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Abstract

This work proposes a general and effective ar-001
chitecture for the extreme multi-label text clas-002
sification (XMTC), and reformate the learning003
task to an interaction function between docu-004
ment and label. Recently, there are many stud-005
ies trying to enhance text representation or re-006
duce the number of labels to optimize the prob-007
lem of lack of information in a text or the spar-008
sity of the possibility vector. In the field of009
recommendation, a similar problem is already010
defined and studied for a quite long time. It011
is worthy to learn methods from recommenda-012
tion to XMTC for finding matching relations013
in large size of dataset accurately. With co-014
attention mechanism and neural collaborative015
filtering, we not only learn informative label016
representation enhanced by document-specific017
label group vector and label-specific text fea-018
ture vector but also build an effective interac-019
tion function to get matching score. After ex-020
tensive comparison experiments with various021
models, results demonstrate the architecture022
we proposed outperforms most of the methods023
and achieves significant improvement on basic024
document encoders.025

1 Introduction026

Text classification is one of the fundamental tasks027

in natural language processing (NLP). There is a028

wide range of application scenarios such as senti-029

ment analysis, news filtering, web page tagging,030

and so on. Normally researchers can extract fea-031

tures of text by a convolutional neural network032

(CNN), recurrent neural network (RNN). Since033

2018, a large number of pre-trained models such as034

ELMO, BERT have shown an outstanding perfor-035

mance in several tasks in NLP. Recently, with the036

growth of data scale, multi-label text classification037

(MLTC) has attracted more attention, since auto-038

matically labeling multiple labels of documents can039

effectively reduce labor costs. To distinguish from040

multi-class classification, MLTC specifically refers041

to classification tasks where the text has multiple 042

labels, rather than choosing one from multiple pos- 043

sible candidate labels. For MLTC, in most cases, 044

we convert this task into several binary classifica- 045

tion problems on each label. 046

However, there is still no good solution for ex- 047

treme multi-label text classification (XMTC) which 048

is described as text with its most relevant multiple 049

labels from an extremely large-scale label set (You 050

et al., 2018). Different from regular MLTC tasks, 051

because of the large space of possible labels in 052

XMTC, expanding the dimension of the output vec- 053

tor will result in unnecessary computational costs 054

in time and space. 055

Existing studies for XMTC mainly focus on 056

learning enhanced documents (Liu et al., 2017) and 057

modeling label dependency (Zhang et al., 2018) to 058

optimize this problem. Although we can utilize 059

various models to explore information from the 060

content of documents or label correlations, existing 061

works still focus on mining obtaining more infor- 062

mation to optimize a multi-label cross-entropy after 063

a fully connected (FC) layer (Xun et al., 2020). It 064

is straightforward and easy to understand, but this 065

kind of method has some backward. Firstly, the 066

correlations among labels are not reflected from it, 067

while the relationship between labels in a big-size 068

database is informative. Secondly, also because of 069

the number of labels, it is hard to precisely map the 070

feature of text to several positions within a large 071

solution space. 072

To resolve these problems, inspired by some 073

solutions in the recommender system, which is 074

always trying to retrieve information and estab- 075

lish mapping relations between different types of 076

entities in large size database, we consider re- 077

formatting the objective of XMTC to learn an 078

interaction function between document and la- 079

bel by a general learning architecture: Multi- 080

Aspect co-Attentional Collaborative Filtering Plus 081

(MAACF+). we model features of text and label 082
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with co-attention mechanism and learn an inter-083

action function by Neural Collaborative Filtering084

(NCF) (He et al., 2017) . Plus means an alterna-085

tive document encoder, any kind of text encoder086

can be ensembled into MAACF+. In our architec-087

ture, an informative feature of text can be modeled088

by an advanced document encoder and consider-089

ing information in the label group. Meanwhile, to090

enhance the representation of the label, a high co-091

occurrence label group is introduced and fuse with092

the attention mechanism. Finally, we exploit the093

NCF component to simulate the interaction func-094

tion learning. We evaluate our architecture on three095

public real-world XTMC datasets, and the results il-096

lustrate its effectiveness and verify the significance097

of each component.098

We conclude the contributions in this paper as099

follows:100

• We propose a novel architecture MAACF+101

to learn an interaction function to model the102

relations between labels and documents from103

a large space of labels. It utilizes multiple co-104

attention mechanisms to extract information105

from the label statistical nearest group and106

enhance text representation.107

• MAACF+ is a general and independent archi-108

tecture that can be integrated with any docu-109

ment encoder without changing other parts of110

the model.111

• Extensive experiments and visualization on112

one Multi-lingual benchmark dataset and two113

English datasets illustrate the effectiveness114

of MAACF+ based on three popular text115

encoders in XMTC task: XMLCNN, BiL-116

STM, BERT. Compared with other state-of-117

the-art models, MAACF+BERT can outper-118

form them in most of indicators. Besides, re-119

sults also confirm the success and necessity of120

introducing the co-occurrence label group.121

2 Model122

The architecture of our proposed model is pre-123

sented in Figure 1. The MAACF+ is composed124

of three main components: 1) label-group infor-125

mation extractor 2) multiple document encoders126

3) neural collaborative filter. To be more specific,127

the label-group information extractor aims to ex-128

plore statistical features and supplement informa-129

tion from the label’s neighbor group. The setting of130

multi-encoders is expected to capture multi-modal 131

distribution in label groups, which is similar to 132

the previous exploration in social recommendation 133

(Wang et al., 2021). 134

2.1 Problem Formulation 135

For input set I = (X,Z,G)|N |, X consists of N 136

document xi and Z is labels xi interacted with 137

which has zi ∈ {0, 1}|C|, where C is the total 138

number of labels. Differ to other works in multi- 139

label text classification, we define an additional 140

matrix G|C|×|K|, where K indicates the number 141

of statistical nearest neighbors of each label in Z. 142

Each document xi contains L words, and we wish 143

to learn a mapping function between document and 144

most relevant labels. 145

2.2 Architecture of MAACF+ 146

Figure 1 illustrates the overall architecture of our 147

proposed method. For the input, it consists of 148

three components: document xi, label zi and la- 149

bel group gi. Given xi with L words, we firstly 150

utilize n document encoders to get n sequence 151

vector sin ∈ RL×D, where D is the dimension 152

of sequence vector. Note that, for different basic 153

document encoders, different word embedding ap- 154

proaches are utilized. In our experiments, after pre- 155

processing in text, XMLCNN and BiLSTM use the 156

Continuous Bag-of-Words Model (CBOW) which 157

belongs to word2vec methods to get the embedding 158

vector of each word. And BERT uses its tokenizer 159

to get the hidden vector of each token. Each docu- 160

ment encoder gets input in form of vectorized text, 161

then output feature information as a vector sin. 162

Modeling on labels is going in parallel. we input 163

target label zi and its label group gi into the label 164

encoder. Firstly, for each label, we get its hidden 165

feature vector by embedding layer. Then for the 166

label group, the same number of attention layers 167

are employed to generate comprehensive but exclu- 168

sive representation hin with dimension D of label 169

group from different perspectives by querying with 170

each sin. The formula is as follows: 171

αink =
exp(hinks

T
in)∑

k exp(hinks
T
in)

(1) 172

hin =
∑
k

αinkhink (2) 173

where αink indicates how informative the k-th 174

label friend is for the whole label group gi in the 175

n-th aspect. 176
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Figure 1: The architecture of proposed MAACF+. Embedding Matrix denotes the matrix consists of
representations of the target label’s statistical label group. ATT means attention mechanism. In predictor,

we utilize a MLP (Multi-Layer Perceptron) to do prediction.

After that, a self-attention layer is used to com-177

bine all aspects of information from the label group178

as Hgi in (3)(4). The final representation of label179

H i is learned through a linear transformation on a180

vector of label group and target label. The formula181

of this linear fusion function is defined as (5).182

αin = Softmax(WThi + b) (3)183

Hgi =
∑
n

αinhi (4)184

H i =WT
f [hi,Hgi] + bf (5)185

In the document encoder side, the target label’s186

hidden vector hi is used to compute the label-aware187

attention values in all of the aspect-level document188

representations with a similar attention mechanism.189

When both the feature of label and document are190

extracted, I input them into a multi-layer perceptron191

to get the predicted score ypred. The proposed192

architecture’s goal of optimization is minimizing193

its loss for each document on its most relevant194

labels and maximizing the loss of negative samples195

which are randomly selected. It can be formulated196

as:197

min
θ
Lθ(x, z, g) (6)198

Lθ =
Pos∑
p

yp log(ŷp) + (1− yp) log(1− ŷp)+ 199

200
Neg∑
n

yn log(ŷn) + (1− yn) log(1− ŷn) (7) 201

202

3 Experiment 203

3.1 Experiment Setting 204

3.1.1 Datasets 205

We evaluate the proposed architecture on one 206

multi-lingual benchmark dataset EUR-Lex (Men- 207

cia and Fürnkranz, 2008a) and two English bench- 208

mark datasets: AAPD (Yang et al., 2018) and 209

AmazonCat-13K (McAuley and Leskovec, 2013). 210

The detailed description of the dataset is shown in 211

Table 1. 212

3.1.2 Evaluation Metrics 213

We reformate the matching problem to the top- 214

k rank problem, so we utilize precision at topK 215

(P@K) and Normalized Discounted Cumulated 216

Gains (NDCG) at topK (N@K) for evaluation. 217

Specifically, P@K measures the precision of 218

predicted matching relations between label and 219

text within K highest possible candidates. And 220

NDCG@K indicates the result of the order of 221
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Dataset Ntrain Ntest D L L̄ L̄ W̄train W̄test

EUR-Lex 15,449 3,865 186,104 3,956 5.30 20.79 1248.58 1230.40
AAPD 54, 840 1,000 69, 399 54 2.41 2444.04 163.42 171.65
AmazonCat-13K 1, 186, 239 306,782 203,882 13,330 5.04 448.57 246.61 245.98

Table 1: Dataset statistics, Ntrain and Ntest denote the number of documents in train and test sets
respectively. D is the vocabulary size of the input text. L is the number of labels, L̄ is the average number
of labels for each document, L̃ is the the average number of instances for each label. W̄train and W̄test are
the number of words in each train and test document.

rank(Yu et al., 2018) .222

Precision@K =

∑N
i=1Hiti@K∑N

i=1NumInTest
(8)223

224

DCG@K =

K∑
j=1

2relj − 1

log(j + 1)
(9)225

226

NDCG@K =
DCG@K

IDCG@K
(10)227

3.1.3 Implementation Details228

Based on the design of fair comparison, we split229

the dataset in the same way as its publisher. Con-230

sidering the implementation of different document231

encoders, we use two methods to preprocess doc-232

uments. For XMLCNN and BiLSTM, word2vec233

models (Mikolov et al., 2013) are used to initiate234

256-dimensional word vectors. For BERT we use235

its tokenizer. To satisfy the input requirement of236

the attention mechanism, we align the dimension of237

representation for both label and document to 256.238

we select the Adam optimizer method (Kingma239

and Ba, 2014) to minimize the binary cross-entropy240

loss, and a negative sample strategy is deployed for241

training. In case of over-fitting, an early-stop strat-242

egy and partial freeze on the document encoder are243

used as well.244

3.2 Experiments Contents245

3.2.1 Baselines246

To evaluate the performance of our proposed ar-247

chitecture, we compared it with several classical248

or state-of-the-art models on XMTC. Note that, to249

show the outstanding performance of our model,250

except for some models that are not open source or251

no testing on datasets we used, we directly cited the252

results from their papers. In addition to that, we did253

a wide range of ablation experiments to validate the254

significance of each component of our architecture.255

Basic document encoders:256

• XMLCNN (Liu et al., 2017): a CNN-based 257

model with dynamic pooling to capture high- 258

level features of document for XMTC. 259

• BiLSTM(Cornegruta et al., 2016): A basic 260

BiLSTM model with a self-attention layer to 261

get a representation of text. It is a widely used 262

sequence encoder. 263

• BERT (Kenton and Toutanova, 2019): One 264

layer bi-direction Encoder Representation 265

from Transformers. We use different pre- 266

trained weights to refer to the language of 267

the dataset. 268

Advanced comprehensive models: 269

• DXML (Zhang et al., 2018): It uses deep met- 270

ric learning to learn the embedding of text and 271

uses the graph representation learning method 272

to learn the embedding of the label. 273

• AttentionXML (You et al., 2018): A label 274

tree-based model with multi-label attention to 275

exploring most informative words in the text. 276

• LSAN (Xiao et al., 2019): A label-specific 277

attention network to build multiple text repre- 278

sentations and adaptive fusion them using a 279

self-attention mechanism. 280

• CorNetAttentionXML (Xun et al., 2020): An 281

architecture with AttentionXML as text en- 282

coder that able to exploit the correlation infor- 283

mation among different labels. 284

• LDGN (Ma et al., 2021): A model using graph 285

network to extract label-specific components 286

from text and internal interaction among these 287

components. 288

For each model or variant, to get their best per- 289

formance, we choose the scores from their best 290

parameters after lots of experiments. 291
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EUR-Lex AAPD

Model P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5

XMLCNN 70.40 54.98 44.86 58.62 53.10 74.38 53.84 37.79 71.12 75.93

MAACF+XMLCNN 72.92 60.67 49.71 64.93 59.33 76.27 55.23 38.95 72.51 78.25

Improvement 3.55% 10.2% 10.7% 10.2% 11.7% 2.54% 2.58% 3.07% 1.95% 3.06%

BiLSTM 53.51 35.97 29.83 42.71 35.72 50.12 41.74 30.83 49.17 52.35

MAACF+BiLSTM 70.72 53.46 43.85 63.81 52.32 73.36 56.25 40.62 71.27 75.71

Improvement 32.2% 48.8% 47.0% 49.4% 46.5% 26.2% 34.8% 36.2% 45.0% 44.7%

BERT 63.51 48.37 40.24 54.81 48.92 66.82 50.61 34.40 62.17 69.25

MAACF+BERT 81.16 65.32 54.46 73.32 68.13 87.10 62.32 42.53 84.47 86.32

Improvement 26.9% 37.3% 35.8% 30.1% 37.6% 24.8% 23.1% 23.6% 35.9% 24.7%

Table 2: Augment test result on EUR-Lex and AAPD

Model P@1 P@3 P@5 N@3 N@5

XMLCNN 92.07 75.29 60.53 87.34 84.29

MAACF+XMLCNN 93.62 78.2 63.06 88.04 85.9

Improvement 1.68% 3.87% 4.18% 0.80% 1.91%

BiLSTM 68.75 52.1 42.53 57.66 55.91

MAACF+BiLSTM 93.47 79.62 62.51 86.31 85.35

Improvement 35.96% 52.82% 46.98% 49.69% 52.66%

BERT 74.78 65.78 57.51 73.57 68.58

MAACF+BERT 94.82 79.92 66.40 91.82 89.73

Improvement 26.80% 21.50% 15.46% 24.81% 30.84%

Table 3: Augment test result on AmazonCat-13K

3.2.2 Augment Test292

The results of the three datasets are presented in293

Tables 2, 3. We calculate each indicator with294

k = 1, 3, 5. As we can observe from Tables 2,295

3, MAACF++ can consistently improve the perfor-296

mance of all popular basic document encoders in297

XMTC in all metrics.298

Among all of the basic encoders, XMLCNN has299

the slightest improvement, and we think it is be-300

cause of the dynamic pooling mechanism. A com-301

plex feature extractor enables the encoder to exploit302

sufficient and informative features from documents.303

But with a larger size of label space, MAACF will304

bring a more significant improvement because there305

exist more correlations in the label side.306

In addition, MAACF+ architecture shows a more307

significant improvement on metrics with k = 3 or308

5. We speculate that it is due to the introduction309

of the label group. Different from k = 1, the310

nearest label group works more often as an anchor311

to augment the prediction of other possible candi-312

dates. Besides, on datasets with the higher average313

number of labels for each document, the results of314

k = 3 show more promising on metrics than k = 5,315

because the limitation of the real true number of 316

labels of each text is normally less than k. 317

3.2.3 Performance Comparison 318

Tables 4, 5 demonstrate the performance of all state- 319

of-the-art methods on three datasets. To ensure a 320

fair comparison, we cited results from their source 321

paper directly if it is available. Otherwise, for those 322

experiments that have not been done before, we 323

performed them based on their open-source codes 324

if applicable, or versions implemented on our own. 325

By observing results in Table 3 and 4, we can 326

find that methods that do not utilize label correla- 327

tions to enhance the learning process of text rep- 328

resentation have worse performance. Specifically, 329

on the AAPD dataset, AttentionXML promotes the 330

P@1 of the DXML from 80.54% to 83.02%, the 331

increase is nearly 3.08%. For example, although 332

DXML tries to model information in label space 333

by deep embedding methods, AttentionXML can 334

pay attention to more semantic relevant parts in the 335

document for each label. 336

But compared with other previous methods ex- 337

ploiting label correlations, LSAN owns a better 338

performance. We think that is because of its mul- 339
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EUR-Lex AAPD

Model P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5

DXML 75.63 60.13 48.65 63.96 53.60 80.54 56.30 39.16 77.23 80.99

AttentionXML 67.34 52.52 47.72 56.21 50.78 83.02 58.72 40.56 78.01 82.31

LSAN 79.17 64.99 53.67 68.32 62.47 85.28 61.12 41.84 80.84 84.78

CorNetAttentionXML 79.02 65.49 53.94 68.92 62.97 85.71 61.55 42.50 80.31 85.73

LDGN 81.03 64.99 56.36 71.81 66.09 86.24 61.95 42.29 83.32 86.85

MAACF+BERT 81.16 65.32 54.46 73.32 68.13 87.10 61.32 42.53 84.47 86.32
Table 4: Comparison results on EUR-Lex and AAPD.

Model P@1 P@3 P@5 N@3 N@5

DXML 91.05 71.86 61.32 88.29 81.12

AttentionXML 92.12 72.15 62.71 88.56 82.37

LSAN 92.34 74.81 63.38 89.08 81.13

CorNetAttentionXML 92.17 74.36 63.83 89.11 84.54

MAACF+BERT 94.82 79.92 66.40 91.82 89.73
Table 5: Comparison results on AmazonCat-13K. Restricted by computing resource, experiments on

LDGN does not present.

tiple learning space mechanism and considering340

semantic correlations between text and label simul-341

taneously. Multiple learning space mechanism is342

helpful to stabilize the adaptive fusion by atten-343

tion mechanism, and adaptive fusion learns label-344

specific text representation.345

Both CorNetAttentionXML and LDGN are re-346

cent research works in XMTC. While CorNetAt-347

tentionXML implemented a general architecture348

to output augmented label prediction, it did not349

further explore the possible solution of exploiting350

abundant correlations in the large label space but351

augmented final representation for prediction. And352

LDGN utilizes a graph neural network to model353

correlations in a label. But this work has the fol-354

lowing obvious shortcomings: 1) Due to the huge355

computational expense of extra graph neural net-356

works and introducing label information into the357

text learning process, it is hard to deploy on large358

dataset such as AmazonCat-13K; 2) It does not359

open its source codes, thus we cannot measure its360

reliability.361

The architecture MAACF+ we proposed outper-362

forms previous works on three datasets. To be363

specific, compared with those works that share364

source codes, the BERT augmented by MAACF365

achieves a better performance on all of the indica-366

tors. On AmazonCat-13k, MAACF+BERT boosts367

P@3 and N@5 from 92.17% to 94.82%, 84.54%368

to 89.73% respectively. Compared with LDGN,369

on EUR-Lex and AAPD, the model we proposed370

still outperforms it on most indicators. In conclu- 371

sion, by introducing a co-attention mechanism and 372

multiple aspect learning, we augment the basic 373

text encoder with the most semantic relevant label 374

group information and this architecture can effec- 375

tively optimize computational expense compared 376

with LDGN. 377

3.2.4 Ablation Test 378

We perform a series of ablation experiments to 379

validate the effects and significance of introduc- 380

ing a statistical nearest label group on both three 381

datasets. We set the test value of the population 382

of label group k as [0, 2, 5]. When k = 0, it 383

means modeling without label group information. 384

We just present the visualization of the results of 385

MAACF+BERT. 386

From the results in Figure 2, we can see that 387

model with a positive number of k normally outper- 388

forms in most datasets than a model without label 389

group information, which indicates the model with 390

co-attention label correlations extracting mecha- 391

nism achieves more accurate prediction and effec- 392

tively information capture. It proves that the sig- 393

nificance of introducing label group modeling as 394

well. Meanwhile, the nearest label group that has 395

two labels is constantly the best choice, due to the 396

model with k = 2 having better performance than 397

k = 5. Thus, it is necessary to explore the ef- 398

fect of introducing label nearest group information 399

extractor. 400
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(a)EUR-Lex (b)AAPD (c)AmazonCat-13K
Figure 2: The visualization of ablation test results on three datasets.

4 Related Work401

4.1 Text-Specific Methods in XMTC402

Deep learning advanced in many fields in recent403

years, deep-based XMTC models also attracted404

many researchers to work on it. Compared with405

traditional methods (Liu et al., 2017), deep models406

take a sequence as input rather than bag-of-words407

which seems to contain less semantics. XMLCNN408

utilizes a dynamic pooling mechanism to capture409

complex level feature of the text, each filter repre-410

sent one semantic pattern.411

Recently, some studies (You et al., 2018)(Xiao412

et al., 2019)have used attention mechanisms to ex-413

plore interactions between labels and words. To414

be more specific, they try to enhance the repre-415

sentation of the document with a label for classi-416

fication. Some works attempt to utilize multiple417

fundamental text encoders to extract features from418

input sequence (Liu et al., 2017). Since 2018, pre-419

trained models showed outstanding performance420

on most NLP tasks. X-BERT (Chang et al., 2020)421

utilized BERT as a text encoder with a multi-head422

self-attention mechanism for XMTC.423

4.2 Lable-Specific Methods in XMTC424

Unlike traditional text classification tasks, XMTC425

has a bigger number of labels. Training for each426

label or mapping the feature vector of text to a427

higher dimensional vector to output the possibility428

of each label is a high computational expense. Pre-429

viously there were some researchers want to solve430

this task by building a tree structure to minimize431

the number of label candidates and reduce com-432

putational cost (Jain et al., 2016)(Jasinska et al.,433

2016)(Khandagale et al., 2020). But if there is no434

hierarchy structure within the label group in some435

datasets, tree-based XMTC models will not be able436

to undertake this task.437

To build a relation graph in the label set,438

there are also some other models (Bhatia et al.,439

2015)(Tagami, 2017) that focus on using embed- 440

ding of labels to search the similarity within their 441

feature space. For example, AnneXML treated this 442

problem as a weak-supervised task and employed 443

KNN on a label to get less available label candi- 444

dates. But these methods are not able to perform 445

well in datasets that have no hierarchy relation be- 446

tween labels. 447

Recently, because of the increasing popularity 448

of graph neural networks (GNN), some studies uti- 449

lized GNN to explore interactions within labels 450

or extract label-specific information from a docu- 451

ment by treating relations between label and text 452

as multi-relation graph (Ma et al., 2021). 453

However, existing studies were still classifying 454

one feature vector. There are no approaches up- 455

dated methods in learning interactions between text 456

and label. Thus, our goal is to propose a novel clas- 457

sification method to explore label-specific compo- 458

nents of text and information in label groups more 459

accurately. 460

5 Conclusion 461

In this work, we propose a novel architecture 462

named MAACF++ to promote the performance 463

of basic document encoders in XMTC. It is an 464

independent and general architecture and can be 465

integrated with any deep encoders. Extensive ex- 466

periments on three real-world benchmark datasets 467

have demonstrated the effectiveness of it and it can 468

achieve state-of-the-art performance. In the future, 469

we will do more research on improving computing 470

efficiency. And besides, we will pay attention to ex- 471

tracting as much as possible semantic information 472

from the content of the label for XMTC. 473
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