
Self Forcing: Bridging the Train-Test Gap in
Autoregressive Video Diffusion

Xun Huang1 Zhengqi Li1 Guande He2 Mingyuan Zhou2 Eli Shechtman1

1Adobe Research 2The University of Texas at Austin

https://self-forcing.github.io/

Abstract

We introduce Self Forcing, a novel training paradigm for autoregressive video dif-
fusion models. It addresses the longstanding issue of exposure bias, where models
trained on ground-truth context must generate sequences conditioned on their own
imperfect outputs during inference. Unlike prior methods that denoise future frames
based on ground-truth context frames, Self Forcing conditions each frame’s genera-
tion on previously self-generated outputs by performing autoregressive rollout with
key-value (KV) caching during training. This strategy enables supervision through
a holistic loss at the video level that directly evaluates the quality of the entire
generated sequence, rather than relying solely on traditional frame-wise objectives.
To ensure training efficiency, we employ a few-step diffusion model along with a
stochastic gradient truncation strategy, effectively balancing computational cost
and performance. We further introduce a rolling KV cache mechanism that enables
efficient autoregressive video extrapolation. Extensive experiments demonstrate
that our approach achieves real-time streaming video generation with sub-second
latency on a single GPU, while matching or even surpassing the generation quality
of significantly slower and non-causal diffusion models.

1 Introduction

Recent years have witnessed tremendous progress in video synthesis, with state-of-the-art systems now
capable of generating remarkably realistic content with complex temporal dynamics [6]. However,
these results are typically achieved with diffusion transformers (DiT) [62, 83] that denoise all frames
simultaneously using bidirectional attention. This design allows the future to affect the past and
requires generating the entire video at once, fundamentally limiting their applicability to real-time
streaming applications where future information is unknown when generating the current frame.

In contrast, autoregressive (AR) models [17, 27, 38, 94, 104] generate videos sequentially, a paradigm
that naturally aligns with the causal structure of temporal media. This approach not only signif-
icantly reduces the viewing latency of generated videos but also unlocks numerous applications,
including real-time interactive content creation [9, 46], game simulation [11, 61, 78, 102], and
robotics learning [42, 96, 101]. However, AR models often struggle to match the visual fidelity
achieved by state-of-the-art video diffusion models due to their reliance on lossy vector quantization
techniques [79].

To combine the best of both worlds, two recent techniques have emerged to equip video diffusion
models with AR generation capabilities: Teacher Forcing (TF) [16, 28, 33, 106] and Diffusion Forcing
(DF) [8, 10, 20, 69, 73, 100]. Teacher Forcing, a well-established paradigm in sequence modeling,
trains the model to predict the next token conditioned on ground-truth tokens. When applied to video
diffusion, TF involves denoising each frame using clean, ground-truth context frames (Figure 1 (a)),
a strategy commonly referred to as next-frame prediction. In contrast, Diffusion Forcing trains the
model on videos with noise levels independently sampled for each frame, denoising each frame based

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://self-forcing.github.io/

(a) Teacher Forcing Training (b) Diffusion Forcing Training (c) Self Forcing Training (ours)

Causal DiT Causal DiT Causal DiT

Figure 1: Training paradigms for AR video diffusion models. (a) In Teacher Forcing, the model
is trained to denoise each frame conditioned on the preceding clean, ground-truth context frames.
(b) In Diffusion Forcing, the model is trained to denoise each frame conditioned on the preceding
context frames with varying noise levels. Both (a) and (b) generate outputs that do not belong
to the distribution the model generates during inference. (c) Our Self Forcing approach performs
autoregressive self-rollout during training, denoising the next frame based on previous context frames
generated by itself. A distribution-matching loss (e.g., SiD, DMD, GAN) is computed on the final
output video to align the distribution of generated videos with that of real videos. Our training
paradigm closely mirrors the inference process, thereby bridging the train-test distribution gap.

on noisy context frames (Figure 1 (b)). This ensures the autoregressive inference scenario, where
context frames are clean and the current frame is noisy, is covered by the training distribution.

However, models trained with TF or DF often suffer from error accumulation during autoregressive
generation, leading to degraded video quality over time [84, 100, 105]. This issue is more broadly
known as exposure bias [60, 71], where a model is trained exclusively on ground-truth context but
must rely on its own imperfect predictions at inference time, resulting in a distributional mismatch
that compounds errors as generation progresses. While some approaches attempt to mitigate this
issue in video diffusion models by incorporating noisy context frames during inference [8, 11, 105],
such design sacrifices temporal consistency, complicates the KV-cache design, increases generation
latency, and does not fundamentally resolve the exposure bias problem.

In this work, we propose Self Forcing (SF), a novel algorithm addressing exposure bias in autoregres-
sive video generation. Inspired by early RNN-era sequence modeling techniques [40, 65, 103], our
approach bridges the train-test distribution gap by explicitly unrolling autoregressive generation during
training, generating each frame conditioned on previously self-generated frames rather than ground-
truth ones. This enables supervision with holistic distribution-matching losses [18, 98, 99] applied
to complete generated video sequences. By forcing the model to encounter and learn from its own
prediction errors, Self Forcing effectively mitigates exposure bias and reduces error accumulation.

While Self Forcing may seem computationally prohibitive due to its sequential nature preventing
parallel training, we demonstrate that it can be efficiently implemented as an algorithm in the post-
training stage where the model does not require a large number of gradient updates to converge.
By employing a few-step diffusion backbone and a carefully designed gradient truncation strategy,
Self Forcing is surprisingly more efficient than alternative parallel strategies, achieving superior
performance within the same wall-clock training time. Additionally, we introduce a rolling KV cache
mechanism that enhances the efficiency of video extrapolation.

Extensive experiments demonstrate that our model enables real-time video generation at 17 FPS with
sub-second latency on a single H100 GPU, while achieving competitive or superior generation quality
compared to recent slow bidirectional and autoregressive video diffusion models. These advances
open the door to genuinely interactive video generation use cases—live streaming, gaming, and world
simulation—where latency budgets are measured in milliseconds rather than minutes.

2

2 Related Work

GANs for Video Generation. Early video generation approaches relied primarily on generative
adversarial networks (GANs) [18], either using convolutional networks to generate entire videos in
parallel [5, 68, 82] or employing recurrent architectures to produce frames sequentially [14, 44, 49,
77, 81]. Recently, GANs have also been applied to distill video diffusion models [47, 56, 91, 108].
Since the generator in GANs follows the same process during training and inference, it inherently
avoids exposure bias. Our work draws inspiration from this fundamental GAN principle by directly
optimizing the alignment between the generator’s output distribution and the target distribution.

Autoregressive/Diffusion Models for Video Generation. Modern video generation models have
largely shifted toward diffusion or autoregressive models due to their stronger scaling abilities. Video
diffusion models typically adopt bidirectional attention mechanisms to simultaneously denoise all
video frames [3, 4, 6, 13, 23–26, 39, 64, 80, 83, 97]. Autoregressive models, in contrast, are trained
with next-token prediction objectives and generate spatiotemporal tokens sequentially at inference
time [7, 38, 66, 86, 88, 94].

Autoregressive-Diffusion Hybrid Models. Very recently, hybrid models integrating autoregressive
and diffusion frameworks have emerged as a promising direction in generative modeling of videos [8,
16, 20, 22, 28, 33, 45, 50, 52, 89, 100, 106, 107] as well as other sequence domains [1, 12, 43, 53, 59,
90, 110]. They typically rely on a long, iterative prediction chain (both temporally autoregressive and
spatially iterative denoising), which could lead to significant error accumulation. Our work addresses
this issue by training the model conditioned on its own predictions and teaching it to correct its own
mistakes.

Rolling Diffusion and Variants. Another line of work [35, 67, 69, 76, 93, 105] trains video
diffusion models with a progressive noise schedule, where the noise level gradually increases from
earlier to later frames. While these methods support sequential long video generation with less
accumulated errors and are sometimes also referred to as autoregressive, they do not strictly follow
the autoregressive chain rule decomposition. Consequently, they would exhibit significant latency
in interactive applications, as future frames are partially pre-generated before the current frame is
presented to the user. This premature commitment restricts the impact of real-time user-injected
controls, resulting in limited responsiveness in immediately subsequent frames.

CausVid. Our work is most closely related to CausVid [100], which trains few-step autoregressive
diffusion models using the DF scheme and distribution matching distillation (DMD). However,
CausVid suffers from a critical flaw that its training outputs (generated via DF) do not come from the
distribution the model produces at inference time, therefore the DMD loss is matching the wrong
distribution. We pinpoint this issue and propose a solution that matches the true model distribution.

3 Self Forcing: Briding Train-Test Gap via Holistic Post-Training

We first provide a formal definition of autoregressive video diffusion models and describe standard
training approaches in Section 3.1. In Section 3.2, we introduce the main part of our Self Forcing
training algorithm and describe how it can be efficiently implemented with a few-step diffusion
model. In Section 3.3, we describe various choices of holistic, video-level distribution-matching
training objectives. Finally, we introduce a rolling key-value cache mechanism that enables efficient
generation of arbitrarily long videos in Section 3.4.

3.1 Preliminaries: Autoregressive Video Diffusion Models

Autoregressive video diffusion model is a hybrid generative model that combines autoregressive
chain-rule decomposition with denoising diffusion models for video generation. Specifically, given a
sequence of N video frames x1:N = (x1, x2, . . . , xN), it factorizes the joint distribution into product
of conditionals using the chain rule p(x1:N) =

∏N
i=1 p(x

i|x<i). Each conditional distribution
p(xi|x<i) is then modeled using a diffusion process, where a frame is generated by progressively
denoising an initial Gaussian noise conditioned on previously generated frames. This formulation
combines the strengths of both autoregressive models and diffusion models for capturing sequential
dependencies while enabling high-quality generation of continuous-valued visual signal. In practice,

3

Tem
poral A

R
 rollout

No attention

Noisy KV w/
varying SNR

(a) Teacher Forcing (b) Diffusion Forcing

Clean KV

Low SNR High SNR

KV caching

...

Spatial denoising

(c) Self Forcing/AR Inference

KV caching

Figure 2: Attention mask configurations. Both Teacher Forcing (a) and Diffusion Forcing (b) train
the model on the entire video in parallel, enforcing causal dependencies with custom attention masks.
In contrast, our Self-Forcing Training (c) mirrors the autoregressive (AR) inference process with KV
caching and does not rely on special attention masks. For illustration purposes, we show a scenario
where the video contains 3 frames, and each frame consists of 2 tokens.

we can also choose to generate one chunk of frames rather than a single frame at a time [69, 100].
For simplicity of notation, however, we continue to denote each chunk as a frame in this section.

Most existing autoregressive video diffusion models are trained using frame-wise denoising loss
within the paradigm of Teacher Forcing (TF) or Diffusion Forcing (DF). Specifically, each frame xi is
corrupted by the forward process qti|0(xiti |x

i
0) such that xiti = Ψ(xi, ϵi, ti) = αtix

i + σtiϵ
i, where

αti , σti are pre-defined noise schedule within a finite time horizon ti ∈ [0, 1000] and ϵi ∼ N (0, I)
is Gaussian noise. In TF, the timesteps ti are usually shared across all frames, whereas in DF, they
are sampled independently for each frame. A generative model is learned through the time-reversal
of the forward process, where each denoising step can be achieved by predicting the noise ϵi added
to each frame with a neural network ϵ̂iθ := Gθ(x

i
ti , t

i, c) conditioned on the context c. The context
consists of clean ground-truth frames x<i in TF or noisy context frames xj<itj in DF. The model is
trained to minimize the frame-wise mean squared error (MSE) between the predicted noise and the
true added noise: LDM

θ = Exi,ti,ϵi
[
wti∥ϵ̂iθ − ϵi∥22

]
, where wti is a weighting function.

We focus on the transformer-based architecture [62] of diffusion models with text conditioning (omit-
ted from equations for clarity) operating in a compressed latent space encoded by a causal 3D
variational autoencoder (VAE) [37]. The autoregressive chain-rule decomposition is implemented
via causal attention. Figures 2 (a) and (b) illustrate the attention mask configurations of Teacher
Forcing and Diffusion Forcing approaches. For Teacher Forcing, we describe an efficient variant that
processes all frames in parallel using block sparse attention masks, rather than denoising one frame
at each training iteration [33]. Such design has been used in MAR-based [43] autoregressive video
generation [111] and concurrently in other autoregressive video diffusion models [106, 107].

3.2 Autoregressive Diffusion Post-Training via Self-Rollout

The core idea of Self Forcing is to generate videos through autoregressive self-rollout during training
following the inference-time recipe. Specifically, we sample a batch of videos {x1:Nθ } ∼ pθ(x

1:N) =∏N
i=1 pθ(x

i|x<i) where each frame xi is generated by performing iterative denoising conditioned on
self-generated outputs, including both clean context frames in the past and noisy frames at the current
time step. Unlike most previous autoregressive models that only utilize KV caching during inference,
our Self Forcing method innovatively employs KV caching during training, as shown in Figure 2 (c).

Nevertheless, implementing Self Forcing with standard many-step diffusion models would be compu-
tationally prohibitive, as it requires unrolling and backpropagation through long denoising chains.
Therefore, we choose to use a few-step diffusion model Gθ to approximate each conditional dis-
tribution pθ(xi|x<i) in the autoregressive factorization. Consider {t0 = 0, t1, . . . , tT = 1000}
a subsequence of timesteps [0, ..., 1000], at each denoising step tj and frame index i, the model
denoises an intermediate noisy frame xitj conditioned on previous clean frames x<i. It then injects
Gaussian noise with a lower noise level into the denoised frame through the forward process Ψ to

4

Algorithm 1 Self Forcing Training

Require: Denoise timesteps {t1, . . . , tT }
Require: Number of video frames N
Require: AR diffusion model Gθ (returns KV em-

beddings via GKV
θ)

1: loop
2: Initialize model output Xθ ← []
3: Initialize KV cache KV← []
4: Sample s ∼ Uniform(1, 2, . . . , T)
5: for i = 1, . . . , N do
6: Initialize xi

tT ∼ N (0, I)
7: for j = T, . . . , s do
8: if j = s then
9: Enable gradient computation

10: Set x̂i
0 ← Gθ(x

i
tj ; tj ,KV)

11: Xθ.append(x̂i
0)

12: Disable gradient computation
13: Cache kvi ← GKV

θ (x̂i
0; 0,KV)

14: KV.append(kvi)
15: else
16: Disable gradient computation
17: Set x̂i

0 ← Gθ(x
i
tj ; tj ,KV)

18: Sample ϵ ∼ N (0, I)
19: Set xi

tj−1
← Ψ(x̂i

0, ϵ, tj−1)
20: end if
21: end for
22: end for
23: Update θ via distribution matching loss
24: end loop

Algorithm 2 Autoregressive Diffusion Inference
with Rolling KV Cache
Require: KV cache of size L frames
Require: Denoise timesteps {t1, . . . , tT }
Require: Number of generated frames M
Require: AR diffusion model Gθ (returns KV em-

beddings via GKV
θ)

1: Initialize model output Xθ ← []
2: Initialize KV cache KV← []
3: for i = 1, . . . ,M do
4: Initialize xi

tT ∼ N (0, I)
5: for j = T, . . . , 1 do
6: Set x̂i

0 ← Gθ(x
i
tj ; tj ,KV)

7: if j = 1 then
8: Xθ.append(x̂i

0)
9: Cache kvi ← GKV

θ (x̂i
0; 0,KV)

10: if |KV| = L then
11: KV.pop(0) ▷ Cache eviction
12: end if
13: KV.append(kvi)
14: else
15: Sample ϵ ∼ N (0, I)
16: Set xi

tj−1
← Ψ(x̂i

0, ϵ, tj−1)
17: end if
18: end for
19: end for
20: return Xθ

obtain the noisy frame xitj−1
as the input to the next denoising step, following the standard practice

in few-step diffusion models [74, 98]. The model distribution pθ(xi|x<i) is implicitly defined as
fθ,t1◦fθ,t2◦...◦fθ,tT (xitT), where fθ,tj (x

i
tj) = Ψ(Gθ(x

i
tj , tj , x

<i), ϵtj−1 , tj−1), and xitT ∼ N (0, I).

Even with few-step models, however, naively backpropagating through the entire autoregressive
diffusion process would still lead to excessive memory consumption. To address this challenge, we
propose a gradient truncation strategy that limits the backpropagation to only the final denoising
step of each frame. Moreover, instead of always using T denoising steps (as in inference time), we
randomly sample a denoising step s from [1, T] for each sample sequence at each training iteration,
and use the denoised output of the s-th step as the final output. This stochastic sampling approach
ensures all intermediate denoising steps receive supervision signals. We additionally detach the
gradients of the previous frames from the current frame during training by restricting gradient flow
into KV cache embeddings. For a complete description of the training process, see Algorithm 1.

3.3 Holistic Distribution Matching Loss

Autoregressive self-rollout generates samples directly from the inference-time model distribution,
enabling us to apply holistic, video-level losses that align the distribution of generated videos pθ(x1:N)
with that of real videos pdata(x

1:N). To leverage pre-trained diffusion models and enhance training
stability [32], we inject noise to both distributions and match pθ,t(x1:Nt) and pdata,t(x

1:N
t), where

each represents the respective distribution after applying the forward diffusion process: p·,t(x1:Nt) =∫
qt|0(x

1:N
t |x1:N)p·(x

1:N)dx1:N . Our framework is generally applicable to various divergence
measures and distribution matching frameworks, and we consider three approaches in this paper:

• Distribution Matching Distillation (DMD) [98, 99]: This approach minimizes the re-
verse Kullback-Leibler divergence Et[DKL(pθ,t∥pdata,t)] by leveraging the score difference
between distributions to guide gradient updates.

5

• Score Identity Distillation (SiD) [112, 113]: This method performs distribution matching
via Fisher divergence Et,pθ,t [∥∇ log pθ,t −∇ log pdata,t∥2].

• Generative Adversarial Networks (GANs) [18]: It approximately minimizes the Jensen-
Shannon divergence through a minimax game between the generator (our autoregressive
diffusion model) and a discriminator that distinguishes between real and generated videos.

Importantly, our training objective matches the holistic distribution of the entire video sequence
to the data distribution D(pdata(x

1:N)∥pθ(x1:N)). In contrast, TF/DF can be understood as per-
forming frame-wise distribution matching: E{x<i}∼pdataDKL(pdata(x

i|x<i)∥pθ(xi|x<i))1, where DF
additionally samples context frames from a noise-corrupted data distribution {x<i} ∼ p̃data. Our
formulation fundamentally transforms the training dynamics—context frames {x<i} are sampled
from the model’s own distribution pθ rather than from the data distribution (clean or noisy). This
alignment between training and inference distributions effectively addresses exposure bias and forces
the model to learn from its own imperfections, thereby developing robustness to error accumulation.

While all three objectives have been used in the context of timestep distillation of diffusion models,
our primary motivation differs fundamentally from distillation: we aim to enhance the quality of
autoregressive video generation by addressing exposure bias via distribution matching, rather than
merely accelerating sampling. This distinction makes other popular distillation methods [74] inap-
plicable to our framework as they only focus on timestep reduction without directly aligning the
generator output distribution. Although CausVid [100] similarly employs DMD to match the distribu-
tion of generated videos, the distribution it optimizes during training (using Diffusion Forcing outputs)
deviates from the actual inference-time distribution, significantly undermining its effectiveness.

3.4 Long Video Generation with Rolling KV Cache

A key advantage of autoregressive models over standard video diffusion models is their extrapolative
ability, in principle allowing the generation of infinitely long videos via sliding-window inference.
While bidirectional attention models trained with Diffusion Forcing [10, 73] can also generate videos
autoregressively, they do not support KV caching, requiring complete recomputation of attention
matrices for each new frame. This leads to excessive computational complexity of O(TL2) (where T
represents the number of denoising steps and L is thewindow size), as shown in Figure 3 (a).

Models with causal attention, on the other hand, can leverage KV caching to improve efficiency.
However, existing implementations [69, 100] require recomputing KV cache for overlapping frames
between consecutive sliding windows, as illustrated in Figure 3 (b). This leads to O(L2 + TL)
complexity when employing dense sliding windows. As a result, prior implementations adopt larger
strides with minimal overlap to reduce computational costs, which compromises temporal consistency
since frame at the beginning of each window relies on a significantly reduced historical context.

Inspired by research in large language models [92], we propose a rolling KV cache mechanism for
autoregressive diffusion models that allows infinitely long video generation without any need of
recomputing the KV cache. As illustrated in Figure 3 (c), we maintain a fixed-size KV cache that
stores the KV embeddings of tokens in the most recent L frames. When generating a new frame, we
first check if the KV cache is full. If it is, we remove the oldest KV cache entry before adding the
new one. This approach enables endless frame generation with a time complexity of O(TL), while
still maintaining a sufficient context length when generating each new frame. Algorithm 2 provides a
detailed description of our autoregressive long video generation algorithm with rolling KV cache.

However, naive implementation of this mechanism leads to severe flickering artifacts due to distribu-
tion mismatch. Specifically, the first latent frame has different statistical properties than other frames:
it only encodes the first image without performing temporal compression. The model, having always
seen the first frame as the image latent during training, fails to generalize when the image latent is no
longer visible in the rolling KV cache scenario. Our solution is straightforward but effective: during
training, we restrict the attention window so the model cannot attend to the first chunk when denoising
the final chunk, thereby simulating the conditions encountered during long video generation.

1With a specific weighting per noise level [36, 75], denoising loss approximates the maximum likelihood
objective, equivalent to minimizing the KL divergence between per-frame data and model distributions.

6

Recompute

Denoise

1

(a) Bidirectional
sliding window

KV cache (clean tokens)Noisy tokens Clean tokens

(b) Casual sliding window
with KV recomputation

1 2 1 3 4 4Input

Output

Discarded tokens

2 3

2 3

2 3

2 3

4Causal DiT

2 3 4

2 3

2 3

4

(c) Casual sliding window
with Rolling KV Cache (ours)

Denoising steps Window size

4

Bidirectional DiT

Window 1
Window 2

3

Causal DiT

31 21

Denoise

KV cache
Evict oldest
KV cache

Window 1
Window 2

Window 1
Window 2

4

4 4

4

Figure 3: Efficiency comparisons for video extrapolation. When performing video extrapolation
through sliding window inference, (a) bidirectional diffusion models trained with TF/DF [10, 73] do
not support KV cache. (b) Prior causal diffusion models [69, 100] require re-computing KV when
shifting the window. (c) Our method does not recompute KV and enables more efficient extrapolation.

4 Experiments

Implementation. We implement Self Forcing with Wan2.1-T2V-1.3B [83], a Flow Matching [48]
based model that generates 5s videos at 16 FPS with a resolution of 832× 480. Following CausVid’s
initialization protocol [100], we first finetune the base model with causal attention masking on 16k
ODE solution pairs sampled from the base model. For both ODE initialization and Self Forcing
training, we sample text prompts from a filtered and LLM-extended version of VidProM [85]. We
use 4-step diffusion and implement both frame-wise and chunk-wise autoregressive variants, with the
latter generating a chunk of 3 latent frames at a time. We adopt the R3GAN [29] objective, which
consists of relativistic pairing GAN loss [34] with R1 + R2 regularization [58]. We use the 14B base
model to generate 70k videos as the dataset for training GANs [70] and fine-tuning many-step TF/DF
AR diffusion baselines. Notably, DMD/SiD implementations of our algorithm remain data-free,
capable of converting a pre-trained video diffusion model into an autoregressive model without any
video training data. Additional implementation details are provided in Appendix A.

Evaluation metrics. We adopt VBench [31] and user preference study to evaluate both visual quality
and semantic alignment. We also rigorously evaluate the efficiency of our method for real-time
applications. While some recent works claim “real-time” video generation abilities [24, 109] based
solely on throughput, we argue that true real-time performance requires both sufficient throughput
(exceeding video playback rate) and lower latency than the perceptual threshold which could be
application-dependent [41]. We therefore evaluate both throughput and first-frame latency to provide
a comprehensive assessment of real-time capabilities, with all speed tests conducted on a single
NVIDIA H100 GPU.

0 20 40 60 80 100
Preference Rate (%)

Ours

Ours

Ours

Ours

54.2% 45.8%

57.9% 42.1%

62.7% 37.3%

66.1% 33.9%

MAGI-1

SkyReels-V2

Wan2.1

CausVid

Figure 4: User preference study. Self Forcing
outperforms all baselines in human preference.

Comparison with existing baselines. We com-
pare our model with relevant open-source video
generation models of similar scale. Our com-
parisons include two diffusion models: Wan2.1-
1.3B [83] (our initialization weights) and LTX-
Video [24] (known for efficiency). We also com-
pare with several autoregressive models includ-
ing Pyramid Flow [33], NOVA [13], SkyReels-
V2 [10], MAGI-1 [69], and CausVid [100] (also
initialized from Wan-1.3B).

As shown in Table 1, our chunk-wise autoregres-
sive model achieves the highest VBench scores
across all compared models while simultaneously
delivering real-time throughput (17.0 FPS) with
sub-second latency, low enough for certain real-time applications such as live video streaming [2].
Figure 4 shows the user study results comparing our chunk-wise Self Forcing model against several
important baselines. Our approach is consistently preferred over all alternatives, including the many-
step diffusion model Wan2.1 that our model is initialized from. Our frame-wise variant maintains
strong generation quality while providing the lowest latency (0.45s), making it particularly suitable
for latency-sensitive real-time applications. Results here are obtained using the DMD loss objective;

7

Table 1: Comparison with relevant baselines. We compare Self Forcing with representative
open-source video generation models of similar parameter sizes and resolutions.

Model #Params Resolution Throughput Latency Evaluation scores ↑
(FPS) ↑ (s) ↓ Total Quality Semantic

Score Score Score

Diffusion models
LTX-Video [24] 1.9B 768×512 8.98 13.5 80.00 82.30 70.79
Wan2.1 [83] 1.3B 832×480 0.78 103 84.26 85.30 80.09

Chunk-wise autoregressive models
SkyReels-V2 [10] 1.3B 960×540 0.49 112 82.67 84.70 74.53
MAGI-1 [69] 4.5B 832×480 0.19 282 79.18 82.04 67.74
CausVid [100]∗ 1.3B 832×480 17.0 0.69 81.20 84.05 69.80

Self Forcing (Ours, chunk-wise) 1.3B 832×480 17.0 0.69 84.31 85.07 81.28

Autoregressive models†

NOVA [13] 0.6B 768×480 0.88 4.1 80.12 80.39 79.05
Pyramid Flow [33] 2B 640×384 6.7 2.5 81.72 84.74 69.62

Self Forcing (Ours, frame-wise) 1.3B 832×480 8.9 0.45 84.26 85.25 80.30
∗ We compare with the official implementation of CausVid that uses the same base model (Wan-1.3B).
† The distinction of AR/non-AR applies to the temporal dimension.

\

Figure 5: Qualitative comparisons. We visualize videos generated by Self Forcing (Ours) against
those by Wan2.1 [83], SkyReels-V2 [10], and CausVid [100] at three time steps. All models share
the same architecture with 1.3B parameters.

models trained with SiD and GAN objectives achieve comparable performance as detailed in our
ablation studies. As shown in Figure 5, CausVid suffers from the error accumulation problem that
causes the saturation to increase over time. Our approach obtains slightly better visual quality than
Wan2.1/SkyReels-V2, while being around 150x faster in latency. More example videos are provided
in the project website (https://self-forcing.github.io/).

8

https://self-forcing.github.io/

Table 2: Ablation study. We conduct controlled ablation studies comparing different training
paradigms and distribution matching objectives under our training setup across chunk-wise (left)
and frame-wise (right) AR models. Self Forcing works well with all different distribution matching
objectives and consistently outperforms alternative training approaches.

Chunk-wise AR
Evaluation scores ↑

Total Quality Semantic
Score Score Score

Many (50×2)-step models
Diffusion Forcing (DF) 82.95 83.66 80.09
Teacher Forcing (TF) 83.58 84.34 80.52

Few (4)-step models
DF + DMD 82.76 83.49 79.85
TF + DMD 82.32 82.73 80.67
Self Forcing (Ours, DMD) 84.31 85.07 81.28
Self Forcing (Ours, SiD) 84.07 85.52 78.24
Self Forcing (Ours, GAN) 83.88 85.06 79.16

Frame-wise AR
Evaluation scores ↑

Total Quality Semantic
Score Score Score

Many (50×2)-step models
Diffusion Forcing (DF) 77.24 79.72 67.33
Teacher Forcing (TF) 80.34 81.34 76.34

Few (4)-step models
DF + DMD 80.56 81.02 78.71
TF + DMD 78.12 79.62 72.11
Self Forcing (Ours, DMD) 84.26 85.25 80.30
Self Forcing (Ours, SiD) 83.54 84.71 78.86
Self Forcing (Ours, GAN) 83.27 84.57 78.08

Ablation Studies. We perform controlled comparisons of Self Forcing with alternative autoregressive
diffusion training approaches. We evaluate: (1) AR Diffusion models trained with denoising diffusion
loss using either Teacher Forcing or Diffusion Forcing, and (2) few-step AR Diffusion models trained
with TF/DF inputs but optimized with distribution matching objectives. The latter configuration with
DF and DMD essentially replicates CausVid [100] within our implementation framework, allowing
direct comparison under identical training conditions.

Table 2 demonstrates that Self Forcing performs robustly across various distribution matching
objectives (DMD, SiD, and GAN), consistently outperforming all baselines. While baseline methods
exhibit notable quality degradation when shifting from chunk-wise to frame-wise AR due to error
accumulation associated with increased AR unrolling steps, usually manifesting as progressive over-
saturation or over-sharpening (similar to CausVid in Appendix B Fig. 5), Self Forcing maintains
consistent performance across both setups, highlighting its effectiveness at addressing exposure bias.

Rolling KV cache. We observe that recomputing KV cache when shifting sliding window (Fig. 3 (b))
results in significantly reduced throughput (only 4.6 FPS) when generating 10-second videos. While
naive rolling KV cache maintains high throughput, it introduces severe visual artifacts, as illustrated
in the examples in Appendix B. By training the model to generate frames without seeing the initial
image latent, we effectively mitigate these artifacts while maintaining high throughput (16.1 FPS).

Training efficiency. One might expect Self Forcing training to be computationally prohibitive given
its sequential nature that contradicts the parallelizable paradigm of transformers. Surprisingly, our
experiments reveal that Self Forcing actually outperforms alternative strategies in training efficiency.
As shown in Fig. 6 (left), Self Forcing achieves comparable per-iteration training time to Teacher
Forcing and Diffusion Forcing. Furthermore, Fig. 6 (right) demonstrates that Self Forcing achieves
superior quality given same wall-clock training budgets compared to both alternative approaches.
Each Self Forcing experiment with DMD converges in approximately 1.5 hours on 64 H100 GPUs.

This counter-intuitive result stems from two key factors: First, while Self Forcing performs sequential
rollout, it still processes all tokens within each individual frame/chunk in parallel, maintaining high
GPU utilization during training. Second, TF and DF require specialized attention masking patterns to
enforce causal dependencies, introducing additional computational overhead even with specialized
implementations like FlexAttention [15]. On the other hand, Self Forcing always uses full attention
during training and can leverage highly optimized attention kernels such as FlashAttention-3 [72].

5 Discussion

In this section, we examine the broader implications of our results, discuss additional perspectives,
and outline potential directions for future research.

9

Generator Update Critic Update
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(s

)

Per-Iteration Training Time (DMD loss)
Diffusion Forcing
Teacher Forcing
Self Forcing (1-step)
Self Forcing (2-step)
Self Forcing (3-step)
Self Forcing (4-step)

10 15 20 25 30
Training Wall Clock Time (minutes)

0.810

0.815

0.820

0.825

0.830

0.835

0.840

V
B

en
ch

 T
ot

al
 S

co
re

Quality vs. Training Time

Diffusion Forcing
Teacher Forcing
Self Forcing

Figure 6: Training efficiency comparison. Left: Per-iteration time across different chunk-wise,
few-step autoregressive video diffusion training algorithms (using DMD as the distribution matching
objective). Right: Video quality (VBench score) vs. wall clock training time.

Fundamental limitation of the parallelizable training paradigm. Parallelizable training has been
pivotal to transformers’ success by enabling efficient scaling. However, this parallelism introduces
fundamental limitations. Prior research [57] demonstrates that parallel architectures inherently limit
expressiveness in sequential state-tracking problems. Our work highlights another critical limitation:
parallelizable training paradigms creates misalignment between training and inference distributions,
leading to the accumulation of errors over time. We advocate a new paradigm of parallel pre-training
and sequential post-training that combines the best of both worlds. While this paradigm shift is
gaining momentum in language modeling through reinforcement learning [21], our work represents
the first step towards this direction for the video domain. We believe our framework is general and
can be applied to other sequence domains, especially where the data is continuous.

Interplay between AR, Diffusion, and GANs. Autoregressive models, diffusion models, and GANs
have traditionally been viewed as distinct paradigms in generative modeling. Our work highlights their
complementary nature and demonstrates how they can be effectively integrated. Specifically, autore-
gressive and diffusion models provide complementary ways to factorize distributions (chain-rule vs.
latent-variable), which can be composed in a nested manner. The core idea behind GANs—matching
the distribution of an implicit generator to the target distribution by drawing samples from the implicit
generator—can be employed to train a generator powered by autoregressive-diffusion factorization.

Limitation and future directions. While our method effectively mitigates error accumulation
within the training context length, quality degradation remains observable when generating videos
substantially longer than those seen during training. Additionally, our gradient truncation strate-
gies—while necessary for memory efficiency—may limit the model’s ability to learn long-range
dependencies. Future work could explore both improved extrapolation techniques and inherently
recurrent architectures like state-space models [19, 63] that better balance memory efficiency with
long-context modeling.

Acknowledgments

We thank Tianwei Yin, Beidi Chen, Kaiwen Zheng, Kai Zhang, Gaurav Parmar, Yi Gu, Sai Bi, and
Jianming Zhang for valuable discussions. G. He and M. Zhou acknowledge the support of NSF-IIS
2212418 and NIH-R37 CA271186.

References
[1] Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar

Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive and diffusion
language models. In ICLR, 2025.

[2] Abdelhak Bentaleb, May Lim, Mehmet N Akcay, Ali C Begen, Sarra Hammoudi, and Roger Zimmermann.
Toward one-second latency: Evolution of live media streaming. IEEE Communications Surveys &
Tutorials, 2025.

10

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz,
Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video
diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In CVPR,
2023.

[5] Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun Wang, Timo Aila, Jaakko Lehtinen, Ming-Yu Liu,
Alexei Efros, and Tero Karras. Generating long videos of dynamic scenes. NeurIPS, 2022.

[6] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor,
Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as
world simulators, 2024.

[7] Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative interactive environments.
In ICML, 2024.

[8] Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
Diffusion forcing: Next-token prediction meets full-sequence diffusion. In NeurIPS, 2024.

[9] Feng Chen, Zhen Yang, Bohan Zhuang, and Qi Wu. Streaming video diffusion: Online video editing with
diffusion models. arXiv preprint arXiv:2405.19726, 2024.

[10] Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Juncheng Zhu, Mingyuan Fan, Hao Zhang, Sheng
Chen, Zheng Chen, Chengchen Ma, et al. Skyreels-v2: Infinite-length film generative model. arXiv
preprint arXiv:2504.13074, 2025.

[11] Julian Decart, Quinn Quevedo, Spruce McIntyre, Xinlei Campbell, Robert Chen, and Wachen. Oasis: A
universe in a transformer, 2024.

[12] Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers for
generative modeling. arXiv preprint arXiv:2412.12095, 2024.

[13] Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization. In ICLR,
2025.

[14] Emily L Denton et al. Unsupervised learning of disentangled representations from video. In NeurIPS,
2017.

[15] Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A program-
ming model for generating optimized attention kernels. ArXiv, abs/2412.05496, 2024.

[16] Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, Jun Xiao, and Long Chen. Ca2-vdm:
Efficient autoregressive video diffusion model with causal generation and cache sharing. arXiv preprint
arXiv:2411.16375, 2024.

[17] Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs, Jia-Bin Huang, and Devi
Parikh. Long video generation with time-agnostic vqgan and time-sensitive transformer. In ECCV, 2022.

[18] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

[19] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In COLM,
2024.

[20] Yuchao Gu, Weijia Mao, and Mike Zheng Shou. Long-context autoregressive video modeling with
next-frame prediction. arXiv preprint arXiv:2503.19325, 2025.

[21] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

[22] Yuwei Guo, Ceyuan Yang, Ziyan Yang, Zhibei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, and Lu Jiang.
Long context tuning for video generation. arXiv preprint arXiv:2503.10589, 2025.

[23] Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and José
Lezama. Photorealistic video generation with diffusion models. In ECCV, 2024.

11

[24] Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson, Eran
Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion. arXiv
preprint arXiv:2501.00103, 2024.

[25] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey A. Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
definition video generation with diffusion models. ArXiv, abs/2210.02303, 2022.

[26] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. In NeurIPS, 2022.

[27] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pretraining
for text-to-video generation via transformers. In ICLR, 2023.

[28] Jinyi Hu, Shengding Hu, Yuxuan Song, Yufei Huang, Mingxuan Wang, Hao Zhou, Zhiyuan Liu, Wei-
Ying Ma, and Maosong Sun. Acdit: Interpolating autoregressive conditional modeling and diffusion
transformer. arXiv preprint arXiv:2412.07720, 2024.

[29] Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The gan is dead; long live the
gan! a modern gan baseline. In NeurIPS, 2024.

[30] Zemin Huang, Zhengyang Geng, Weijian Luo, and Guo-jun Qi. Flow generator matching. arXiv preprint
arXiv:2410.19310, 2024.

[31] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu Qiao,
and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models. In CVPR, 2024.

[32] Simon Jenni and Paolo Favaro. On stabilizing generative adversarial training with noise. In CVPR, 2019.

[33] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling. In
ICLR, 2025.

[34] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard gan. In
ICLR, 2019.

[35] Jihwan Kim, Junoh Kang, Jinyoung Choi, and Bohyung Han. Fifo-diffusion: Generating infinite videos
from text without training. In NeurIPS, 2024.

[36] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In NeurIPS,
2021.

[37] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[38] Dan Kondratyuk, Lijun Yu, Xiuye Gu, Jose Lezama, Jonathan Huang, Grant Schindler, Rachel Hornung,
Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language model for zero-shot
video generation. In ICML, 2024.

[39] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu,
Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. arXiv
preprint arXiv:2412.03603, 2024.

[40] Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C Courville,
and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks. In NeurIPS,
2016.

[41] Qing Li, Xun Tang, Junkun Peng, Yuanzheng Tan, and Yong Jiang. Latency reducing in real-time internet
video transport: A survey. SSRN 4654242, 2023.

[42] Shuang Li, Yihuai Gao, Dorsa Sadigh, and Shuran Song. Unified video action model. arXiv preprint
arXiv:2503.00200, 2025.

[43] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation
without vector quantization. In NeurIPS, 2024.

[44] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo Kanazawa. Infinitenature-zero: Learning
perpetual view generation of natural scenes from single images. In ECCV, 2022.

12

[45] Zongyi Li, Shujie Hu, Shujie Liu, Long Zhou, Jeongsoo Choi, Lingwei Meng, Xun Guo, Jinyu Li, Hefei
Ling, and Furu Wei. Arlon: Boosting diffusion transformers with autoregressive models for long video
generation. In ICLR, 2025.

[46] Feng Liang, Akio Kodaira, Chenfeng Xu, Masayoshi Tomizuka, Kurt Keutzer, and Diana Marculescu.
Looking backward: Streaming video-to-video translation with feature banks. In ICLR, 2025.

[47] Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversarial
post-training for one-step video generation. arXiv preprint arXiv:2501.08316, 2025.

[48] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In ICLR, 2023.

[49] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo Kanazawa.
Infinite nature: Perpetual view generation of natural scenes from a single image. In ICCV, 2021.

[50] Haozhe Liu, Shikun Liu, Zijian Zhou, Mengmeng Xu, Yanping Xie, Xiao Han, Juan C Pérez, Ding Liu,
Kumara Kahatapitiya, Menglin Jia, et al. Mardini: Masked autoregressive diffusion for video generation
at scale. arXiv preprint arXiv:2410.20280, 2024.

[51] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In ICLR, 2023.

[52] Yaofang Liu, Yumeng Ren, Xiaodong Cun, Aitor Artola, Yang Liu, Tieyong Zeng, Raymond H Chan, and
Jean-michel Morel. Redefining temporal modeling in video diffusion: The vectorized timestep approach.
arXiv preprint arXiv:2410.03160, 2024.

[53] Zhijun Liu, Shuai Wang, Sho Inoue, Qibing Bai, and Haizhou Li. Autoregressive diffusion transformer
for text-to-speech synthesis. arXiv preprint arXiv:2406.05551, 2024.

[54] Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-instruct:
A universal approach for transferring knowledge from pre-trained diffusion models. In NeurIPS, 2023.

[55] Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion
distillation through score implicit matching. NeurIPS, 2024.

[56] Xiaofeng Mao, Zhengkai Jiang, Fu-Yun Wang, Jiangning Zhang, Hao Chen, Mingmin Chi, Yabiao Wang,
and Wenhan Luo. Osv: One step is enough for high-quality image to video generation. In CVPR, 2025.

[57] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision transformers.
TACL, 2023.

[58] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually
converge? In ICML, 2018.

[59] Sicheng Mo, Thao Nguyen, Xun Huang, Siddharth Srinivasan Iyer, Yijun Li, Yuchen Liu, Abhishek
Tandon, Eli Shechtman, Krishna Kumar Singh, Yong Jae Lee, et al. X-fusion: Introducing new modality
to frozen large language models. arXiv preprint arXiv:2504.20996, 2025.

[60] Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the exposure
bias in diffusion models. In ICLR, 2024.

[61] Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer, Christos Kaplanis,
Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen Spencer, Jessica Yung, Michael
Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih, Harris Chan, Maxime Gazeau, Bonnie Li, Fabio
Pardo, Luyu Wang, Lei Zhang, Frederic Besse, Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune,
Demis Hassabis, Raia Hadsell, Adrian Bolton, Satinder Singh, and Tim Rocktäschel. Genie 2: A
large-scale foundation world model, 2024.

[62] William S Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

[63] Ryan Po, Yotam Nitzan, Richard Zhang, Berlin Chen, Tri Dao, Eli Shechtman, Gordon Wetzstein, and
Xun Huang. Long-context state-space video world models. arXiv preprint arXiv:2505.20171, 2025.

[64] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation models.
arXiv preprint arXiv:2410.13720, 2024.

[65] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. In ICLR, 2016.

13

[66] Shuhuai Ren, Shuming Ma, Xu Sun, and Furu Wei. Next block prediction: Video generation via
semi-auto-regressive modeling. arXiv preprint arXiv:2502.07737, 2025.

[67] David Ruhe, Jonathan Heek, Tim Salimans, and Emiel Hoogeboom. Rolling diffusion models. In ICML,
2024.

[68] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with singular
value clipping. In ICCV, 2017.

[69] Sand-AI. Magi-1: Autoregressive video generation at scale, 2025.

[70] Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast high-resolution image synthesis with latent adversarial diffusion distillation. In SIGGRAPH Asia
2024 Conference Papers, pages 1–11, 2024.

[71] Florian Schmidt. Generalization in generation: A closer look at exposure bias. EMNLP-IJCNLP 2019,
page 157, 2019.

[72] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-3:
Fast and accurate attention with asynchrony and low-precision. In NeurIPS, 2024.

[73] Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann. History-
guided video diffusion. arXiv preprint arXiv:2502.06764, 2025.

[74] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

[75] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. In NeurIPS, 2021.

[76] Mingzhen Sun, Weining Wang, Gen Li, Jiawei Liu, Jiahui Sun, Wanquan Feng, Shanshan Lao, SiYu Zhou,
Qian He, and Jing Liu. Ar-diffusion: Asynchronous video generation with auto-regressive diffusion. In
CVPR, 2025.

[77] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion and
content for video generation. In CVPR, 2018.

[78] Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time game
engines. In ICLR, 2025.

[79] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In NeurIPS, 2017.

[80] R Villegas, H Moraldo, S Castro, M Babaeizadeh, H Zhang, J Kunze, PJ Kindermans, MT Saffar, and
D Erhan. Phenaki: Variable length video generation from open domain textual descriptions. In ICLR,
2023.

[81] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. Decomposing motion and
content for natural video sequence prediction. In ICLR, 2017.

[82] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
NeurIPS, 2016.

[83] Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao
Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models. arXiv preprint
arXiv:2503.20314, 2025.

[84] Jing Wang, Fengzhuo Zhang, Xiaoli Li, Vincent YF Tan, Tianyu Pang, Chao Du, Aixin Sun, and Zhuoran
Yang. Error analyses of auto-regressive video diffusion models: A unified framework. arXiv preprint
arXiv:2503.10704, 2025.

[85] Wenhao Wang and Yi Yang. Vidprom: A million-scale real prompt-gallery dataset for text-to-video
diffusion models. In NeurIPS, 2024.

[86] Yuqing Wang, Tianwei Xiong, Daquan Zhou, Zhijie Lin, Yang Zhao, Bingyi Kang, Jiashi Feng, and Xihui
Liu. Loong: Generating minute-level long videos with autoregressive language models. arXiv preprint
arXiv:2410.02757, 2024.

[87] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer:
High-fidelity and diverse text-to-3d generation with variational score distillation. NeurIPS, 2023.

14

[88] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive video models. In ICLR,
2020.

[89] Wenming Weng, Ruoyu Feng, Yanhui Wang, Qi Dai, Chunyu Wang, Dacheng Yin, Zhiyuan Zhao, Kai
Qiu, Jianmin Bao, Yuhui Yuan, et al. Art-v: Auto-regressive text-to-video generation with diffusion
models. In CVPR, 2024.

[90] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan Duan,
Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text generation. In NeurIPS, 2023.

[91] Yushu Wu, Zhixing Zhang, Yanyu Li, Yanwu Xu, Anil Kag, Yang Sui, Huseyin Coskun, Ke Ma, Aleksei
Lebedev, Ju Hu, et al. Snapgen-v: Generating a five-second video within five seconds on a mobile device.
In CVPR, 2025.

[92] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In ICLR, 2024.

[93] Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, and Yang Zhou.
Progressive autoregressive video diffusion models. arXiv preprint arXiv:2410.08151, 2024.

[94] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

[95] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[96] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. In ICLR, 2024.

[97] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi
Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert
transformer. In ICLR, 2025.

[98] Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
Freeman. Improved distribution matching distillation for fast image synthesis. NeurIPS, 2024.

[99] Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and
Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024.

[100] Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and Xun
Huang. From slow bidirectional to fast autoregressive video diffusion models. In CVPR, 2025.

[101] Alan Yu, Ge Yang, Ran Choi, Yajvan Ravan, John Leonard, and Phillip Isola. Learning visual parkour
from generated images. In CoRL, 2024.

[102] Jiwen Yu, Yiran Qin, Xintao Wang, Pengfei Wan, Di Zhang, and Xihui Liu. Gamefactory: Creating new
games with generative interactive videos. arXiv preprint arXiv:2501.08325, 2025.

[103] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with
policy gradient. In AAAI, 2017.

[104] Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng,
Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–tokenizer is key to
visual generation. In ICLR, 2024.

[105] Lvmin Zhang and Maneesh Agrawala. Packing input frame context in next-frame prediction models for
video generation. arXiv preprint arXiv:2504.12626, 2025.

[106] Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan Sunkavalli,
William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint arXiv:2505.23884, 2025.

[107] Yuan Zhang, Jiacheng Jiang, Guoqing Ma, Zhiying Lu, Haoyang Huang, Jianlong Yuan, and Nan Duan.
Generative pre-trained autoregressive diffusion transformer. arXiv preprint arXiv:2505.07344, 2025.

[108] Zhixing Zhang, Yanyu Li, Yushu Wu, Anil Kag, Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin,
Junli Cao, Dimitris Metaxas, Sergey Tulyakov, et al. Sf-v: Single forward video generation model. In
NeurIPS, 2024.

[109] Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid attention
broadcast. In ICLR, 2025.

15

[110] Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn,
Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and diffuse images
with one multi-modal model. In ICLR, 2025.

[111] Deyu Zhou, Quan Sun, Yuang Peng, Kun Yan, Runpei Dong, Duomin Wang, Zheng Ge, Nan Duan,
Xiangyu Zhang, Lionel M Ni, et al. Taming teacher forcing for masked autoregressive video generation.
In CVPR, 2025.

[112] Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity
distillation: Rapidly surpassing the teacher in one step. In ICLR, 2025.

[113] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation. In
ICML, 2024.

A Implementation Details

Our implementation is largely based on the open-source code of Wan2.1 [83] and CausVid [100].
The attention implementation of Diffusion Forcing and Teacher Forcing baselines is based on
FlexAttention [15], while the attention in Self Forcing is based on FlashAttention-3 [72].

Noise schedule and model parameterization. Following the Wan2.1 series, we adopt the flow
matching framework [48, 51], with time step shifting t′(k, t) = (kt/1000)/(1 + (k − 1)(t/1000)) ·
1000 and a shift factor k = 5. The forward process is specified as xt = t′

1000x+ 1−t′
1000ϵ, ϵ ∼ N (0, I)

with t ∈ [0, 1000].

The data prediction model is given by:

Gθ(x, t, c) = cskip · ϵ− cout · vθ(cin · xt, cnoise(t
′), c). (1)

We keep the preconditioning coefficients the same as the base models’ configuration, i.e., cskip =
cin = cout = 1 and cnoise(t) = t. Our few-step diffusion process employs a uniform 4-step schedule
[t4, t3, t2, t1] = [1000, 750, 500, 250].

Prompt preprocessing. We use the VidProS subset from VidProM [85], which contains around 1M
semantically unique user-written text-to-video prompts. We filter out prompts that are too short (less
than 20 characters), contain command line arguments (e.g., –ar 16:9), or have a NSFW probability
greater than 0.01 for any annotated category (toxicity, obscenity, identity attack, insult, threat, and
sexual explicitness). This results in a total of around 250k prompts. We then expand those prompts
with Qwen/Qwen2.5-7B-Instruct [95], using the system prompt (English version) provided in the
open-source implementation of Wan2.1 [83]. For VBench evaluation, we similarly rewrite the test
prompts using Qwen/Qwen2.5-7B-Instruct. We note that the VBench results of the Wan2.1 base
model are also obtained with prompt rewriting, and we report baseline results with prompt rewriting,
provided that the model supports such enhancements.

Training details. Most of our training runs use 64 NVIDIA GPUs (80GB memory each) with a
per-GPU batch size of 1. We implement gradient accumulation for configurations requiring a larger
effective batch size than 64. Our DMD training runs take only approximately 1.5 hours to converge,
while SiD/GAN training takes 2-3 hours on 64 H100 GPUs. We initialize the real score network and
critic network using the pretrained weights of the base model. We list all other training configurations,
as well as the choice of real score network and critic network for different distribution matching
objectives, in Table 3. We describe detailed training configurations for each distribution matching
objective below.

For DMD, the gradient of the reverse Kullback-Leibler divergence is given by [54, 87, 99]:

∇θEt[DKL(pθ,t∥pdata,t)] = −Et,x̂t∼qt|0(x̂t|x̂),x̂∼pθ(x̂)

[
(sreal(x̂t, t)− sfake(x̂t, t))

∂x̂

∂θ

]
, (2)

where sreal(·, t) is the score function for pdata,t, approximated by a pretrained diffusion model fϕ(·, t),
also referred to as the real score network, and sfake(·, t) is the score function for pθ,t and is learned

16

Table 3: Specification of training hyperparameters

Hyperparameters DMD SiD GAN

Real score network Wan2.1-T2V-14B Wan2.1-T2V-1.3B N/A

Real score CFG weight 3.0 3.0 N/A

Critic network initialization Wan2.1-T2V-1.3B Wan2.1-T2V-1.3B Wan2.1-T2V-1.3B

Batch size 64 64 768

Optimizer (Gθ)
AdamW, β1 = 0, β2 = 0.999, Adam, β1 = 0, β2 = 0.999, AdamW, β1 = 0, β2 = 0.999,

ϵ = 1e-8, weight_decay= 0.01 ϵ = 1e-8, weight_decay= 0 ϵ = 1e-8, weight_decay= 0.01

Optimizer (fψ)
AdamW, β1 = 0, β2 = 0.999, Adam, β1 = 0, β2 = 0.999, AdamW, β1 = 0, β2 = 0.999,

ϵ = 1e-8, weight_decay= 0.01 ϵ = 1e-8, weight_decay= 0 ϵ = 1e-8, weight_decay= 0.01

Learning rate (Gθ) 2e-6 2e-6 2e-6

Learning rate (fψ) 4e-7 2e-6 2e-6

Generator/critic update ratio 5 5 1

EMA decay 0.99 0.99 0.99

through a critic network fψ(·, t) via the standard diffusion loss. The gradient in Eqn. (2) is equivalent
to the following loss function:

LDMD(θ) = Et,x̂t,x̂

[
1

2
∥x̂− sg [x̂− (fψ(x̂t, t)− fϕ(x̂t, t))]∥2

]
, (3)

where sg[·] denotes the stop gradient operator.

Similar to the pipeline of DMD, the SiD loss is given by [113]:

LSiD(θ) = Et,x̂t,x̂

[
(fϕ(x̂t, t)− fψ(x̂t, t))

T (fψ(x̂t, t)− x̂) + (1− α)∥fϕ(x̂t, t)− fψ(x̂t, t)∥2
]
,

(4)

which can be shown that the case of α = 0.5 corresponds the gradient of the Fisher divergence
Et,pθ,t [∥∇ log pθ,t −∇ log pdata,t∥2] [30, 55]. Empirically, it is observed that the second term often
leads to unstable training and thus α = 1 is typically adopted for better performance [112, 113],
which is also followed in this work.

For GAN training, we add additional cross-attention layers and classification heads to the initialized
critic network. We employ relativistic loss [34] and approximate the regularization terms (R1 and
R2) using finite difference following Seaweed-APT [47]. Specifically, we perturb the noisy real/fake
data with additional small Gaussian noise and encourage the discriminator output to be similar to the
original one. The final training objective is defined as:

Lreg =
1

2
Et,xt,x̂t,ϵ,ϵ̂

[
∥fψ(xt)− fψ(xt + σ · ϵ)∥22 + ∥fψ(x̂t)− fψ(x̂t + σ · ϵ̂)∥22

]
(5)

LD(ψ) = −Et,xt,x̂t
[log (sigmoid (fψ(xt)− fψ(x̂t)))] + λLreg (6)

LG(θ) = −Et,xt,x̂t [log (sigmoid (fψ(x̂t)− fψ(xt)))] (7)

where xt ∼ pdata,t, x̂t ∼ pθ,t are the noisy real and fake data, respectively, ϵ and ϵ̂ are Gaussian
noise sampled from N (0, 1), and fψ is the critic network (discriminator) of GAN. We use λ = 30,
σ = 0.05 for all experiments. For a video generated from the output of the s-th step (see Algorithm 1
for details), we find that only sampling t from [ts−1, ts] helps stabilize the training. We also adopt a
large batch size of 768 for training stability.

B Importance of local attention training in rolling KV cache

We qualitatively ablate two training settings for video extrapolation using the rolling KV cache
technique. In the naive baseline, the model is trained such that every chunk always attends to the first
chunk during denoising. In contrast, our proposed method restricts the attention window to prevent
the model from attending to the first chunk when denoising the last chunk. As shown in Fig. 7, the
naive baseline exhibits visual artifacts when extrapolating videos beyond the training context length,
whereas our proposed solution mitigates this issue.

17

Figure 7: Qualitative comparisons on video extrapolation. We present a visual comparison between
the naive baseline and our proposed technique for rolling KV cache-based video extrapolation.
Compared to our method using local attention window training, extrapolated video frames from the
naive baseline exhibit severe visual artifacts.

C VBench Scores Across All Dimensions

subject consistency
background consistency

temporal flickering

motion smoothness

dynamic degree

aesthetic quality

imaging quality

object class
multiple objects

human action

color

spatial relationship

scene

appearance style

temporal style

overall consistency

Self Forcing (chunk-wise)
Self Forcing (frame-wise)

SkyReels-V2
MAGI-1

CausVid
Wan-1.3B

LTX

Figure 8: VBench scores visualization. We compare Self
Forcing with SkyReels-V2 [10], Wan2.1-1.3B [83], MAGI-
1 [69], and CausVid [100] using all 16 VBench metrics.

In Fig. 8, we evaluate Self Forc-
ing (both chunk-wise and frame-wise
AR versions) using all 16 VBench
metrics against representative mod-
els. Self Forcing generally outper-
forms other models in terms of se-
mantic alignment, evidenced by the
high scores in scene, object class, mul-
tiple objects, and human action di-
mensions. Our methods also achieve
good frame-wise quality, as indicated
by the high scores in aesthetic qual-
ity and imaging quality. Our frame-
wise AR variant exhibits more dy-
namic motion (high dynamic degree
score) but worse temporal consis-
tency (worse background consistency,
motion smoothness, and larger tem-
poral flickering) than the chunk-wise
AR variant.

D Broader Societal Impact

Generative modeling—particularly
for videos—carries significant poten-
tial for misuse. It can lead to serious
societal consequences, most notably
the spread of disinformation through deepfakes that become increasingly difficult to distinguish from
authentic content. Additionally, these models can reinforce harmful stereotypes and amplify existing
societal biases without careful governance and responsible deployment.

18

Our research on real-time video generation creates additional complexities, as it removes one of the
practical barriers (computational cost) that currently limits widespread misuse. While our methods
enable positive applications like creative content production and accessibility tools, we acknowledge
the dual-use nature of this technology and encourage continued research into detection methods,
watermarking techniques, and policy frameworks that can help mitigate potential harms.

E User Study Details

In the user preference study, we show users two videos side by side using the same text prompt. We
ask the users to select the one that is overall better, considering both quality and prompt alignment.
Detailed instructions are shown in Fig. 9. We use all 1003 prompts from MovieGenBench [64] and
each prompt is evaluated by a single user.

Figure 9: User study instruction screenshots.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution is a new training algorithm for autoregressive diffusion
models that addresses the exposure bias problem.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

20

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the main experimental
results in Section 4 and in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]
Justification: We include the code and data in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the main experimental
results in Section 4 and in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expen-
sive (each run requires hundreds of H100 hours of compute).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is provided in the Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and our research conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a discussion in Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our base model weights (Wan 2.1) are safeguarded and we do not use additional
video data during our training process that could be unsafe. We also filter out NSFW prompts
from our training data, as described in Appendix A.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section 4, we mention that our model is initialized from Wan2.1 1.3B
and we also generate synthetic data using their pretrained models. In Appendix A, we
acknowledge that our implementation is largely based on Wan2.1 and CausVid open-source
implementations. We obey the Apache License of Wan2.1 and the CC-NC license of
CausVid.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See supplemental material for the documentation of our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We include this information in Appendix E.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: IRB review is not required.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Self Forcing: Briding Train-Test Gap via Holistic Post-Training
	Preliminaries: Autoregressive Video Diffusion Models
	Autoregressive Diffusion Post-Training via Self-Rollout
	Holistic Distribution Matching Loss
	Long Video Generation with Rolling KV Cache

	Experiments
	Discussion
	Implementation Details
	Importance of local attention training in rolling KV cache
	VBench Scores Across All Dimensions
	Broader Societal Impact
	User Study Details

