
SeeA∗: Efficient Exploration-Enhanced A∗ Search by
Selective Sampling

Dengwei Zhao1, Shikui Tu1∗, Lei Xu1,2∗
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Guangdong Institute of Intelligence Science and Technology
{zdwccc, tushikui, leixu}@sjtu.edu.cn

Abstract

Monte-Carlo tree search (MCTS) and reinforcement learning contributed crucially
to the success of AlphaGo and AlphaZero, and A∗ is a tree search algorithm
among the most well-known ones in the classical AI literature. MCTS and A∗

both perform heuristic search and are mutually beneficial. Efforts have been made
to the renaissance of A∗ from three possible aspects, two of which have been
confirmed by studies in recent years, while the third is about the OPEN list that
consists of open nodes of A∗ search, but still lacks deep investigation. This paper
aims at the third, i.e., developing the Sampling-exploration enhanced A∗ (SeeA∗)
search by constructing a dynamic subset of OPEN through a selective sampling
process, such that the node with the best heuristic value in this subset instead
of in the OPEN is expanded. Nodes with the best heuristic values in OPEN are
most probably picked into this subset, but sometimes may not be included, which
enables SeeA∗ to explore other promising branches. Three sampling techniques
are presented for comparative investigations. Moreover, under the assumption
about the distribution of prediction errors, we have theoretically shown the superior
efficiency of SeeA∗ over A∗ search, particularly when the accuracy of the guiding
heuristic function is insufficient. Experimental results on retrosynthetic planning
in organic chemistry, logic synthesis in integrated circuit design, and the classical
Sokoban game empirically demonstrate the efficiency of SeeA∗, in comparison
with the state-of-the-art heuristic search algorithms.

1 Introduction

In recent years, combining heuristic search algorithms with deep neural networks has demonstrated
remarkable performance across a wide range of practical applications, such as board games [48, 50,
49, 66], video games [46, 64, 67], traveling salesman problem [8, 59], de novo drug design [42],
retrosynthetic planning [6, 47, 68], logic synthesis [9], and so on. The search algorithm is a slow
reasoning process, and heuristic functions serve as counselors to narrow down the search space [2].
Therefore, the effectiveness of search algorithms is significantly influenced by the quality of the
guiding functions.

Monte-Carlo tree search (MCTS) is a widely-used, effective algorithm for combinatorial problems.
However, if the backup value in MCTS is provided by a heuristic estimator rather than actual
rewards, the convergence to the true state value is not guaranteed, leading to compromised search
performance. In single-agent problems such as combinatorial puzzles, neural-guided MCTS tends
to have a relatively long runtime and often generates solutions that are considerably longer than the
shortest path [1].

∗Correspondence authors are Shikui Tu and Lei Xu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

A∗ search [26] is a best-first search algorithm that expands nodes with the minimum total path value
f at each step. The evaluation function f(n) on a node n is defined as the summation of g(n), the
accumulated cost from the initial node n0 to n, and h(n), the expected cost from n to the goal, i.e.,

f(n) = g(n) + h(n). (1)

Notice that g(n) computes the cost from the known searching trajectory, whereas h(n) is a heuristic
function to estimate the cost of the future path from n to the goal. In practice, it is usually difficult to
obtain an accurate h(n). A∗ search is guaranteed to find the optimal solution if h(n) is admissible,
i.e., h(n) never overestimates the real cost to the goal. However, due to its best-first expansion
strategy, A∗ has limited exploration capability. If f(n) deviates from the true cost function f∗(n) too
much, A∗ search may become trapped in local optimal branches, and significant efforts are required
to resume expansion within the optimal branch. Consequently, the computational efficiency of A∗

search is compromised in practical applications, even though the optimality of A∗ might still hold
under the guidance of f(n).

MCTS and A∗ both perform heuristic search. MCTS and reinforcement learning with the help of
deep learning contributed crucially to the successes of AlphaGo and AlphaZero, which aroused the
interest of comparing MCTS and A∗ for possible mutual benefits. Deep learning is also able to
contribute to the renaissance of A∗, three possible aspects are addressed with a family of possible
improvements proposed under the name of Deep IA-search [61]. The first and also straightforward
aspect is estimating f(n) with the help of deep learning, which makes current studies on A∗ including
this paper into the era of learning aided A∗. The second aspect is seeking a better estimation of f(n)
with the help of global or future information, featured by two typical mechanisms. One is lookahead
or scouting before expanding the current node to collect future information to revise f(n) of the
current node, which takes a crucial rule for the success of AlphaGo [48] and also used more than
30 years ago in Algorithm CNneim-A [62]. The other is path consistency, that is, f(n) values on
one optimal path should be identical, which has been further confirmed in recent studies [66, 67, 68].
This third aspect is about selecting nodes among the OPEN list that consists of open nodes of A∗. It
is an old tune even in the classical era of A∗, e.g., one suggestion is dividing OPEN into two sublists
OPEN and WAIT according to a priori and a posteriori in a Bayesian evaluation [61]. However,
investigation is seldom made on what are effective and efficient ways for selecting among OPEN.

In this paper, SeeA∗ search (short for Sampling-exploration enhanced A∗) algorithm is proposed by
incorporating exploration behavior into A∗ search to target at the third aspect. The main contributions
are summarized below.2

• SeeA∗ search employs a selective sampling process to screen a dynamic candidate subset
D from the set O of open nodes that are awaiting expansion. The next expanding node
is selected from D, and it may not be the node that has the best heuristic value in O and
will be selected by A∗, enabling SeeA∗ to explore other promising branches. To reduce the
excessive expansion of unnecessary nodes during exploration, only the candidate node with
the best heuristic value is expanded. Three sampling strategies are introduced to strike a
balance between exploitation and exploration. The search efficiency is improved especially
when the guiding heuristic function is not accurate enough.

• We theoretically prove that SeeA∗ has superior efficiency over A∗ search when the heuristic
value function deviates substantially from the true state value function. SeeA∗ achieves
a reduced number of node expansions to identify the optimal path. This performance
improvement becomes more pronounced as the complexity of the problems increases and
the reliability of the guiding heuristics decreases.

• Experiments are conducted on two real-world applications, i.e., the retrosynthetic planning
problem in organic chemistry and the logic synthesis problem in integrated circuit design,
as well as the classical Sokoban game. SeeA∗ outperforms the state-of-the-art heuristic
search algorithms in terms of the problem-solving success rate and solution quality while
maintaining a low level of node expansions.

2The source code is available at https://github.com/CMACH508/SEEA_star.

2

https://github.com/CMACH508/SEEA_star

2 Related work

MCTS [5, 13] utilizes random sampling and tree-based search to efficiently explore search space.
Upper Confidence bounds applied to Trees with predictor (PUCT) have been employed by AlphaZero
[49], achieving super-human performance in board games. A∗ search is widely employed for solving
optimization problems, such as route planning [54, 53], cubic and puzzle games [1], robotics [17],
and so on. Many variants of A∗ search have been proposed for performance improvement. Weighted
A∗ search (WA∗) [18] biased the expanding policy towards states closer to the goal by

n∗ = argmin
n

g(n) + εh(n), (2)

where ε is a hyperparameter to adjust the weight of the heuristic estimation h. WA∗ with iteratively
decreasing weights is employed by the LAMA planner [27, 44], achieving promising results in
various domains including Sokoban. DeepCubeA [1] trained heuristic functions by reversing solution
pathways from the goal state to guiding the search process of WA∗. Commonly, WA∗ traded
optimality for speed, and increasing ε was assumed to result in faster searches. Additionally, the
greedy search based on h values was considered the fastest search. However, empirical observations
revealed that increasing ε slowed down the search in some domains. Greedy search is fast if and
only if there is a strong correlation between the heuristic estimations and the true distance-to-go, or
if the heuristic is extremely accurate [55]. However, constructing a reliable heuristic function for
complicated problems is challenging attributed to the vast search space and the difficulties associated
with sample collection in real-world applications. Poor generalization performance also remains a
pervasive issue across diverse practical domains, such as retrosynthetic planning. This paper sets
out to develop an efficient search algorithm designed to minimize the adverse effects of inaccurate
predictions by heuristic functions.

There have been some preliminary studies on the integration of exploration into the A∗ search.
ε−greedy node selection was incorporated into LAMA, suggesting that exploration can improve the
coverage of search algorithms even multiple enhancements were already employed [52]. Type-WA∗

[11] augments WA∗ with type-based exploration [57] in the focal list [40]. The search space nodes
are divided into T distinct groups, and one of these groups is randomly chosen to determine the
expanded node. Levin tree search (LevinTS) [38] combined a penalization mechanism based on node
depth to encourage exploration for A∗ search. Policy-guided heuristic search (PHS) [39] generalized
LevinTS by introducing a heuristic factor, guided by both a value function and a policy. When the
guiding heuristics are sufficiently accurate, the best-first search achieves optimal efficiency without
the need for exploration. Insufficient exploration leads the search algorithm to be trapped in local
optima guided by inaccurate heuristics. As the accuracy of the guiding heuristic diminishes, the
importance of exploration becomes more pronounced in order to mitigate the potential misguidance.

Search algorithms have played a crucial role in solving diverse real-world problems, such as retrosyn-
thetic planning and logic synthesis. Retrosynthetic planning aims to identify a feasible synthetic
route using known available building block molecules for a given target molecule. Considering
that the synthesis of target molecules typically requires multiple steps and each step encompasses a
substantial number of potential chemical reactions, retrosynthetic planning is formulated as a search
problem to identify the optimal synthetic pathway. Both MCTS [28, 47, 65] and A∗ search, such as
Retro∗ [6] and its descendants [24, 30, 33, 58], have demonstrated promising results in retrosynthetic
planning. Logic synthesis (LS) is a crucial step in the design of integrated circuits, mapping the
high-level logic circuit description into gate-level implementation. In recent years, reinforcement
learning algorithms [10, 29, 34, 41, 69] and search methods [9, 37] have shown promising results in
the field of LS. Besides, Sokoban is an NP-hard [16] and PSPACE-complete [14] problem, which is
a benchmark problem for evaluating the performance of artificial intelligence planning algorithms.
Recently, combining reinforcement learning algorithms with search-based methods has demonstrated
remarkable performance in effectively solving the Sokoban problem [19, 20, 22, 31, 43].

3 Preliminaries and limitations on A∗ search

Single-agent problems solved in this paper are formulated as Markov decision processes. Let N
represent the set of nodes in the search tree, where each node n ∈ N corresponds to a state s
in the state space S. The set of n’s children is represented as CH(n). The root of the tree and
the initial state are denoted as n0 and s0 respectively. At each interactive step, action at ∈ A is

3

applied to the current state st, resulting in the subsequent state st+1 = T (st, at) and transition cost
ct+1 = c(st, at), where T is the state transition function to obtain the following state st+1 when
taking action at at state st, and c is the cost function giveing the received cost when taking action at
at state st..

The search tree of A∗ contains two distinct types of nodes: closed nodes, which have already been
expanded, and open nodes, which are waiting to be expanded [26]. Let O and C denote the set of
open nodes and closed nodes respectively. The search process of A∗ can be summarized as follows:

• Step 1: Initialize n0 with s0, and mark it as open node by setting O ← {n0}, C ← ∅.
• Step 2: Select the node n with the lowest total path cost f(n) from the open set O, i.e.,
n = argminn′∈O f(n′).

• Step 3: If the node n is the goal, terminate the search process successfully. Otherwise,
expand the node n, and update C ← C ∪ {n}, O ← O ∪ CH(n) \ {n}.

• Step 4: Repeat step 2 and 3 until O becomes empty, or exceeding the predetermined
maximum runtime or the number of expanded nodes, terminating with failure.

A∗ search always selects the node with the best heuristic value from the open set without exploration.
When the heuristic function f can accurately estimate the true cost f∗, this best-first search is the
most efficient. However, if the estimation by f is not accurate enough, the node with the minimum
f value may not correspond to the optimal one, which instead has the lowest f∗ value. The search
process might be trapped in a local optimal branch, and substantial computational efforts are required
to resume expansion on the optimal branch, which diminishes the efficiency of the search algorithm.
Considering an example in Figure 1(a), suppose the cost for each step (or edge) on the optimal
path is 100, and on the non-optimal path is only 1. The true total path cost at any node n is given
by f∗(n) = g(n) + h∗(n), where g(n) is given by adding the costs from the root to the node n,
and the real future cost h∗(n) is a summation of all costs from n to the end (or terminal state).
Suppose the evaluation function f(n) = g(n) + h(n) by Equation 1 is exact on the optimal path but
underestimates the real cost otherwise. Specifically, define the heuristic function h(n) as follows:

h(n) =

{
h∗(n), if n is on the optimal path
0, Otherwise (3)

Then, h(n) satisfies the admissible assumption as it never overestimates the cost, and h(n) ≤ h∗(n)
is established for all nodes. Therefore, A∗ is guaranteed to find the optimal solution guided by h(n)
in Equation 3. However, as illustrated in Figure 1(b), guided by the defined heuristic h, the nodes on
the optimal path will not be expanded until all nodes on non-optimal branches with depths less than
200 have been expanded. The optimal solution is achieved within two steps under the guidance of f∗,
and the search efficiency of A∗ search is largely compromised when f(n) is not accurate enough.

4 Method

SeeA∗ search is proposed on the basis of A∗ search by introducing a candidate set D of open nodes
to provide exploration behavior. Three selective sampling strategies are presented for constructing
the candidate set. Moreover, we present a theoretical analysis on the efficiency of SeeA∗.

4.1 SeeA∗ search algorithm

SeeA∗ employs the following two steps to replace the Step 2 in A∗ search. First, a selective strategy
is employed to sample a set of candidate nodes D from the opening set O. Then, the node n with
the lowest f -value from the candidate set D, instead of O, is chosen to be expanded in Step 3. The
details of SeeA∗ are summarized in Algorithm 1 in Appendix A.

• Step 2a: Sample a candidate subset D from O.
• Step 2b: Select the node n with the lowest f -value from the candidate set D.

As illustrated in Figure 1(c)&(d), if the node with minimum f -value is not sampled into the candidate
setD in Step 2a, the node selected to be expanded later is not the same as the one by A∗ search, which
activates exploration on other branches. Step 2b excludes the unpromising nodes by the f -value.

4

Figure 1: An illustration of how SeeA∗ overcomes the A∗ search’s limitation. (a) An example of the
search tree is guided by the true optimal value f∗(n) = g(n) + h∗(n). Values on the edge denote the
cost of each step. (b) On the same example, the A∗ search is trapped in a suboptimal branch misled
by the unreliable heuristics, i.e., f(n) = g(n) + h(n). (d) When the candidate set does not contain
the node n∗

1 with the best f value, n∗
2 will be selected and explored, where n∗

2 ̸= n∗
1.

4.1.1 Uniform sampling strategy

Uniform sampling guarantees an equal selection probability for each node, thereby generating a
representative subset that has the same distribution of the population. The procedure is given in
Algorithm 2 in Appendix A. If the desired number of candidate nodes, denoted as K, is greater than
the number of open nodes, the open set O is used as D. Otherwise, K nodes are randomly selected
from the open nodes as D. It should be noted that SeeA∗ with uniform sampling is different from the
ε-Greedy method. The ε-Greedy activates exploration with probability ε and then uniformly samples
a node for expansion, which may expand low-quality nodes. In Step 2a of SeeA∗, uniform sampling
is very likely to include at least one high-quality node with a reasonably low f -value and the node
will be selected to expand in Step 2b. More discussions are referred to Appendix P.

4.1.2 Clustering sampling strategy

In the uniform sampling strategy, each node is selected with equal probability. However, there is a
non-negligible probability that all sampled nodes are of low quality, leading to the exclusion of nodes
along the optimal expansion path from the candidate set D. Therefore, a clustering sampling strategy
is proposed, and it partitions open nodes into multiple clusters and subsequently sampling nodes from
each cluster, as illustrated in Figure 2 in Appendix B. At least one node from each cluster is sampled
compulsorily. Consequently, the probability of including nodes on the optimal branch is increased,
thereby facilitating search efficiency. On the other hand, uniform sampling strategy is equivalent to
assume that the nodes follow a Gaussian distribution, whereas clustering sampling strategy assumes
that the nodes follow a Gaussian mixture distribution from multiple clusters, which provides a more
descriptive representation for sampling.

To reduce computational costs, competitive learning [51] is utilized for node clustering. After each
node expansion, the incorporation of newly generated nodes into the set O resembles the process of
online sample acquisition in competitive learning. A clustering process is conducted simultaneously
with the search process. Offline clustering algorithms, such as K-means or Gaussian mixture model,
require recalculating the clustering when incorporating new nodes, thereby imposing additional
computational overhead. Each node is represented by a vector extracted by a function fh. Nc cluster
centers are randomly initialized as vectors with the same dimension of node embedding. During each
expansion, the newly generated nodes are assigned to the cluster with the closest center separately,
and the cluster center is updated by moving toward the position of the freshly added node. While
preparing the candidate set D, nodes are sampled evenly from each cluster, and uniform sampling is
employed to select nodes from each cluster. Details are displayed in Algorithm 3 & 5 in Appendix A.

5

4.1.3 UCT-like sampling strategy

In AlphaZero [49], PUCT achieved a good balance between exploitation and exploration with
promising results. In light of this, a UCT-like sampling strategy is proposed. Due to the absence of
Monte Carlo simulations, estimated f values are employed to substitute the Q value in PUCT, which
is the average backup value obtained from multiple MCTS simulations. The depth of the node is
employed as the penalization for exploration [38]. Each node is evaluated by

E(n) = f(n)− cb ×
√
dmax

1 + d(n)
, (4)

where cb is an adjustable hyperparameter, d(n) is the depth of node n, and dmax is the maximum
depth of the open nodes. Nodes with smaller d(n) are more likely to be included in the candidate set
for exploration. Despite potential errors in f value estimation, it remains a viable node evaluation
metric to sample high-quality nodes, and the exploration term is beneficial in mitigating misleading
of prediction errors. The K nodes with the smallest E values are chosen to constitute the candidate
set D. The details are summarized in Algorithm 4 in Appendix A.

4.2 Efficiency of SeeA∗ search

We further provide a theoretical analysis on the efficiency of SeeA∗, demonstrating that SeeA∗ is
superior to A∗ when the guiding heuristic function f does not estimate the true cost f∗ accurately
enough. It was claimed in A∗ search [26] that the f∗ values of all nodes on the optimal path are
equal to the same cost µf

0 and lower than the f∗ value of nodes outside the optimal path, which was
assumed to be sampled from a Gaussian distribution in [62]. In this paper, the prediction error for
f∗ is assumed to follow a uniform distribution. Here, Gaussian distribution is denoted as G(·, ·) and
uniform distribution is denoted as U(·, ·). Formally, an assumption is made as follows.

Assumption 4.1 For each node n on the optimal path, f(n) ∼ U(µf
0 −σ, µf

0 +σ). For nodes not on
the optimal path, f(n) ∼ U(f∗(n)− σ, f∗(n) + σ), and {f∗(n)} are independently and identically
sampled from G(µf

1 , σ
2
s).

The µf
0 and µf

1 are the expected total cost for optimal and non-optimal solutions, respectively. The
inequality µf

0 < µf
1 holds because the optimal path has a lower cost. The σ represents the magnitude

of the prediction error, and the σ2
s is a constant as the variance. Under Assumption 4.1, we can derive:

Corollary 4.2 For a node n on the optimal path and a node n′ off the optimal path, the probability

pσ = P (f(n) ≤ f(n′)|σ) (5)

decreases as the prediction error σ increases.

It is worth noting that the establishment of Corollary 4.2 is not limited by the assumption of a uniform
noise distribution in Assumption 4.1. When the noise follows a Gaussian distribution, Corollary 4.2
is still established. Refer to Appendix C for more detailed derivations.

Without loss of generality, assume the open set O contains No nodes, {n1, n2, · · · , nNo
}, and n1 is

the optimal node. The probability of A* search expanding node n1 is

PA(σ) = P

(
n1 = arg min

n′∈O
f(n′)

∣∣σ) =
∏

n′∈O\{n1}

P (f(n) ≤ f(n′)|σ) = pNo−1
σ . (6)

SeeA∗ expands n1 with probability

PS(σ) = P

(
n1 ∈ D, n1 = arg min

n′∈D
f(n′)

∣∣σ) = P (n1 ∈ D)
∏

n′∈D\{n1}

pσ. (7)

If the uniform sampling strategy is used to select K candidates,

PS(σ) =
K

No
pK−1
σ . (8)

Based on Equation 6 & 8, when the prediction error σ is large, SeeA∗ expands the optimal node with
a higher probability than A∗ search at each step, which is given by the following theorem.

6

Theorem 4.3 PS(σ) > PA(σ) holds if and only if

pσ < H(No), where H(No) =

(
K

No

) 1
No−K

, No > K ≥ 1. (9)

H(No) is a monotonically increasing function with respect to No which is the size of the open set.
With increasing branching factors and longer solution paths for more complex problems, No grows
and H(No,K) monotonically increases with respect to No. Especially, we have

lim
No→+∞

H(No) = 1. (10)

In this situation, Inequality 9 holds. SeeA∗ tends to demonstrate superior performance compared to
A∗ in solving complex problems.

Notice that if the heuristic function f predicts the true cost f∗ without error, it leads to pσ = 1 in
Equation 5. Then, Equation 9 does not hold, and in this case, A∗ search becomes more efficient than
SeeA∗. However, learning an accurate heuristic function for complex real-world problems is quite
challenging, and large prediction errors usually exist, which leads to small pσ and the establishment
of Equation 9. The number of candidate nodes K is a key hyperparameter to balance the exploitation
A∗ and the exploration introduced by SeeA∗. PS(σ) in Equation 8 reaches its maximum value when
K∗ = −1/ log pσ . When pσ approaches 1, K∗ will be the largest∞. In this situation, the candidate
set is the same as the open set, and SeeA∗ degenerates into best-first A∗. For small pσ, the optimal
K∗ is the smallest value 1 and SeeA∗ becomes random sampling. An appropriate value of K should
be selected according to the specific situation. According to Equation 7, PS(σ) is related to both
pσ and P (n1 ∈ D). Utilizing more efficient sampling algorithms than uniform sampling is also
capable to enhance the performance of SeeA∗. The clustering sampling and UCT-like sampling aim
to achieve a higher P (n1 ∈ D) by constructing a more diverse candidate set, thereby enhancing the
likelihood of expanding the optimal node.

For simplicity, suppose the probability of selecting the optimal node in a single expansion is P , and
the probability for expanding the optimal node becomes 1− (1− P)τ after τ expansions. To achieve
a probability level of Pmin for expanding the optimal node, we have

τ ≥ log{1− Pmin}
log{1− P}

. (11)

Based on Theorem 4.3 and Equation 11, SeeA∗ is more efficient than A∗ search as it requires fewer
expansions to find the optimal solution. It is noted that Equation 9 is derived on the uniform sampling
strategy. For a more effective sampling strategy with a higher probability P (n1 ∈ D), SeeA∗ will
become more efficient as PS(σ) increases.

5 Experiments

Real-world problems are usually complicated, and the amount of available samples for training the
heuristic functions is typically small.Two real-world applications, i.e., retrosynthetic planning in
organic chemistry and logic synthesis in integrated circuit (IC) design, are considered to evaluate the
effectiveness of the proposed method. Since the molecular structures have enormous diversity but in
contrast the available experimental data are very limited, the heuristic function to estimate the synthe-
sis cost in retrosynthetic planning suffers from noticeable overfitting problems [68]. Furthermore, the
vast chemical reaction space gives rise to a substantial number of branching factors in the search tree,
leading to a rapid growth in the quantity of open nodes throughout the search process. Logic synthesis
is another practical problem where it is challenging to train a reliable heuristic function to evaluate
the solution’s quality, due to the immense diversity of circuit functionalities and variations in design
methodologies. Therefore, the above two real-world problems are suitable benchmarks to verify
the efficiency of SeeA∗ when the heuristic function is not accurate enough. In addition, Sokoban
is a widely-used benchmark for combinatorial optimization solvers. It only permits a maximum of
four legal actions at each step, and simulations can be leveraged to generate a substantial amount of
data for training high-quality heuristic value estimators. Sokoban is included to verify the impact of
an accurate heuristic function on the searching performance. All experiments are conducted using
NVIDIA Tesla V100 GPUs and an Intel(R) Xeon(R) Gold 6238R CPU.

7

5.1 Results on retrosynthetic planning

Chemical synthetic pathways are transformed into search trees following the literature [47]. A
state is a set of molecules that are able to synthesize the target molecule. The initial state contains
only the target molecule. The edges in the search tree represent the chemical reactions that enable
state transitions between the connected nodes. The retrosynthetic planning problem is solved if all
molecules within a state are available building blocks. A single-step retrosynthetic prediction model
is utilized as the policy model to generate potential chemical reactions yielding the input molecule.
The 50 chemical reaction templates with the highest probabilities constitute the set of valid actions
for the current state. A heuristic function is employed to estimate the synthesis cost of the molecule,
given the available building blocks. Each molecule is encoded using a 2048-dimensional Morgan
Fingerprint vector [45] as the input for the heuristic functions. Both the single-step retrosynthetic
prediction model and the cost estimator are provided by Retro∗+ [30] and used to guide the search
algorithm. Details about the guiding heuristics are in Appendix D. The last hidden layer’s output of
the cost estimator is employed as the embedding representation of the input molecule.

Experiments are conducted on the widely-used USPTO benchmark, comprising 190 molecules [6].
Commercially available molecules in eMolecules3 are used as building blocks. Since the invocation
of the single-step retrosynthetic prediction model contributes the majority of the computational cost,
all search algorithms are limited to a maximum of 500 single-step model calls, or 10 minutes of
real-time, following previous works [6, 30]. The outputs of the single-step model are cached to avoid
duplicate computation when the same molecule is encountered again [36]. The size of the candidate
set is set to K = 50. In the clustering sampling, the parameter η is set to 0.15, and the number of
clusters is 5. In the UCT-like sampling, the parameter cb is set to 0.35. Additional pruning is not
considered. Since the prior policy is already clipped at a minimum value of 0.001, Bayes mixing
with a uniform policy to avoid zero-probability is not used in LevinTS [38] and PHS [39].

The results on the USPTO benchmark are reported in Table 14. Due to the exploration induced by
selective sampling, the three SeeA∗ variants achieve superior performance in terms of the percentage
of solved molecules and the average solution length while utilizing minimal wall-clock runtime.
Among the three sampling strategies, the UCT-like sampling strategy achieves the best balance
between exploration and exploitation. As in the literature [47], predicting the synthetic cost of
molecules is challenging, and the cost estimator is not accurate with a non-negligible prediction error
σ. Then, it is expected and consistent with Theorem 4.3 that best-first search algorithms, including
WA∗ and PHS, are less efficient because they excessively rely on the values of the heuristic function.
MCTS requires more node expansions for problem-solving and generates solutions with longer
lengths, which is consistent with the findings in the resolution of combinatorial puzzles [1]. The
ε-Greedy node selection [52] achieves a success rate of 92.11%, surpassing the performance of A∗

search and demonstrating the practical benefits of introducing exploration when the reliability of
guidance heuristics is compromised.

Six additional datasets are collected from the literature for further comparisons. These datasets
comprise 4719 molecules, much more than the USPTO dataset. Details of the datasets are referred
to the Appendix E. According to the results in Table 3& 4 in Appendix G, SeeA∗ maintains its
superiority over other search algorithms, and SeeA∗(Cluster) has the highest mean success rate of
63.56%. The clustering sampling and UCT-like sampling are better than uniform sampling in terms
of the solved rate and the route length, indicating that the utilization of a superior sampling strategy
is beneficial for the performance of SeeA∗.

5.2 Results on logic synthesis

For the logic synthesis problem, a Verilog-based hardware design is first converted into an and-
inverter-graph (AIG) representation, and then the AIG is optimized to have the lowest area-delay
product (ADP) through a sequence of functionality-preserving transformations. The optimization
is combinatorial because the sequence is constructed by selecting transformations one-by-one in
order from a set. Following the literature, here the set is formed by seven legal transformations, and
the sequence length is fixed at 10. The resyn2 transformation sequence is used as a baseline for
comparisons [9, 10, 37]. More details about logic synthesis are in Appendix H. During the search

3http://downloads.emolecules.com/free/2023-12-01/
4Red entries indicate the top rank, while blue entries signify the second position. Table 2 remains consistent.

8

http://downloads.emolecules.com/free/2023-12-01/

Table 1: Test results on the USPTO benchmark for retrosynthetic planning problem.

Algorithm Solved (%) ↑ Length ↓ Expansions ↓ Avg time (in seconds) ↓
Retro∗ [6] 86.84 9.71 157.11 110.57
Retro∗+ [30] 91.05 8.74 100.15 61.24
MCTS(cpuct = 4.0) 89.47 8.23 122.97 87.86
A∗ search 88.42 9.27 92.45 96.07
WA∗ (ε = 1.5) 84.21 10.16 106.97 120.69
LevinTS [38] 96.84 7.45 57.11 39.77
PHS [39] 87.37 10.19 93.38 108.85
ε-Greedy (ε=0.1)[52] 92.11 43.78 89.14 76.59
SeeA∗(Uniform) 96.84 7.34 72.08 49.77
SeeA∗(Cluster) 98.42 6.48 79.75 37.98
SeeA∗(UCT) 98.95 6.36 62.07 32.38

process, the immediate reward is set to be 0, and the reward of the terminal step is the final AIG’s
ADP reduction rate against the baseline resyn2. The ADP score is approximately computed by ABC
[4]. A heuristic function is employed to predict the accumulated reward of a sequence when only
a front part of the sequence is available as input in the search process. This function serves as a
guiding heuristic for the search algorithms. Following ABC-RL [9], the training dataset consists of
23 circuits, while the test dataset comprises 12 MCNC circuits denoted as {C1 ∼ C12} [63] (See
Appendix I for more details.). The architecture of the heuristic function, the training and test details
are referred to Appendix J. WA∗ is equivalent to A∗ search because g = 0 in Equation 2.

The results on the MCNC benchmark are presented in Table 25. All three SeeA∗ variants outper-
form the existing methods in terms of the mean ADP reduction rates against the baseline resyn2.
SeeA∗(Cluster) achieves the highest ADP reduction (i.e., 23.5%), obviously surpassing the state-
of-the-art ABC-RL’s 20.9%. Guided by the same heuristic, SeeA∗(Cluster) outperforms the A∗

search in 11 out of the 12 testing circuits. As illustrated by an example of the search process in
Appendix K, the nodes expanded by A∗ tend to concentrate on a specific branch, whereas MCTS
expands across multiple branches excessively due to its enforced exploration. SeeA∗ achieves a good
balance between A∗ search and MCTS, ensuring that irrelevant branches are not unduly explored.

Table 2: The ADP reduction (%) rates against the resyn2 baseline on the MCNC testing datasets.

Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean ↑
DRiLLS [29] 18.9 6.7 8.0 13.0 38.4 19.1 5.4 18.0 14.3 18.6 6.6 11.0 14.8
Online-RL [69] 20.6 6.6 8.1 13.5 39.4 21.0 5.0 17.9 16.2 20.2 4.7 11.4 15.4
SA+Pred. [10] 17.6 17.0 15.6 13.0 46.5 18.2 8.5 23.6 19.9 17.6 10.0 20.3 19.0
MCTS [37] 17.1 15.9 13.1 13.0 46.9 14.9 6.5 23.2 17.7 20.5 13.1 19.7 18.5
ABC-RL[9] 19.9 19.6 16.8 15.0 46.9 19.1 12.1 24.3 21.3 21.1 13.6 21.6 20.9
A∗ search 18.3 16.6 19.7 15.7 43.6 15.2 13.3 25.5 19.4 20.8 7.5 18.8 19.5
ε-Greedy(ε = 0.1)[52] 18.3 16.6 20.9 15.6 45.8 19.9 11.5 24.5 19.4 20.8 15.3 18.7 20.6
PV-MCTS 17.3 20.0 27.9 20.1 27.3 20.7 13.5 24.7 14.3 14.1 14.7 20.0 19.5
PHS [39] 21.4 17.1 11.7 8.4 47.9 5.2 8.7 10.2 20.5 12.0 7.3 20.8 15.9
SeeA∗(Uniform) 21.9 18.7 21.9 16.5 37.2 13.8 12.3 25.5 21.5 24.1 21.5 24.0 21.6
SeeA∗(Cluster) 23.2 20.8 22.7 16.2 45.9 22.6 13.4 24.8 22.4 24.2 20.3 25.1 23.5
SeeA∗(UCT) 20.2 16.6 25.3 17.8 46.4 25.5 10.6 24.4 18.0 28.7 17.5 23.6 22.5

5.3 Results on Sokoban and path finding

The first 50000 training problems and the 1000 test problems are collected from Boxoban [23].
They are utilized to train a cost estimator and evaluate the search algorithms, respectively. More
training details are provided in Appendix L. During testing, the search process is terminated with
failure if the running time exceeds 10 minutes. SeeA∗ has successfully solved all 1000 test Sokoban
cases. Notably, the solutions generated by SeeA∗ exhibit not only shorter lengths compared to other
search algorithms such as A∗ search, WA∗, LevinTS, and PHS but also shorter lengths than the

5The MCTS in [37] did not utilize any guiding heuristics, and fast rollout was employed for node evaluation.
PV-MCTS and PHS were guided by the policy from ABC-RL [9] and the value function trained in this paper.

9

state-of-the-art DeepCubeA [1] algorithm. Detailed results are summarized in Appendix M. To
illustrate the effectiveness of SeeA∗ on problems where accurate heuristics could exist but the guiding
heuristic used is unreliable, experiments on path finding are conducted. A∗ and SeeA∗ exhibit similar
performance when the guidance heuristic is reliable enough. However, SeeA∗ demonstrates significant
advantages over A∗ when the heuristic is unreliable. More details are available in Appendix N.

5.4 The impact of the hyperparameters on the performance

The effects of three hyperparameters in SeeA∗ are empirically investigated below, i.e., the number
of candidate nodes K, the number of clusters Nc, and the adjustable weight cb in Equation 4.
Experiments are conducted on the USPTO benchmark for the retrosynthesis planning problem. The
number K is a critical parameter controlling the extent of exploration of SeeA∗. When K = 1, the
node to be expanded is solely determined by the selective sampling strategy, where the heuristic
function has no impact on the selection. When K is too large, all opening nodes will be finally chosen
as candidates because every node has a positive chance to be selected by the sampling strategy. In
this case, SeeA∗ degenerates back to A∗ which highly depends on the heuristic function. When K is
at an appropriate range, the sampling scheme endows SeeA∗ with helpful exploratory capability. It is
observed from Figure 11 in Appendix O that a wide range of K enables SeeA∗ to obtain superior
performance. For the extreme cases, SeeA∗(K = 1) has the lowest success rate and longest solution
length, and the performance of SeeA∗(K =∞), which is equivalent to A∗, is also discounted.

According to the results in Figure 12 in Appendix O, the performance of the clustering sampling
strategy is generally very robust against the choices of Nc. An inadequate number of clusters
makes it towards uniform sampling by ignoring the differences among the nodes, while an excessive
cluster number will distract the sampling process by noise in the node representation learning. The
hyperparameter cb controls the balance between exploration and exploitation in the UCT-like sampling
strategy. A large cb favors exploration during the selection of candidate nodes. From Figure 13
in Appendix O, either too large or too small cb are detrimental to the efficiency of SeeA∗, and the
UCT-like sampling strategy achieves excellent results when cb is in the range of [0.15, 0.4].

6 Conclusion

In this paper, the SeeA∗ search is proposed to enhance the exploration behavior of the A∗ search by
selecting expanded nodes from the sampled candidate nodes, rather than the entire set of open nodes.
A node that is evaluated not to have the best estimated heuristic value may be selected and explored,
thereby jumping out of the local optimum induced by inaccuracies in the heuristic function. Three
sampling strategies are presented in the paper. Furthermore, we have theoretically established that
SeeA∗ is more efficient than A∗ search when the estimation of heuristic functions is not accurate
enough. Experiments on two diverse real-world applications in chemistry and circuit design and one
puzzle-solving game demonstrate the efficiency of SeeA∗.

If the model exhibits precise state evaluation, the incorporation of exploration into A∗ search becomes
redundant. However, in practical applications, where problems tend to be intricate or lack sufficient
training data, obtaining accurately predictive heuristic functions is challenging. As suggested in
Equation 7, in addition to reducing the prediction error σ, the probability of expanding the optimal
nodes is also improved by using a smaller number of candidate nodes K to include the optimal
node in the candidate set with a greater likelihood P (n1 ∈ D). Screening candidate nodes reduces
the search space, thereby enhancing search efficiency. Investigations on more effective sampling
strategies will be conducted in future work. SeeA∗ will contribute to solving practical problems with
limited samples. However, this work is still in the nascent stages without further applications related
to people’s daily lives currently, and thus there are no immediate ethical or harmful social impacts.

7 Acknowledgement

This work was supported by the National Natural Science Foundation of China (grants No.
62172273) and the Shanghai Municipal Science and Technology Major Project, China (Grant No.
2021SHZDZX0102).

10

References
[1] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the rubik’s

cube with deep reinforcement learning and search. Nature Machine Intelligence, 1(8):356–363,
2019.

[2] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. Advances in neural information processing systems, 30, 2017.

[3] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. Learning heuristic search via
imitation. In Conference on Robot Learning, pages 271–280. PMLR, 2017.

[4] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.
In Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings 22, pages 24–40. Springer, 2010.

[5] Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and Steven I Marcus. An adaptive sampling
algorithm for solving markov decision processes. Operations Research, 53(1):126–139, 2005.

[6] Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic
planning with neural guided a* search. In International Conference on Machine Learning,
pages 1608–1616. PMLR, 2020.

[7] Tiejun Cheng, Yuan Zhao, Xun Li, Fu Lin, Yong Xu, Xinglong Zhang, Yan Li, Renxiao Wang,
and Luhua Lai. Computation of octanol- water partition coefficients by guiding an additive
model with knowledge. Journal of chemical information and modeling, 47(6):2140–2148, 2007.

[8] Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney,
and Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization.
Advances in Neural Information Processing Systems, 35:8760–8772, 2022.

[9] Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, and Siddharth
Garg. Retrieval-guided reinforcement learning for boolean circuit minimization. In The Twelfth
International Conference on Learning Representations, 2023.

[10] Animesh Basak Chowdhury, Benjamin Tan, Ryan Carey, Tushit Jain, Ramesh Karri, and
Siddharth Garg. Bulls-eye: Active few-shot learning guided logic synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[11] Eldan Cohen, Richard Anthony Valenzano, and Sheila A McIlraith. Type-wa*: Using explo-
ration in bounded suboptimal planning. In IJCAI, pages 4047–4053, 2021.

[12] Connor W Coley, William H Green, and Klavs F Jensen. Rdchiral: An rdkit wrapper for
handling stereochemistry in retrosynthetic template extraction and application. Journal of
chemical information and modeling, 59(6):2529–2537, 2019.

[13] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[14] Joseph Culberson. Sokoban is pspace-complete. 1997.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[16] Dorit Dor and Uri Zwick. Sokoban and other motion planning problems. Computational
Geometry, 13(4):215–228, 1999.

[17] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek, Tomáš Fico, and
Ladislav Jurišica. Path planning with modified a star algorithm for a mobile robot. Procedia
engineering, 96:59–69, 2014.

[18] Rüdiger Ebendt and Rolf Drechsler. Weighted a search unifying view and application. Artificial
Intelligence, 173(14):1310–1342, 2009.

11

[19] Dieqiao Feng, Carla P Gomes, and Bart Selman. A novel automated curriculum strategy to
solve hard sokoban planning instances. Advances in Neural Information Processing Systems,
33:3141–3152, 2020.

[20] Dieqiao Feng, Carla P Gomes, and Bart Selman. Solving hard ai planning instances using
curriculum-driven deep reinforcement learning. arXiv preprint arXiv:2006.02689, 2020.

[21] Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to
predicting successes and failures of clinical trials. Cell chemical biology, 23(10):1294–1301,
2016.

[22] Edward Groshev, Maxwell Goldstein, Aviv Tamar, Siddharth Srivastava, and Pieter Abbeel.
Learning generalized reactive policies using deep neural networks. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 28, pages 408–416,
2018.

[23] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of
model-free planning: boxoban levels, 2018.

[24] Peng Han, Peilin Zhao, Chan Lu, Junzhou Huang, Jiaxiang Wu, Shuo Shang, Bin Yao, and Xian-
gliang Zhang. Gnn-retro: Retrosynthetic planning with graph neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pages 4014–4021, 2022.

[25] Katja Hansen, Sebastian Mika, Timon Schroeter, Andreas Sutter, Antonius Ter Laak, Thomas
Steger-Hartmann, Nikolaus Heinrich, and Klaus-Robert Muller. Benchmark data set for in silico
prediction of ames mutagenicity. Journal of chemical information and modeling, 49(9):2077–
2081, 2009.

[26] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[27] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[28] Siqi Hong, Hankz Hankui Zhuo, Kebing Jin, Guang Shao, and Zhanwen Zhou. Retrosynthetic
planning with experience-guided monte carlo tree search. Communications Chemistry, 6(1):120,
2023.

[29] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep rein-
forcement learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 581–586. IEEE, 2020.

[30] Junsu Kim, Sungsoo Ahn, Hankook Lee, and Jinwoo Shin. Self-improved retrosynthetic
planning. In International Conference on Machine Learning, pages 5486–5495. PMLR, 2021.

[31] Peter Kissmann and Stefan Edelkamp. Improving cost-optimal domain-independent symbolic
planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25, pages
992–997, 2011.

[32] Greg Landrum. RDKit: Open-source cheminformatics software. http://www.rdkit.org. Accessed
Nov 20, 2016.

[33] Guoqing Liu, Di Xue, Shufang Xie, Yingce Xia, Austin Tripp, Krzysztof Maziarz, Marwin
Segler, Tao Qin, Zongzhang Zhang, and Tie-Yan Liu. Retrosynthetic planning with dual value
networks. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

[34] Chenyang Lv, Ziling Wei, Weikang Qian, Junjie Ye, Chang Feng, and Zhezhi He. Gpt-ls:
Generative pre-trained transformer with offline reinforcement learning for logic synthesis. In
2023 IEEE 41st International Conference on Computer Design (ICCD), pages 320–326. IEEE,
2023.

12

[35] Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach
to in silico blood-brain barrier penetration modeling. Journal of chemical information and
modeling, 52(6):1686–1697, 2012.

[36] Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński,
Philipp Seidl, and Marwin Segler. Re-evaluating retrosynthesis algorithms with syntheseus.
arXiv preprint arXiv:2310.19796, 2023.

[37] Walter Lau Neto, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. Flowtune: End-to-
end automatic logic optimization exploration via domain-specific multi-armed bandit. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[38] Laurent Orseau, Levi Lelis, Tor Lattimore, and Théophane Weber. Single-agent policy tree
search with guarantees. Advances in Neural Information Processing Systems, 31, 2018.

[39] Laurent Orseau and Levi HS Lelis. Policy-guided heuristic search with guarantees. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 12382–12390,
2021.

[40] Judea Pearl and Jin H Kim. Studies in semi-admissible heuristics. IEEE transactions on pattern
analysis and machine intelligence, (4):392–399, 1982.

[41] Yasasvi V Peruvemba, Shubham Rai, Kapil Ahuja, and Akash Kumar. Rl-guided runtime-
constrained heuristic exploration for logic synthesis. In 2021 IEEE/ACM International Confer-
ence On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[42] Hao Qian, Cheng Lin, Dengwei Zhao, Shikui Tu, and Lei Xu. Alphadrug: protein target specific
de novo molecular generation. PNAS nexus, 1(4):pgac227, 2022.

[43] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. Advances in neural information
processing systems, 30, 2017.

[44] Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-based anytime planning
with landmarks. Journal of Artificial Intelligence Research, 39:127–177, 2010.

[45] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742–754, 2010.

[46] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[47] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic ai. Nature, 555(7698):604–610, 2018.

[48] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[49] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[50] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[51] Toshio Uchiyama and Michael A Arbib. An algorithm for competitive learning in clustering
problems. Pattern Recognition, 27(10):1415–1421, 1994.

13

[52] Richard Valenzano, Nathan Sturtevant, Jonathan Schaeffer, and Fan Xie. A comparison of
knowledge-based gbfs enhancements and knowledge-free exploration. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 24, pages 375–379,
2014.

[53] Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max Q-H Meng. Neural
rrt*: Learning-based optimal path planning. IEEE Transactions on Automation Science and
Engineering, 17(4):1748–1758, 2020.

[54] Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, and Xin Lin. Empowering a*
search algorithms with neural networks for personalized route recommendation. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 539–547, 2019.

[55] Christopher Wilt and Wheeler Ruml. When does weighted a* fail? In Proceedings of the
International Symposium on Combinatorial Search, volume 3, pages 137–144, 2012.

[56] Kedi Wu and Guo-Wei Wei. Quantitative toxicity prediction using topology based multitask
deep neural networks. Journal of chemical information and modeling, 58(2):520–531, 2018.

[57] Fan Xie, Martin Müller, Robert Holte, and Tatsuya Imai. Type-based exploration with multiple
search queues for satisficing planning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28, 2014.

[58] Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu, Chenjuan Guo, Bin Yang, and Tao
Qin. Retrograph: Retrosynthetic planning with graph search. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2120–2129, 2022.

[59] Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach
to traveling salesman problem. IEEE Access, 8:108418–108428, 2020.

[60] Guoli Xiong, Zhenxing Wu, Jiacai Yi, Li Fu, Zhijiang Yang, Changyu Hsieh, Mingzhu Yin,
Xiangxiang Zeng, Chengkun Wu, Aiping Lu, et al. Admetlab 2.0: an integrated online platform
for accurate and comprehensive predictions of admet properties. Nucleic Acids Research,
49(W1):W5–W14, 2021.

[61] Lei Xu. Deep bidirectional intelligence: Alphazero, deep ia-search, deep ia-infer, and tpc causal
learning. Applied Informatics, 5(1), 2018.

[62] Lei Xu, Pingfan Yan, and Tong Chang. Algorithm cnneim-a and its mean complexity. In Proc.
of 2nd international conference on computers and applications. IEEE Press, Beijing, pages
494–499, 1987.

[63] Saeyang Yang. Logic synthesis and optimization benchmarks user guide: version 3.0. Citeseer,
1991.

[64] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari
games with limited data. Advances in Neural Information Processing Systems, 34:25476–25488,
2021.

[65] Yemin Yu, Ying Wei, Kun Kuang, Zhengxing Huang, Huaxiu Yao, and Fei Wu. Grasp:
Navigating retrosynthetic planning with goal-driven policy. Advances in Neural Information
Processing Systems, 35:10257–10268, 2022.

[66] Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient learning for alphazero via path consistency. In
International Conference on Machine Learning, pages 26971–26981. PMLR, 2022.

[67] Dengwei Zhao, Shikui Tu, and Lei Xu. Generalized weighted path consistency for mastering
atari games. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[68] Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient retrosynthetic planning with mcts exploration
enhanced a* search. Communications Chemistry, 7(1):52, 2024.

[69] Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z Pan. Exploring logic optimiza-
tions with reinforcement learning and graph convolutional network. In Proceedings of the 2020
ACM/IEEE Workshop on Machine Learning for CAD, pages 145–150, 2020.

14

A Pseudocodes for SeeA∗ and its sampling strategies

In this section, pseudocode for the SeeA∗ search algorithm, and three sampling strategies: uniform
sampling strategy, clustering sampling strategy, and UCT-like sampling strategy, are given. Algo-
rithm 1 provides a comprehensive summary of the computational process of SeeA∗. The algorithm
begins by initializing the Open set Owith the initial node n0. In each step, a candidate set D is
obtained using the sampling strategy F . The node with the minimum f value from the candidate set
is selected to be expanded. If the algorithm reaches a goal state, it successfully finds a solution and
terminates. Otherwise, the expanded node is moved to the Closed set C, and its child nodes are added
to the Open set O. This process is repeated until the O becomes empty.

The uniform sampling strategy is presented in Algorithm 2. If the size of the open set |O| does
not exceed the required number of candidate nodes to be sampled, all nodes in the open set are
considered as candidate nodes. However, if the size exceeds the required number, K nodes are
uniformly sampled from the open set to serve as candidate nodes.

Algorithm 1: SeeA∗ search algorithm
Input: root node n0, sampling strategy F , the number of candidate nodes K, the maximum
number of expansions Tmax, and heuristic evaluation function f .
Initialize C ← ∅, O ← {n0}, and t← 0.
repeat

Prepare candidate set D = F (O,K).
n← argminn∈D f(n).
if n is the goal node then

return n
else
C ← C ∪ {n}, O ← O ∪ CH(n) \ {n}.

end if
t← t+ 1

until O is empty or t ≥ Tmax

return False

Algorithm 2: Uniform sampling strategy
Input: open set O, the number of candidate nodes K.
if |O| ≤ K then

return O
else
D ← Uniformly sample K nodes from O
return D

end if

Algorithm 3: Competitive clustering sampling strategy
Input: clusters Sc = {Sc

1, S
c
2, · · · , Sc

Nc
}, the number of candidate nodes K.

Initialize D ← ∅
Ke ← ⌈ K

|Sc|⌉
for Sc

i ∈ Sc do
if |Sc

i | ≤ Ke then
Di ← Sc

i
else
Di ← Uniformly sample Ke nodes from Sci

end if
D ← D ∪Di

end for
return D

The clustering sampling strategy is summarized in Algorithm 3. The open nodes are divided into
Nc clusters, and an equal number of candidate nodes are sampled from each cluster. To sample K

15

candidate nodes, each cluster requires sampling Kc = ⌈ K
|Sc|⌉ nodes. For each cluster, if the number

of open nodes within this cluster does not exceed Kc, all nodes are selected as candidate nodes.
Otherwise, Kc nodes are uniformly sampled as candidate nodes. To reduce computational overhead,
competitive learning is employed for clustering, enabling avoidance of the need for re-clustering
when new open nodes are added after each expansion. The algorithm for this competitive clustering
process is displayed in Algorithm 5. Nc clustering centers are initialized randomly. When a new node
is added to the open set, it is assigned to the cluster whose center is closest to it, and the coordinates
of that cluster center are updated by moving toward the position of the newly added node.

UCT-like sampling strategy is provided in Algorithm 4, respectively. Each node n is evaluated by a
statistic E(n) in Equation 4, which can achieve a balance between exploitation and exploration. The
f value of the node is used to evaluate the quality and the depth d(n) is used to encourage exploration.
If the size of the open set |O| does not exceed the required number of candidate nodes to be sampled,
all nodes in the open set are considered as candidate nodes. Otherwise, the K nodes with the smallest
E values are selected as the candidate nodes.

Algorithm 4: UCT-like sampling strategy
Input: open set O, the number of candidate nodes K, hyperparameter cb.
if |O| ≤ K then

return O
else
dmax ← maxn∈O d(n)
for n ∈ O do

Calculate E(n) with Equation 4.
end for
D ← {n|E(n) is the K smallest values in O}
return D

end if

Algorithm 5: Node expanding for competitive clustering
Input: clusters Sc = {Sc

1, S
c
2, · · · , Sc

Nc
} and their centers W c = {wc

1, w
c
2, · · · , wc

Nc
}, expanded

node n, feature extraction function fh, and weight η.
for n ∈ CH(n) do
w ← fh(n)
j ← argminwc

i∈W c ||w − wc
i ||

Sc
j ← Sc

j ∪ {n}
wc

j ← wc
j + η × (w − wc

j)
end for
return Sc, W c

B An example of the clustering sampling strategy

As shown in Figure 2 (a), the sampled nodes exhibit a uniform distribution overall, resulting in a
proportional relationship between the number of sampled nodes within each cluster and the total
number of nodes within each class. Clusters with fewer nodes are highly susceptible to the occurrence
of no nodes being sampled as candidate nodes under limited sampling size. Therefore, this sampling
strategy cannot effectively explore the various potential expansion directions. As depicted in Figure 2
(b), at least one node from each cluster is sampled compulsorily. Consequently, the probability of
including nodes on the optimal branch is increased, thereby facilitating search efficiency.

C Monotonicity of pσ

pσ is the probability of P (f(n) < f(n′)), in which n is the node on the optimal path and n′ is the
node on the non-optimal path. According to Assumption 4.1:

P (f(n)|σ) ∼ U(µf
0 − σ, µf

0 + σ) (12)

P (f(n′)|µs, σ) ∼ U(f∗(n′)− σ, f∗(n′) + σ) (13)

16

Figure 2: Set of selected candidate nodes D obtained by (a) uniform sampling strategy; (b) clustering
sampling strategy.

f∗(n′) ∼ G(µf
1 , σ

2
s), µ

f
1 > µf

0 (14)

If µf
0 + σ ≤ f∗(n′)− σ:

P
(
f(n) ≤ f(n′)|f∗(n′) ≥ µf

0 + 2σ, σ
)
= 1 (15)

If µf
0 − σ ≥ f∗(n′) + σ:

P
(
f(n) ≤ f(n′)|f∗(n′) ≤ µf

0 − 2σ, σ
)
= 0 (16)

If µ0 − 2σ ≤ f∗(n′) < µ0:

P (f(n) ≤ f(n′)|f∗(n′), σ) =

∫ f∗(n′)+σ

µf
0−σ

1

2σ

∫ f∗(n′)+σ

f(n)

1

2σ
df(n′)df(n) (17)

=
1

4σ2

∫ f∗(n′)+σ

µf
0−σ

(f∗(n′) + σ − f(n))df(n) =

(
f∗(n′)− µf

0 + 2σ
)2

8σ2

If µf
0 ≤ f∗(n′) < µf

0 + 2σ:

P (f(n) ≤ f(n′)|f∗(n′), σ) =

∫ f∗(n′)−σ

µf
0−σ

1

2σ

∫ f∗(n′)+σ

f∗(n′)−σ

1

2σ
df(n′)df(n)

+

∫ µf
0+σ

f∗(n′)−σ

1

2σ

∫ f∗(n′)+σ

f(n)

1

2σ
df(n′)df(n) (18)

∫ f∗(n′)−σ

µf
0−σ

1

2σ

∫ f∗(n′)+σ

f∗(n′)−σ

1

2σ
df(n′)df(n)

=
1

4σ2
(f∗(n′) + σ − f∗(n′) + σ)(f∗(n′)− σ − µf

0 + σ)

=
2σ(f∗(n′)− µf

0)

4σ2
=

f∗(n′)− µf
0

2σ
(19)

17

∫ µf
0+σ

f∗(n′)−σ

1

2σ

∫ f∗(n′)+σ

f(n)

1

2σ
df(n′)df(n)

=

∫ µf
0+σ

f∗(n′)−σ

f∗(n′) + σ − f(n)

4σ2
df(n) =

1

2
−

(
f∗(n′)− µf

0

)2

8σ2
(20)

P (f(n) ≤ f(n′)|f∗(n′), σ) =
f∗(n′)− µf

0

2σ
+

1

2
−

(
f∗(n′)− µf

0

)2

8σ2

= 1−

(
f∗(n′)− µf

0 − 2σ
)2

8σ2
(21)

In summary:

P (f(n) ≤ f(n′)|f∗(n′), σ) =

1, f∗(n′) ≥ µf
0 + 2σ

1−

(
f∗(n′)− µf

0 − 2σ
)2

8σ2
, µf

0 ≤ f∗(n′) < µf
0 + 2σ(

f∗(n′)− µf
0 + 2σ

)2

8σ2
, µf

0 − 2σ ≤ f∗(n′) < µf
0

0, f∗(n′) ≤ µf
0 − 2σ

(22)

We have that:

P (f(n) ≤ f(n′)|σ) =
∫

P (f(n) ≤ f(n′)|f∗(n′), σ)P (f∗(n′))df∗(n′), (23)

f∗(n′) ∼ G(µf
1 , σ

2
s) (24)

then we want to prove that P (f(n) ≤ f(n′)) decreases with σ. Let m(f∗(n′)|σ) =

P (f(n) ≤ f(n′)|f∗(n′), σ), we first prove that m(f∗(n′)|σ) centrally symmetric about (µf
0 ,

1
2)

by proving that m (f∗(n′)|σ) = 1−m
(
2µf

0 − f∗(n′)|σ
)

:

If f∗(n′) ≥ µf
0 + 2σ:

m(f∗(n′)|σ) = 1 (25)

2µf
0 − f∗(n′) ≤ µf

0 − 2σ (26)

m
(
2µf

0 − f∗(n′)|σ
)
= 0 = 1−m (f∗(n′)|σ) (27)

If µf
0 ≤ f∗(n′) < µf

0 + 2σ:

m(µf
s |σ) = 1−

(
f∗(n′)− µf

0 − 2σ
)2

8σ2
(28)

µf
0 − 2σ < 2µf

0 − f∗(n′) ≤ µf
0 (29)

m
(
2µf

0 − f∗(n′)|σ
)
=

(
2µf

0 − f∗(n′)− µf
0 + 2σ

)2

8σ2

=

(
f∗(n′)− µf

0 − 2σ
)2

8σ2
= 1−m(f∗(n′)|σ) (30)

18

If µf
0 − 2σ ≤ f∗(n′) < µf

0 :

m(f∗(n′)|σ) =

(
f∗(n′)− µf

0 + 2σ
)2

8σ2
(31)

µf
0 < 2µf

0 − f∗(n′) ≤ µf
0 + 2σ (32)

m
(
2µf

0 − f∗(n′)|σ
)
= 1−

(
2µf

0 − f∗(n′)− µf
0 − 2σ

)2

8σ2

= 1−

(
f∗(n′)− µf

0 + 2σ
)2

8σ2
= 1−m(f∗(n′)|σ) (33)

If f∗(n′) ≤ µf
0 − 2σ:

m(f∗(n′)|σ) = 0 (34)

2µf
0 − f∗(n′) ≥ µf

0 + 2σ (35)

m
(
2µf

0 − f∗(n′)|σ
)
= 1 = 1−m(f∗(n′)|σ) (36)

Therefore, m(f∗(n′)|σ) centrally symmetric about (µf
0 ,

1
2). Then we want to illustrate the mono-

tonicity of the function m(µf
s |σ) about the variable σ, and σ > 0

If f∗(n′) ≥ µf
0 + 2σ or f∗(n′) ≤ µf

0 − 2σ, m(f∗(n′)|σ) is constant. If µf
0 − 2σ ≤ f∗(n′) < µf

0 ,
m(f∗(n′)|σ) is monotonic increasing, because

µf
0 − 2σ ≤ f∗(n′) < µf

0 ⇒ σ ≥ µf
0 − µf

s

2
(37)

(
f∗(n′)− µf

0 + 2σ
)2

8σ2

′

=

(
µf
0 − f∗(n′)

)(
2σ − µf

0 + f∗(n′)
)

4σ3
≥ 0 (38)

If µf
0 ≤ f∗(n′) < µf

0 + 2σ, m(f∗(n′)|σ) is monotonic decreasing, because

µf
0 ≤ f∗(n′) < µf

0 + 2σ ⇒ σ >
f∗(n′)− µf

0

21−
(
f∗(n′)− µf

0 − 2σ
)2

8σ2

′

=

(
f∗(n′)− µf

0

)(
f∗(n′)− µf

0 − 2σ
)

4σ3
< 0 (39)

Therefore, as shown in Figure 3, P (f(n) ≤ f(n′)|f∗(n′), σ) is not always decrease with σ. However,
on average, P (f(n) ≤ f(n′)|σ) will always decrease with σ, and we will prove this.

For convenience, let F (σ) = P (f(n) ≤ f(n′)|σ). Assume σ1 < σ2, then:

F (σ1)− F (σ2) =

∫ ∞

−∞
[m(f∗(n′)|σ1)−m(f∗(n′)|σ2)]P (f∗(n′))df∗(n′)

=

∫ µf
0

−∞
[m(f∗(n′)|σ1)−m(f∗(n′)|σ2)]P (f∗(n′))df∗(n′)

+

∫ ∞

µf
0

[m(f∗(n′)|σ1)−m(f∗(n′)|σ2)]P (f∗(n′))df∗(n′) (40)

Because the function m is centrally symmetric about
(
µf
0 ,

1
2

)
:

m(f∗(n′)|σ) = 1−m(2µf
0 − f∗(n′)|σ) (41)

19

Figure 3: Example for the monotonicity of P (f(n) ≤ f(n′)|f∗(n′), σ).

Therefore: ∫ µf
0

−∞
[m(f∗(n′)|σ1)−m(f∗(n′)|σ2)]P (f∗(n′))df∗(n′)

=

∫ µf
0

−∞

[
m(2µf

0 − f∗(n′)|σ2)−m(2µf
0 − f∗(n′)|σ1)

]
P (f∗(n′))df∗(n′)

=

∫ ∞

µf
0

[m(f∗(n′)|σ2)−m(f∗(n′)|σ1)]P (2µf
0 − f∗(n′))df∗(n′) (42)

F (σ1)− F (σ2)

=

∫ ∞

µf
0

[m(f∗(n′)|σ1)−m(f∗(n′)|σ2)]
(
P (f∗(n′))− P (2µf

0 − f∗(n′))
)
df∗(n′) (43)

When f∗(n′) > µf
0 , m(f∗(n′)|σ) is monotonic decreasing with σ:

m(f∗(n′)|σ1)−m(f∗(n′)|σ2) > 0 (44)

Because f∗(n′) ∼ G(µf
1 , σ

2
s), if P (f∗(n′)) < P (2µf

0 − f∗(n′)),

|f∗(n′)− µf
1 | > |2µ

f
0 − f∗(n′)− µf

1 | (45)(
f∗(n′)− µf

1

)2

>
(
2µf

0 − f∗(n′)− µf
1

)2

(46)

4
(
µf
0 − µf

1

)(
f∗(n′)− µf

0

)
> 0 (47)

Assumption 4.1 gives µf
1 > µf

0 , and Equation 43 only considers the situation when f∗(n′) > µf
0 .

Therefore Equation 47 is not established and P (f∗(n′)) ≥ P (2µf
0 − f∗(n′)). Therefore:

P (f∗(n′))− P (2µf
0 − f∗(n′)) ≥ 0 (48)

F (σ1)− F (σ2) > 0, σ1 < σ2 (49)
Therefore, F (σ) is monotonic decreasing. The larger the estimation error σ, the less the probability
of P (f(n) < f(n′)|σ).
The assumption in Corollary 4.2 that the prediction error for f∗ is uniformly distributed is quite
strong. To further illustrate the applicability of the algorithm, we also prove that Corollary 4.2 is
established if the noise follows a Gaussian distribution. Denoting Gaussian distribution as G(·, ·), the
assumption regarding the distribution of the estimated values will be adjusted to:

20

Assumption C.1 For each node n on the optimal path, f(n) ∼ G(µf
0 , σ

2). For nodes not on the
optimal path, f(n) ∼ G(f∗(n), σ2), and f∗(n) are independently and identically sampled from
G(µf

1 , σ
2
s). µ

f
0 < µf

1 holds because the optimal path has a lower cost.

For two Gaussian distributions, we have the following lemma [62, 67]:

Lemma C.2 Assume x ∼ G(µ1, σ
2
1), y ∼ G(µ2, σ

2
2). If x, y are independent of each other and

µ2 > µ1, then

P (x > y) =
1

π

∫ π
2

0

exp

{
−1

2

[(µ2 − µ1)/
√
σ2
1 + σ2

2]
2

cos2 θ

}
dθ. (50)

For a node n on the optimal path, f(n) ∼ G(µf
0 , σ

2). For a node n′ off the optimal path, f(n′) ∼
G(f∗(n′), σ2). If µf

0 > f∗(n′):

P (f(n) < f(n′)|µf
0 > f∗(n′)) =

1

π

∫ π
2

0

exp

{
−1

2

(f∗(n′)− µf
0)

2

2σ2 cos2 θ

}
dθ = m(f∗(n′)|σ) (51)

Otherwise:

P (f(n) < f(n′)|µf
0 < f∗(n′)) = 1− 1

π

∫ π
2

0

exp

{
−1

2

(f∗(n′)− µf
0)

2

2σ2 cos2 θ

}
dθ

= 1−m(f∗(n′)|σ). (52)

The probability that the f value of the optimal node is less than the f value of a non-optimal node is

F (σ) = P (f(n) < f(n′)|σ) =
∫
f∗(n′)<µf

0

P (f∗(n′))m(f∗(n′)|σ)df∗(n′)

+

∫
f∗(n′)≥µf

0

P (f∗(n′))(1−m(f∗(n′)|σ))df∗(n′). (53)

If σ2 > σ1:

F (σ2)− F (σ1) =

∫
f∗(n′)<µf

0

P (f∗(n′))(m(f∗(n′)|σ2)−m(f∗(n′)|σ1))df
∗(n′)

+

∫
f∗(n′)≥µf

0

P (f∗(n′))(m(f∗(n′)|σ1)−m(f∗(n′)|σ2))df
∗(n′). (54)

m(f∗(n′)|σ) is symmetric about the axis f∗(n′) = µf
0 ,

m(f∗(n′)|σ) = m(2µf
0 − f∗(n′)|σ). (55)

Equation 54 is equivalent to

F (σ2)− F (σ1) =

∫
f∗(n′)≥µf

0

(P (2µf
0 − f∗(n′))− P (f∗(n′)))

× (m(f∗(n′)|σ2)−m(f∗(n′)|σ1))df
∗(n′) (56)

According to the definition, m is monotonically increasing with respect to σ. Therefore,
m(f∗(n′)|σ2) − m(f∗(n′)|σ1) > 0. Because f∗(n′) ∼ N (µf

1 , σ
2
2) and µf

0 < µf
1 , we have

P (2µf
0 − f∗(n′)) − P (f∗(n′)) < 0 when f∗(n′) ≥ µf

0 . Therefore, F (σ2) − F (σ1) < 0 is es-
tablished, and P (f(n) < f(n′)|σ) decreases as the prediction error σ increases when the noise is
Gaussian distribution. The above analyses will be added to the revised paper to further elucidate
the impact of prediction errors. Under both the uniform error distribution and the Gaussian error
distribution, the larger the prediction error, the lower the likelihood of selecting the optimal node.

21

D Network architecture of policy and value in retrosynthesis planning

Each molecule is encoded using a 2048-dimensional Morgan Fingerprint vector [45] as the input for
the heuristic functions. The policy network is a multi-class task based on chemical reaction templates.
381302 templates are available. The policy network architecture is summarized as follows:

• A fully connected layer with dimensions [2048, 512].

• A batch normalization layer.

• A dropout layer with a dropout rate of 0.3.

• Another fully connected layer with dimensions [512, 381302].

• A softmax layer.

The top 50 reaction templates with the highest probabilities are retained, and corresponding chemical
reactions are generated using rdchiral package [12], an RDKit [32] wrapper for handling stereochem-
istry in retrosynthetic template extraction and application.

The output of the value network is a scalar to estimate the synthetic cost of the input molecules. The
architecture is summarized as follows:

• A fully connected layer with dimensions [2048, 128].

• A ReLU activation layer.

• A dropout layer with a dropout rate of 0.1.

• A fully connected layer with dimensions [128, 1].

• Normalize the output y with log(1 + ey).

Parameters of the policy and value network are the same with Retro∗+ [30]. No fine-tuning has been
performed on the network.

E Introduction of test molecule datasets

Besides the USPTO benchmark, six additional datasets comprising 4719 molecules are employed for
ro- bust validation. The introduction of these datasets is as follows.

logP [7]: The logarithm of the partition coefficient (logP) is a measure of the solubility of a molecule
in a particular solvent. The logS of a molecule can affect the molecule’s pharmacokinetics and
pharmacodynamics.

logS [60]: It is used to evaluate the solubility of molecules, which can affect the absorption, distribu-
tion, metabolism, and excretion (ADME) of a drug candidate.

Toxicity LD50 [56]: Toxicity plays a key role in determining the safety and efficacy of drugs.

Ames [25]: The Ames test is commonly used in the field of drug development to evaluate the potential
mutagenicity of drug candidates, as well as other chemicals that may be used in drug manufacturing
or as excipients.

BBBP [35]: Blood-brain barrier (BBB) is a protective barrier that separates the bloodstream from the
brain to prevent harmful substances from entering the brain. BBB penetration (BBBP) is considered
when developing new drugs.

ClinTox [21]: It is a dataset collecting drugs approved by the FDA and drugs that have failed clinical
trials for toxicity reasons.

To clean these datasets, molecules present in either the USPTO database or the building block set
are removed. Additionally, molecules that can be solved by Retro∗ in one step and those that can be
easily solved by a heuristic-based BFS planning algorithm within a fixed time limit are also excluded.
After processing, 4719 molecules are retained.

22

F Search tree representation in retrosynthesis planning

The search tree employed in this paper in retrosynthesis planning problem is displayed in Figure 4.
The initial state contains only the target molecule. The edges in the search tree represent the
chemical reactions that enable state transitions between the connected nodes, which decompose the
input product into its reactants. A state is a set of molecules that are able to synthesize the target
molecule, which is decomposed from the target molecule along the traverse reaction path from
the root to this node. The retrosynthetic planning problem is solved if all molecules within a state
are available building blocks. For A single-step retrosynthetic prediction model is utilized as the
policy model to generate potential chemical reactions yielding the input molecule. For non-terminal
intermediate nodes, all molecules within the node are sorted in alphabetical order based on their
SMILES representation. The first non-building block molecule in the sorted list is selected as the
input molecule of the single-step prediction model. The number of available reactions provided by
the policy for a given node corresponds to the number of branching factors within the search tree.

Figure 4: The process involves transforming the representation of the chemical retrosynthetic route
into the search tree representation used in this paper. (a) is the real chemical retrosynthetic route, in
which the reverse reaction decomposes the input product molecule into several reactant molecules;
(b) is the corresponding search tree representation, and each node in the tree contains all molecules
decomposed from the target molecule along the traverse reaction path from the root to this node.

Retro∗ and Retro∗+ utilize the AND-OR tree as the representation for the planning process. In this
representation, a reaction is denoted by an AND node, with its child nodes representing the reactant
molecules involved in that reaction. Similarly, a molecule is represented by an OR node, with its
child nodes representing the chemical reactions capable of synthesizing that molecule. A chemical
reaction can be taken if all of its child reactants can be synthesized, and a chemical molecule can be
synthesized if there exists at least one child chemical reaction that can take place. We also applied

23

SeeA∗ to the And-OR Tree framework, and under the same settings, utilizing the uniform sampling
strategy to obtain candidate nodes, we observed an increase in success rate from Retro∗+’s 91.05%
to 92.11% in USPTO benchmark. The averafe siolution length is decreased from Retro∗+’s 8.74 to
8.39. This finding demonstrates the effectiveness of the algorithm in the AND-OR tree structure.

G Test results on each dataset for retrosynthetic planning

Average test results on the seven molecule datasets and results for the six additional testing molecule
datasets are presented in Table 3 and 4 respectively. SeeA∗ achieves the maximum number of
problem-solving instances and obtains the shortest solution length across all datasets.

Table 3: Test success accuracy on the seven dataset for retrosynthetic planning problem (%).

Algorithm USPTO logP logS Toxicity LD50 Ames BBBP ClinTox Mean

Retro∗ 86.84 53.96 67.08 55.39 57.40 47.87 38.69 54.66
Retro∗+ 91.05 61.14 69.29 59.98 63.51 52.46 43.15 59.93
A∗ 88.42 58.71 68.55 59.17 62.98 51.80 42.04 58.73
WA∗ 84.21 58.43 68.30 59.52 62.89 52.30 44.59 58.87
MCTS 89.47 58.15 67.08 58.26 63.42 52.95 46.34 59.20
LevinTS 96.84 61.14 70.76 60.32 64.84 54.92 43.63 61.01
PHS 87.37 55.45 65.60 57.00 59.96 50.98 39.01 56.16
ε-Greedy 92.11 61.14 70.02 62.04 65.01 54.26 45.22 61.23
SeeA∗(Uniform) 96.84 63.37 71.00 62.73 67.32 56.39 45.70 62.97
SeeA∗(Cluster) 98.42 64.12 72.73 63.53 66.08 57.54 47.77 63.56
SeeA∗(UCT) 98.95 63.93 72.97 63.65 65.28 56.89 47.45 63.31

Table 4: Test solution length on the seven dataset for retrosynthetic planning problem.

Algorithm USPTO logP logS ToxicityLD50 Ames BBBP ClinTox Mean

Retro∗ 9.71 16.67 12.63 16.24 15.91 18.29 21.11 16.58
Retro∗+ 8.74 15.01 12.26 15.23 14.67 17.37 20.06 15.44
A∗ 9.27 15.64 12.44 15.49 14.94 17.56 20.26 15.78
WA∗ 10.16 15.62 12.46 15.39 14.90 17.36 19.43 15.66
MCTS 8.23 16.27 13.00 15.99 15.05 17.35 19.15 15.91
LevinTS 7.45 15.55 12.48 15.74 15.02 17.25 20.24 15.74
PHS 10.19 16.56 13.29 16.11 15.72 17.79 21.09 16.51
ε-Greedy 43.78 23.21 12.76 16.70 16.32 18.43 23.82 19.88
SeeA∗(Uniform) 7.34 14.64 11.81 14.76 14.00 16.62 19.41 14.85
SeeA∗(Cluster) 6.48 14.05 11.20 14.21 13.79 15.85 18.65 14.31
SeeA∗(UCT) 6.36 14.05 11.18 14.11 13.95 16.01 18.61 14.33

H Introduction for logic synthesis problem

Logic synthesis is the process of transforming a hardware design at the register transfer level (RTL)
into a Boolean gate-level network, which is represented by an and-inverter-graph (AIG), i.e., a
netlist exclusively containing AND and NOT gates. Subsequently, a sequence of functionality-
preserving transformations is applied to generate an optimized AIG. Seven operations are allowed
following the work of ABC [4] and other reinforcement learning algorithms [9, 29], including
balance, re-substitution, re-substitution -z, rewrite, rewrite -z, refactor, and refactor -z. The number
of transformations is limited to 10, which is the same with ABC-RL [9]. Finally, post-technology
mapping is performed using a 7nm technology library to obtain the final netlist, which is also
generated using the ABC package. Time delay and area are estimated by ABC to evaluate the
solution. An example framework of solving the logic synthesis problem is presented in Figure 5.

24

Figure 5: An example of the logic synthesis problem. The design of the hardware is represented
by an and-inverter graph. After a series of transformations, a more refined AIG is obtained, while
maintaining the same function as the original AIG. While preserving the input and output relationship,
the number and connectivity of intermediate nodes are optimized. Post-technology mapping and final
evaluation are conducted with the ABC package.

I Introduction of the MCNC dataset

According to the partitioning in ABC-RL [9], A total of 15 circuits from the MCNC dataset [63]
are utilized as training circuits, while the remaining 12 circuits from the same dataset are employed
to evaluate the performance. The number of nodes in the initial AIG of each circuit ranges from
hundreds to thousands. The information about the circuits is summarized in Table 5 & 6. The number
of input and output nodes varies from a few to several hundred, while the total number of nodes
ranges from several hundred to thousands.

Table 5: Characterization of training circuits from MCNC dataset.

Circuit # Inputs # Outputs # Nodes Level

alu2 10 6 401 40
apex3 54 50 2374 21
apex5 117 88 1280 21
b2 16 17 1814 22
c1355 41 32 504 26
c2670 233 140 717 21
c5315 178 123 1773 38
c6288 32 32 2337 120
frg1 28 3 126 19
i7 199 67 904 6
i8 133 81 3310 21
m3 8 16 434 14
max512 9 6 743 19
prom2 9 21 3513 22
table5 17 15 1987 26

J Value estimator for logic synthesis problem

The input of the value estimator consists of the initial AIG and the sequence of actions that have been
taken. Nodes in the AIG (And-Inverter Graph) are represented by a two-dimensional vector, which

25

Table 6: Characterization of testing circuits from MCNC dataset.

Circuit # Inputs # Outputs # Nodes Level

alu4 10 6 735 42
apex1 45 45 2655 27
apex2 39 3 445 29
apex4 9 19 3452 21
b9 41 21 105 10
c880 60 26 327 24
c7552 207 108 2074 29
i9 88 63 889 14
m4 8 16 760 14
pair 173 137 1500 24
max1024 10 6 1021 20
prom1 9 40 7803 24

records the node type and the number of inverted predecessors. The adjacency matrix is used to
capture the node connectivity. Graph convolutional network (GCN) is used to extract the embedding
for AIG, and the architecture is summarized as follows:

• A GCN (Graph Convolutional Network) layer with a hidden size of 32.
• A batch normalization layer.
• A LeakyReLU activation layer.
• A GCN layer with a hidden size of 32.
• A batch normalization layer.
• Mean pooling and max pooling are independently applied, and the outputs are concatenated

to form the final embedding, which is a 64 dimension vector.

The sequence of actions and the current number of steps are combined into a string, which serves
as the input to the BERT model [15] to obtain a sequence embedding with 768 dimensions. AIG
embedding and sequence embedding are concatenated together as the input of the value estimator,
and the architecture is:

• A fully connected layer with dimensions [832, 256].
• A LeakyReLU activation layer.
• A fully connected layer with dimensions [256, 256].
• A LeakyReLU activation layer.
• A fully connected layer with dimensions [256, 1].
• A Tanh activation layer.

MCTS simulations are performed on the training circuits to collect samples. During the evaluation
of the leaf node before backpropagation, a complete search path is obtained through a fast rollout,
which is then stored as a training dataset for the value estimator. 1500 action sequences are collected
for each circuit. resyn2 synthesis recipe is used as the baseline during the evaluation. The area-delay
product reduction for an action sequence P is defined as

ADPR(AIG,P) = 1− ADP (AIG,P)

ADP (AIG, resyn2)
, (57)

where ADP is Area×Delay. The reward in logic synthesis problem is

R(AIG,P, t) =

{
max{−1, ADPR(AIG,P)}, if t = |P |
0, Otherwise (58)

where t is the index of the current step. The immediate reward is always 0 except for the
last step. Therefore, the ground truth value for states in the sequence P are all equal to

26

max{−1, ADPR(AIG,P)}. Mean square error loss is used as the learning target. Adam opti-
mizer is employed to update the parameter with a 0.0001 learning rate. The learning process is
presented in Figure 6.

Figure 6: Training loss of the value estimator for the logic synthesis problem.

During testing, the number of the candidate nodes is fixed at K = 5 in uniform sampling. In the
clustering sampling strategy, Nc = 5 clusters are employed and 2 nodes are sampled from each
cluster. The parameter η is set to 0.2. In the UCT-like sampling, K = 5 and cb = 1.38.

K An example of different search algorithms to solve logic synthesis

The search trees for A∗ search, MCTS, and SeeA∗ when solving the logic synthesis problem for the
alu4 circuit are depicted in Figure 7, 8, and 9, respectively. For A∗ search, the initial three actions
are consistently "113", indicating that the search process is trapped in a particular branch due to the
lack of exploration. Due to the enforced exploratory nature, MCTS expands nodes across excessive
branches, which can impede the efficiency of the search algorithm in generating solutions. SeeA∗

expands a moderate number of branches, striking a balance between the concentrated exploration
of A∗ and the excessive expansion across multiple branches in MCTS. This approach allows for
exploratory behavior without being confined to a single branch, while the selection of the candidate
node with the minimum f -value prevents excessive expansion into irrelevant branches. As a result,
SeeA∗ exhibits significant improvements in efficiency compared to both MCTS and A∗.

L Value estimator for Sokoban problem

Sokoban is a puzzle video game where the objective is to move the crates strategically to push each
crate to its corresponding storage locations. The input of the neural network is a four-dimensional
tensor representing the positions of the box, the target, the person, and the walls, respectively. The
architecture of the value estimator is summarized as:

• A convolutional layer with a kernel size of 64× 3× 3.
• A batch normalization layer.

27

• A ReLU activation layer.

• A ResNet with three residual blocks.

• A convolutional layer with a kernel size of 1× 1× 1.

• A batch normalization layer.

• A ReLU activation layer.

• A fully connected layer with dimensions [100, 1].

• A ReLU activation layer.

The DeepCubeA paper provides 50, 000 training Sokoban problems and 1, 000 testing Sokoban
problems. The A∗ search guided by a manually designed heuristic is employed to find solutions for
the training problems. g is the number of steps arriving at the current state. h is the sum of distances
between the boxes and their respective goals, as well as the distance between the person and the
nearest box. Under limited search time, 46, 252 training problems are solved. For each collected
trajectory {ni

0, n
i
1, · · · , ni

t, · · · , ni
Ti
}, the learning target for state ni

t is the number of steps from ni
t

to the goal state nTi :

z(ni
t) = Ti − t. (59)

Mean square error is employed as the loss function:

L(θ) =

∑
i

∑
t(v(n

i
t; θ)− z(ni

t))
2∑

i Ti
. (60)

Adam optimizer with a 0.0001 learning rate is used to update the parameters.

Figure 7: The search tree of A∗ search when solving logic synthesis problem for alu4.

28

Figure 8: The search tree of MCTS when solving logic synthesis problem for alu4.

Figure 9: The search tree of SeeA∗ search when solving logic synthesis problem for alu4.

M Test results for Sokoban problem

The search process allows a maximum of 105 expansions. The size of the candidate set in SeeA∗ is
set to K = 100. In the clustering sampling strategy, Nc = 2 clusters are employed and the parameter
η is set to 0.1. In the UCT-like sample, cb is set 0.3. Experiment results are summarized in Table 7.
With the exploration behavior induced by the selective sampling, SeeA∗ yields shorter solutions
than A∗ with a slight increase in the number of expanded nodes. By setting ε = 1.5, WA∗ identifies
feasible solutions using the minimum average number of node expansions. However, the solutions by
WA∗ tend to have longer lengths, indicating that excessive reliance on the heuristic function biases
the search towards suboptimal solutions.

29

Figure 10: Training loss of the value estimator for the Sokoban problem.

Table 7: Test results on 1000 Sokoban cases. (Results of LevinTS, PHS, and DeepCubeA are provided
by [38], [39], and [1], respectively.

Algorithm Solved Length Expansions

A∗ 100.0% 32.664 1010
WA∗(ε = 1.5) 100.0% 34.227 655
LevinTS 100.0% 39.8 6603
PHS 100.0% 39.1 2130
DeepCubeA 100.0% 32.9 1050
SeeA∗(Uniform) 100.0% 32.652 1069
SeeA∗(Cluster) 100.0% 32.689 1130
SeeA∗(UCT) 100.0% 32.505 1944

N Test results for path finding

To illustrate the effectiveness of SeeA∗ on problems where accurate heuristics could exist but the
guiding heuristic used is unreliable, experiments on path finding are conducted, which is to find the
shortest path from a starting point to a destination. The cost for each step is 1. g is the number of
steps taken to reach the current position, and h is the Euclidean distance from the current position
to the target position, which is reliable enough to guide the A∗ search in early studies. 100 robotic
motion planning problems [3] are used to test the performance of A∗ and SeeA∗. Under the guidance
of the same reliable h, both A∗ and SeeA∗ find the optimal solutions for all testing cases, for which
the average length is 400. The number of expansions of SeeA*(K = 5) with uniform sampling is
33283.21, slightly less than the 33340.52 of A∗. To validate the superiority of SeeA∗, an unreliable
heuristic function ĥ is designed, which is randomly sampled from [0, 2 × h]. During the search
process, nodes are evaluated by f̂ = g+ĥ. In this situation, the average solution length of A∗ is 691.1,
much longer than SeeA∗’s 438.4. Moreover, A∗ requires 50281.28 expansions, which is significantly
more than the 32847.26 expansions needed by SeeA∗. Therefore, guided by an unreliable heuristic,
SeeA∗ finds a better solution than A∗ with fewer expansions, demonstrating the superiority of SeeA∗.

30

O Investigations on the hyperparameters

Success rate and average solution length on the USPTO benchmark for the retrosyhthesis planning
problem with different hyperparameter settings are displayed in Figure 11, 12 & 13.

Figure 11: Success rate and average solution length on the USPTO benchmark with different candidate
set sizes K in uniform sampling strategy.

Figure 12: Success rate and average solution length on the USPTO benchmark with different number
of clusters in clustering sampling strategy (K = 50).

31

Figure 13: Success rate and average solution length on the USPTO benchmark with different cb in
UCT-like sampling strategy (K = 50).

Figure 14: Average solution length and average number of node expansions tested on the Sokoban
game with different candidate set sizes K in uniform sampling strategy.

32

Ablation studies on logic synthesis are summarized below. The performance for different candidate
set sizes K for SeeA∗ with uniform sampling is displayed in Table 8. The performance is robust
against different K, outperforming A* (K =∞) consistently.

Table 8: Test results on logic synthesis with different K in uniform sampling strategy.

K ADP reduction rate K ADP reduction rate

1 19.8% 20 21.2
3 22.1% 30 19.7
5 21.6% 50 19.8
10 19.8% ∞ 19.5

Table 9: Test results on logic synthesis with different cb in UCT-like sampling strategy.

cb ADP reduction rate cb ADP reduction rate

0.5 20.8% 1.38 22.5
1.0 21.8% 1.5 22.6

The performance for different cb for UCT-like sampling is presented in Table 9, which is robust
against different cb. enhanced exploration with a larger cb leads to superior performance and longer
running time.

For the sokoban game, the average solution length and the average number of node expansions for
uniform sampling strategy with different candidate sizes K are presented in Figure 14. With the
exploration behavior induced by the selective sampling, SeeA∗ yields shorter solutions than A∗ with
a slight increase in the number of expanded nodes. The success rate of problem-solving is 100.0%.
The ablation studies on the UCT-like sampling strategy are displayed in Table 10. Under a limited
number of expansions, the stronger the exploration with a larger cb, the shorter the identified solution
path length, and the greater the number of expansions required to find a feasible solution. Sokoban
permits at most four legal actions at each step, which makes the number of open nodes No grow
slowly. What’s more, the state space of Sokoban (10 × 10) is limited, and training a reliable cost
function is relatively easier compared to retrosynthetic planning. According to Theorem 4.3, a larger
No and a less accurate cost estimator make the advantage of SeeA∗ more evident. Therefore, SeeA∗

is only slightly better than A∗ in Sokoban problem.

Table 10: Test results on Sokoban game with different cb in UCT-like sampling strategy (K = 100).

cb Solved Length Expansions

0.00 100.0% 32.664 1010
0.01 100.0% 32.663 1026
0.05 100.0% 32.660 1083
0.10 100.0% 32.645 1219
0.15 100.0% 32.625 1370
0.20 99.9% 32.534 1451
0.25 99.9% 32.499 1637
0.30 100.0% 32.505 1944
0.35 99.7% 32.366 1935
0.40 99.6% 32.332 2138
0.45 99.6% 32.316 2409
0.50 99.6% 32.309 2751
0.70 98.9% 32.030 3707

P Comparison between ε-Greedy and SeeA∗

Both ε-Greedy and SeeA∗ involve introducing exploration to A∗ search. ε-Greedy selects the node
with the best f -value with a probability of 1 − ε, and with a probability of ε, it randomly selects

33

a node from the remaining nodes. SeeA∗ with uniform sampling strategy selects a candidate set
uniformly and the node with the best f value within this candidate set is expanded. An example of the
comparison of these two algorithms is given in Figure 15. There are five nodes {s1, s2, s3, s4, s5},
and the f values estimated by the heuristic value function are in increasing order. In A∗ search, node
s1 is expanded with a probability of 100%. In ε-Greedy (ε = 0.5), there is a 60% probability of
expanding node s1, and each of the remaining nodes has a 10% probability of being expanded. SeeA∗

expands s1 (the node with the smallest f value) with a probability of 60%. It expands s2 (the node
with the second smallest f value) with a probability of 30%, and s3 (the node with the third smallest
f value) with a probability of 10%. The remaining two nodes with the largest f values are not eligible
for expansion. Even though the selection of candidate nodes follows uniform sampling, which is
quite random, only the candidate node with the smallest f value is expanded. This guarantees the
quality of the expanded nodes, as nodes with significantly worse f values do not have a chance to be
expanded, even if they might have been selected as candidates. Assuming there are No open nodes
and the size of the candidate set is K.

Figure 15: (a) An example of the difference of expansion probability for each node for ε-Greedy
and SeeA∗ (Uniform sampling strategy is employed and the candidate size K = 3). (b) Expanded
probability calculation for SeeA∗. There are ten possible combinations of the candidate sets, and
each combination occurs with equal probability.

34

The probability of expanding the node with the nth smallest f value under the uniform sampling
strategy can be derived as follows:

P (x(n)) =

{
(No−n

K−1)
(No

K)
= K(N−n)!(N−K)!

No!(No−K−n+1)! , if n ≤ No −K + 1

0, Otherwise
(61)

The probability of being selected for expansion decreases gradually as the f value increases. Com-
pared to ε-Greedy, SeeA∗ utilizes the f value to avoid excessive exploration in its decision process.
Even though the estimated f value may be not reliable enough to guarantee that the node with the
smallest f value is the real optimal node to be expanded, the f value still can serve as a measure of
node quality within a certain range. The heuristic function possesses a certain level of reliability,
and it is generally inappropriate to either completely trust, like A∗ search, or completely disregard,
like ε-Greedy, the evaluations provided by the heuristic function. SeeA∗ aims to achieve a balance
between fully trusting and fully disregarding the evaluations of the heuristic function.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, as illustrated in line 7 - 19 in the abstract and the line 47 -
64 in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is pointed in the conclusion part in Line 360 - 367. Our
algorithm is more efficient when the estimation of the heuristic function is not accurate
enough. If the model exhibits precise state evaluation, the incorporation of exploration
into A∗ search becomes redundant. Investigations on more efficient sampling strategy is
necessary in the future.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

36

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumption and proofs are provided in the section "Efficient of SeeA∗

search" and Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithm is well describe in the Method section, and the pseudocode for
the algorithm is provided in the Appendix A. What’s more, the source code will be released
after acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

37

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: The source code will be published once accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are included in the Experiments part and Appendix
G, J and M.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Considering the computation resources required, the error bar is not provided
in this paper, but we are trying to make it available in the final version.

Guidelines:

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As illustrated in the Experiments section, our experiments are conducted using
NVIDIA Tesla V100 GPUs and an Intel(R) Xeon(R) Gold 6238R CPU

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conducted in this paper conform with the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

39

https://neurips.cc/public/EthicsGuidelines

Justification: The discussion on the impacts of the work is provided in the Conclusion
section in Line 367 - 369.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: SeeA∗ is an efficient search algorithm, and no specific model or dataset are
employed.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this paper are publicly available.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

40

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper is about a new algorithm without new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

41

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

42

	Introduction
	Related work
	Preliminaries and limitations on A* search
	Method
	SeeA* search algorithm
	Uniform sampling strategy
	Clustering sampling strategy
	UCT-like sampling strategy

	Efficiency of SeeA* search

	Experiments
	Results on retrosynthetic planning
	Results on logic synthesis
	Results on Sokoban and path finding
	The impact of the hyperparameters on the performance

	Conclusion
	Acknowledgement
	Pseudocodes for SeeA* and its sampling strategies
	An example of the clustering sampling strategy
	Monotonicity of p
	Network architecture of policy and value in retrosynthesis planning
	Introduction of test molecule datasets
	Search tree representation in retrosynthesis planning
	Test results on each dataset for retrosynthetic planning
	Introduction for logic synthesis problem
	Introduction of the MCNC dataset
	Value estimator for logic synthesis problem
	An example of different search algorithms to solve logic synthesis
	Value estimator for Sokoban problem
	Test results for Sokoban problem
	Test results for path finding
	Investigations on the hyperparameters
	Comparison between -Greedy and SeeA*

