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Abstract

This work proposes a general and effective ar-
chitecture for the extreme multi-label text clas-
sification (XMTC), and reformate the learning
task to an interaction function between docu-
ment and label. Recently, there are many stud-
ies trying to enhance text representation or re-
duce the number of labels to optimize the prob-
lem of lack of information in a text or the spar-
sity of the possibility vector. In the field of
recommendation, a similar problem is already
defined and studied for a quite long time. It
is worthy to learn methods from recommenda-
tion to XMTC for finding matching relations
in large size of dataset accurately. With co-
attention mechanism and neural collaborative
filtering, we not only learn informative label
representation enhanced by document-specific
label group vector and label-specific text fea-
ture vector but also build an effective interac-
tion function to get matching score. After ex-
tensive comparison experiments with various
models, results demonstrate the architecture
we proposed outperforms most of the methods
and achieves significant improvement on basic
document encoders.

1 Introduction

Text classification is one of the fundamental tasks
in natural language processing (NLP). There is a
wide range of application scenarios such as senti-
ment analysis, news filtering, web page tagging,
and so on. Normally researchers can extract fea-
tures of text by a convolutional neural network
(CNN), recurrent neural network (RNN). Since
2018, a large number of pre-trained models such as
ELMO, BERT have shown an outstanding perfor-
mance in several tasks in NLP. Recently, with the
growth of data scale, multi-label text classification
(MLTC) has attracted more attention, since auto-
matically labeling multiple labels of documents can
effectively reduce labor costs. To distinguish from
multi-class classification, MLTC specifically refers

to classification tasks where the text has multiple
labels, rather than choosing one from multiple pos-
sible candidate labels. For MLTC, in most cases,
we convert this task into several binary classifica-
tion problems on each label.

However, there is still no good solution for ex-
treme multi-label text classification (XMTC) which
is described as text with its most relevant multiple
labels from an extremely large-scale label set (You
et al., 2018). Different from regular MLTC tasks,
because of the large space of possible labels in
XMTC, expanding the dimension of the output vec-
tor will result in unnecessary computational costs
in time and space.

Existing studies for XMTC mainly focus on
learning enhanced documents (Liu et al., 2017) and
modeling label dependency (Zhang et al., 2018) to
optimize this problem. Although we can utilize
various models to explore information from the
content of documents or label correlations, existing
works still focus on mining obtaining more infor-
mation to optimize a multi-label cross-entropy after
a fully connected (FC) layer (Xun et al., 2020). It
is straightforward and easy to understand, but this
kind of method has some backward. Firstly, the
correlations among labels are not reflected from it,
while the relationship between labels in a big-size
database is informative. Secondly, also because of
the number of labels, it is hard to precisely map the
feature of text to several positions within a large
solution space.

To resolve these problems, inspired by some
solutions in the recommender system, which is
always trying to retrieve information and estab-
lish mapping relations between different types of
entities in large size database, we consider re-
formatting the objective of XMTC to learn an
interaction function between document and la-
bel by a general learning architecture: Multi-
Aspect co-Attentional Collaborative Filtering Plus
(MAACF+). we model features of text and label



with co-attention mechanism and learn an inter-
action function by Neural Collaborative Filtering
(NCF) (He et al., 2017) . Plus means an alterna-
tive document encoder, any kind of text encoder
can be ensembled into MAACF+. In our architec-
ture, an informative feature of text can be modeled
by an advanced document encoder and consider-
ing information in the label group. Meanwhile, to
enhance the representation of the label, a high co-
occurrence label group is introduced and fuse with
the attention mechanism. Finally, we exploit the
NCF component to simulate the interaction func-
tion learning. We evaluate our architecture on three
public real-world XTMC datasets, and the results il-
lustrate its effectiveness and verify the significance
of each component.

We conclude the contributions in this paper as
follows:

e We propose a novel architecture MAACF+
to learn an interaction function to model the
relations between labels and documents from
a large space of labels. It utilizes multiple co-
attention mechanisms to extract information
from the label statistical nearest group and
enhance text representation.

o MAACF+ is a general and independent archi-
tecture that can be integrated with any docu-
ment encoder without changing other parts of
the model.

e Extensive experiments and visualization on
one Multi-lingual benchmark dataset and two
English datasets illustrate the effectiveness
of MAACF+ based on three popular text
encoders in XMTC task: XMLCNN, BiL-
STM, BERT. Compared with other state-of-
the-art models, MAACF+BERT can outper-
form them in most of indicators. Besides, re-
sults also confirm the success and necessity of
introducing the co-occurrence label group.

2 Model

The architecture of our proposed model is pre-
sented in Figure 1. The MAACF+ is composed
of three main components: 1) label-group infor-
mation extractor 2) multiple document encoders
3) neural collaborative filter. To be more specific,
the label-group information extractor aims to ex-
plore statistical features and supplement informa-
tion from the label’s neighbor group. The setting of

multi-encoders is expected to capture multi-modal
distribution in label groups, which is similar to
the previous exploration in social recommendation
(Wang et al., 2021).

2.1 Problem Formulation

For input set Z = (X, Z, G)‘N|, X consists of NV
document x; and Z is labels «; interacted with
which has z; € {0,1}Cl, where C is the total
number of labels. Differ to other works in multi-
label text classification, we define an additional
matrix G ‘CMK‘, where K indicates the number
of statistical nearest neighbors of each label in Z.
Each document x; contains L. words, and we wish
to learn a mapping function between document and
most relevant labels.

2.2 Architecture of MAACF+

Figure 1 illustrates the overall architecture of our
proposed method. For the input, it consists of
three components: document x;, label z; and la-
bel group g;. Given x; with L words, we firstly
utilize n document encoders to get n sequence
vector s;, € RY*P, where D is the dimension
of sequence vector. Note that, for different basic
document encoders, different word embedding ap-
proaches are utilized. In our experiments, after pre-
processing in text, XMLCNN and BiLSTM use the
Continuous Bag-of-Words Model (CBOW) which
belongs to word2vec methods to get the embedding
vector of each word. And BERT uses its tokenizer
to get the hidden vector of each token. Each docu-
ment encoder gets input in form of vectorized text,
then output feature information as a vector S;y,.

Modeling on labels is going in parallel. we input
target label z; and its label group g; into the label
encoder. Firstly, for each label, we get its hidden
feature vector by embedding layer. Then for the
label group, the same number of attention layers
are employed to generate comprehensive but exclu-
sive representation h;,, with dimension D of label
group from different perspectives by querying with
each s;,,. The formula is as follows:

exp(hinkSL
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where o, indicates how informative the k-th
label friend is for the whole label group g, in the
n-th aspect.
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Figure 1: The architecture of proposed MAACF+. Embedding Matrix denotes the matrix consists of
representations of the target label’s statistical label group. ATT means attention mechanism. In predictor,
we utilize a MLP (Multi-Layer Perceptron) to do prediction.

After that, a self-attention layer is used to com-
bine all aspects of information from the label group
as H j; in (3)(4). The final representation of label
H ; is learned through a linear transformation on a
vector of label group and target label. The formula
of this linear fusion function is defined as (5).

in = Softmax(WT h; + b) 3)
H, = Z ainhg 4
H; =W/ [h;, Hy] + by S)

In the document encoder side, the target label’s
hidden vector h; is used to compute the label-aware
attention values in all of the aspect-level document
representations with a similar attention mechanism.

When both the feature of label and document are
extracted, I input them into a multi-layer perceptron
to get the predicted score y?"°?. The proposed
architecture’s goal of optimization is minimizing
its loss for each document on its most relevant
labels and maximizing the loss of negative samples
which are randomly selected. It can be formulated
as:

m@inLg(x,z,g) (6)

Pos
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Neg
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3 Experiment

3.1 Experiment Setting
3.1.1 Datasets

We evaluate the proposed architecture on one
multi-lingual benchmark dataset EUR-Lex (Men-
cia and Fiirnkranz, 2008a) and two English bench-
mark datasets: AAPD (Yang et al., 2018) and
AmazonCat-13K (McAuley and Leskovec, 2013).
The detailed description of the dataset is shown in
Table 1.

3.1.2 Evaluation Metrics

We reformate the matching problem to the top-
k rank problem, so we utilize precision at topK
(P@K) and Normalized Discounted Cumulated
Gains (NDCG) at topK (N@K) for evaluation.
Specifically, P@K measures the precision of
predicted matching relations between label and
text within K highest possible candidates. And
NDCG@K indicates the result of the order of



Dataset Nirain Niest D L L L Witain Wiest
EUR-Lex 15,449 3,865 186,104 3,956 5.30 20.79 1248.58 1230.40
AAPD 54, 840 1,000 69,399 54 241 2444.04 163.42 171.65
AmazonCat-13K | 1,186,239 306,782 203,882 13,330 5.04 448.57 246.61 245.98

Table 1: Dataset statistics, Ntrqin and Nyest denote the number of documents in train and test sets
respectively. D is the vocabulary size of the input text. L is the number of labels, L is the average number
of labels for each document, L is the the average number of instances for each label. Wi, and Wiey are

the number of words in each train and test document.

rank(Yu et al., 2018) .
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3.1.3 Implementation Details

Based on the design of fair comparison, we split
the dataset in the same way as its publisher. Con-
sidering the implementation of different document
encoders, we use two methods to preprocess doc-
uments. For XMLCNN and BiLSTM, word2vec
models (Mikolov et al., 2013) are used to initiate
256-dimensional word vectors. For BERT we use
its tokenizer. To satisfy the input requirement of
the attention mechanism, we align the dimension of
representation for both label and document to 256.
we select the Adam optimizer method (Kingma
and Ba, 2014) to minimize the binary cross-entropy
loss, and a negative sample strategy is deployed for
training. In case of over-fitting, an early-stop strat-
egy and partial freeze on the document encoder are
used as well.

3.2 Experiments Contents
3.2.1 Baselines

To evaluate the performance of our proposed ar-
chitecture, we compared it with several classical
or state-of-the-art models on XMTC. Note that, to
show the outstanding performance of our model,
except for some models that are not open source or
no testing on datasets we used, we directly cited the
results from their papers. In addition to that, we did
a wide range of ablation experiments to validate the
significance of each component of our architecture.
Basic document encoders:

e XMLCNN (Liu et al., 2017): a CNN-based
model with dynamic pooling to capture high-
level features of document for XMTC.

e BiLSTM(Cornegruta et al., 2016): A basic
BiLSTM model with a self-attention layer to
get a representation of text. It is a widely used
sequence encoder.

e BERT (Kenton and Toutanova, 2019): One
layer bi-direction Encoder Representation
from Transformers. We use different pre-
trained weights to refer to the language of
the dataset.

Advanced comprehensive models:

e DXML (Zhang et al., 2018): It uses deep met-
ric learning to learn the embedding of text and
uses the graph representation learning method
to learn the embedding of the label.

e AttentionXML (You et al., 2018): A label
tree-based model with multi-label attention to
exploring most informative words in the text.

e LSAN (Xiao et al., 2019): A label-specific
attention network to build multiple text repre-
sentations and adaptive fusion them using a
self-attention mechanism.

e CorNetAttentionXML (Xun et al., 2020): An
architecture with AttentionXML as text en-
coder that able to exploit the correlation infor-
mation among different labels.

e LDGN (Maetal.,2021): A model using graph
network to extract label-specific components
from text and internal interaction among these
components.

For each model or variant, to get their best per-
formance, we choose the scores from their best
parameters after lots of experiments.



EUR-Lex AAPD
Model pa1 pa3 pPa@s Na@3 Nas pPal pa@3 pas N@3 Na@s
XMLCNN 70.40 54.98  44.86  58.62 53.10 74.38 53.84  37.79 71.12 75.93
MAACF+XMLCNN | 72.92  60.67  49.71 64.93 59.33 76.27  55.23 38.95 72.51 78.25
Improvement 3.55% 10.2% 10.7% 10.2% 11.7% | 2.54% 2.58% 3.07% 1.95%  3.06%
BiLSTM 53.51 3597 2983 42.71 35.72 50.12 41.74  30.83  49.17  52.35
MAACF+BILSTM 70.72 53.46  43.85 63.81 52.32 73.36 56.25  40.62 71.27  75.71
Improvement 322% 48.8% 47.0% 49.4% 46.5% | 26.2% 34.8% 36.2% 45.0% 44.7%
BERT 63.51 48.37 40.24 54.81 48.92 66.82 50.61 34.40 62.17 69.25
MAACF+BERT 81.16 65.32 54.46 73.32 68.13 87.10 62.32 42.53 84.47 86.32
Improvement 26.9% 37.3% 35.8% 30.1% 37.6% | 24.8% 23.1% 23.6% 35.9% 24.7%

Table 2: Augment test result on EUR-Lex and AAPD

Model pail Pa@3 Pa@s N@3 N@s

XMLCNN 92.07 75.29 60.53 87.34 84.29

MAACF+XMLCNN | 93.62 78.2 63.06 88.04 85.9

Improvement 1.68%  3.8T%  4.18%  080%  1.91%

BiLSTM 68.75 52.1 42.53 57.66 55.91

MAACF+BILSTM 93.47 79.62 62.51 86.31 85.35

Improvement 35.96% 52.82% 46.98% 49.69% 52.66%

BERT 74.78 65.78 57.51 73.57 68.58

MAACF+BERT 94.82 79.92 66.40 91.82 89.73

Improvement 26.80% 21.50% 15.46% 24.81% 30.84%

Table 3: Augment test result on AmazonCat-13K

3.2.2 Augment Test

The results of the three datasets are presented in
Tables 2, 3. We calculate each indicator with
k = 1,3,5. As we can observe from Tables 2,
3, MAACF++ can consistently improve the perfor-
mance of all popular basic document encoders in
XMTC in all metrics.

Among all of the basic encoders, XMLCNN has
the slightest improvement, and we think it is be-
cause of the dynamic pooling mechanism. A com-
plex feature extractor enables the encoder to exploit
sufficient and informative features from documents.
But with a larger size of label space, MAACF will
bring a more significant improvement because there
exist more correlations in the label side.

In addition, MA ACF+ architecture shows a more
significant improvement on metrics with £ = 3 or
5. We speculate that it is due to the introduction
of the label group. Different from k£ = 1, the
nearest label group works more often as an anchor
to augment the prediction of other possible candi-
dates. Besides, on datasets with the higher average
number of labels for each document, the results of
k = 3 show more promising on metrics than k = 5,

because the limitation of the real true number of
labels of each text is normally less than k.

3.2.3 Performance Comparison

Tables 4, 5 demonstrate the performance of all state-
of-the-art methods on three datasets. To ensure a
fair comparison, we cited results from their source
paper directly if it is available. Otherwise, for those
experiments that have not been done before, we
performed them based on their open-source codes
if applicable, or versions implemented on our own.

By observing results in Table 3 and 4, we can
find that methods that do not utilize label correla-
tions to enhance the learning process of text rep-
resentation have worse performance. Specifically,
on the AAPD dataset, AttentionXML promotes the
P@]1 of the DXML from 80.54% to 83.02%, the
increase is nearly 3.08%. For example, although
DXML tries to model information in label space
by deep embedding methods, AttentionXML can
pay attention to more semantic relevant parts in the
document for each label.

But compared with other previous methods ex-
ploiting label correlations, LSAN owns a better
performance. We think that is because of its mul-



EUR-Lex AAPD
Model pPa@1l pP@3 P@5 N@3  Na@b pa1l pPa@3 pP@js N@3  N@bj
DXML 75.63 60.13 48.65 63.96 53.60 | 80.54 56.30 39.16 77.23  80.99
AttentionXML 67.34 52.52 47772 56.21 50.78 | 83.02 58.72 40.56 78.01 82.31
LSAN 79.17 6499 53.67 6832 6247 | 8528 61.12 41.84 80.84 84.78
CorNetAttentionXML | 79.02 65.49 53.94 68.92 6297 | 8.71 61.55 42,50 80.31 85.73
LDGN 81.03 6499 56.36 71.81 66.09 | 86.24 61.95 4229 83.32 86.85
MAACF+BERT 81.16 65.32 5446 73.32 68.13 | 87.10 61.32 4253 84.47 86.32
Table 4: Comparison results on EUR-Lex and AAPD.

Model P@l1 P@3 PQ@5 N@3 N@5

DXML 91.06 7186 61.32 88.29 81.12

AttentionXML 92.12 7215 62.71 88.56  82.37

LSAN 9234 7481 63.38 89.08 81.13

CorNetAttentionXML | 92.17 74.36 63.83 89.11 84.54

MAACF+BERT 94.82 79.92 6640 91.82 89.73

Table 5: Comparison results on AmazonCat-13K. Restricted by computing resource, experiments on
LDGN does not present.

tiple learning space mechanism and considering
semantic correlations between text and label simul-
taneously. Multiple learning space mechanism is
helpful to stabilize the adaptive fusion by atten-
tion mechanism, and adaptive fusion learns label-
specific text representation.

Both CorNetAttentionXML and LDGN are re-
cent research works in XMTC. While CorNetAt-
tentionXML implemented a general architecture
to output augmented label prediction, it did not
further explore the possible solution of exploiting
abundant correlations in the large label space but
augmented final representation for prediction. And
LDGN utilizes a graph neural network to model
correlations in a label. But this work has the fol-
lowing obvious shortcomings: 1) Due to the huge
computational expense of extra graph neural net-
works and introducing label information into the
text learning process, it is hard to deploy on large
dataset such as AmazonCat-13K; 2) It does not
open its source codes, thus we cannot measure its
reliability.

The architecture MA ACF+ we proposed outper-
forms previous works on three datasets. To be
specific, compared with those works that share
source codes, the BERT augmented by MAACF
achieves a better performance on all of the indica-
tors. On AmazonCat-13k, MAACF+BERT boosts
P@3 and N@S5 from 92.17% to 94.82%, 84.54%
to 89.73% respectively. Compared with LDGN,
on EUR-Lex and AAPD, the model we proposed

still outperforms it on most indicators. In conclu-
sion, by introducing a co-attention mechanism and
multiple aspect learning, we augment the basic
text encoder with the most semantic relevant label
group information and this architecture can effec-
tively optimize computational expense compared
with LDGN.

3.2.4 Ablation Test

We perform a series of ablation experiments to
validate the effects and significance of introduc-
ing a statistical nearest label group on both three
datasets. We set the test value of the population
of label group k as [0, 2, 5]. When k£ = 0, it
means modeling without label group information.
We just present the visualization of the results of
MAACF+BERT.

From the results in Figure 2, we can see that
model with a positive number of k normally outper-
forms in most datasets than a model without label
group information, which indicates the model with
co-attention label correlations extracting mecha-
nism achieves more accurate prediction and effec-
tively information capture. It proves that the sig-
nificance of introducing label group modeling as
well. Meanwhile, the nearest label group that has
two labels is constantly the best choice, due to the
model with k£ = 2 having better performance than
k = 5. Thus, it is necessary to explore the ef-
fect of introducing label nearest group information
extractor.
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Figure 2: The visualization of ablation test results on three datasets.

4 Related Work
4.1 Text-Specific Methods in XMTC

Deep learning advanced in many fields in recent
years, deep-based XMTC models also attracted
many researchers to work on it. Compared with
traditional methods (Liu et al., 2017), deep models
take a sequence as input rather than bag-of-words
which seems to contain less semantics. XMLCNN
utilizes a dynamic pooling mechanism to capture
complex level feature of the text, each filter repre-
sent one semantic pattern.

Recently, some studies (You et al., 2018)(Xiao
et al., 2019)have used attention mechanisms to ex-
plore interactions between labels and words. To
be more specific, they try to enhance the repre-
sentation of the document with a label for classi-
fication. Some works attempt to utilize multiple
fundamental text encoders to extract features from
input sequence (Liu et al., 2017). Since 2018, pre-
trained models showed outstanding performance
on most NLP tasks. X-BERT (Chang et al., 2020)
utilized BERT as a text encoder with a multi-head
self-attention mechanism for XMTC.

4.2 Lable-Specific Methods in XMTC

Unlike traditional text classification tasks, XMTC
has a bigger number of labels. Training for each
label or mapping the feature vector of text to a
higher dimensional vector to output the possibility
of each label is a high computational expense. Pre-
viously there were some researchers want to solve
this task by building a tree structure to minimize
the number of label candidates and reduce com-
putational cost (Jain et al., 2016)(Jasinska et al.,
2016)(Khandagale et al., 2020). But if there is no
hierarchy structure within the label group in some
datasets, tree-based XMTC models will not be able
to undertake this task.

To build a relation graph in the label set,
there are also some other models (Bhatia et al.,

2015)(Tagami, 2017) that focus on using embed-
ding of labels to search the similarity within their
feature space. For example, AnneXML treated this
problem as a weak-supervised task and employed
KNN on a label to get less available label candi-
dates. But these methods are not able to perform
well in datasets that have no hierarchy relation be-
tween labels.

Recently, because of the increasing popularity
of graph neural networks (GNN), some studies uti-
lized GNN to explore interactions within labels
or extract label-specific information from a docu-
ment by treating relations between label and text
as multi-relation graph (Ma et al., 2021).

However, existing studies were still classifying
one feature vector. There are no approaches up-
dated methods in learning interactions between text
and label. Thus, our goal is to propose a novel clas-
sification method to explore label-specific compo-
nents of text and information in label groups more
accurately.

5 Conclusion

In this work, we propose a novel architecture
named MAACF++ to promote the performance
of basic document encoders in XMTC. It is an
independent and general architecture and can be
integrated with any deep encoders. Extensive ex-
periments on three real-world benchmark datasets
have demonstrated the effectiveness of it and it can
achieve state-of-the-art performance. In the future,
we will do more research on improving computing
efficiency. And besides, we will pay attention to ex-
tracting as much as possible semantic information
from the content of the label for XMTC.
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