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Abstract001

Large Language Models (LLMs) often require002
grounding on external knowledge to generate003
accurate and faithful outputs. However, this004
process can easily fail with inaccurate semantic005
similarity searches: it tends to retrieve infor-006
mation that only appears similar to the query007
without actually aiding in the response, thus008
acting as noise or even misguiding the gener-009
ation. Addressing this issue, we propose the010
Causal Inference Score (CIS), which measures011
how likely a knowledge candidate will help an-012
swer the user’s question by computing the de-013
biased textual entailment confidence between014
the question and the candidate using an LLM.015
For cost-efficient inference, we further propose016
a knowledge distillation method to transfer CIS017
estimation to a lightweight BERT model. Ex-018
tensive experiments show that simply altering019
the similarity measure to CIS can lead to sig-020
nificant improvements, increasing answer ac-021
curacy by up to 20.5% and F1 by 23.3%, out-022
performing recent works that involve complex023
multistage pipelines.024

1 Introduction025

In recent years, Large Language Models (LLMs)026

have demonstrated impressive capabilities in vari-027

ous natural language processing tasks (Brown et al.,028

2020; et al., 2024; Vaswani et al., 2017; Devlin029

et al., 2019). However, LLMs are reported to030

suffer from “hallucination” that produces plausi-031

ble but factually incorrect information in the re-032

sponses (Bender et al., 2021; Ji et al., 2023; Zellers033

et al., 2019). To mitigate this issue, retrieval-034

augmented generation (RAG) is proposed to inte-035

grate external knowledge from trusted knowledge036

sources before model generation, trying to over-037

ride the outdated or wrong knowledge stored in038

the model parameters with the explicit contextual039

knowledge (Lewis et al., 2020b,a; Gao et al., 2024;040

Shapkin et al., 2024). Typically, an RAG system041

When was the author of Hamlet born?

Prince Hamlet was
born around 1318

Hamlet is written by
William Shakespeare

Knowledge Retriever
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    Response Generator 

Figure 1: Similarity vs. Causal Relevance. High
similarity, i.e., semantic overlap, between a question and
related knowledge does not guarantee the utility of that
knowledge for generating correct responses. A more
effective metric would measure the degree to which the
knowledge causally answers the question (or part of it).

uses a retriever model to first find knowledge evi- 042

dences based on the input query, and then utilizes 043

a generator model, usually an LLM, to generate 044

the response (Cai et al., 2022; Ramesh et al., 2023; 045

Zhang et al., 2024b). 046

Despite its effectiveness, RAG can easily fail 047

and generate unfaithful responses when facing in- 048

accurate retrieval results. With current similarity 049

search methods, retrievers often find information 050

that is semantically similar but not substantively 051

useful for answering the user’s question (Guu et al., 052

2020; Salemi and Zamani, 2024). This can easily 053

mislead the LLM, causing it to generate inaccurate 054

responses that stray from the original question. As 055

shown in Fig. 1, consider the question: “When was 056

the author of Hamlet born?” If we use similarity 057

measures, we might find the text: “Prince Hamlet 058

was born around 1318”, which is very similar to the 059

question but can mislead the LLM to produce an in- 060

correct answer. This highlights the urgent need for 061

a more effective retrieval method that focuses on 062

accurately measuring the causal relevance between 063

the question and text snippets, aiming to discover 064
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truly useful knowledge rather than merely similar065

information (Feder et al., 2022; Li et al., 2023).066

To address this issue, we explore causal knowl-067

edge retrieval, which seeks external knowledge that068

directly addresses the question rather than merely069

resembling it. To this end, we propose a novel met-070

ric, i.e., Causal Inference Score (CIS), to measure071

the causal relevance using pre-trained language072

models, as they are extensively trained to learn073

causal entailments between texts. Given the ques-074

tion Q and candidate text knowledge K, CIS is075

calculated by first determining the entailment con-076

fidence from Q to K through the likelihood of the077

model generating K given Q, i.e., pθ(K|Q). This078

metric can be biased when the LLM is overly famil-079

iar with the knowledge K, so we further mitigate080

this self-confirmation bias by scaling the entail-081

ment with the model probability of the knowledge,082

i.e., CISθ(Q → K) = pθ(K|Q)/pθ(K). By em-083

phasizing the causal relationship, we ensure that084

the retrieved information is what the LLM believes085

can effectively address the query and allows the086

model to leverage this knowledge more effectively087

for answer generation. In RAG applications, CIS088

replaces traditional similarity scores in the retriever089

while keeping all other components unchanged.090

Addressing the high inference cost of LLMs, we091

further propose a knowledge distillation method092

to effectively transfer the causal entailment capa-093

bilities learned by large auto-regressive language094

models into compact, inference-efficient bidirec-095

tional models, thereby enabling efficient and accu-096

rate document retrieval.097

To evaluate the effectiveness of CIS, we con-098

ducted experiments on three question-answering099

datasets (HotpotQA, 2Wiki, and MuSiQue) and100

two information retrieval datasets (TREC-DL2019101

and TREC-DL2020). Results show that replacing102

traditional similarity metrics with CIS significantly103

improves performance, increasing QA accuracy by104

7.8% to 10.75% and NDCG@K for retrieval by105

at least 9.81% relative to BM25. Moreover, even106

using weaker LLMs (e.g., GPT-2) for metric calcu-107

lation yields notable gains, highlighting its broader108

applicability.109

2 Related Work110

RAG for Multi-Hop QA. RAG is a widely used111

framework for LLMs and has garnered consider-112

able attention for various tasks such as question-113

answering (QA) and summarization. RAG (Lewis114

et al., 2020b) integrates a sequence-to-sequence 115

model with external knowledge bases, significantly 116

enhancing the performance of QA and summariza- 117

tion tasks. Breaking down a complex query into a 118

series of simpler sub-queries (Khattab et al., 2022; 119

Press et al., 2022; Pereira et al., 2022; Khot et al., 120

2022; Sun et al., 2023b) often necessitates multi- 121

ple calls to LLMs, which can be computationally 122

expensive. Adaptive-RAG (Jeong et al., 2024) ad- 123

dresses this issue by using a classifier to evaluate 124

the problem’s complexity and select the most suit- 125

able retrieval strategy accordingly. RQ-RAG (Chan 126

et al., 2024) focuses on enhancing model perfor- 127

mance by optimizing search queries through tech- 128

niques like rewriting, decomposition, and disam- 129

biguation. Nevertheless, relying on multiple ac- 130

cesses to LLMs for each query is inefficient, and 131

retrieving all dynamically relevant documents with 132

a single query is unreliable. 133

Retriever in RAG. Traditional retrieval methods 134

in RAG systems rely on similarity measures to 135

find relevant documents, but struggle with queries 136

involving logical or causal relationships, as they 137

focus on shared words or phrases rather than deeper 138

connections. To address this issue, we propose an 139

enhanced causal retrieval approach that captures 140

implicit connections and causal relationships by 141

measuring term co-occurrence probabilities relative 142

to their independent occurrences, enabling a more 143

nuanced retrieval process. 144

In our approach, a causal reasoning score is cal- 145

culated between the query and each document, and 146

the documents with the highest causal reasoning 147

score are considered highly relevant, indicating a 148

stronger causal relationship with the query. These 149

documents are then used by LLM to generate pre- 150

cise answers. This approach improves the quality 151

of retrieved documents by ensuring that the docu- 152

ments are not only semantically relevant but also 153

causally relevant, thereby improving the accuracy 154

and relevance of the final answers generated (Jain 155

et al., 2023; Zhang et al., 2024a). 156

3 Background 157

In an advanced RAG system, the process begins 158

with a user-input query Q, which is processed by 159

a retrieval module ψ(·) to extract relevant infor- 160

mation text B from a comprehensive information 161

repository D. These retrieved texts are then used 162

by a generation module γ(·) to produce the final 163

output R. This workflow can be expressed as B = 164
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Figure 2: Diagram of CIS. (a) CIS vs. Similarity Score. Traditional similarity scores treat the question and
knowledge as equal entities, focusing on shared semantic overlap. However, CIS considers the directional and
causal relationship between the question and knowledge, assessing how well the question leads to or infers the
knowledge. (b) CIS Calculation. First, we compute the entailment confidence by calculating the likelihood of the
model generating Ki given Q as the prefix, denoted as pθ (Ki | Q). This can be further improved by placing the
question and the knowledge into a QA prompt to leverage the model’s QA capabilities. To avoid self-confirmation
bias where the model might be overly familiar with Ki, we scale this confidence by the probability of the model
directly generating Ki, i.e., pθ(Ki).

ψ(Q,D), and R = γ(Q,B). The retrieval module165

ψ(·) may involve various systems, such as an in-166

dependent retrieval system like DPR (Karpukhin167

et al., 2020) and a commercial search engine like168

Google. While the generation module γ(·) is typi-169

cally a sophisticated language model that has been170

pre-trained. The quality of the generated resultR is171

directly influenced by the accuracy of the retrieved172

information segments B, making precise retrieval a173

critical component. Unfortunately, many retrieval174

modules struggle to pinpoint exact segments and175

often retrieve semantically similar ones, which may176

not always ensure the accuracy of the final output.177

To identify the most relevant information seg-178

ments B = {K1,K2,K3, . . . } from the repository179

D, an effective retrieval strategy is crucial. In this180

paper, we propose a strategy that selects the infor-181

mation segment collection B by calculating causal182

inference scores. Specifically, we use an autore-183

gressive model to compute these scores, enabling184

us to filter and select the highest-scoring segments185

K as supporting information. This approach im-186

proves inference efficiency and ensures that the187

generated content accurately reflects the source in-188

formation. Detailed descriptions of this process189

will be provided in the following sections.190

4 Methodology191

As depicted in Figure 2, CIS is designed to better192

capture the causal relationships between a query Q193

and the candidate documentsKi. Unlike traditional 194

similarity-based methods, our approach leverages 195

the power of autoregressive language models to 196

assess how well a document’s content entails the 197

query. 198

4.1 Causal Inference Score (CIS) 199

To improve the retrieval accuracy and mitigate the 200

self-confirmation bias present in traditional meth- 201

ods,we leverage the CIS. The CIS aims to capture 202

the causal relationship between the query Q and 203

the document Ki. This is achieved by leveraging 204

an autoregressive language model to assess how 205

well the document content entails the query. The 206

CIS is defined as follows: 207

CISθ(Q→ Ki) = log
pθ(Ki|Q)

pθ(Ki)
208

where θ represents the parameters of the language 209

model. The term pθ(Ki|Q) measures how the lan- 210

guage model assesses Ki following the query Q, 211

and pθ(Ki) represents how familiar the language 212

model is with Ki. This approach allows us to quan- 213

tify the causal influence of the document on the 214

query, leading to more accurate retrieval results. 215

The theoretical basis of this method is explained 216

in Appendix B. A positive CIS value indicates a 217

strong correlation between the query and the docu- 218

ment, implying a potential causal relationship. A 219

CIS value of zero indicates that the query and doc- 220

ument are independent. A negative CIS value in- 221
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dicates that the query and document are unlikely222

to appear at the same time. The CIS score is then223

calculated to replace the similarity scores in the re-224

triever. We keep top-k documents with the highest225

CIS score as the grounding knowledge for LLM226

generation.227

Entailment Confidence. To estimate the degree228

to which the LLM believes the current knowledge229

candidate Ki should entail the question Q, we con-230

catenate the document Ki = {w1, w2, . . . , wn}231

with the query Q and use the pre-trained language232

model (PLM) to compute the conditional probabil-233

ity pθ(Ki|Q). The PLM uses the query Q as the234

prefix to sequentially predict the probability of each235

word in the document. The conditional probability236

is computed as:237

pθ(Ki|Q) = pθ(w1|Q)pθ(w2|Q,w1)238

pθ(w3|Q,w1, w2) . . . pθ(wn|Q,w1, . . . , wn−1)239

In practice, we further consider a variant where we240

put the question and knowledge into a QA prompt,241

forming “Q: Q A: K”. This approach aims to more242

explicitly measure how the knowledge can partly243

address the question. Experimental results show244

that this can bring (limited) improvements.245

Correction for Self-confirmation Bias. The lan-246

guage model can be overly familiar with specific247

text fragments in the knowledge candidates as they248

commonly appear, leading to an excessively high249

entailment confidence for those fragments. This250

issue, which we call self-confirmation bias, is harm-251

ful. We correct this bias by scaling the entailment252

confidence with document likelihood pθ(Ki).253

Given a documentKi = {w1, w2, . . . , wn} , this254

likelihood is calculated by predicting the probabil-255

ity of each word in the sequence given its preceding256

context. This involves calculating the probability of257

each word wi in the document given the sequence258

of all previous words w1, w2, . . . , wi−1. Thus, the259

overall document probability is computed as the260

product of these conditional probabilities:261

pθ(Ki) = pθ(w1)pθ(w2|w1)262

pθ(w3|w1, w2) . . . pθ(wn|w1, w2, . . . , wn−1)263

4.2 Knowledge Distillation for Efficient264

Inference265

While our proposed causal inference score266

CISθ(Q→ Ki) = log pθ(Ki|Q)
pθ(Ki)

is a plug-and-play267

method, it suffers from high computational cost 268

during inference. Although the term pθ(Ki) can 269

be computed offline, evaluating pθ(Ki|Q) requires 270

multiple forward passes through LLMs. 271

To address this challenge, we introduce an inno- 272

vative methodology that distills the causal entail- 273

ment capabilities from a computationally expen- 274

sive causal large language model into inference- 275

efficient bidirectional lightweight language models, 276

such as BERT (Devlin et al., 2018). This approach 277

is both computationally efficient and straightfor- 278

ward to implement, making it suitable for large- 279

scale information retrieval tasks. 280

For retrieval-related datasets, we generate train- 281

ing data by leveraging an internal unidirectional 282

large language model, which acts as a data genera- 283

tor for the lightweight model. The training process 284

involves generating supervised fine-tuning sam- 285

ples for each instance in the form of the triplet 286

< Qi,Kj ,CISθ(Qi → Kj) >. 287

During training, we fine-tune BERT using a 288

pointwise learning-to-rank approach that predicts 289

the relevance score for each query-document pair. 290

In this framework, the relevance estimation for 291

each query-document pair is treated as an inde- 292

pendent task. The query and document are concate- 293

nated into a single input sequence (separated by the 294

special token [SEP] and passed through BERT. The 295

output embedding of the [CLS] token is then used 296

to compute the relevance score via a feed-forward 297

layer. The training objective is to minimize the dif- 298

ference between the predicted score and the ground- 299

truth CIS score, using a loss function ℓ defined as: 300

L =
1

N

N∑
i=1

ℓ(Si,j ,CISθ(Qi → Kj)) 301

where ℓ is Mean Squared Error (MSE) for the re- 302

gression task, Si,j represents the predicted rele- 303

vance score between the query Qi and document 304

Kj by BERT. 305

5 Experiments 306

5.1 Evaluation on Retrieval Augmented 307

Generation 308

5.1.1 Settings 309

Datasets and Metrics. We assess the effectiveness 310

of our proposed framework using three open-source 311

multi-hop QA datasets: 312

• HotpotQA (Yang et al., 2018) requires mod- 313

els to combine information from multiple 314
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Methods MuSiQue HotpotQA 2Wiki

EM F1 Acc Step Time EM F1 Acc Step Time EM F1 Acc Step Time

Single-step Approach 13.80 22.80 15.20 1.00 1.00 34.40 46.15 36.40 1.00 1.00 41.60 47.90 42.80 1.00 1.00
Adaptive Retrieval 6.40 15.80 8.00 0.50 0.55 23.60 32.22 25.00 0.50 0.55 33.20 39.44 34.20 0.50 0.55
Self-RAG 1.60 8.10 12.00 0.73 0.51 6.80 17.53 29.60 0.73 0.45 4.60 19.59 38.80 0.93 0.49
Adaptive-RAG 23.60 31.80 26.00 3.22 6.61 42.00 53.82 44.00 3.55 5.99 40.60 49.75 46.40 2.63 4.68
Multi-step Approach 23.00 31.90 25.80 3.60 7.58 44.60 56.54 47.00 5.53 9.38 49.60 58.85 55.40 4.17 7.37
Causal Retrieval (Ours) 27.09 38.27 25.95 2.00 2.09 50.42 58.24 44.20 2.00 2.58 53.16 59.09 51.61 2.00 1.51

Table 1: Results of question answering using Llama3 (8B) as LLM on different datasets. We emphasize the best
result in bold and underline the second best score.

paragraphs to answer complex questions, em-315

phasizing reasoning and synthesis. The test316

set contains 7,405 samples.317

• 2Wiki (Ho et al., 2020) leverages Wikipedia318

articles to test multi-hop QA, requiring mod-319

els to link and integrate knowledge from mul-320

tiple articles, often spanning diverse topics.321

The test set contains 12,576 samples.322

• MuSiQue (Trivedi et al., 2022) evaluates the323

ability to handle complex queries by inte-324

grating information from multiple documents,325

challenging multi-document reasoning. The326

validation set contains 2,417 samples.327

We evaluate question answering performance us-328

ing F1, Exact Match (EM), and Accuracy (Acc).329

F1 measures word overlap between the predicted330

and ground truth answers, EM checks for exact331

matches, and Acc assesses whether the predicted332

answer contains the ground truth. For knowledge333

retrieval, we report recall and precision.334

Baselines. We compare our approach with335

state-of-the-art methods as follows: 1) Single-336

Step Approach-Based Methods: Adaptive Re-337

trieval (Mallen et al., 2023), Self-RAG (Asai et al.,338

2024), and Adaptive-RAG, which adaptively per-339

forms retrieval based on query complexity (Jeong340

et al., 2024). 2) Multi-Step Approach: The most341

advanced state-of-the-art method (Trivedi et al.,342

2023), which uses iterative access to both the re-343

triever and LLM with Chain-of-Thought reason-344

ing (Wei et al., 2022) for every query.345

Note that we simply replace the similarity score346

in single-step methods with CIS, without adding347

the complexities of multistep processes. While348

integrating these additional steps might improve349

results, we have not included them in our current350

evaluation to ensure a straightforward comparison.351

5.1.2 Overall Results 352

Table 1 shows the performance of different meth- 353

ods on the question-answering task using retrieval- 354

augmented generation. The results demonstrate 355

the effectiveness of our proposed CIS. Compared 356

to single-step methods, we found that simply re- 357

placing the similarity metric with CIS can improve 358

F1 by 11.19% to 15.47% and EM by 11.56% to 359

16.02%. Our method also outperforms multi-step 360

methods on these metrics. 361

Furthermore, we observe additional improve- 362

ments when fine-tuning BERT on data distilled 363

from LLaMA 3-8B, particularly in terms of F1 and 364

accuracy across datasets. In addition to method op- 365

timization, we also investigate the role of carefully 366

designed QA prompts in improving LLM answer 367

generation. Well-crafted prompts help ensure that 368

the retrieved content is effectively utilized, lead- 369

ing to more accurate answers. A detailed discus- 370

sion on this can be found in Appendix E. Further 371

insights into the advantages of our approach are 372

provided in Appendix F, where the QA case study 373

demonstrates enhanced answer generation. More- 374

over, Appendix C presents the error analysis of CIS, 375

highlighting its limitations and potential future di- 376

rections. 377

5.1.3 CIS with Different LLMs 378

We also explore the impact of using different LLMs 379

to compute CIS. Results in Table 2 indicate that 380

even a weaker model like GPT-2 (Radford et al., 381

2019) can still lead to significant improvements 382

across datasets, highlighting the robustness of our 383

approach. Similarly, fine-tuning BERT on training 384

data distilled from LLaMA 3-8B achieves competi- 385

tive results and often surpasses causal models such 386

as GPT-2 and LLaMA 3-8B, demonstrating the ef- 387

fectiveness of distillation-based fine-tuning in this 388

setting. 389

Interestingly, we observe that the benefits be- 390

come more pronounced with higher top-k set- 391

tings, as distillation enables BERT to capture finer- 392
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Top-k LLMs Methods MuSiQue HotpotQA 2Wiki

EM F1 Acc EM F1 Acc EM F1 Acc

- - Adaptive-RAG 23.60 31.80 26.00 42.00 53.82 44.00 40.60 49.75 46.40

3
gpt-2 Causal Retrieval 22.46 32.05 20.02 48.07 56.14 41.09 42.99 46.24 42.01

Llama-3 Causal Retrieval 25.07 35.29 26.29 45.98 53.88 39.05 54.68 61.34 53.26
BERT Knowledge Distill 30.81 34.29 24.57 46.12 51.54 38.40 56.80 62.74 56.20

4
gpt-2 Causal Retrieval 24.86 34.33 22.80 46.29 54.40 39.27 44.81 48.79 43.76

Llama-3 Causal Retrieval 27.80 38.11 28.44 47.42 55.45 40.41 54.12 60.82 52.78
BERT Knowledge Distill 33.46 36.48 26.35 51.25 56.00 42.79 56.60 62.45 56.20

6
gpt-2 Causal Retrieval 27.26 37.89 24.91 40.56 48.53 34.88 46.47 51.33 45.09

Llama-3 Causal Retrieval 30.03 40.83 29.60 53.08 61.48 45.59 51.71 58.40 50.22
BERT Knowledge Distill 34.29 39.70 27.83 49.70 55.44 40.99 53.20 58.83 52.60

Table 2: Results of question answering with different LLMs (Llama 3-8B, gpt-2 1.5B, BERT-340M) and different
top-k compared to Adaptive-RAG. Knowledge Distillation refers to the process in which BERT-340M is distilled
using Llama 3-8B. We highlight in bold the best results of different LLMs in the same top-k.

grained relevance signals. This suggests that with393

proper guidance from larger LLMs, lightweight394

models can effectively balance efficiency and per-395

formance, making them viable alternatives for396

retrieval-augmented tasks.397

5.1.4 Impact of Top-k Values398

We also experimented with different top-k values.399

Intuitively, providing more relevant text to the LLM400

should increase the likelihood of obtaining the cor-401

rect answer. Our experimental results, shown in Ta-402

ble 2, largely confirm this expectation, as EM, F1403

score, and accuracy generally improve with higher404

top-k values. However, we observed an exception405

in the 2Wiki dataset, where increasing top-k led to406

a decline in these metrics. We believe this occurs407

because, beyond a certain threshold, the retrieved408

content might exceed the model’s input length limit.409

As a result, the model may truncate or underprocess410

the input, negatively impacting answer accuracy.411

Further analysis of retrieval performance across412

different top-k values and retrieval strategies is413

provided in Appendix D. These findings highlight414

the importance of carefully selecting the retrieval415

strategy and top-k value to achieve optimal perfor-416

mance.417

5.1.5 Cost Analysis418

In Table 1, the time consumption includes two419

main parts: first, calculating all CIS between each420

question and dozens of relevant or irrelevant texts421

provided in the dataset; second, combining the422

text with the highest CIS with the question into423

a prompt, and inputting the prompt into the large424

model to generate the answer. As the number of425

text paragraphs increases, each question needs to426

be compared with all these texts and the CIS of all 427

texts are calculated, so the amount of calculation 428

increases significantly, resulting in a significant 429

increase in processing time. Compared with the 430

single-step method, even if our method is more 431

time-consuming when the number of texts is small, 432

the time consumption will exceed the multi-step 433

method as the number of texts increases. 434

To address this issue, preliminary optimization 435

experiments in Appendix A compare retrieval time 436

under different numbers of tokens after fine-tuning 437

BERT. Further optimization details are provided 438

in Section 4.2 Knowledge Distillation for Efficient 439

Inference under Methodology. 440

5.2 Evaluation on Information Retrieval 441

5.2.1 Settings 442

Datasets and Metrics. We conduct evaluations on 443

the TREC Deep Learning 2019 (DL19) and 2020 444

(DL20) passage ranking test collections (Craswell 445

et al., 2019, 2020), which serve as prominent bench- 446

marks in information retrieval research. These col- 447

lections include 43 queries in DL19 and 54 queries 448

in DL20, accompanied by dense, graded human 449

relevance judgments. Both datasets are derived 450

from the MS MARCO v1 (Bajaj et al., 2018) pas- 451

sage corpus, comprising 8.8 million passages. For 452

each query, the top 100 passages retrieved using 453

BM25 (Lin et al., 2021) are re-ranked, ensuring 454

consistency with experimental setups adopted in 455

prior studies (Sun et al., 2023a; Ma et al., 2023; 456

Qin et al., 2024). 457

Baselines. We evaluate our method against a 458

range of baselines. 1) Supervised Methods: 459

monoBERT (Nogueira and Cho, 2020), a cross- 460
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Method LLM Size TREC-DL2019 TREC-DL2020
NDCG@1 NDCG@5 NDCG@10 NDCG@1 NDCG@5 NDCG@10

BM25 NA NA 54.26 52.78 50.58 57.72 50.67 47.96

Supervised Methods

monoBERT BERT 340M 79.07 73.25 70.50 78.70 70.74 67.28
monoT5 T5 220M 79.84 73.77 71.48 77.47 69.40 66.99
monoT5 T5 3B 79.07 73.74 71.83 80.25 72.32 68.89
RankT5 T5 3B 79.07 75.66 72.95 80.86 73.05 69.63

Unsupervised LLM Methods

LRL text-davinci-003 175B - - 65.80 - - 62.24
RankGPT gpt-3 175B 50.78 50.77 49.76 50.00 48.36 48.73
RankGPT text-davinci-003 175B 69.77 64.73 61.50 69.75 58.76 57.05
UPR FLAN-T5-XXL 11B 62.79 62.07 62.00 64.20 62.05 60.34
RG FLAN-T5-XXL 11B 67.05 65.41 64.48 65.74 66.40 62.58
UPR FLAN-UL2 20B 53.10 57.68 58.95 64.81 61.50 60.02
RG FLAN-UL2 20B 70.93 66.81 64.61 75.62 66.85 65.39

Ours

Knowledge Distill BERT 340M 69.88 66.29 62.22 70.79 67.00 64.62
Causal Retrieval gpt-2 1.5B 64.45 58.54 57.58 68.15 62.99 60.77
Causal Retrieval Llama-3 8B 68.66 65.21 63.21 69.95 66.31 65.11

Table 3: Results are reported on the TREC-DL2019 and TREC-DL2020 datasets by re-ranking the top 100
documents initially retrieved using BM25. Knowledge Distillation refers to the process in which BERT-340M is
distilled using Llama 3-8B. The highest performance is highlighted in bold, while the second-best is marked with an
underline.

encoder re-ranker built on BERT-large for rele-461

vance estimation; monoT5 (Nogueira et al., 2020),462

which leverages T5 in a sequence-to-sequence463

framework to compute relevance scores using point-464

wise ranking loss; and RankT5 (Zhuang et al.,465

2023), an extension of T5 that incorporates list-466

wise ranking loss to enhance performance. 2) Un-467

supervised LLM Methods: Unsupervised Pas-468

sage Re-ranker (UPR) (Sachan et al., 2022), which469

employs query generation in a pointwise man-470

ner; Relevance Generation (RG) (Liang et al.,471

2023), a relevance-focused pointwise approach;472

RankGPT (Sun et al., 2023a), a listwise ranking473

method using GPT-based large language models474

(LLMs); and Listwise Reranker with a Large Lan-475

guage Model (LRL) (Ma et al., 2023), a listwise476

approach similar to RankGPT but with a distinct477

prompt design.478

5.2.2 Overall Results479

As shown in Table 3, our proposed causal retrieval480

method achieves strong performance on the TREC-481

DL2019 and TREC-DL2020 tasks. On TREC-482

DL2019, causal retrieval using LLaMA-3 attains483

an NDCG@1 score of 68.66, exceeding BM25 by484

more than 26% and outperforming most unsuper-485

vised methods, including RankGPT (text-davinci-486

003). On TREC-DL2020, the NDCG@1 score487

further improves to 69.95 with causal retrieval us-488

top-k Method EM F1 Acc

3
Causal Retrieval 54.68 61.34 53.26

w/o pθ(K) 31.49 33.30 31.08
w/o prompt 53.79 59.43 51.10

4
Causal Retrieval 54.12 60.82 52.78

w/o pθ(K) 34.95 36.60 34.42
w/o prompt 53.79 60.78 52.23

6
Causal Retrieval 51.71 58.40 50.22

w/o pθ(K) 39.51 41.76 38.64
w/o prompt 52.01 57.66 49.42

Table 4: Ablation study on 2Wiki using Llama3-8B.

ing LLaMA-3. Moreover, fine-tuning the BERT 489

model with knowledge distilled from LLaMA-3 490

raises the NDCG@1 score to 70.79, demonstrating 491

that BERT significantly benefits from knowledge 492

distillation while maintaining high computational 493

efficiency. These results highlight the effectiveness 494

of causal retrieval, particularly in scenarios with 495

limited labeled data, as it combines strong retrieval 496

capabilities with efficient computation. 497

5.2.3 Effectiveness of Causal Retrieval 498

Causal Retrieval methods, leveraging causal infer- 499

ence principles with LLaMA-3 and GPT-2, demon- 500

strate their potential as scalable alternatives to tra- 501

ditional ranking techniques. Despite using smaller 502
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LLMs such as GPT-2 (1.5B) and LLaMA-3 (8B),503

our methods achieve competitive or superior per-504

formance compared to larger unsupervised mod-505

els. As shown in Table 3, Causal Retrieval with506

LLaMA-3 improves NDCG@1 by 26.5% over507

BM25 on TREC-DL2019, surpassing several larger508

models like FLAN-T5-XXL (11B). On TREC-509

DL2020, it achieves an NDCG@1 score 21%510

higher than BM25, closely matching supervised511

methods. Additional analysis in Appendix G fur-512

ther illustrates how our methods prioritize seman-513

tically relevant documents, often outperforming514

baselines such as BM25 in retrieving meaningful515

results in challenging scenarios.516

5.2.4 Knowledge Distillation for Efficient517

Retrieval518

Knowledge distillation plays a key role in enhanc-519

ing the efficiency of retrieval models without com-520

promising performance. As shown in Table 3, fine-521

tuning BERT (340M) with distilled knowledge522

from LLaMA-3 achieves strong results, with an523

NDCG@1 of 69.88 on TREC-DL2019 and 70.79524

on TREC-DL2020. By transferring the causal525

retrieval capabilities of LLaMA-3 to BERT, we526

demonstrate that compact models can achieve com-527

petitive performance even in scenarios with limited528

computational resources.529

The effectiveness of this distillation process530

lies in its ability to retain the semantic under-531

standing and ranking capabilities of larger models532

while reducing overfitting and enhancing gener-533

alization. For example, on TREC-DL2020, the534

distilled BERT model outperforms many unsuper-535

vised methods and approaches the performance of536

supervised models like monoT5. This highlights537

the potential of knowledge distillation as a practi-538

cal solution for deploying high-performing retrieval539

systems in resource-constrained environments.540

5.2.5 Analysis of Model Limitations541

As shown in Table 3, while Causal Retrieval542

achieves a balance between efficiency and effec-543

tiveness, it still falls short of some larger models544

like FLAN-T5-XXL and RankGPT. One key lim-545

itation is that smaller models, despite leveraging546

causal inference, struggle to fully capture the com-547

plex semantic relationships that larger models learn548

through extensive parameterization. Additionally,549

the knowledge distillation process, while effective550

in transferring insights, may lead to some infor-551

mation loss, preventing distilled models from fully552

replicating the performance of their larger counter- 553

parts. 554

Moreover, Causal Retrieval’s reliance on causal 555

assumptions, while improving robustness, may im- 556

pose constraints that limit its ability to leverage 557

deep contextual representations. This trade-off 558

means that while it performs well in many cases, it 559

does not always surpass the best supervised meth- 560

ods. Future improvements could involve refining 561

causal modeling techniques or integrating hybrid 562

approaches that combine causal inference with 563

more expressive neural ranking architectures. 564

5.3 Ablation Study 565

We analyzed the impact of two types of removed 566

components on model performance. Specifically, 567

w/o pθ(K) means not excluding the relevant text 568

provided by the large model itself, while w/o 569

prompt means removing the prompt provided to 570

the model. 571

As shown in Table 4, the Causal Retrieval 572

method consistently outperforms the ablation meth- 573

ods across all top-k values. Removing pθ(K) 574

leads to a significant drop in EM, F1, and Acc 575

by about 40%, while removing the prompt results 576

in a smaller, but noticeable, 5% decline. This sug- 577

gests that the texts provided by the large model are 578

crucial for retrieval accuracy, and the prompt plays 579

an important, though less critical, role in guiding 580

model generation. 581

6 Conclusion 582

This paper explores causal knowledge retrieval 583

to enhance grounding in large language models. 584

Specifically, we enhance retrieval-augmented gen- 585

eration by prioritizing causal relevance between 586

questions and text snippets during the retrieval pro- 587

cess. A novel CIS is introduced to measure this rel- 588

evance, utilizing the capabilities of autoregressive 589

models to model textual entailments. A knowledge 590

distillation method is further introduced to enable 591

cost-effective CIS calculation. Our comprehen- 592

sive experiments demonstrate that simply replacing 593

traditional similarity metrics with our causal rele- 594

vance metric can significantly reduce the retrieval 595

of redundant documents and enhance performance. 596

This improvement boosts the quality of retrieved 597

documents and increases answer accuracy. 598
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7 Limitations599

Despite its effectiveness, the causal retrieval600

method has limitations. First, its high computa-601

tional cost makes it less suitable for real-time or602

resource-constrained applications. Second,while603

reducing redundancy, the method may overlook604

diverse documents that contribute to query under-605

standing. Future work will explore hybrid met-606

rics combining causal and similarity-based ap-607

proaches.608
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A Knowledge Distillation for Efficient Document Retrieval889

We present the experimental setup and results of fine-tuning the BERT model for document retrieval using890

the TREC-DL2019 and TREC-DL2020 datasets. Training data is generated by retrieving the top 100891

documents for each query using BM25. For each query-document pair, we compute the CIS value using892

LLaMA3 and then fine-tune bert-large-uncased based on the method described in Section 4.2.893

After fine-tuning, we compare the computation time for calculating the CIS values between the fine-894

tuned BERT model and the original model, using different token counts to evaluate performance. The895

results demonstrate that the fine-tuned BERT model, trained using distilled knowledge from LLaMA3,896

significantly reduces computation time compared to the original BERT model while maintaining similar897

retrieval performance, as shown in Table 3.898

Figure 3 presents the computation time (in seconds) for different methods and token counts. The899

fine-tuned BERT model outperforms causal retrieval in terms of computation time, especially as the token900

count increases. For instance, when the token count is 500, the fine-tuned BERT model requires only 0.22901

seconds, while causal retrieval takes much longer. This performance advantage becomes more significant902

as the token count increases, further demonstrating the efficiency of the fine-tuned BERT model.903

These results validate the effectiveness of distilling knowledge from a large, computationally expensive904

model (LLaMA3) into a lightweight BERT model, confirming that this approach is not only efficient but905

also maintains high retrieval accuracy.906

Figure 3: The bar chart illustrates the computation time for different methods (Causal Retrieval and Knowledge
Distillation) across various token counts (500, 1000, 2000, 3000, 5000, 10000). It is evident that the computation
time for causal retrieval increases linearly with the token count, whereas fine-tuning BERT using training data
distilled from LLaMA 3-8B demonstrates significantly lower computation times and a smaller growth rate. The
exact computation time values are annotated above each bar for better comparison.

B An Information Theory Look at CIS907

The CIS can be understood from the perspective of information theory, similar to pointwise mutual908

information (PMI). In information theory, the PMI between two random variables X and Y is defined as:909

PMI(X,Y ) = log
p(X,Y )

p(X)p(Y )
= log

p(Y |X)

p(Y )
= log

p(X|Y )

p(X)
910
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This measures the association between X and Y , quantifying how much knowing one of the variables 911

reduces uncertainty about the other. It is symmetric, reflecting the mutual dependence between the two 912

variables. 913

In contrast, CISθ(Q → K) is inherently asymmetric: it captures how well K can be inferred given 914

Q, but not necessarily the reverse. This asymmetry is intentional and crucial for our goal: to prioritize 915

knowledge that causally and directionally addresses the query, rather than merely finding an overlap. This 916

makes CIS a powerful tool for RAG, where the goal is not just to find related information, but to find 917

information that directly supports answering the query. 918

C Error Analysis of CIS 919

We performed a thorough human error analysis of CIS and show representative cases in Table 5. The 920

breakdown of 20 error cases reveals that 50% are due to answer extraction issues, including wrong 921

extraction (25%) and partial matching with the true answer (25%). The remaining 50% are information 922

processing problems, such as redundant information (20%), partial answers (15%), and ambiguous 923

questions (5%). For instance, in the question “In which year and in which country did the first moon 924

landing take place?”, the system retrieves the correct document about the 1969 Apollo 11 moon landing 925

but mixes in irrelevant details, like the Soviet Union’s unmanned missions, resulting in a cluttered answer. 926

This highlights the need for improvements in answer extraction and information processing to enhance 927

accuracy and relevance. Enhancing question understanding, extracting the most pertinent information, 928

and filtering out redundancy through improved algorithms are crucial for providing concise and accurate 929

answers. 930

Breakdown of 20 failure cases

Incorrect Retrieval 2
Incorrect Answer Extraction 5
Partial Answer 3
Ambiguous Question 1
Redundant Information 4
Partial match with the groundtruth 5

Table 5: The error analyses of causal knowledge retrieval experiment. Randomly select the experimental results,
input the question, retrieved documents, correct answer, and the output answer of the large model into GPT4.0 to
determine the reason for the wrong answer.

D Knowledge Retrieval Results 931

The ability of LLMs to accurately answer domain-specific queries depends heavily on including all 932

necessary information in the prompt context. LLMs that are prone to hallucinating questions have 933

difficulty providing correct answers when critical information is missing. In the absence of relevant data, 934

LLMs may default to using their existing knowledge base, which often results in incorrect responses. 935

To evaluate how the retrieved knowledge covers this necessary information, we conducted experiments 936

regarding different retrieval strategies. The results are shown in Table 6. 937

In the experiments, the Causal Retrieval methods, especially the Llama3-8B model, showed significant 938

performance improvements over traditional base methods such as BM25 and Dense. For example, in the 939

Top-k = 6 setting, the Recall rate of Llama3-8B increased by 7.55%, and the Precise rate increased by 940

6.41%. The GPT-2 model also showed advantages, with its Recall rate increased by 5.77% and Precise 941

rate increased by 4.83% in the Top-k = 6 setting. Similarly, fine-tuning BERT using training data distilled 942

from LLaMA 3-8B demonstrated strong performance, achieving a Recall rate of 60.90 and a Precise rate 943

of 58.29 on the 2Wiki dataset, which outperformed BM25 by 16.78% and 13.17%, respectively. 944

The recall of the causal retrieval approach is 13.6% higher than that of BM25 and 10.1% higher than 945

that of the Dense approach, showing its effectiveness. Notably, BERT also surpassed Dense by 6.80% 946
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Top-k Retrieval Strategies MuSiQue HotpotQA 2Wiki

Recall rate Precise rate Recall rate Precise rate Recall rate Precise rate

3

BM25 49.88 50.70 49.65 50.42 44.11 43.67
Dense 51.33 52.31 51.53 52.53 47.72 47.05
Hybrid 46.16 45.80 49.01 49.77 49.45 50.47
Hybrid+Rerank 48.34 47.72 54.17 56.05 54.19 55.56
Causal Retrieval(GPT-2) 51.98 50.69 55.22 57.29 49.56 46.01
Causal Retrieval(Llama3-8B) 53.10 53.32 56.52 54.78 63.75 60.66
Knowledge Distill(BERT) 47.96 50.32 53.50 52.09 65.26 62.02

4

BM25 50.73 51.17 50.73 51.32 44.25 43.79
Dense 52.65 53.62 52.97 54.06 48.32 47.62
Hybrid 49.62 48.15 53.13 53.76 54.95 53.69
Hybrid+Rerank 52.77 53.74 55.54 57.21 48.67 48.06
Causal Retrieval(GPT-2) 54.11 53.77 57.60 55.27 50.23 48.49
Causal Retrieval(Llama3-8B) 57.54 54.12 58.61 56.34 63.33 60.16
Knowledge Distill(BERT) 53.96 52.71 58.11 56.21 64.83 61.77

6

BM25 51.88 52.74 48.99 49.87 46.12 45.52
Dense 54.35 55.12 57.02 58.23 49.54 49.12
Hybrid 53.11 54.14 58.39 59.47 55.01 54.01
Hybrid+Rerank 55.63 56.78 61.70 62.27 55.34 56.32
Causal Retrieval(GPT-2) 57.20 56.85 62.17 60.85 53.21 50.92
Causal Retrieval(Llama3-8B) 59.43 59.15 64.50 62.52 60.93 57.75
Knowledge Distill(BERT) 54.75 56.12 58.81 55.72 60.90 58.29

Table 6: Question answering results of different top-k using different search strategies. Knowledge Distillation refers
to the process in which BERT-340M is distilled using Llama 3-8B. The best result is in bold, and the second-best
result is underlined.

in Recall rate and 10.72% in Precise rate, further validating the importance of fine-tuning for improving947

retrieval quality.948

E Question Answering Prompts949

After identifying the document with the highest CIS K∗, we use a structured instruction to guide the LLM950

in generating the final answer:951

You are an information specialist. You are given a question and a document is retrieved based on
the question. Your task is to answer the question using only the information from the document.
Your answer must be brief and directly address the question. Do not add any additional text or
context. Here are some examples of how to respond based on provided information.

Question: example of a problem
Retrieved document: documentation examples
Answer: example answer

Question: {question}
Retrieved document: {search_document}
Answer:

952

F QA Case Study953

We conduct a case study to compare our causal retrieval approach with traditional RAG. In Table 7, we954

present specific reasoning examples from multi-hop datasets.955

In the HotpotQA dataset, the causal retrieval approach accurately identifies the correct publisher956

“PUBG Corp” by retrieving documents related to “Battle Royale Game” that include information about957

the game publisher. In contrast, traditional RAG sometimes generates incorrect responses by retrieving958

information related to “Battle Royale Game” but not directly relevant, such as “Epic Games,” leading959

to incorrect answers. This demonstrates that the causal retrieval approach can more accurately answer960
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complex questions by identifying the causal relationship between the question and the text fragment 961

using pointwise mutual information, whereas traditional RAG often produces inaccurate results due to 962

information confounding and lack of context. 963

Datasets Queries Traditional RAG Causal Retrieval (Ours)

MuSiQue When did Australian troops
fight in the area where Stag
Arms’s headquarter locates?

Retrieval strategy: Hybrid
Reasoning: The Australian troops
fought in August 1915 because the re-
trieved document mentioned this date in
a relevant context, although it does not
explicitly confirm the location as Stag
Arms’s headquarters. So the answer is:
August 1915.

Retrieval strategy: Causal Retrieval
Reasoning: The Australian troops
fought in October 1944 because it is
explicitly mentioned that they were in-
volved in combat in New Britain, which
is identified as the location of Stag
Arms’s headquarters. So the answer is:
October 1944.

HotpotQA Which company published
the battle royale game that
Summit1g started stream-
ing?

Retrieval strategy: Hybrid
Reasoning: Based on the retrieved in-
formation, while Summit1g streamed
"PlayerUnknown’s Battlegrounds", the
publisher’s details were not specified,
leading to an incorrect assumption that
the publisher might be Epic Games,
known for another popular battle royale
game. So the answer is: Epic Games.

Retrieval strategy: Causal Retrieval
Reasoning: Summit1g’s streamed game
"PlayerUnknown’s Battlegrounds" is
published by PUBG Corp, directly sup-
porting the correct answer. So the an-
swer is: UBG Corp.

2Wiki Where was the place of
death of the director of
the film Yaarukkaga Azhud-
haan?

Retrieval strategy: Hybrid
Reasoning: The retrieved information
identifies Jayakanthan as the director of
Yaarukkaga Azhudhaan. However, the
place of his death was not specified in
this context, leading to an incorrect con-
clusion. So the answer is: New Delhi.

Retrieval strategy: Causal Retrieval
Reasoning: By cross-referencing de-
tailed information about Jayakanthan,
it is established that he died in Madras.
This specific fact is crucial for answering
the question accurately. So the answer
is: Madras.

Table 7: Case study with Llama3-8B, where we present the factual error in red and the accurate information in blue.

G An example of Causal Retrieval in Information Retrieval (IR) 964

To verify the effectiveness of the causal retrieval method in information retrieval tasks, we demonstrate the 965

process using a specific query. This approach first uses the BM25 model to retrieve the top 100 documents 966

related to the query from a document corpus. Then, the causal retrieval method is applied to model the 967

causal relationship between the query and each document, calculating their CIS. Finally, the documents 968

are re-ranked based on their CIS values to optimize the relevance and interpretability of the retrieval 969

results. Below is an example query from TREC-DL2019 used for retrieval and re-ranking: 970

Query: how is the weather in jamaica
971

G.1 Retrieval Result 972

Table 8 shows the top 3 documents retrieved using BM25, along with their corresponding BM25 scores, 973

CIS, and relevance scores. 974

Rank Document BM25 score CIS relevance
1 D2301225 8.30 1.94 1
2 D441607 8.21 4.89 3
3 D1318068 8.05 2.94 2

Table 8: Top 3 documents retrieved by BM25, re-ranked by CIS. A higher relevance score indicates a stronger
relationship between the document and the query.
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Document D2301225:
We had it down to Jamaica or the Bahamas and having read the post from dlmcdon214 with the
same dilemma about which to chose, we’ve decided on Jamaica. Now, all experts out there -
what is the weather usually like around Christmas/New Year in Jamaica? Also, we’re undecided
yet about Negril or Ocho Rios - which please? Thanks in advance to anyone who helps out!!!
Mentioned in this post Jamaica Caribbean Bahamas Caribbean Ocho Rios Jamaica Report
inappropriate content Related: What are the most popular tours in Negril? Re: Christmas Weather
in Jamaica Jul 6, 2005, 5:33 AMHi thewoolleys,I hear the weather is still in the mid to late 20s in
dec..... I going to mobay on dec 8 for my wedding staying at the wyndham rose hall. Cant wait.
Report inappropriate contentthewoolleyskent england Level Contributor303 posts Save Reply2.
Re: Christmas Weather in Jamaica Jul 6, 2005, 5:48 AMThanks Janlo - have a great holiday and
a fab wedding - wishing you lots of happiness in wedded bliss!!!! Hubby and I got married in
Las Vegas 18 months ago after 15 years together - it was, and still is, the best thing we’ve ever
done!We’re looking at staying in either Club Hotel Rui Negril or the new Riu opening in Ocho
Rios...

BM25 score: 8.30
CIS: 1.94
relevance: 1

975

Document D441607:
This is Jamaica weather! Most of our days are filled with warmth and sunshine, even during the
rainy season. Jamaica has a tropical climate with hot and humid weather at sea level. The higher
inland regions have a more temperate climate. (Bring a light jacket just in case you travel to the
mountains where temperatures can be 10 degrees cooler or in case you go on a windy boat ride).
Our average annual temperature is between 80-860̆0b0F (27-300̆0b0C). The coolest months are
January and February and the temperature starts going back up in March. July and August are
typically the hottest months. Temperature variations between summer and winter is about 10
degrees. The rainiest months in Jamaica are normally May-June and September-October (lasts
until November sometimes). Enjoying the Jamaica weather ...even when it’s raining!This so-called
rainy season is characterized by brief afternoon showers followed by sunshine. Look at it as a
welcome break from the tropical heat! ( The family in the photo seem to agree! )Jamaica’s average
annual rainfall is 50.7 inches (1,288 mm). However, the distribution of rainfall is quite uneven
across the island. (You may want to grab a map of Jamaica to find your bearings...

BM25 score: 8.21
CIS: 4.89
relevance: 3

976

Document D1318068:
Weather experience please! 8 Sep 2010, 00:28Hi everyone,My husband and I are traveling to
JA next week leaving on Sept 16. I’m worried about what the weather is going to be like. I’ve
looked at weather.com which says 80’s and scattered or isolated T-storms, and Storm carib gives
daily information which doesnt really help me out for next week. I just want to know if anyone
has traveled there during September and if so, how was the weather? Raining all day, some of
the day, would never go in September etc.. Please help!!!!! I’m kinda freaking out about it and
ready to cancel the trip!Report inappropriate content Related: What are the most popular tours in
Negril? Weather experience please! !8 Sep 2010, 00:46don’t cancel!!!! i’m going on the 21st...and
sure, you may get your normal afternoon rain for an hour or so, but WHO CARES?!? it’s where

977
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you ARE that’s important. i don’t know how long you are going for, but i highly doubt you will
have an ENTIRE week of constant rain...and from what i’ve seen on the wunderground website, it
doesn’t look like there is any hurricane threat for the week we will be there. have a dirty banana,
or a red stripe and have a GREAT time!Report inappropriate contentforce10JCHouston...

BM25 score: 8.05
CIS: 2.94
relevance: 2

978
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