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Abstract

Model editing aims to correct outdated or er-
roneous knowledge in large language models
(LLMs) without the need for costly retraining.
Lifelong model editing is the most challeng-
ing task that caters to the continuous editing
requirements of LLMs. Prior works primar-
ily focus on single or batch editing; neverthe-
less, these methods fall short in lifelong edit-
ing scenarios due to catastrophic knowledge
forgetting and the degradation of model per-
formance. Although retrieval-based methods
alleviate these issues, they are impeded by slow
and cumbersome processes of integrating the re-
trieved knowledge into the model. In this work,
we introduce RECIPE, a RetriEval-augmented
ContInuous Prompt IEarning method, to boost
editing efficacy and inference efficiency in life-
long learning. RECIPE first converts knowl-
edge statements into short and informative con-
tinuous prompts, prefixed to the LLM’s input
query embedding, to efficiently refine the re-
sponse grounded on the knowledge. It further
integrates the Knowledge Sentinel (KS) that
acts as an intermediary to calculate a dynamic
threshold, determining whether the retrieval
repository contains relevant knowledge. Our
retriever and prompt encoder are jointly trained
to achieve editing properties, i.e., reliability,
generality, and locality. In our experiments,
RECIPE is assessed extensively across multiple
LLMs and editing datasets, where it achieves
superior editing performance. RECIPE also
demonstrates its capability to maintain the over-
all performance of LLMs alongside showcasing
fast editing and inference speed. '

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Roumeliotis and Tselikas, 2023; Zeng et al.,
2023) have become key techniques in NLP. How-
ever, once trained, the knowledge encapsulated
within LLMs becomes static (Petroni et al., 2019).

'Source codes will be released upon paper acceptance.

This can lead to outputs that are outdated or even
erroneous as time progresses (Yao et al., 2023). In
response, model editing techniques have been de-
veloped (Meng et al., 2022, 2023; Hartvigsen et al.,
2022; Tan et al., 2023; Hu et al., 2024; Jiang et al.,
2024), aimed at efficiently updating and correct-
ing LLMs without the necessity of retraining with
large-scale parameters. This concept is econom-
ically advantageous as it reduces computational
costs and enhances the accuracy of outputs pro-
duced by LLMs (Cao et al., 2021; Mitchell et al.,
2022; Meng et al., 2023; Mishra et al., 2024).

Previous efforts in model editing have primarily
focused on single and batch edits. Notable exam-
ples include ROME (Meng et al., 2022), MEND
(Mitchell et al., 2022), and MEMIT (Meng et al.,
2023), which achieve edits by applying offsets to
part of the model’s parameters. However, in the real
world, LLMs frequently require continuous knowl-
edge updates to stay abreast of emerging knowl-
edge. Thus, the concept of lifelong editing has been
introduced (Hartvigsen et al., 2022). As shown in
the upper part of Figure 1, with continuous editing,
the accumulating offsets on parameters can result
in model performance degradation or even failure
(Hartvigsen et al., 2022; Huang et al., 2023; Han
et al., 2023; Hu et al., 2024).

Some techniques (Dong et al., 2022; Huang et al.,
2023) address the challenges by integrating extra
model parameters. Nevertheless, as shown in the
middle of Figure 1, the increase in additional pa-
rameters leads to diminished model performance
and reduced inference efficiency. Retrieval-based
methods (Han et al., 2023; Jiang et al., 2024; Yu
et al., 2024) separate knowledge from the model,
thereby alleviating knowledge forgetting and per-
formance degradation. However, the intricate post-
retrieval knowledge adoption inevitably reduces the
inference efficiency of LLMs, such as appending a
lengthy knowledge updating instruction before the
input query (Jiang et al., 2024).
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Figure 1: Comparison among three types of methods in lifelong editing scenarios. Modifying parameters and adding
extra parameters result in the degradation of LLM performance as editing progresses. In contrast, retrieval-based
editors store knowledge in a repository and apply knowledge editing on the fly, which maintains the LLM unchanged
and relieves it from accumulating parameter offsets or adding extra parameters. (Best viewed in clolor)

In this paper, we introduce RECIPE, a novel
RetriEval-augmented Contlnuous Prompt |[Earn-
ing framework to enhance editing efficacy and in-
ference efficiency for LLMs in lifelong learning
scenarios. Two key techniques of RECIPE are in-
troduced as follows:

Knowledgeable Continuous Prompt Learning:
In RECIPE, each editing knowledge statement (ex-
pressed by texts) is transformed into a knowledge-
able continuous prompt. The prompt is then pre-
fixed before the embedding of the input query to
modify the response of the LLM. This approach
is grounded in prior research, as exemplified by
P-tuning (Li and Liang, 2021; Liu et al., 2022),
which demonstrated that continuous prompts en-
able LLMs to perform downstream tasks more ef-
fectively. Here, we conceptualize each knowledge
edit as a distinct mini-task. To ensure editing effi-
cacy, our prompt encoder is trained to align with
three key editing properties including reliability,
generality, and locality (Yao et al., 2023).

Dynamic Prompt Retrieval with Knowledge Sen-
tinel: Initially, we map the knowledge statements
and queries into the same representational space
to compute retrieval similarity. Manually setting
a fixed similarity threshold is a common prac-
tice to determine whether the repository contains
knowledge related to an input query (Han et al.,
2023). However, this approach does not account
for the fact that different queries often require dis-
tinct thresholds due to semantic variations. There-
fore, we introduce the Knowledge Sentinel (KS), a
trainable embedding representation, as an interme-
diary to dynamically compute the threshold for

each query. Employing a specifically designed
contrastive learning mechanism, the KS module
is jointly trained with the prompt encoder to align
retrieval with model editing.

In the experiments, we conduct tests with 1, 10,
100, 1,000, and 10,000 edits to compare the per-
formance of our model against prominent editing
methods on ZSRE (Mitchell et al., 2022), Counter-
Fact (Meng et al., 2022), and RIPE (Cohen et al.,
2023) using LLaMA-2 (7B), GPT-J (6B) and GPT2-
XL (1.5B) backbones. Results demonstrate that
RECIPE achieves not only optimal editing perfor-
mance and robustness against degradation of LLM
general results but also a significant advantage in
both editing and inference speed.

2 Related Works
2.1 Model Editing

We categorize model editing methods into three
types: modifying parameters, adding extra parame-
ters, and retrieval-based methods.

Methods modifying model parameters can be
further divided into Locate-then-Edit (L&E) and
meta-learning-based methods. For L&E, ROME
(Meng et al., 2022) identifies the LLMs’ edit-
sensitive layers through causal tracing and pro-
poses rank-one model editing to modify param-
eters. MEMIT (Meng et al., 2023) and WILKE
(Hu et al., 2024) respectively use multi-layer al-
location and dynamic localization to alleviate the
single matrix update burden of ROME. In meta-
learning-based methods, KnowledgeEditor (Cao
et al., 2021) and MEND (Mitchell et al., 2022)
respectively transform editing knowledge and the



gradient decomposition of LLM to the offsets of
the weights to be edited. MALMEN (Tan et al.,
2023) enhances MEND’s approach by using nor-
mal equations to merge parameters for multiple
edits. Although these methods show success in sin-
gle or batch editing scenarios, in a lifelong editing
situation, as the number of edits increases, the accu-
mulating mismatches of parameter offsets can lead
to model degradation or failure (Hu et al., 2024).

Methods adding extra parameters, such as
CaLiNet (Dong et al., 2022) and T-Patcher (Huang
et al., 2023), achieve model editing by introducing
additional neurons to the LLM for each piece of
editing knowledge, thereby avoiding modifications
to the original model parameters. However, in the
lifelong editing scenario, the continuous addition
of neurons can progressively dominate the LLM’s
inference process. This can lead to a reduction in
inference speed and model capability.

Retrieval-based editors effectively circumvent
the issue of accumulated parameter offsets and
the potentially unbounded addition of neurons.
GRACE (Hartvigsen et al., 2022) maintains an
adapter that maps a query to a potential representa-
tion corresponding to the knowledge retrieved by
calculating the distance between representations of
the query and the knowledge. RASE (Han et al.,
2023) develops an editing retrieval model to boost
the efficacy of model editing approaches during
sequential edits. Complementing GRACE, MELO
(Yu et al., 2024) introduces a batch editing version
using LoRA (Hu et al., 2022). LTE (Jiang et al.,
2024) fine-tunes the LLM to respond to knowl-
edge when prefixed with editing information and
retrieves relevant content using the off-the-shelf
backbone (Reimers and Gurevych, 2019). While
retrieval-based methods are advantageous for life-
long learning, they may still contend with speed
issues and practical complexities involved in edit-
ing and applying knowledge after retrieval.

2.2 Prompt Tuning

Prompt tuning is a typical parameter-efficient learn-
ing method that only requires updating a relatively
small number of parameters. There are two types
of prompt tuning methods: discrete and continuous.
The discrete methods (Gao et al., 2021; Levy et al.,
2023; Wang et al., 2023b; Duan et al., 2023) guide
the model to generate relevant outputs for specific
tasks by designing fixed, text-based prompts. Con-
tinuous methods (Li and Liang, 2021; Liu et al.,
2022, 2021a,b; Mu et al., 2023; Xu et al., 2023;

Zhang et al., 2023), more relevant to RECIPE, uti-
lize trainable word embedding vectors as prompts.
Building on the foundations of these works, our ap-
proach is duly justified, encoding individual pieces
of knowledge as continuous prompts.

3 Background

In this section, we first formally present the model
editing task and its lifelong version. Then, we in-
troduce the evaluation properties in model editing.

An LLM fy,, € F can be regarded as a func-
tion fi,, : Q@ — A that maps an input query g to
its predicted answer a = fj;,,(¢). Given an edit
example pair (ge, ac) that fi;,,(¢.) # a., a model
editor ME : F x Q x A +— F outputs a post-edit
model f;, . such that:

fl/lm = ME(fllmaqeaae) (1)

Given an initial model fﬁm, ME will iteratively im-
plement editing as the demands of editing continue
to emerge in a lifelong editing scenario:

fltlm :ME(fltlr_n17q€t7a€t)7t: 172737"‘ (2)

At any timestep ¢ in the lifelong editing process, a
good ME should make the edited model fltlm meet
the following three criteria (Yao et al., 2023):
Reliability requires f/, = to correctly remember all
the previously edit samples themselves:

E(qe,ae)N{(qu,aeT)}izlﬂ {fltlm (Qe) = ae} 3)

where the I is the indicator function.

Generality requires f/, ~to correctly answer
queries belonging to relevant neighbors of previ-
ously edited samples:

E(qe,ae)N{(qu ,ae.,)}izlE(QQvag)NN(Qe7ae)Hg (qg’ ag)

s.t. I5(gg,aq) =1 {fztzm (qq) = ag}
4)

where N (g, a.) is the relevant neighbors of edit
sample (ge, ).

Locality requires fltlm to maintain consistency with
the initial model fl(l)m on queries unrelated to previ-
ously edited samples:

E(Qe,ae)N{(QET ;Aer )}tT:lE(qlzal)NO(thyae)Hl (ql’ al)

S.t. ]Il(ql, al) =1 {fltlm (QI) = fl[gm (‘.71)}
(5

where O(ge, a.) is the irrelevant samples set w.r.t.
the edit sample (g, a.). Note that the locality met-
ric implicitly includes the preservation of the gen-
eral performance of f}, = relative to f}), .
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Figure 2: Illustration of the RECIPE framework. Process 1 constructs and updates the knowledge retrieval repository
KCt. During the inference stage, Process 2 retrieves query-related prompts from ;. Process 3 utilizes the retrieved
continuous prompts to correct the LLM’s response. For lifelong editing, the repository can be continuously updated
(e.g., from K;_; to ;) with each new insertion of knowledge and prompts.

4 The Proposed Approach

In this section, we formally introduce the RECIPE
framework, with the overall architecture in Figure
2. First, RECIPE maintains a knowledge retrieval
repository, which stores representations of editing
knowledge mapped to their knowledgeable contin-
uous prompts described in Sec. 4.1. Next, we intro-
duce a dynamic retrieval technique with the KS to
facilitate knowledge retrieval to filter out irrelevant
knowledge in Sec. 4.2. To ensure the LLMs adhere
to the edited knowledge related to the query effi-
ciently, RECIPE prefixes the retrieved continuous
prompt to the word embeddings of the LLM’s input
query, as detailed in Sec. 4.3. Finally, we describe
the joint training procedure of the RECIPE frame-
work in Sec. 4.4. The algorithms for RECIPE are
detailed in Appendix A.

4.1 Construction and Update of Knowledge
Retrieval Repository

The knowledge retrieval repository is initialized as
empty, i.e., Ko = {}, and is updated from K;_; to
KC; by adding a new key-value pair corresponding
to new editing knowledge, k;, at each timestep ¢ in
our lifelong editing setting.

Specifically, at timestep ¢, given a new knowl-
edge statement k;, the knowledge representation
Tk, € R4 is achieved through an encoder f,
(e.g., RoBERTa (Liu et al., 2019)) stacked with a
multilayer perceptron (MLP) MILP g:

Tk, = MLP i (frm (k) (6)

where f,.,, concatenates the maximum, minimum,
and average pooling of its output token representa-
tions (including the [CLS] token) into a vector to

maximally retain the semantic information of the
input. Then, the continuous prompt py, € RExdum
is generated through another MLP, i.e., MLP p:

ke — fresp (MLPP (Tkt)) @)

where [ and dj;,, are the length of the contin-
uous prompt and the dimension of the LLM’s
word embedding, respectively. In other words,
[ is the number of Continuous Prompt Tokens
(CPTs) leveraged for LLM inference. fcs) is the
reshape operation that maps the vector into a ma-
trix with shape [ X dj;,,,. Finally, the knowledge
retrieval repository is updated from K;_1 to Ki:
Ki = Ki—1 U {(rg,,pr,)} where (rg,,pr,) is the
key-value pair for knowledge retrieval.

4.2 Dynamic Prompt Retrieval with
Knowledge Sentinel

The existence of a query-related prompt in the
repository is usually determined by using a man-
ually set similarity threshold (Han et al., 2023).
However, using a fixed threshold does not account
for the fact that the sensitivity to similarity with
related knowledge varies among different queries
due to semantic differences. The Knowledge Sen-
tinel (KS) serves as an intermediary leveraged to
dynamically compute similarity thresholds for vari-
ous queries. To be specific, KS © € R is a train-
able word embedding of f,,, with token length
c. It is transformed into the knowledge represen-
tation space as: rg = MLPg(frm(0)). Given
a query ¢q and the knowledge retrieval repository
K¢ = {(rk,,pk,)}L_,, the prompt retrieval pro-
cess is as follows:

7q = MLPq(frm(q)) (8)
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where j = argmax,_; qu - Tk, which can be
efficiently searched via modern vector databases or
search engines (e.g., Chen et al. (2021)). MLPg is
the MLP that maps the query representation to the
knowledge representation space. If the retrieved
continuous prompt is not sufficiently similar to the
query compared to KS, an empty set is returned.
Hence, the inference of LLMs is not modified.

4.3 Model Inference with Editing On-the-fly

Previous retrieval-based methods suffer from cum-
bersome editing processes and post-retrieval knowl-
edge integration (Hartvigsen et al., 2022; Jiang
et al., 2024). To address this challenge, we pre-
fix the retrieved continuous prompt to the word
embedding of the input query to efficiently correct
the response of the LLM.

Specifically, we consider the LLM to be edited
as fiym : @ — A, where fzzm is fi, with the
embedding layer f.,,;, removed. Given an input
query g, and the retrieved continuous prompt py,_ =
KS(q), the inference process is reformulated as:
ag; = fllm(ka @ femp(q)) where @ denotes the
concatenation of the retrieved continuous prompt
matrix and the word embedding matrix of q.

The feasibility of our approach is supported by
previous work such as P-Tuning (Li and Liang,
2021; Liu et al., 2022), which demonstrates the
efficacy of training continuous prompt embeddings
to enhance the performance of LLMs on down-
stream tasks. In RECIPE, we treat the editing of
each knowledge statement as a mini-task. Instead
of fine-tuning a specific prompt encoder for each
mini-task, we accomplish the objectives of these
mini-tasks by training RECIPE modules that gener-
ate continuous prompts, ensuring the LLM adheres
to the corresponding knowledge.

4.4 Model Training

The losses are formulated to ensure adherence to
the editing of generated continuous prompts and
effective retrieval of query-related knowledge for
the LLM. Given a batch of training data consist-
ing of b editing sample pairs {(qe,, ac,)}’_; and
their corresponding sampled generality and locality
pairs {(qg, agi)}?:lv {(a,, ali)}’?:l’ the losses are
formulated as follows.

Editing: The editing loss aims to ensure that the
generated continuous prompt guides the LLM to

follow the properties of reliability, generality, and
locality (Yao et al., 2023). Based on the pairs
(ge, , G, ), the sample-wise losses corresponding to
these three properties are defined as follows:

£ = —1og fum (e, [pk, ® fomp(ae,))  (10)
ﬁée)n - = lOg fllm (agz ’pk @ femb(%h)) (11)

£y =KL (fllm (@) || fuom (Pr, ® femb(qh))>
(12)

where py, is the continuous prompt transformed
through Eq. 6 and Eq. 7 using knowledge k; that is
the concatenation of ¢., and a.,. The KL denotes
the Kullback-Leibler divergence. The batch-wise
loss function for model editing is derived as fol-
lows:

b
Leai = % So(eD £l +el). a3

=1

Prompt Learning: The training losses for prompt
learning are based on contrastive learning (van den
Oord et al., 2018; He et al., 2020) and are aligned
with the properties of reliability, generality, and
locality (Yao et al., 2023). For a batch of samples,
the loss functions for learning continuous prompts
are formulated as follows:

LY) = 5(Fq., 7k, R) + 0(Fg, ,Tiis ), (14)
,C(Z) (5(rql 1o, R) +0(Tq.. .o, R\x,) 15)
+ 5(7”%, ,To, R\kz)’
1 b
Loi= Z LO+LE), a6

where R = {ry, }!_; U{re} and R\, = R\ {ry,}.
Tk, 18 the representation of the editing knowledge
k; transformed through Eq. 6. The query represen-
tations rq , rq 90T for Qe; > g, > q1; are€ attained via
Eq. 8, respectlvely 5 is the InfoNCE loss (van den
Oord et al., 2018), formulated as:

exp(q - ky/T)
OB el kafr)
a7

where 7 is the temperature, typically set to 1 by
default. In our work, the neighbor-oriented loss

5(61, ks, {kl}?zl) -

z:,(;l encourages higher similarity between the edit-
ing knowledge and the corresponding reliability
or generality queries. The sentinel-oriented loss

£ffo) ensures that input queries yield the highest
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10000 GRACE 3850 3152 93.15 5439104, 4852 1175 8538 48551178 - ; ; :
R-ROME 4594 27.04 9120 5473(1q75 3372 1042 8416 42771063 - ] ) ,
MALMEN 1575 1082 17.99 14851030, 614 550 817 660(11.01) - - - -
LTE 8880 8694 8338 8637(10ss) 93.10 9155 8432 89.66(10s7) - - - -
WILKE 739 511 1405 8855115 517 370 2387 10911147 - - - -
RECIPE 9379 9132 99.64 94921070y 9551 9376 90.82 9336(1;6s) - - - -

Table 1: The overall results using LLAMA-2 (7B) in lifelong editing scenario. Due to the space limitation, our
editing results of GPT-J and GPT-XL are shown in Appendix D. “# Editing” denotes the number of edits. “Rel.”,
“Gen.” and “Loc.” are the abbreviations of reliability, generality, and locality, respectively. Given that the RIPE
dataset comprises 4,388 samples, achieving results for 10,000 edits is not feasible. The t-tests demonstrate the
improvements of our work are statistically significant with p < 0.05 level.

similarity with the KS in cases where the retrieval
repository lacks relevant knowledge.

Thus, the total training loss is: Lipta; = Ledit +
L. During training, the parameters of the LLM
fum are kept frozen. The trainable modules in-
clude only f,,, MLP g, MLPg, MLPp, and
O, which renders our approach highly lightweight.

5 Experiments

In this section, we present the experimental results
of RECIPE and compare it against strong baselines

over various public datasets 2.

5.1 The Performance of RECIPE

We evaluate RECIPE using various backbones in-
cluding LLAMA-2 (7B), GPT-J (6B), and GPT-XL
(1.5B) shown in Table 1 and Appendix D.

Editing Performance: Table 1 presents the overall
performance across various numbers of edits to sim-
ulate a lifelong editing scenario. From the single-
edit perspective, our method exhibits optimal per-

’The detailed description of datasets, baselines, and model
settings are presented in Appendix B and Appendix C.



Editor CSQA MMLU ANLI SQUAD-2 Average
N/A 3891 4154 34.04 3643 37.73
FT 19.27 2993 3333 0.59 20.78
MEND 20.31 24.68 33.07 0.04 19.52
ROME 19.97 23.03 3347 0.41 19.22
MEMIT 19.68 2323 33.39 0.01 19.08
TP 19.62 2284 3337 0.96 19.20
GRACE 38.60 4120 3393  36.28 37.50
R-ROME 3850 41.12 3390 36.31 37.46
MALMEN 20.85 24.83 33.03 0.27 19.75
LTE 1945 2321 3341  25.25 25.33
WILKE 19.87 2337 33.37 0.07 19.17
RECIPE 38.76 4140 3413 36.50 37.70

Table 2: Performance of LLAMA-2 after 1,000 edits.
“N/A” denotes performance without any edits. Bold font
highlights the optimal post-editing performance.

Type Editor Edit Time Infer. Time Total Time
FT 1.7205 0.0589 1.7794
MEND 0.0987 0.0590 0.1577
MP ROME 17.1639 0.0586 17.2225
MEMIT 33.6631 0.0591 33.7222
MALMEN  2.3418 0.0589 2.4007
WILKE 38.7165 0.0587 38.7752
AP TP 5.9061 0.0615 5.9676
GRACE 12.5343 0.0936 12.6279
RB R-ROME  17.3135 0.0606 17.3741
LTE 0.0076 0.0634 0.0710
RECIPE 0.0078 0.0598 0.0676

Table 3: Average time (s) taken for a single edit and
model inference after 10,000 edits. MP, AP, and RB
indicate Modifying Parameters, Adding Parameters, and
Retrieval-Based methods, respectively.

formance in most testing scenarios. In the lifelong
editing scenarios, we have the following observa-
tions: (1) Methods that modify the parameters of
LLMs, e.g., MEND (Mitchell et al., 2022), ROME
(Meng et al., 2022), and MEMIT (Meng et al.,
2023)), show outstanding editing performance in
a single edit. Yet, they exhibit a significant de-
cline in editing performance as the number of edits
increases. This trend aligns with the toxic accu-
mulation issue highlighted by Hu et al. (2024). (2)
Methods introducing additional parameters, such
as T-Patcher (Huang et al., 2023), maintain a degree
of reliability and generality in the lifelong editing
process. However, the cumulative addition of ex-
tra parameters compromises the original inference
process, evidenced by the pronounced deteriora-
tion in locality observed in ZSRE (Mitchell et al.,
2022). (3) Retrieval-based approaches, including
GRACE (Hartvigsen et al., 2022), R-ROME (Han
et al., 2023), and LTE (Jiang et al., 2024), demon-
strate robustness against the increasing number of
edits. Our method achieves the best results, affirm-

ing the strengths of retrieval as well as validating
the efficacy of our strategy.

Damage to the General Performance of LLMs:
While the three editing metrics effectively demon-
strate the editing performance, we further inves-
tigate to which extent these editors influence the
model’s general capabilities. Table 2 shows the
results of LLaMA-2 after 1,000 edits. It is ob-
served that non-retrieval-based methods lead to a
significant reduction in general capabilities. This
can be attributed to the accumulation of pattern mis-
matches caused by external interventions of editing.
Among retrieval-based methods, LTE (Jiang et al.,
2024) also exhibits performance degradation. In
contrast, our RECIPE does not involve direct inter-
vention on LLM parameters but instead relies on
concatenating a short prompt to guide the LLM’s
adherence to knowledge. It demonstrates the best
preservation of general performance, suggesting
that it inflicts minimal harm on the model.

5.2 Efficiency Comparison

To underscore the efficiency of RECIPE, we con-
duct a comparative analysis on editing and infer-
ence time after 10,000 edits, as delineated in Ta-
ble 3. Among methods leveraging edit-specific
training such as MEND (Mitchell et al., 2022),
MALMEN (Tan et al., 2023), LTE (Jiang et al.,
2024), and RECIPE, a notable reduction in editing
time is observed when compared to techniques ne-
cessitating multiple iterations of back-propagation
during editing. For inference speed, methods
that modify model parameters maintain consis-
tent speeds as they do not alter the original in-
ference pipeline. T-Patcher (Huang et al., 2023)
slows down the inference speed due to the accu-
mulating neurons. Among retrieval-based methods,
GRACE (Hartvigsen et al., 2022) reduces the par-
allelism in model inference due to its unique dic-
tionary pairing mechanism. R-ROME (Han et al.,
2023) and LTE (Jiang et al., 2024) need to calcu-
late editing matrices on the fly and concatenate
long editing instructions, respectively. In contrast,
RECIPE effectively preserves the LLM’s original
inference speed by concatenating short continuous
prompts for editing. The shortest total time also
highlights RECIPE’s efficiency advantage.

5.2.1 Number of Continuous Prompt Tokens

To assess whether an increase in Continuous
Prompt Tokens (CPTs) can enhance the editing
performance of RECIPE (Kaplan et al., 2020), Fig-
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Figure 3: Impact of the number of CPTs on editing
performance of RECIPE.

Settings 100 Edits 1000 Edits

8 Rel. Gen. Loc. Rel. Gen. Loc.
N/A 27.30 26.07 100.00 27.30 26.07 100.00
RECIPE 97.29 93.74 97.38 96.05 92.34 95.36
-CPT 2742 26.18 99.98 27.38 26.15 99.97
-KS 95.55 89.10 9245 94.01 86.63 88.55
-BOTH 27.41 26.17 9996 27.35 26.12 99.94

Table 4: Ablation study of RECIPE.

ure 3 illustrates the average impact of varying CPTs
on editing efficacy across the editing benchmarks
after 1,000 edits. The results show a noticeable
performance dip with a single CPT, particularly in
generality, indicating that fewer tokens limit rep-
resentational capacity and lead to learning overly-
simple patterns. Optimal editing performance is
observed with three CPTs. Beyond this, while re-
liability and generality improve modestly, locality
slightly decreases. This suggests that more CPTs
expand representational capabilities but also intro-
duce additional LLMs’ interference.

Regarding the peak editing performance with
three CPTs, we suggest that this is because the in-
formation carried by edit facts can be succinctly
represented as relational triples (Head Entity,
Relation, Tail Entity), and these triples can
be represented as three word-level token embed-
dings. Thus, we further visualize LLAMA-2’s
word embeddings of subjects and objects of 100
edit facts in CF, along with the corresponding rep-
resentations of 1, 3, and 5 CPTs, reduced to two
dimensions using t-sne (Van der Maaten and Hin-
ton, 2008). From Figure 4, the representations with
three CPTs are closer to word embeddings than the
others, indicating that the granularity of informa-
tion carried by three CPTs is more akin to that of
word embeddings of LLMs.

5.3 Ablation Study

We conduct an ablation study using LLAMA-2
on ZSRE (Mitchell et al., 2022), CF (Meng et al.,
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Figure 4: Visualization of word embeddings with vary-
ing numbers of CPTs.

2022), and RIPE (Cohen et al., 2023). Average
results are detailed in Table 4. Without CPTs, we
resort to using word embeddings of knowledge
statements as retrieval prompts from the knowl-
edge repository. Excluding KS involved applying a
conventional contrastive learning loss to align relia-
bility and generality sample representations closer
to editing knowledge while distancing those of lo-
cality samples. Upon completion of training, we
employ an absolute similarity threshold decision
strategy (Han et al., 2023) for filtering irrelevant
knowledge. Despite its high locality, the omission
of CPTs significantly impairs RECIPE’s reliability
and generality. It can be observed that the results
are nearly identical to those obtained without using
an editor at all. This underscores that merely using
raw concatenated knowledge prefixes fails to make
LLMs comply with editing directives. Conversely,
CPTs aid LLM adherence to specified edits. Addi-
tionally, discarding KS leads to a deterioration in
editing efficacy, particularly impacting generality
and locality. The reason is that an absolute similar-
ity threshold fails to adequately address the diverse
thresholds required by distinct queries.

6 Conclusion

We propose RECIPE, an effective and efficient
LLM editor that includes two essential modules.
Continuous prompt learning prefixes transformed
knowledge to input query to achieve efficient post-
retrieval editing. Dynamic prompt retrieval with
KS retrieves and determines whether the repos-
itory contains relevant knowledge without fixed
similarity thresholds. In lifelong editing, RECIPE
demonstrates exceptional editing performance and
efficiency while simultaneously preserving LL.M
functionality without degradation.



Limitations

Due to the limitation in machine resources, we have
not experimented on larger knowledge encoders
apart from RoBERTa (Liu et al., 2019) and larger
LLMs. We speculate that either a larger encoder or
a larger LLM may yield better editing performance.
Additionally, the current editing experiments are
primarily implemented on QA-based datasets. We
will expand our RECIPE framework to other types
of editing tasks and larger models in the future.

References

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021.
Editing factual knowledge in language models. In
EMNLP, pages 6491-6506.

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li,
Chuanjie Liu, Zengzhong Li, Mao Yang, and Jing-
dong Wang. 2021. SPANN: highly-efficient billion-
scale approximate nearest neighborhood search. In
NeurlPS, pages 5199-5212.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. CoRR,
abs/2307.12976.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating fac-
tual knowledge in pretrained language models. In
EMNLP, pages 5937-5947.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and
Franziska Boenisch. 2023. Flocks of stochastic par-
rots: Differentially private prompt learning for large
language models. In NeurIPS.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL, pages 3816-3830.

Xiaoqi Han, Ru Li, Hongye Tan, Yuanlong Wang,
Qinghua Chai, and Jeff Z. Pan. 2023. Improving se-
quential model editing with fact retrieval. In EMNLP,
pages 11209-11224.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2022.
Aging with GRACE: lifelong model editing with dis-
crete key-value adaptors. CoRR, abs/2211.11031.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In CVPR,
pages 9726-9735.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In CVPR, pages 770-778.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In ICLR.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu,
and Jun Zhao. 2024. Wilke: Wise-layer knowl-
edge editor for lifelong knowledge editing. CoRR,
abs/2402.10987.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In /CLR.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong,
Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, Qun Liu, and Wei
Wang. 2024. Learning to edit: Aligning llms with
knowledge editing. CoRR, abs/2402.11905.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In ACL, pages 1401-1422.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In CoNLL, pages 333-342.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL, pages 7871-7880.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL, pages 4582—-4597.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
120 Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In ACL, pages 61-68.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.


https://doi.org/10.18653/v1/2021.emnlp-main.522
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://arxiv.org/abs/2307.12976
https://arxiv.org/abs/2307.12976
https://arxiv.org/abs/2307.12976
https://doi.org/10.18653/v1/2022.findings-emnlp.438
https://doi.org/10.18653/v1/2022.findings-emnlp.438
https://doi.org/10.18653/v1/2022.findings-emnlp.438
http://papers.nips.cc/paper_files/paper/2023/hash/f26119b4ffe38c24d97e4c49d334b99e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f26119b4ffe38c24d97e4c49d334b99e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f26119b4ffe38c24d97e4c49d334b99e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f26119b4ffe38c24d97e4c49d334b99e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/f26119b4ffe38c24d97e4c49d334b99e-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://aclanthology.org/2023.findings-emnlp.749
https://aclanthology.org/2023.findings-emnlp.749
https://aclanthology.org/2023.findings-emnlp.749
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2402.10987
https://arxiv.org/abs/2402.10987
https://arxiv.org/abs/2402.10987
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/pdf?id=4oYUGeGBPm
https://openreview.net/pdf?id=4oYUGeGBPm
https://openreview.net/pdf?id=4oYUGeGBPm
https://arxiv.org/abs/2402.11905
https://arxiv.org/abs/2402.11905
https://arxiv.org/abs/2402.11905
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associa-
tions in GPT. In NeurIPS.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In ICLR.

Abhika Mishra, Akari Asai, Vidhisha Balachandran,
Yizhong Wang, Graham Neubig, Yulia Tsvetkov, and
Hannaneh Hajishirzi. 2024. Fine-grained halluci-
nation detection and editing for language models.
CoRR, abs/2401.06855.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022. Fast model
editing at scale. In ICLR.

Jesse Mu, Xiang Li, and Noah D. Goodman. 2023.
Learning to compress prompts with gist tokens. In
NeurlPS.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In ACL, pages 4885-4901.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models as
knowledge bases? In EMNLP, pages 2463-2473.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In ACL, pages 784-7809.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, pages
2383-2392.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP, pages 3980-3990.

Konstantinos I. Roumeliotis and Nikolaos D. Tselikas.
2023. Chatgpt and open-ai models: A preliminary
review. Future Internet, 15(6):192.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In NAACL, pages 4149-4158.

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive
editing for large language models via meta learning.
CoRR, abs/2311.04661.

10

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, and Huajun
Chen. 2023a. Easyedit: An easy-to-use knowledge
editing framework for large language models. CoRR,
abs/2308.07269.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In ACL,
pages 13484—-13508.

Ziyun Xu, Chengyu Wang, Minghui Qiu, Fuli Luo,
Runxin Xu, Songfang Huang, and Jun Huang. 2023.
Making pre-trained language models end-to-end few-
shot learners with contrastive prompt tuning. In
WSDM, pages 438—-446.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan
Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and
Ningyu Zhang. 2023. Editing large language mod-
els: Problems, methods, and opportunities. CoRR,
abs/2305.13172.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2024.
MELOQO: enhancing model editing with neuron-
indexed dynamic lora. In AAAI, pages 19449-19457.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130B: an open bilingual pre-trained model. In
ICLR.

Zhenru Zhang, Chuangi Tan, Haiyang Xu, Chengyu
Wang, Jun Huang, and Songfang Huang. 2023. To-
wards adaptive prefix tuning for parameter-efficient
language model fine-tuning. In ACL, pages 1239—
1248.

Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang,
and Xing Xie. 2023. Promptbench: A unified li-
brary for evaluation of large language models. CoRR,
abs/2312.07910.


https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://arxiv.org/abs/2401.06855
https://arxiv.org/abs/2401.06855
https://arxiv.org/abs/2401.06855
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
http://papers.nips.cc/paper_files/paper/2023/hash/3d77c6dcc7f143aa2154e7f4d5e22d68-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.3390/FI15060192
https://doi.org/10.3390/FI15060192
https://doi.org/10.3390/FI15060192
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://arxiv.org/abs/2311.04661
https://arxiv.org/abs/2311.04661
https://arxiv.org/abs/2311.04661
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbcl
https://arxiv.org/abs/2308.07269
https://arxiv.org/abs/2308.07269
https://arxiv.org/abs/2308.07269
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.1145/3539597.3570398
https://doi.org/10.1145/3539597.3570398
https://doi.org/10.1145/3539597.3570398
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2305.13172
https://doi.org/10.1609/aaai.v38i17.29916
https://doi.org/10.1609/aaai.v38i17.29916
https://doi.org/10.1609/aaai.v38i17.29916
https://openreview.net/pdf?id=-Aw0rrrPUF
https://doi.org/10.18653/v1/2023.acl-short.107
https://doi.org/10.18653/v1/2023.acl-short.107
https://doi.org/10.18653/v1/2023.acl-short.107
https://doi.org/10.18653/v1/2023.acl-short.107
https://doi.org/10.18653/v1/2023.acl-short.107
https://arxiv.org/abs/2312.07910
https://arxiv.org/abs/2312.07910
https://arxiv.org/abs/2312.07910

Algorithm 1 Training of RECIPE

1: Input: LLM to be edited fi,,; initialized collec-

tion of RECIPE parameters M; training set D =
S o N

{ ((qei e, ), {qh; ay, ;V=g11 ) {qlJ, ) (1{7 }j\f:l,l) }ifl; maxi-
mum iteration number /,,44; batch size of training sam-
ples b; learning rate 7).

2: Output: trained RECIPE parameters M.

3: while iter < Iq, do

4 {(ge; ae;). (ag,+ ag, ), (qlwali)}li):1

training samples from D

< Sample b

5: fori<« 1tobdo

6:

7. ki = Qe; + Qe;

8:

9: Tk, < Transform k; using Eq. 6
10:

11: pk; ¢ Transform r, using Eq. 7
12:

13: Tq., < Transform g, using Eq. 8
14: fq_qz < Transform gy, using Eq. 8
15: Tq;, < Transform ¢;; using Eq. 8
16:  end for

17:

18:  re < Transform O using Eq. 6

19:

20: Leait, Lpi < Compute losses using Eq.13 and Eq.16
21: ﬁtotal = Efedit + [fpl

22: M+ Adam (V mLiotal, M)

23: end while

24: return M

Algorithm 2 Editing of RECIPE in a Lifelong Sce-
nario

1: Input: Knowledge retrieval repository Ki—1 =
{(r%,, pr, ) Y2} ; editing knowledge (ge, , ae, ).
: Output: updated knowledge retrieval repository K;.

kt = (e + Qey
rk, < Transform k; using Eq. 6
Dk, ¢ Transform r, using Eq. 7

K =K1 U {(Tkupkt)}
: return K,

TV ERE

—

A Algorithms of RECIPE

The training and editing algorithms for RECIPE
are detailed in Alg. 1 and Alg. 2, respectively.
The inference process of the LLM equipped with
RECIPE is described in Alg. 3.

B Datasets and Baselines

B.1 Model Editing Datasets

We employ three public model editing datasets,
including ZSRE (Mitchell et al., 2022), Counter-
Fact (CF) (Meng et al., 2022), and Ripple Effect
(RIPE) (Cohen et al., 2023) as our experimental
datasets. For methods that require edit training, in-
cluding MEND (Mitchell et al., 2022), MALMEN

Algorithm 3 Inference of LLM Equipped with
RECIPE

1: Input: LLM to be edited f;,,, including the embedding

layer feps and the transformer module fum; knowledge
retrieval repository Ky = { (k. , Pk, ) }o—1; knowledge
representation of KS re; input query g.

: Output: LLM’s output with RECIPE intervened a,.

: 7q = MLPQ(frm(q))

Jj = argmax qu “TE
T=1,...,t

-

: ifqu TRy > qu - ro then

9: aq = fllm(pk’j @ femb(q))
10: else

11: aq = fll'm(Q)

12: end if

13: return a,

(Tan et al., 2023), LTE (Jiang et al., 2024), and our
RECIPE, we utilize the above training sets to learn
their parameters.

ZSRE (Levy et al., 2017) is generated through
question-answering with BART (Lewis et al., 2020)
and manual filtering, including 162,555 training
and 19,009 testing samples. Each sample com-
prises an editing sample and its rephrased and irrel-
evant counterparts, matching the reliability, gener-
ality, and locality editing properties.

CF (Meng et al., 2022) is characterized by the
editing of false facts and includes 10,000 training
and 10,000 testing samples. These false facts are
more likely to conflict with the original knowledge
within LLMs, making the editing process more
challenging and thus providing a robust evaluation
of the editors’ ability to enforce edits.

RIPE (Cohen et al., 2023) differentiates the
generality and locality properties into fine-grained
types, comprising 3,000 training and 1,388 testing
samples. The generality of each sample includes
logical generalization, combination I, combination
I, and subject aliasing, while the locality data cover
forgetfulness and relation specificity.

B.2 General Datasets of LLMs

To evaluate the damage of editors to the general
performance of LLMs, we select four prevalent
benchmarks to assess LLMs’ general capabilities.
They are CSQA (Talmor et al., 2019) to evaluate
commonsense knowledge, ANLI (Nie et al., 2020)
for reasoning abilities, MMLU (Hendrycks et al.,
2021) to gauge exam capabilities, and SQuAD-2
(Rajpurkar et al., 2018) for comprehension skills.
PromptBench (Zhu et al., 2023) is utilized as the



evaluation framework for this experiment.

CSQA (CommonSense Question Answering)
(Talmor et al., 2019) is designed to evaluate LLMs’
commonsense knowledge through multiple-choice
questions. It includes 12,102 samples, split into
9,741 for training, 1,221 for validation, and 1,140
for testing.

ANLI (Adversarial Natural Language Inference)
(Nie et al., 2020) evaluates LLMs’ natural language
reasoning capacity by determining whether the rela-
tionship between a premise and a hypothesis is one
of entailment, contradiction, or neutrality. The dif-
ficulty of the tasks increases across three rounds. It
includes a total of 169,265 samples, with 162,865
for training, 3,200 for validation, and 3,200 for
testing.

MMLU (Massive Multitask Language Under-
standing) (Hendrycks et al., 2021) tests LLMs’
mastery of specialized domain knowledge through
multiple-choice questions covering 57 different aca-
demic fields and disciplines, such as history, liter-
ature, law, and biology. The dataset comprises a
total of 6,783 questions distributed across testing,
validation, and development sets, containing 5,871,
627, and 285 samples, respectively.

SQuAD-2 (Stanford Question Answering
Dataset version 2) (Rajpurkar et al., 2018) assesses
the reading comprehension abilities of LLMs by
posing questions based on paragraphs taken from
over 500 Wikipedia articles. Compared to its first
version (Rajpurkar et al., 2016), its challenge lies
in the inclusion of questions that do not have
answers derivable from the text. The dataset
contains a total of 142,192 questions, with 130,319
in the training set and 11,873 in the validation set.
We report the performance on its validation set
with default hyper-parameter settings.

B.3 Baselines

In addition to fine-tuning (FT) as the basic baseline,
we compare our RECIPE approach with various
strong editing baselines. MEND (Mitchell et al.,
2022) trains an MLP to transform the low-rank de-
composition of the gradients of the model to be
edited with respect to the editing samples. ROME
(Meng et al., 2022) first uses causal mediation anal-
ysis to locate the layer that has the greatest impact
on the editing sample. MEMIT (Meng et al., 2023)
expands the editing scope to multiple layers based
on ROME, thereby improving editing performance
and supporting batch editing. T-Patcher (Huang
et al., 2023) (TP) attaches and trains additional neu-
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rons in the FEN of the last layer of the model to be
edited. MALMEN (Tan et al., 2023) formulates
the parameter shift aggregation as a least square
problem, subsequently updating the LM parame-
ters using the normal equation. WILKE (Hu et al.,
2024) selects the editing layer based on the pat-
tern matching degree of editing knowledge across
different layers.

We also leverage competitive retrieval-based
editing methods to validate the effectiveness fur-
ther. GRACE (Hartvigsen et al., 2022) proposes
retrieval adapters for continuous editing, which
maintains a dictionary-like structure to construct
new mappings for potential representations that
need to be modified. RASE (Han et al., 2023)
leverages factual information to enhance editing
generalization and guide the identification of edits
by retrieving related facts from the fact-patch mem-
ory. In our baseline settings, we use the ROME
(Meng et al., 2022) model as the specific basic ed-
itor for RASE to perform the editing task, named
R-ROME. LTE (Jiang et al., 2024) elicits the ca-
pabilities of LLMs to follow knowledge editing in-
structions, thereby empowering them to effectively
leverage updated knowledge to answer queries.

C Model Settings and Training Details

RECIPE. (1) Hyper-parameter Settings: For
our proposed RECIPE, we use the same hyper-
parameter settings across different backbones, in-
cluding LLAMA-23, GPT-J%, and GPT2-XL>. The
number of continuous prompt tokens and KS to-
kens are set as [ = 3 and ¢ = 10, respectively.
MLP g, MLP, and MLP p are each composed
of two linear layers, with an intermediate dimen-
sion set to 4096 and are connected in a residual
manner (He et al., 2016). The dimensions of the
knowledge and query representations are also set to
4096. The total numbers of RECIPE’s training pa-
rameters for GPT2-XL, GPT-J, and LLAMA-2 are
220M, 250M, and 250M, respectively. (2) Train-
ing Details: We set the learning rate (n = le — 5),
the batch size to 8, and the maximum number of
iterations to 150,000. A checkpoint is saved every
5000 iterations, and ultimately, the one with the
smallest loss is selected for evaluation. The train-
ing process requires approximately 3 days on an

3https://huggingface.co/meta—llama/
Llama-2-7b-hf

*https://huggingface.co/EleutherAl/gpt-3-6b

5https://huggingface.co/openai—community/
gpt2-x1
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i . ZSRE CF RIPE
# Editing Editor Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.
FT 8022 84.58 4551 70.01(4q.43 98.11 4210 4210 60774005 7514 5112 1594 47.40(10 57)
MEND 5443 59.17 9021 67.93(10s0) 7259 70.19 9126 7801144 3152 1003 1913 2022(1¢ )
ROME  99.14 9576 99.53 98.14(1¢.44) 9962 83.61 9587 93.04(1036) 9942 39.55 3971 59.56(11 14
MEMIT  99.64 8683 99.51 9533(1115) 99.13 3898 9569 77.93(10.9) 99.14 33.60 5114 61.291¢ 5
TP 94.66 9327 9092 9295193 99.33 6103 13.86 58.07(1050) 9091 6046 3640 625910 52
1 GRACE 9929 1420 9949 71.00(10.s1) 9959 001 98.14 65911y 05 99.12 2195 9950 73.52(11.67)
R-ROME 9675 9233 98.62 9590(10¢7) 9657 80.64 97.77 91.66(10.42), 95.86 3551 92.63 T4.66(41 12)
MALMEN 5929 5859 634 4l141(11 05y 2294 2128 1500 19.74(1062) 5905 3626 1395 364210 70)
LTE 9898 98.58 98.81 9879113 98.88 O98.10 9195 9631(10ss 9890 84.87 87.42 90.40(1.74)
WILKE ~ 97.95 9440 97.65 96.67(10s5 97.82 8297 9442 91.73(1q11s 9827 4113 3907 59.49(40 55
RECIPE ~ 99.70 99.42 9998 997010 04y 9872 98.55 98.67 98.65.044) 9895 8551 99.60 94.69(11 o)
FT 30.14 2304 304  1877(10.96) 9609 3567 2389 51.88(1ga0) 2987 17.81 406 17.24(40 36)
MEND 037 041 056 0441950 059 017 019  03lcsg14) 000 003 004  0.02040.01)
ROME  81.06 7875 94.62 84.81(40.0s) 9594 5941 90.02 81791015 9818 41.84 39.15 59.72(10 43)
MEMIT 8204 7599 94.68 8423407y 9602 3803 9546 76.50(1114) 9852 3773 4731 611910 75
TP 8520 7829 77.19 80.23(1120) 9602 5431 361 5131(405s 8083 5672 3239 56.64(10 40)
10 GRACE 4808 2174 9888 56.23(4030) 06650 089 9643 5461(11 35 4515 2106 97.16 54.45(1¢ 55
R-ROME 9440 8648 98.09 9299152 9471 76.09 9576 88.85(1¢05 9490 32.56 84.95 70.80(10 54
MALMEN 9886 9835 92.00 96.41(10ss) 9002 3286 7711 66.67(10 05 89.72 68.08 57.62 718110 s0)
LTE 9834 9753 9834 98.07(1090) 97.55 9719 9126 9534(1¢ss) 97.85 84.26 86.82 89.65(40 ss)
WILKE ~ 84.09 8271 9582 87.54(1¢.41) 9697 6800 9272 8590(1090) 9452 4032 3524 56.69(10.67)
RECIPE 9891 9871 9998 99.20(1( 49 97.88 97.63 9738 97.631¢3) 9858 8495 99.00 94181, 15
FT 2037 1004 070 10.37(1o.41y 6670 1569 266 28351034 1649 850 240  9.03(40.03)
MEND 018 013 001 O0ll(too2 013 015 002 01001003 002 001 009 00410 02)
ROME 7744 75359 84.99 79341004 7879 3843 5213 56451081y 9569 3593 3205 543911 19
MEMIT 7795 7410 90.22 80.76(1032) 9409 4024 85.15 73.16(100s) 86.61 3332 3346 51.13(1051)
TP 68.52 5931 5277 60.20(1o6s) 7599 3190 225 36711056 6422 3642 23.65 4143(10.g7)
100 GRACE 4627 21.00 98.05 55.11(10.41y 5234 069 9370 4891(1g04) 4275 2090 9426 52.64(10 63
R-ROME 9437 7808 9695 89.80(10.45 90.64 69.60 93.46 84561033, 9262 2849 77.36 66.15(40 51)
MALMEN 50.58 40.74 5925 50.19(1116) 29.64 3178 67.99 43.13(10350) 3993 2778 5326 40.32(1¢ 43)
LTE 97.17 97.03 9895 97.72(11.05) 9628 9605 90.68 94.34(10.44) 9717 8346 8229 87.64(10.61)
WILKE 8041 7867 86.68 81.92(10 76, 81.90 4833 64.03 6475133 91.63 3643 3285 53.63(40 18
RECIPE  98.83 98.15 99.97 98981( 65 9687 9637 9631 9652(1¢¢1) 97.64 8436 9548 92491 57
FT 1261 778 019 6861068 3159 821 141 13741003y 906 309 120 4451 g9
MEND 001 001 003 0021901 002 00l 006 003000y 016 013 008 0.12(40 02)
ROME  57.19 53.89 2088 4698(10g4) 0.7 025 062 0354008 4750 1697 1340 2596(10 54)
MEMIT 5683 54.56 5490 5543(1070) 8236 3641 30.64 49.80(10.54) 001 000 002  00l(to.00)
TP 4571 4039 1053 3221¢10s7) 4733 1702 147 21941051, 4809 29.08 1518 30.78(10.13)
1000 GRACE 4770 2040 97.15 55.08(4073) 4636 050 90.18 45681037y 39.89 2058 8820 49.56(10 00
R-ROME 91.63 6872 9478 85.04(10 09, 88.83 5626 89.94 7834(1¢o2) 8583 2474 67.53 5937(40 10)
MALMEN 4300 3509 3926 39.12(30.49) 1506 1236 2506 17491156 3106 19.10 3533 285010 se)
LTE 96.67 9627 99.11 97.35(1976) 9476 93.16 8837 92.10(1¢ 75 9482 8131 74.67 83.60(10 so)
WILKE ~ 69.35 67.63 4878 61921073 1566 1285 29.06 19.19(10.gs) 6425 3070 2507 40.01(41 10)
RECIPE 9745 9671 99.96 98.05(1( 54 9582 9540 9204 94421 ,1) 9528 83.55 89.16 89331 09
FT 837 454 010 4341051 2189 957 153 11001109 - - - -
MEND 002 001 003 002%o01, 001 001 003 00210 00) - - - -
ROME 1249 1084 3.6 8831961y 012 016 048 0251012 - - - -
MEMIT 001 001 002 0011900 001 003 003 0.021001) - - - -
TP 3140 2736 379 20.85(10.s3) 2595 896 098 11.96(1ys7 - - - -
10000 GRACE 4576 2133 9517 54.08(1154) 4240 077 8539 42851005 - . . N
R-ROME 8499 50.07 9301 76.02(10¢7) 8228 4279 8642 704910522y - - - -
MALMEN 2515 1245 21.83 19811006y 820 410 1086 7.72(1; 15 - - - -
LTE 9429 89.03 99.19 94.17(1q16) 92.84 9147 8224 88851y1s7 - - - -
WILKE ~ 27.04 2070 1023 1932(1g70) 509 209 1278  6.6510.s6) - - - -
RECIPE 9479 89.85 9992 9485115 9337 9201 89.53 91.63(1000) - - - -
Table 5: The overall results using GPT-J (6B) in lifelong editing scenario.

NVIDIA A800 GPU. These experiments are pre-
sented on average with 5 random runs, using differ-
ent random seeds but the same hyper-parameters.
Baseline Models. For R-ROME (Han et al., 2023)
and LTE (Jiang et al., 2024), we implement the
settings mentioned in their respective papers and
trained them on the same datasets as ours. For
the other baselines, we follow the same settings
as described in EasyEdit (Wang et al., 2023a) for
training and evaluation.

D Results with Different Backbones

Lifelong editing experiments on GPT-J (6B) and
GPT2-XL (1.5B) are are presented in Table 5 and
Table 6. The results also show a similar conclusion
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with general results, demonstrating the efficacy of
our method.



- . ZSRE CF RIPE
# Editing Editor Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.
FT 81.00 7841 7978 79.73(1o.66) 96.11 3399 5284 609800y 6359 4460 3828 48.82(1; g
MEND  87.24 80.14 7651 8130172 9115 83.94 75.16 83411907 5216 2603 3023 36.14(11 03
ROME 9950 8691 9929 9523(1¢ 75 99.37 4541 9599 80.26(1071) 9893 4073 4239 60.68(10.75)
MEMIT ~ 69.11 5005 9929 7282101, 7902 2642 9822 67.89(10 82y 59.09 28.69 60.07 49.29 11 4
' TP 3041 3682 9749 5791156 3836 683 89.04 44.74(1; .6 5498 3621 87.56 59.38(10.51)
GRACE 9958 1675 99.32 71.88(11.30) 9931 002 99.13 66.16(41.01) 99.33 17.85 99.15 72.11(10.43)
R-ROME 9822 8528 9920 94.23(10.0) 98.10 44.62 98.56 8043(i0ss), 9736 3866 93.62 76.54(10 s0)
MALMEN 5472 66.14 1499 4528109y 4808 2427 614 26160415 6281 2853 10.16 33.83(1116)
LTE ~ 99.09 9870 9836 98.72(1¢.44) 9859 O8.14 89.05 9526(1057) 9881 77.88 7624 8431(10.34)
WILKE ~ 97.94 8509 97.92 93.65(1051) 9802 43.14 9460 78.58(1002) 97.82 4585 5116 649410 os)
RECIPE  99.68 99.01 99.99 99561, 11) 9874 98.38 9868 98.60(10cs 9879 7852 9932 922101, 1)
FT 54.87 49.03 4699 50.30(1q1.01y) 9148 2844 23.09 47.67(4067 3673 2165 2282 27.07(i0.05)
MEND 757 667 755 7260108 848 383 306 50203065 979 526 616  7.07(+0.27)
ROME  81.05 7680 96.74 84.87(1027) 96.63 4400 89.40 76.68(10.07) 97.90 40.19 3453 57541011
MEMIT 7087 60.37 98.55 76.60(102s) 8021 27.01 96.63 67.95(10 83 6278 3056 5247 48.60(10 32
TP 47.57 4118 9034 59.70(10.74) 4385 845 60.77 37.69(10.09) 5921 37.04 6826 54.84(10 6o
10 GRACE 4726 1770 9871 5456(1033) 6690 002 9740 5478(1¢ 75y 37.69 1924 9741 51.451q 2
R-ROME  96.88 8143 99.56 92.62(10.s4) 9571 4126 97.57 78.18(4120) 9658 3736 87.08 73.67(40.45)
MALMEN 9210 8888 9027 9042(11.0s) 8655 3209 6343 60.69(11 09y 7845 5496 7681 70.07(10.21)
LTE 9849 9801 96.60 97.70(1¢.ss) 9805 97.60 87.13 94.26(1;¢2) 98.15 7421 7494 8243(1; 3
WILKE 7606 7326 9474 8135(100s) 9277 4034 8320 72.11(10.09) 9327 4363 5070 62.54(40 21)
RECIPE  98.82 9859 9998 99.13(1 (15 9823 97.72 97.89 979545 9858 7513 97.64 90451 o6
FT 3645 3192 883 2573(ioss) 40.67 899 367 1778(106s 890 419 351 5534027
MEND 002 002 001 00li0.01) 001 003 001 00204000 001 002 000 00110 00)
ROME 7529 7075 8287 76311079y 6370 3560 37.89 4573(1075 9480 43.68 2902 55.83(10.ss)
MEMIT 7107 63.60 9290 75.86(10s0) 86.52 30.68 8630 67.83(10 41y 7291 3427 4438 50.52(1¢.43)
TP 5198 4646 7848 5897(1gary 4200 802 1466 21.56(10s5 5411 3808 4776 466511 47)
100 GRACE 4338 1924 9581 5281(40g0) 6324 068 9582 53251159 33.06 1854 9428 48.63(1¢ 63
R-ROME 9594 7445 9876 89.72(10.49) 9175 37.59 96.11 75.05(1041, 9347 3532 8023 69.67(41 47)
MALMEN 57.12 4945 4450 5036(1075, 3375 3035 5816 40.75(10.45) 4549 39.68 35947 4821(1;.05)
LTE 9677 9606 9472 9585157 97.14 97.07 8435 92851;¢7 9616 67.19 7247 78611050
WILKE 7149 6930 8578 75.52(10.s0) 7272 3633 4936 5280(1110) 80.56 37.26 3647 51.43(10.59)
RECIPE ~ 98.67 98.56 99.98 99.07(1031) 9722 97.10 96.19 96841 1) 97.32 7042 94.32 873510 )
FT 2561 1852 123 1512(11s7) 2869 872 241 13274045 472 167 066 2354071
MEND 007 005 185 066923 001 002 002 0020:001) 002 001 000 0.0l+0 00)
ROME 4454 3747 4309 41701006 082 089 101 0911010 4372 1606 17.08 25.62(10.34)
MEMIT 5731 5085 4821 52.12(40s2) 8072 48.13 24.14 51.00(103¢) 2882 1572 2159 22.04(1¢ 20
TP 4597 4268 6046 49.70(10¢7 2778 720 572 135740y 4771 3324 3104 373340 7s)
1000 GRACE 4886 1973 9375 54114004y 63.83 052 9252 52291007 33.18 19.80 90.81 47.93(1¢ 79
R-ROME 9448 67.99 98.87 87.11(1;0s 8901 3151 9286 71.13(10.g0), 88.87 3315 7219 64.73(40 7o)
MALMEN 2932 3544 3505 33.27(1026) 1237 1373 3403 20.04(4070) 21.84 2376 3199 25.86(11.02)
LTE 9473 9227 9110 9270(1os56) 9513 9431 8128 90.24(1; 05 9218 6278 6651 73.82(10.08)
WILKE ~ 48.13 43.87 5551 49.17(1¢.44) 4629 2268 1970 29.551054) 5510 2548 3349 38.02(10.47)
RECIPE  96.94 9643 99.98 97.791(31) 9686 9633 9370 95631055 9425 67.78 89.85 83.96(10 51
FT 1554 1194 196 981(40.73) 2191 792 204 10.62(41.1s) - - - -
MEND 006 009 185 0671916 001 000 00l 00l¢i000) - - - -
ROME 1779 1419 123 1107104y 030 041 007 02601004 - ) } -
MEMIT 002 000 00l 00l(4+9.01y 025 025 005 018106 - - - -
TP 36.60 3479 1751 29.63(1q.08y) 1970 911 275  10.52(1q.00) - - - -
10000 GRACE  49.81 2045 9148 5391(1; 49) 6419 048 87.28 50.651019) - - - -
R-ROME  89.17 5469 9748 80441042 8414 2359 87.01 6491(1106) - - - -
MALMEN 781 1113 497 797(41.01) 606 422 1822 9.50(1¢s3) - - - -
LTE  89.85 87.17 88.66 88.50(10.47) 92.38 89.17 7682 86.13(1050) - - - -
WILKE 2694 23.62 1186 2081(1050) 2703 1491 1513 19.02(31 16, - ) } -
RECIPE  90.61 8929 9999 9329 1,57 9372 9273 8849 91651, 53 - - - -

Table 6: The overall results using GPT2-XL (1.5B) in lifelong editing scenario.
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