Y ltext
{nl_proof}

ANANRY

Complete the following Lean 4 code:

‘Y‘Ylean4d
{lean_header}

{theorem}

ANRNRY

Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, “nl_proof™ is the output from the informal LLM at the initial direct proving stage.

50

Under review as a conference paper at ICLR 2026

F.3 THE PROMPT FOR ITERATIVE REFINEMENT IN DIRECT PROVING

The prompt for the iterative refinement stage in direct proving is as follows:

1 Your goal is to implement the following theorem, using Lean 4
the mathlib library:

‘YYlean4

{lean_header}

{theorem}

AURURY

o d o U W N

=
o ©

Your proof is as follows:

i
[N

‘“‘Yleand
{prev_code}

ANRURY

e
g W N

16 The proof failed to compile with errors.

17 The error occurred at the following line(s):

18

19 {error_line_messages}

20

21 Fix these errors and complete the following Lean 4 code:

22

23 “'‘leani4

24 {lean_header}

25

26

27 {theorem}

28 AURNAY

29

30 Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proo
steps and strategies.

31 The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

and

£

Here, the “prev_code” is the previous Lean code generated by the prove model.
ror_line_messages” is formatted as follows, and this block is repeated for every error:

The “er-

Error line (line {error_line}):
‘Y‘lean4d

{error_code}

ANRNAY

Error message:

‘Y‘Yleand

{error_message}

AURURY

® d oUW N R

F.4 THE PROMPT FOR LEMMA GENERATION

The prompt provided to the informal LLM for lemma generation is as follows:

I am trying to code (prove) the following theorem in Lean 4.

‘“‘Yleand
{lean_header}

o U W NP

51

Under review as a conference paper at ICLR 2026

7 {theorem}

LURTRY
8

10 Derive {num_lemmas} lemmas related to the theorem.

11 The related lemmas are those that could serve as subpropositions,
subgoals, or specific cases for he theorem.

12 For example, consider treating the case where a specific value is
substituted for one of the variables appearing in the theorem as a
lemma.

13 For each lemma, clearly state the assumptions and the conclusion
using mathematical expressions in English.

14 Include any assumptions from the original theorem as needed in
each lemma, so that each lemma contains all the necessary and
sufficient assumptions to be provable on its own.

15 You do not need to write the proofs or the Lean code for each
lemma at this point.

16 Follow the format below for each lemma:

17

18 AN NAY

19 ### Lemma 1: <Lemma Name>

20 **Assumptionsxx:

21 <Assumptions in English>

22

23 *xxConclusionxx:

24 <Conclusion in English>

25 AURNAY

26 Do not include any explanations or additional text outside of the
specified format.

Here, “num_lemmas” is set to 3 in our experiments.

F.5 THE PROMPT FOR LEMMA FORMALIZATION

The prompt provided to the formalizer model for lemma formalization is as follows:

1 Please autoformalize the following natural language problem
statement in Lean 4. Use the following theorem name: {problem_name}
The natural language statement is:

{nl_statement}

g W N

Think before you provide the lean statement.

Here, “problem_name” is the name of the lemma taken directly from the <Lemma Name> field in
the output of the lemma generation step.

F.6 THE PROMPT FOR FINAL SYNTHESIS

The prompt provided to the prover model at the final synthesis stage is as follows:

1 Based on these lemmas, construct and complete the following Lean 4
code:

2

3 Y'‘'lean4

4 {lean_header}

5

6

7 {lemmas}

8

9 {theorem}

10 AURNAY

11

52

Under review as a conference paper at ICLR 2026

12

13

Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, “lemmas” is the concatenation of the proved lemmas.

F.7 THE PROMPT FOR ITERATIVE REFINEMENT IN FINAL SYNTHESIS

The prompt provided to the prover model at the iterative refinement stage in final synthesis is as
follows:

© VW W J oUW N

i

e e e
g oS W N e

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

Your goal is to implement the following theorem, using Lean 4 and
the mathlib library:

‘Y‘Ylean4d
{lean_header}

{theorem}

ANANRY

Based on lemmas, you are trying to construct the proof for the
theorem.
Your proof is as follows:

‘YYlean4
{prev_code}

ANANRY

The proof failed to compile with errors.
The error occurred at the following line(s):

{error_line_messages}
Fix the errors and complete the following Lean 4 code

‘YYleand
{lean_header}

{lemmas}

{theorem}

ANANRY

Before producing the Lean 4 code to formally prove the given
theorem, provide a detailed proof plan outlining the main proof
steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and
proof structures that will guide the construction of the final
formal proof.

Here, “lemmas” is the concatenation of the proved lemmas, “prev_code” is the previous Lean code
generated by the prover model, and “error_line_messages” is formatted in the same way as in the
iterative refinement stage in direct proving.

53

	Introduction
	Related Work
	Method
	Formal Proof Construction Guided by Informal Reasoning and Iterative Feedback
	Lemma Generation via Informal Reasoning
	Final Proof Synthesis Guided by Verified Lemmas and Iterative Feedback

	Theoretical Analysis
	Benefits of Lemmas for Structured Proof Decomposition
	Benefits of Lemmas for Discovering Proof Strategies (e.g., Special Cases)

	Experiments
	Experimental Setup
	Main Result: Comparison with the Previous State-of-the-Art
	Modular and Scalable Design
	Effectiveness of Informal, Formal, and Lean Coordination
	Ablation Studies: Analyzing the Contribution of Each Stage
	Case Study: Success with Lemma-Guided Proofs and Iterative Refinement
	Performance on Olympiad-Level Problems
	Broader Applicability and Future Potential

	Conclusion
	Extended Related Work
	Language Models for Formal Theorem Proving
	Tree-Search-based Formal Proving
	Whole-Proof Generation
	Formal Theorem Proving with Retrieval-Augmented Generation
	Proof Refinement and Subgoal Decomposition

	Pseudocode of the overall workflow
	Detailed Theoretical Analysis
	Benefits of Lemmas for Structured Proof Decomposition
	Benefits of Lemmas for Discovering Proof Strategies (e.g., Special Cases)

	Detailed Experimental Setup
	Benchmarking Dataset
	Used Models
	Implementation Details
	Sumple Budget
	Baseline Methods
	Comparison in Terms of Total Token Budget

	Examples of Successful Cases Enabled by Lemmas and Iterative Refinement
	Case Study of Successful Example with Lemmas
	Detailed Analysis
	Lean Environment Setup
	The Problem
	The Generated Lemmas
	The Final Proof and Its Reasoning Trace
	Comparison: Direct Proof Attempt without Lemmas

	Case Study of Successful Example with Iterative Refinement
	Detailed Analysis
	Lean Environment Setup
	The Problem
	Final Iterative Refinement Step
	Comparison: Direct Proof Attempt without Iterative Refinement

	Prompts used in our experiments
	The Prompt for Initial Direct Proving
	The Prompt for Initial Direct Proving
	The Prompt for Iterative Refinement in Direct Proving
	The Prompt for Lemma Generation
	The Prompt for Lemma Formalization
	The Prompt for Final Synthesis
	The Prompt for Iterative Refinement in Final Synthesis

