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ABSTRACT

Pre-training has exhibited notable benefits to downstream tasks by boosting ac-
curacy and speeding up convergence, but the exact reasons for these benefits still
remain unclear. To this end, we propose to quantitatively and explicitly explain
effects of pre-training on the downstream task from a novel game-theoretic view,
which also sheds new light into the learning behavior of deep neural networks
(DNNs). Specifically, we extract and quantify the knowledge encoded by the pre-
trained model, and further track the changes of such knowledge during the fine-
tuning process. Interestingly, we discover that only a small amount of pre-trained
model’s knowledge is preserved for the inference of downstream tasks. However,
such preserved knowledge is very challenging for a model training from scratch
to learn. Thus, with the help of this exclusively learned and useful knowledge, the
model fine-tuned from pre-training usually achieves better performance than the
model training from scratch. Besides, we discover that pre-training can guide the
fine-tuned model to learn target knowledge for the downstream task more directly
and quickly, which accounts for the faster convergence of the fine-tuned model.
The code will be released when the paper is accepted.

1 INTRODUCTION

Pre-training is prevalent in nowadays deep learning, as it has brought great benefits to downstream
tasks, including improving the accuracy (He et al., 2016; Devlin et al., 2019), boosting the ro-
bustness (Hendrycks et al., 2019), speeding up the convergence (Nguyen et al., 2023), and etc.
Naturally, a fundamental question arises: why pre-training is beneficial for downstream tasks?
Previous works have tried to answer this question from different perspectives. For example, Zan
et al. (2022); Chen et al. (2023); Neyshabur et al. (2020) attributed the benefits of pre-training to
a flat loss landscape. Erhan et al. (2010) concluded that the improved accuracy was a result of
unsupervised pre-training acting as a regularizer.

Unlike above perspectives for explanations, we aim to present an in-depth analysis to answer the
above question from a new perspective. That is, we quantify the knowledge encoded by the pre-
trained model, and further analyze the effects of such knowledge on the downstream tasks. In this
way, we can provide insightful and accurate explanations for the benefits brought by pre-training,
which also sheds new light into the fine-tuning/learning behavior of DNNs.

To this end, we extract the knowledge encoded in the pre-trained model based on the interaction
between different input variables (Ren et al., 2023a; Li & Zhang, 2023; Ren et al., 2024), because
the DNN usually lets different input variables interact with each other to construct concepts for in-
ference, rather than utilize each single variable for inference independently. As Fig. 1(a) shows,
the DNN encodes the co-appearance relationship (interaction) between different image patches in
S = {mouth, ear, eye} of the input image x to form the dog face concept S for inference. Only
when all three patches in S are all present, the interaction is activated and makes a numerical con-
tribution I(S|x) to the network output y. The absence/masking1 of any image patch will deactivate
the interaction, and the numerical contribution is removed, i.e., I(S|x) = 0.

More crucially, Ren et al. (2023a); Li & Zhang (2023) have empirically verified and Ren et al.
(2024) have theoretically proven the sparsity property and the universal-matching property of
interactions, i.e., given an input sample x, a well-trained DNN usually encodes a small number of
interactions between different input variables, and the network output y can be well explained as the
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Figure 1: (a) We use the interaction between different input variables to represent knowledge en-
coded by a DNN, because the network output is proven to be well explained as the sum of numerical
contributions I(S|x) of interactions. (b) Explaining benefits of pre-training by analyzing effects of
pre-trained model’s knowledge on the downstream task.

numerical contributions of these interactions, y =
∑
S I(S|x), as shown in Fig. 1(a). Thus, these

two properties mathematically enables us to take interactions as the knowledge encoded by
the DNN for inference. Apart from these two properties, the considerable discrimination power
and high transferability across different models of interactions (Li & Zhang, 2023) also provide
supports for the faithfulness of using interactions to represent knowledge encoded in a DNN. Please
see Section 3.1 for detailed discussions.

In this way, we use interactions to precisely quantify and comprehensively analyze how pre-trained
model’s knowledge impacts the downstream classification task, so as to provide insightful explana-
tions for two widely-acknowledged benefits of pre-training, i.e., boosting the classification perfor-
mance and speeding up the convergence. The following explanations may also guide some interest-
ing directions on pre-training for future studies.

• Quantifying explicit changes of pre-trained model’s knowledge during the fine-tuning pro-
cess. We propose metrics to measure how pre-trained model’s knowledge is discarded and preserved
by the fine-tuned model for the inference of the downstream task, in order to provide comprehensive
analyses for the benefits of pre-training. In experiments, we surprisingly discover that the fine-tuned
model discards a considerable amount of pre-trained model’s knowledge, especially extremely com-
plex knowledge. In contrast, the fine-tuned model only preserves a modest amount of pre-trained
model’s knowledge that is discriminative for the inference of the downstream task.

• Explaining the superior classification performance of the fine-tuned model. We discover
that only little preserved knowledge can be successfully learned by a model training from scratch
merely using a small-scale downstream-task dataset, because the preserved knowledge from the
pre-trained model is acquired from an extremely large-scale dataset. Thus, pre-training makes the
fine-tuned model encode more exclusively-learned and discriminative knowledge for inference,
which partially responses to the better accuracy of the fine-tuned model.

• Explaining the accelerated convergence of the fine-tuned model. Interestingly, we also observe
that compared to the model training from scratch, pre-training guides the fine-tuned model more
quickly and directly to encode target knowledge used for the inference of the downstream task,
by proposing metrics to evaluate the learning speed of target knowledge and the stability of learning
directions. Thus, this answers faster convergence of the fine-tuned model.

Contributions of this paper are summarized as follows. (1) We propose several theoretically ver-
ifiable metrics to quantify the knowledge encoded by the pre-trained model from a novel game-
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theoretic view. (2) Based on the quantification of knowledge, we present an in-depth analysis to
explain two benefits of pre-training. (3) Experimental results on various DNNs and datasets verify
our explanations, which reveals new insights into pre-training.

2 RELATED WORK

Explanation of pre-training. Fine-tuning pre-trained models on downstream tasks to speed up
convergence and boost performance has become a conventional practice in deep learning (He et al.,
2016; Devlin et al., 2019; Hendrycks et al., 2019; Chen et al., 2023). Many works have attempted
to analyze why pre-training is beneficial for downstream tasks from different perspectives. Specifi-
cally, Erhan et al. (2010) discovered that the unsupervised pre-training acted as a regularizer, which
improved the generalization power of the DNN. Alternatively, a lot of studies explained the high
accuracy (Zan et al., 2022; Neyshabur et al., 2020), the fast convergence speed in federated learn-
ing (Nguyen et al., 2023; Chen et al., 2023), and the reduced catastrophic forgetting in continual
learning (Mehta et al., 2023) of the fine-tuned models from the perspective of a flat loss landscape.
Additionally, Chen et al. (2024); Deng et al. (2023) explained the transferability of the pre-trained
model to downstream tasks from the perspective of the feature space by performing the singular
value decomposition. In comparison, we present a comprehensive analysis to systematically unveil
the essential reasons behind different benefits of pre-training, by quantifying the explicit effects of
pre-trained model’s knowledge on the downstream task from a game-theoretic perspective.

Using interactions to explain the DNN. In recent years, employing game-theoretic interactions to
explain DNNs has become a newly emerging direction. Specifically, Sundararajan et al. (2020);
Tsai et al. (2023); Cheng et al. (2024) quantified interactions between different input variables to
formulate the knowledge encoded by a DNN, whose faithfulness was further experimentally verified
and theoretically ensured by (Li & Zhang, 2023; Ren et al., 2023a; 2024). Besides, a series of studies
utilized the interaction to explain the representation capacity of DNNs, including the generalization
power (Zhang et al., 2021; Yao et al., 2023; Zhou et al., 2024), adversarial robustness (Ren et al.,
2021), adversarial transferability (Wang et al., 2021), the learning difficulty of interactions (Liu et al.,
2023; Ren et al., 2023b), and the representation bottleneck (Deng et al., 2022). In comparison, this
paper aims to provide insightful explanations for the benefits of pre-training to downstream tasks.

Quantifying the knowledge encoded by the DNN. So far, there does not exist a formal and widely
accepted method to quantify the knowledge encoded by a DNN. A series of studies (Shwartz-Ziv
& Tishby, 2017; Saxe et al., 2018; Higgins et al., 2017) employed the mutual information between
input variables and the network output to quantify the knowledge in the DNN, but precisely mea-
suring the mutual information was still significantly challenging (Kolchinsky et al., 2019). Besides,
other studies employed human-annotated semantic concepts (Bau et al., 2017; Fong & Vedaldi,
2018) or automatically learned concepts (Chen et al., 2019) to explain the knowledge in the DNN,
but these works could not quantify the exact changes of knowledge (i.e., the preservation of task-
relevant knowledge and the discarding of task-irrelevant knowledge) during the fine-tuning/training
procedure. In comparison, we use theoretically verifiable interactions to represent knowledge in the
DNN, which enables us to explicitly quantify the exact effects of pre-trained model’s knowledge on
the downstream task, so as to provide detailed explanations for the benefits of pre-training.

3 EXPLAINING WHY PRE-TRAINING IS BENEFICIAL FOR DOWNSTREAM
TASKS

3.1 PRELIMINARIES: USING INTERACTIONS TO REPRESENT KNOWLEDGE IN DNNS

In this section, let us introduce the interaction metric, together with a set of interaction properties (Li
& Zhang, 2023; Ren et al., 2023a; 2024) as convincing evidence for the faithfulness of interaction-
based explanations, so as to provide a straightforward and concise way to understand why pre-
training is beneficial for downstream tasks.

Definition of interactions. Given a DNN v trained for the classification task and an input sample
x = [x1, x2, . . . , xn] composed of n input variables, let N = {1, 2, . . . , n} represent the indices of
all n variables. Let v(x) ∈ R denote the scalar output of the DNN or a certain output dimension of
the DNN, where people can apply different settings for v(x). Here, we follow (Deng et al., 2022)
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to set v(x) as the confidence of classifying x to the ground-truth category ytruth for multi-category
classification tasks, as follows.

v(x) = log
p(y = ytruth|x)

1− p(y = ytruth|x)
. (1)

Then, the contribution of the interaction between a subset S ⊆ N of input variables to the network
output v is calculated by the Harsanyi Dividend (Harsanyi, 1963), a typical metric in game theory,
as follows.

I(S|x) =
∑

T∈S
(−1)|S|−|T | · v(xT ), (2)

where xT denotes a masked input sample crafted by masking variables in N \ T to baseline values1

and keeping variables in T unchanged. Let us take the sentence x =”he has a green thumb”
as a toy example to understand equation 2. The DNN encodes the interaction between words in
a subset S = {green, thumb} with a numerical contribution I(S) to push the DNN’s inference
towards the meaning of a “good gardener.” This numerical contribution is computed as I(S|x) =
v({green, thumb})−v({green})−v({thumb})+v(x∅), where x∅ denotes all words in x are masked.

Understanding the physical meaning of interactions. Each interaction with a numerical contribu-
tion I(S|x) represents a collaboration (AND relationship) between input variables in a subset S. As
in the aforementioned example, the co-appearance of two words in S = {green, thumb} constructs
a semantic concept of “good gardener,” and makes a numerical contribution I(S|x) to the network
output. The absence (masking) of any words in S will inactivate this semantic concept and remove
its corresponding interaction contribution, i.e., I(S|x) = 0.

Quantifying the knowledge encoded by the DNN. The proven sparsity property and universal-
matching property of interactions enable us to use interactions to represent knowledge encoded by
the DNN. Specifically, Ren et al. (2024) have proven that under some common conditions2, a well-
trained DNN usually encodes very sparse interactions for inference, which is also experimentally
verified by Li & Zhang (2023); Zhou et al. (2024). In other words, although there exists 2n different
subsets3 S ⊆ N in total, only a small set Ωsalient of interactions make salient contributions to the
network output, i.e., Ωsalient = {S ⊆ N, |I(S|x)| > τ 4}, subject to |Ωsalient| � 2n. Whereas, a large
number of interactions contribute negligibly I(S|x) ≈ 0 to the network output, which can be consid-
ered as noisy patterns. Thus, the network output v(x) can be well approximated by a small number
of salient interactions, i.e.,

v(x) =
∑

S⊆N
I(S|x) ≈

∑
S∈Ωsalient

I(S|x). (3)

Theorem 3.1 (universal-matching property of interactions). Given an input sample x, there are
2n differently masked samples {xT |T ⊆ N}. Ren et al. (2024) have proven that network outputs
v(xT ) on all 2n masked samples xT can be universally matched by a small number of salient inter-
actions.

v(xT ) =
∑

S⊆T
I(S|x) ≈

∑
S⊆T&S∈Ωsalient

I(S|x). (4)

Theorem 3.1 indicates we can use a small set of salient interactions to well explain the network out-
put v(xT ) on anyone xT of all 2n masked samples. Thus, according to the Occam’s Razor (Blumer
et al., 1987), we can roughly consider each salient interaction as the knowledge encoded by the
DNN for inference, rather than a mathematical trick with unclear physical meanings.

Faithfulness of using interactions to represent the knowledge of the DNN. Although nowa-
days there exist various methods to define/quantify the knowledge encoded by the DNN, a set of
theoretically proven and empirically verified interaction properties ensure the faithfulness of the
interaction-based explanation. Specifically, the universal-matching property in Theorem 3.1 and
the sparsity property in equation 3 have mathematically guaranteed that interactions can faithfully

1We follow the widely-used setting in (Dabkowski & Gal, 2017) to set the baseline value of each variable
as the mean value of this variable over all samples in image classification, and follow (Ren et al., 2023a) to set
the baseline value of each word as a special token (e.g., [MASK] token) in natural language processing.

2Please see Appendix B for the detailed introduction of common conditions.
3To reduce the computational cost, we select a relatively small number of input variables (image patches or

words) to calculate interactions in experiments. Please see Appendix D.1 for details.
4τ is a small constant to select salient interactions, and we set τ = 0.05 ·maxS |I(S|x)| in experiments.
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explain the output of DNNs. Besides, Li & Zhang (2023) have experimentally verified the transfer-
ability property and the discriminative property of interactions. That is, interactions exhibit consid-
erable transferability across samples and across models, and have remarkable discrimination power
in classification tasks. Additionally, Ren et al. (2023a) have proven that interactions satisfy seven
mathematical properties. Please see Appendix A for detailed discussions.

3.2 QUANTIFYING THE EFFECTS OF PRE-TRAINING ON DOWNSTREAM TASKS

Despite the ubiquitous utilization and great success of pre-trained models, it still remains mysterious
why such models can help the fine-tuned model achieve superior classification performance and
converge faster5, compared to training from scratch. Thus, to systematically and precisely unveil
the reasons behind these two benefits, we propose several metrics based on interactions to explicitly
quantify the knowledge of the pre-trained model that is utilized for the inference of the downstream
task, and further explain effects of such knowledge on the fine-tuning process. These explanations
also provide some new insights into the learning/fine-tuning behavior of the DNN.

3.2.1 QUANTIFYING CHANGES OF PRE-TRAINED MODEL’S KNOWLEDGE DURING THE
FINE-TUNING PROCESS

Explaining the precise effects of pre-training on downstream tasks still remains a significant chal-
lenge, because interactions (knowledge) directly extracted from the pre-trained model’s output v
cannot be used for explanation. This is due to that the pre-trained model is usually trained on an
extremely large-scale dataset with extensive training samples, whose network output often encodes
a vast amount of diverse knowledge. Such knowledge can be further categorized into knowledge
that can be used for inference of the downstream task (e.g., some general and common knowledge),
and knowledge that cannot be applicable to the downstream task (e.g., knowledge only related to
the inference of the pre-trained task). Thus, we need to extract and quantify the knowledge of the
pre-trained model that is used for the inference of the downstream task for explanation, so as to
ensure our explanation will not be affected by other irrelevant knowledge.

To this end, we employ the linear probing method (Alain & Bengio, 2016; Tenney et al., 2019; Liu
et al., 2022; Chen et al., 2024), a commonly used technique, to extract pre-trained model’s knowl-
edge that is used for the downstream task. Specifically, given an input sample x and a pre-trained
model, we freeze all its network parameters, and use the feature f(x) of its penultimate layer (i.e., the
layer preceding the classifier of the pre-trained model) to train a new linear classifier WT f(x) + b
for the same downstream task as the fine-tuned model6. Then, we define the following function
vpretrain to quantify the pre-trained model’s knowledge used for the inference of the downstream task
I(S|x, vpretrain), where ypretrain denotes the label predicted by the linear classifier.

vpretrain = log
p(ypretrain = ytruth|x)

1− p(ypretrain = ytruth|x)
. (5)

In this way, the classification score vpretrain enables us to provide a thorough insight into the ef-
fects of the pre-trained model on the downstream task, by quantifying the changes of its knowl-
edge I(S|x, vpretrain) during the fine-tuning process. Specifically, we disentangle the knowledge
I(S|x, vpretrain) into two components, including the knowledge preserved by the fine-tuned model
for inference and the discarded knowledge. In this way, we define the preserved knowledge Kpreserve

as the strength of the interaction shared by both the pre-trained model and the fine-tuned model.
The discarded knowledge Kdiscard is defined as the strength of the interaction that is encoded by the
pre-trained model, but discarded by the fine-tuned model, as follows.

I(S|x, vpretrain) = sign(I(S|x, vpretrain)) · (Kpreserve(S|x) +Kdiscard(S|x)),

Kpreserve(S|x) = 1(Γfinetune
pretrain (S|x) > 0) ·min(|I(S|x, vpretrain)|, |I(S|x, vfinetune)|),

Kdiscard(S|x) = |I(S|x, vpretrain)| −Kpreserve(S|x),

(6)

where Γfinetune
pretrain (S|x) = I(S|x, vpretrain) · I(S|x, vfinetune) measures whether the interaction encoded by the

pre-trained model I(S|x, vpretrain) and the interaction encoded by the fine-tuned model I(S|x, vfinetune)

5Experimental results in Appendix C verify that the fine-tuned model achieves higher classification accuracy
and converges to a lower loss more quickly than the model training from scratch.

6Please see Appendix D.2 for the details of training the linear classifier.
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Figure 2: The preserved knowledge (interaction) K(i)
preserve, the discarded knowledge K(i)

discard, and the
newly-learned knowledge K(i)

new. For each subfigure, the total length of the blue bar and the orange
bar equals to the knowledge encoded by the pre-trained model K(i)

pretrain, and the length of the green
bar and the orange bar equals to the knowledge encoded by the fine-tuned model K(i)

finetune.

have the same effect. vfinetune is calculated based on the fine-tuned model according to equation 1.
1(·) is the indicator function. If the condition inside is valid, 1(·) returns 1, and otherwise 0.

Similarly, we also disentangle the knowledge encoded by the fine-tuned model into two components,
including the knowledge inherited from the pre-trained model Kpreserve(S|x), and new knowledge
learned by the fine-tuned model itself to adapt the downstream task. Such a disentanglement helps
us gain an insightful understanding of the fine-tuning behavior of the DNN, and also enables us
to seek a deep exploration of the superior classification performance of the fine-tuned model in
Section 3.2.2. Specifically, we define the knowledge Knew(S|x) newly learned by the fine-tuned
model as the strength of the interaction that is encoded by the fine-tuned model, but is not present in
the pre-trained model.

I(S|x, vfinetune) = sign(I(S|x, vfinetune)) · (Kpreserve(S|x) +Knew(S|x)),

Knew(S|x) = |I(S|x, vfinetune)| −Kpreserve(S|x).
(7)

Experiments. We conducted experiments to analyze changes of pre-trained model’s knowledge
during the fine-tuning process, in order to provide in-depth explanations for the effects of pre-
training on downstream tasks. To this end, we employed off-the-shelf VGG-16 (Simonyan & Zis-
serman, 2015), ResNet-50 (He et al., 2016), ViT-Small, and ViT-Base (Dosovitskiy et al., 2021)
pre-trained on the ImageNet-1K dataset (Russakovsky et al., 2015), and further fine-tuned these
models on the CUB200-2011 (Wah et al., 2011), CIFAR-10 (Krizhevsky et al., 2009), and Stan-
ford Cars (Krause et al., 2013) datasets for image classification, respectively. We also fine-tuned
the pre-trained BERTBASE (Devlin et al., 2019) and DistillBERT (Sanh et al., 2019) models on the
SST-2 (Socher et al., 2013) dataset for binary sentiment classification.

For a detailed explanation, we further quantified the preservation and the discarding of the knowl-
edge of different complexities. The complexity of the knowledge was defined as the order of the
interaction, i.e., the number of input variables involved in the interaction, complexity(S) = order(S) =
|S|. Thus, a high-order interaction denoted the interaction among a large number of input variables,
which usually represented complex knowledge (interaction). In comparison, a low-order interaction
among a small number of input variables was often referred to as simple and general knowledge.
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Fig. 2 reports the average strength of the i-th order preserved interactions K
(i)
preserve =

ExES⊆N,|S|=i[Kpreserve(S|x)], discarded interactionsK(i)
discard = ExES⊆N,|S|=i[Kdiscard(S|x)], and newly-

learned interactions K(i)
new. Note that according to equation 6 and equation 7, the sum of K(i)

preserve

and K
(i)
discard equalled to the average strength of i-th order interactions encoded by the pre-

trained model K(i)
pretrain = ExES⊆N,|S|=i[|I(S|x, vpretrain)|], and the sum of K(i)

preserve and K
(i)
new equalled

to the average strength of i-th order interactions encoded by the fine-tuned model K(i)
finetune =

ExES⊆N,|S|=i[|I(S|x, vfinetune)|]. We discovered that even among different network architectures on
different datasets, pre-training exhibits the similar effect on the downstream task, as follows.

• We surprisingly observed that during the fine-tuning process, only a small amount of pre-
trained model’s knowledge was preserved for the inference of the downstream task, while a
considerable amount of knowledge was discarded, i.e., the amount of the discarded knowledge
was more than twice that of the preserved knowledge.

• Interestingly, we also discovered that each fine-tuned model discarded more complex knowl-
edge (reflected by high-order interactions) than simple and general knowledge (reflected by
low-order interactions). This indicated that complex knowledge encoded by the pre-trained model
usually was not discriminative enough for the classification of the downstream task (e.g., memoriz-
ing large-scale background patterns), thus the fine-tuned model discarded it, and re-learned discrim-
inative knowledge for inference during the fine-tuning process.

• Correspondingly, the fine-tuned model learned a large amount of new knowledge for the
inference of the downstream task, especially complex knowledge.

3.2.2 WHY THE FINE-TUNED MODEL CAN ACHIEVE SUPERIOR CLASSIFICATION
PERFORMANCE?

Based on the quantification of pre-trained model’s knowledge in the preceding section, here, we
provide an insightful explanation for why pre-training can benefit the fine-tuned model in achieving
superior classification performance5. Intuitively, we consider that compared to training from scratch,
the fine-tuned model can preserve some discriminative knowledge from the pre-trained model, which
is beneficial for making inference, such as classifying hard samples. This is due to that the preserved
knowledge is usually acquired using a large-scale dataset with numerous training samples, thus it
contains sufficiently discriminative information. More crucially, this knowledge preserved from the
pre-trained model is very difficult to be learned by a DNN training from scratch merely using a
small-scale downstream-task dataset. Thus, pre-training makes the fine-tuned model encodes
more exclusively-learned and discriminative knowledge than the model training from scratch
for inference, which accounts for the superior performance of the fine-tuned model.

To this end, we propose the following metric to examine whether the model training from scratch
can only successfully learns a little preserved knowledge Kpreserve(S|x) for verification. Specifically,
given a pre-trained model and its corresponding fine-tuned model, we train a randomly initialized
DNN vrandom from scratch for the same downstream task, where we set it has the same network ar-
chitecture as the fine-tuned model for fair comparisons. We quantify the ratio of pre-trained model’s
knowledge preserved by the fine-tuned model Kpreserve(S|x) that can be successfully learned by the
model training from scratch, as follows.

ratio(S|x) =
1(Γrandom

pretrain(S|x)) ·min(|I(S|x, vrandom)|,Kpreserve(S|x))

Kpreserve(S|x)
, (8)

where Γrandom
pretrain(S|x) = I(S|x, vpretrain) · I(S|x, vrandom) measures whether interactions I(S|x, vpretrain) and

I(S|x, vrandom) have the same effect to the network output. Only when interactions I(S|x, vpretrain),
I(S|x, vfinetune) and I(S|x, vrandom) have the same effect, the metric ratio(S|x) is non-zero; Otherwise,
ratio(S|x) = 0. A small value of ratio(S|x) indicates that the model training from scratch can merely
learn a little preserved knowledge Kpreserve(S|x).

Experiments. We conducted experiments to verify that the fine-tuned model encoded more
exclusively-learned and discriminative knowledge than training from scratch. To this end, we trained
randomly initialized VGG-16, ResNet-50, ViT-Small, and ViT-Base models on the CUB200-2011,
CIFAR-10, and Stanford Cars datasets from scratch for image classification, respectively. We also
trained randomly initialized BERTBASE and DistillBERT models on the SST-2 dataset from scratch
for binary sentiment classification. Please see Appendix D.3 for more training details.
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Figure 3: The ratio of the preserved knowledge that can be learned by the model training from
scratch. This figure verifies that pre-training makes the fine-tuned model encodes more exclusively-
learned and discriminative knowledge for inference than the model training from scratch, which
responses to the superior performance of the fine-tuned model.

Fig 3 reports the average ratio of the preserved knowledge that the model training from scratch
was able to learn, Ratio = ExES⊆N [ratio(S|x)]. We discovered that the average ratio for each DNN
was very low, i.e., ranging from 13% to 45%. This indicated that only a little preserved knowledge
could be successfully learned by the model training from scratch, while most of it was extremely
difficult to be acquired. Thus, compared to training from scratch, pre-training enabled the fine-tuned
model to encode more exclusively-learned and discriminative knowledge for inference, resulting in
its better performance.

3.2.3 WHY THE FINE-TUNED MODEL CONVERGES FASTER?

Apart from the improved performance, pre-training can also benefits the fine-tuned model in speed-
ing up the convergence5 (Hendrycks et al., 2019). In this section, we present an in-depth analysis
to explain this benefit. Specifically, according to the information-bottleneck theory (Shwartz-Ziv &
Tishby, 2017; Saxe et al., 2018), when training from scratch, the DNN usually tries to encode various
knowledge in early epochs and discarding task-irrelevant knowledge in later epochs. In comparison,
pre-training guides the fine-tuned model to directly and quickly learn target knowledge, with-
out temporarily modeling and discarding knowledge unrelated to the inference of the down-
stream task, which is responsible for the faster convergence of the fine-tuned model.

Explicitly speaking, whether or not a DNN can quickly and directly learn target knowledge can be
analyzed as whether the amount of learned target knowledge increases fast and stably along with
the epoch number, respectively, where we define the target knowledge as the interaction encoded
by the finally-learned DNN. To this end, we propose the following metrics to examine whether
the fine-tuned model encodes target knowledge more directly and quickly for verification. Specif-
ically, let the vectors Ifinetune,e(x) = [I(S1|x, vfinetune,e), I(S2|x, vfinetune,e), · · · , I(Sd|x, vfinetune,e)] ∈ Rd
and Ifinetune,E(x) represent the distribution of all interactions encoded by the model fine-tuned after
e epochs and E epochs, respectively, where E denotes the total epoch number. Accordingly, the
vector Irandom,E(x) and the vector Irandom,E(x) represent the distribution of all interaction encoded by
the model training from scratch after e′ epochs and E′ epochs, respectively. Then, we calculate the
Jaccard similarity between interactions encoded by the DNN learned after certain epochs and those
encoded by the finally-learned DNN.

Jaccardfinetune = Ex

[
‖min(Ĩfinetune,e(x), Ĩfinetune,E(x))‖1/‖max(Ĩfinetune,e(x), Ĩfinetune,E(x))‖1

]
,

Jaccardrandom = Ex

[
‖min(Ĩrandom,e′(x), Ĩrandom,E′(x))‖1/‖max(Ĩrandom,e′(x), Ĩrandom,E′(x))‖1

]
,

(9)

where we extend the d-dimension vector Ifinetune,e(x) to into a 2d-dimension vector Ĩfinetune,e(x) =
[(I+

finetune,e(x))T, (−I−finetune,e(x))T]T = [max(Ifinetune,e(x), 0)T,−min(Ifinetune,e(x), 0)T]T ∈ R2d without

8
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Figure 4: Changes of the Jaccard similarity Jaccardfinetune and Jaccardfinetune along with the epoch
number. The similarity Jaccardfinetune of the fine-tuned model exhibits a more sharp and stable increase
with the epoch number than that of training from scratch Jaccardfinetune. This verifies the fine-tuned
model learns target knowledge more quickly and directly, which accounts for its faster convergence.

negative elements. Accordingly, vectors Ĩfinetune,E(x), Ĩrandom,e′(x), and Ĩrandom,E′(x) are constructed
on Ifinetune,E(x), Irandom,e′(x), and Irandom,E′(x) to contain non-negative elements, respectively. Thus,
a sharp increase of the similarity at early epochs indicates that the DNN encodes target knowledge
quickly. Besides, a stable increase of the similarity along the epoch number, without significant
fluctuations, demonstrates that the DNN encodes target knowledge directly.

Experiments. We conducted experiments to examine whether pre-training guided the fine-tuned
model to encode target knowledge more quickly and directly than training from scratch. To this
end, we employed fine-tuned DNNs and DNNs training from scratch introduced in the experiment
paragraph of section 3.2.2 for evaluation. Fig. 4 reports the change of the similarity Jaccardfinetune and
Jaccardrandom along with the epoch number. We discovered that pre-training exhibited similar effects
on guiding the fine-tuned model to learn target knowledge across different network architectures and
datasets, as follows.

• Fig. 4 shows that the similarity Jaccardfinetune first increased sharply in early epochs, then rose
gradually and eventually saturated in later epochs, while the similarity Jaccardrandom usually exhibited
the opposite trend, i.e., first increasing gradually and then increasing rapidly in later epochs. This
indicated that pre-training enabled the fine-tuned model to learn target knowledge more quickly.

• Fig. 4 also illustrates that the similarity Jaccardfinetune usually increased stably along with the
epoch number without significant fluctuations, while the similarity Jaccardrandom increased with ups
and downs. This demonstrated that pre-training guided the fine-tuned model to straightforwardly
learned target knowledge, while the DNN training from scratch temporarily learned various knowl-
edge and discarded task-irrelevant one later.

4 CONCLUSION AND DISCUSSION

In this paper, we present an in-depth analysis to explain the benefits of pre-training, including the
boosted accuracy and the accelerated convergence, from a game-theoretic view. To this end, we
use interactions to explicitly quantify the knowledge encoded by the pre-trained model, and further
analyze the effects of such knowledge on the downstream task, where the faithfulness of treating
interactions as essential knowledge encoded by the DNN for inference has been theoretically en-
sured by a set of properties of interactions. We discover that compared to training from scratch,
pre-training enables the fine-tuned model to encode more exclusively-learned and discriminative
knowledge for inference, and to learn target knowledge more quickly and directly, which accounts
for the superior classification performance and faster convergence of the fine-tuned model. This pro-
vides new insights into understanding pre-training, and may also guide new interesting directions on
the fine-tuning behavior of the DNN for future studies.
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A FAITHFULNESS OF USING INTERACTION PRIMITIVES TO REPRESENT
KNOWLEDGE IN DNNS

Although there exist various ways to define/quantify the knowledge encoded by DNNs, a series of
studies have theoretically proven and empirically verified the following properties as convincing
evidence to take interactions as essential knowledge encoded by the DNN for inference.

(1) The universal-matching property in Theorem 3.1 and the sparsity property in equation 3 have
mathematically guaranteed that a few interactions with salient effect I(S|x) can faithfully explain
the output of DNNs (Ren et al., 2024). Exactly speaking, given an arbitrary input sample with n
input variables, network outputs on 2n differently masked samples can always be well approximated
by a small set of salient interactions, no matter how we randomly mask this input sample.

(2) Li & Zhang (2023) have experimentally verified the transferability property and the discrim-
inative property of interactions. Specfically, they have discovered that interactions exhibit consid-
erable transferability across samples and across models, i.e., interactions extracted from different
samples in the same category are often similar, and different DNNs trained for the same task usually
learns similar sets of interactions. They have also observed that a salient interaction has remarkable
discrimination power in classification tasks, i.e., the same salient interaction extracted from different
samples usually pushes the DNN towards the classification of the same category.

(3) Ren et al. (2023a) have proven that interactions satisfy efficiency, linearity, dummy, symmetry,
anonymity, recursive, interaction distribution properties, as follows.
1© Efficiency property. The network output of a well-trained model v(x) can be disentangled into

the numerical effects of different interactions v(x) =
∑
S⊆N I(S|x).

2© Linearity property. If the network output of the model w is computed as the sum of the network
output of the model u and the network output of the model v, i.e., ∀S ⊆ N,w(xS) = u(xS) + v(xS),
then the interaction effect of S on the model w can be computed as the sum of the interaction effect
of S on the model u and that on the model v, ∀S ⊆ N, I(S|x) = I(S|x) + I(S|x).
3© Dummy property. If the input variable i is a dummy variable, i.e., ∀S ⊆ N \ {i}, v(xS∪{i}) =
v(xS) + v(x{i}), then the input variable i has no interaction with other input variables, ∀S ⊆ N \
{i}, I(S ∪ {i}|x) = 0.
4© Symmetry property. If input variables i, j ∈ N cooperate with other input variables in S ⊆
N \ {i, j} in the same way, ∀S ⊆ N \ {i, j}, v(xS∪{i}) = v(xS∪{j}), then input variables i and j have
the same interaction effects, ∀S ⊆ N \ {i, j}, I(S ∪ {i}|x) = I(S ∪ {j}|x).
5© Anonymity property. For any permutations π on N , then ∀S ⊆ N, I(S|x, v) = I(πS|x, πv) is

always guaranteed, where the new set of input variables πS is defined as πS = {π(i), i ∈ S}, the
new model πv is defined as (πv)(xπS) = v(xS). This suggests that permutation does not change the
interaction effect.
6© Recursive property. The interaction effects can be calculated in a recursive manner. For ∀i ∈
N,S ⊆ N\{i}, the interaction effect of S ∪ {i} can be computed as the difference between the
interaction effect of S with the presence of the variable i and the interaction effect of S with the
absence of the variable i. That is, ∀i ∈ N,S ⊆ N\{i}, I(S∪{i}|x) = I(S|i is consistently present,x)−
I(S|x), where I(S|i is consistently present,x) =

∑
L⊆S(−1)|S|−|L|v(xL∪{i}).

7© Interaction distribution property. This property describes how interactions are distributed for
“interaction functions” (Sundararajan et al., 2020). An interaction function vT parameterized by a
context T is defined as follows. ∀S ⊆ N , if T ⊆ S, then vT (xS) = c; Otherwise, vT (xS) = 0.
Thus, the interaction effect for an interaction function vT can be measured as, I(T |x) = c, and
∀S 6= T, I(S|x) = 0.

Besides, recent works have used interactions to explain the representation capacity of DNNs, includ-
ing the generalization power (Zhang et al., 2021; Yao et al., 2023; Zhou et al., 2024), adversarial
robustness (Ren et al., 2021), adversarial transferability (Wang et al., 2021), the learning difficulty
of interactions (Liu et al., 2023; Ren et al., 2023b), and the representation bottleneck (Deng et al.,
2022).

Thus, the above properties/usage of interactions ensure the faithfulness of taking the interaction as
the essential knowledge encoded by the DNN for inference.
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B COMMON CONDITIONS FOR PROVING THE SPARSITY PROPERTY OF
INTERACTIONS

Ren et al. (2024) have proven that under the following three common conditions, a well-trained
DNN usually encodes a small set Ωsalient of salient interactions for inference, where |Ωsalient| � 2n.
(1) The DNN is assumed to not encode extremely high-order interactions, i.e., high-order derivatives
of the DNN output w.r.t. input variables are assumed to be zero
(2) The classification confidence of the DNN on partially masked input samples is assumed to mono-
tonically increase with the size of the set of unmasked input variables.
(3) The network output of the masked input sample is assumed to neither be extremely high nor
extremely low.

C EXPERIMENTAL VERIFICATION OF HIGH CLASSIFICATION ACCURACY AND
FAST CONVERGENCE SPEED OF THE FINE-TUNED MODEL

It has been widely acknowledged that the pre-training can help the fine-tuned model achieve better
classification performance and converge faster than the DNN training from scratch (He et al., 2016;
Devlin et al., 2019; Hendrycks et al., 2019). We experimentally verified the above two benefits
brought by the pre-training, as follows.

Table 1 reports the classification accuracy of each pair of the fine-tuned model and the DNN train-
ing from scratch, which verified that the fine-tuned model usually achieved superior classification
performance to the DNN training from scratch.

Fig. 5 shows the loss curves of each pair of the fine-tuned model and the DNN training from scratch,
which verified that the fine-tuned model converged faster than the DNN training from scratch.

Table 1: Classification accuracy of each pair of the fine-tuned model and the DNN training from
scratch. The fine-tuned model usually achieves superior classification performance to the DNN
training from scratch.

Dataset Model architecture Training from scratch Fine-tuning

CUB

VGG-16 23.5% 71.2%
ResNet-50 41.0% 79.3%
Vit-Small 13.2% 81.1%
Vit-Base 13.0% 84.1%

Stanford Cars

VGG-16 18.7% 78.3%
ResNet-50 39.2% 87.0 %
Vit-Small 7.7 % 87.4%
Vit-Base 9.5% 89.6%

CIFAR-10

VGG-16 83.4% 94.2%
ResNet-50 83.2 % 90.1%
Vit-Small 74.8% 98.0%
Vit-Base 69.9% 98.6%

SST-2 BERTBASE 79.1% 91.5%
DistillBERT 78.5% 89.1%
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Figure 5: Loss curves of each pair of the fine-tuned model and the DNN training from scratch. The
fine-tuned model converges faster than the DNN training from scratch.

D EXPERIMENTAL DETAILS

D.1 ANNOTATING SEMANTICS PARTS

We follow (Li & Zhang, 2023; Ren et al., 2023a) to annotate semantic parts. Specifically, given
an input sample x ∈ Rn, the DNN theoretically encodes 2n interactions. Thus, if the number of
input variables n is large enough, then the computational cost for calculating salient interactions is
extremely high. To this end, we follow (Li & Zhang, 2023; Ren et al., 2023a) to annotate 10 –12
semantic parts in each input sample to reduce the computation burden, which also makes the anno-
tated semantic parts are aligned over different samples in the same dataset. In this way, we take each
semantic part of each input sample as a “single” input variable to the DNN.

For the SST-2 dataset, we followed settings in (Ren et al., 2023a) to select 50 different sentences
containing 10 words with clear semantics to calculate interactions. Specifically, for each sentence,
we took each word as an input variable, and obtained totally n = 10 variables.

For the CIFAR-10 dataset, we randomly selected 2 images for each category to annotate semantic
parts to calculate interaction. followed settings in (Ren et al., 2023a) to for randomly selected
images. Specifically, given an image, we first resized it to 224 × 224 before feeding it into the pre-
trained model, and then divided the resized image into small patches of size 28×28, thereby obtaining
8× 8 image patches in total. Considering the DNN mainly used foreground information/knowledge
to make inference, we randomly selected n = 12 patches from 6 × 6 image patches located in the
center of the image to reduce the computational cost.

For the CUB200-2011 dataset, we randomly selected 2 images for each category to annotate seman-
tic parts and calculate interaction. Specifically, given an image, we divided the whole image into
small patches of size 28× 28, thereby obtaining 8× 8 image patches in total. Similar to the settings
in (Li & Zhang, 2023; Ren et al., 2023a) to annotate semantic parts for the CIFAR-10 dataset, we
randomly selected n = 12 patches from 6 × 6 image patches located in the center of the image to
calculate interactions, because the DNN mainly employed foreground information/knowledge for
inference.

For the Stanford Cars dataset, we randomly selected 2 images for each category to annotate semantic
parts and compute interactions. Specifically, given an image, we divided the whole image into small
patches of size 28×28, thereby obtaining 8×8 image patches in total. Similar to the settings in (Li &
Zhang, 2023; Ren et al., 2023a) to annotate semantic parts for the CIFAR-10 dataset, we randomly
selected n = 12 patches from 6 × 6 image patches located in the center of the image to calculate
interactions, because the DNN mainly employed foreground information/knowledge for inference.
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D.2 DETAILS FOR TRAINING LINEAR CLASSIFIER IN SECTION 3.2.1

To extract pre-trained model’s knowledge that is used for the downstream task, we employ a typi-
cal method, linear probing method (Alain & Bengio, 2016; Tenney et al., 2019; Chen et al., 2024).
Specifically, given an input sample x and a pre-trained model, let us fine-tune it on a certain down-
stream classification task and obtain the corresponding fine-tuned model. We freeze all network
parameters in the pre-trained model, and use the feature f(x) of its penultimate layer (i.e., the layer
preceding the classifier) to train a new linear classifier WT f(x) + b for the same downstream task.

In experiments, we set hyper-parameters to train the linear classifier the same as those to fine-tine the
pre-trained model for fair comparisons. Specifically, we employed off-the-shelf VGG-16, ResNet-
50, ViT-Small, and ViT-Base pre-trained on the ImageNet-1K dataset, and extracted the feature of
the penultimate layer of each pre-trained model to train a linear classifier on the CUB200-2011,
CIFAR-10, and Stanford Cars datasets for image classification, respectively. Each linear classifier
was trained for 90 epochs using SGD with the momentum 0.9, weight decay 5× 10−4, and learning
rate 0.01.

Besides, we also utilized off-the-shelf BERTBASE and DistillBERT models, and extracted the feature
of the penultimate layer of each pre-trained model to train a linear classifier on the SST-2 dataset for
binary sentiment classification, respectively. Each linear classifier was trained for 300 epochs with
the learning rate 2e−5.

D.3 DETAILS FOR FINE-TUNING PRE-TRAINED MODELS AND TRAINING DNN FROM
SCRATCH IN SECTION 3.2.2

To enable fair comparisons, we set the model architecture of the DNN training from scratch the
same as that of the fine-tuned model. Specifically, we fine-tuned the pre-trained VGG-16, ResNet-
50, ViT-Small, and ViT-Base models on the CUB200-2011, CIFAR-10, and Stanford Cars datasets
for 90 epochs using SGD with the momentum 0.9, weight decay 5×10−4, and learning rate 0.01 for
image classification, respectively. Correspondingly, we trained randomly initialized versions of the
same models (VGG-16, ResNet-50, ViT-Small, and ViT-Base) on the same datasets for 90 epochs
with the learning rate 0.1.

Besides, we fine-tuned the pre-trained BERTBASE and DistillBERT models on the SST-2 dataset
for 300 epochs with the learning rate 2e−5 for binary sentiment classification, respectively. Corre-
spondingly, we trained randomly initialized versions of BERTBASE and DistillBERT models on the
same dataset for 300 epochs with the learning rate 2e−4.

The classification accuracy of each pair of the fine-tuned model and the DNN training from scratch
was reported in Appendix C.
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