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Abstract
Some extremely low-dimensional yet crucial geo-
metric eigen-lengths often determine the success
of some geometric tasks. For example, the height
of an object is important to measure to check if
it can fit between the shelves of a cabinet, while
the width of a couch is crucial when trying to
move it through a doorway. Humans have mate-
rialized such crucial geometric eigen-lengths in
common sense since they are very useful in serv-
ing as succinct yet effective, highly interpretable,
and universal object representations. However,
it remains obscure and underexplored if learning
systems can be equipped with similar capabilities
of automatically discovering such key geomet-
ric quantities from doing tasks. In this work, we
therefore for the first time formulate and propose a
novel learning problem on this question and set up
a benchmark suite including tasks, data, and eval-
uation metrics for studying the problem. We focus
on a family of common fitting tasks as the testbed
for the proposed learning problem. We explore
potential solutions and demonstrate the feasibil-
ity of learning eigen-lengths from simply observ-
ing successful and failed fitting trials. We also
attempt geometric grounding for more accurate
eigen-length measurement and study the reusabil-
ity of the learned eigen-lengths across multiple
tasks. Our work marks the first exploratory step
toward learning crucial geometric eigen-lengths
and we hope it can inspire future research in
tackling this important yet underexplored prob-
lem. Project page: https://yijiaweng.github.io/geo-
eigen-length.

1. Introduction
Consider a robot tasked with placing many small objects on
warehouse shelves, where both the objects and the shelves
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have diverse geometric configurations. While the robot can
simply try to accomplish the task by trial and error, to us
as humans, it is clear that certain placements should not be
attempted because they will obviously fail. For example,
we should not attempt to place a tall object on a shelf whose
height is too low. We base this judgment on the estimation of
a critical geometric eigen-length or measurement, the height
of the object and the shelf, whose comparison allows a quick
estimate of task feasibility. Such scalar measurements are
crucial for downstream tasks. And we call them "eigen" be-
cause they are intrinsic properties of the object and usually
act as very low-dimensional geometric summaries with re-
spect to many tasks, invariant to the environment it interacts
with. For example, to determine whether M objects can
be placed on N different shelves, once the height of each
object/shelf is extracted, we can compose and compare them
arbitrarily without having to exhaustively analyze N ×M
pairs of raw geometries.

While object height is an example of important eigen-
lengths that are crucial for the above shelf placement task,
it is not hard to think of many other types of object eigen-
lengths for other geometric tasks. Figure 1 presents some
example tasks together with the presumed geometric eigen-
lengths based on human common sense. For example, the
geometric eigen-length diameter is important for the task
of stacking plates in different sizes (Figure 1, (a)), while
the width and length of an object are crucial geometric
eigen-lengths for deciding if one can put it into an open box
(Figure 1, (c)).

Having such extremely low-dimensional yet crucial geomet-
ric eigen-lengths extracted as the representations for objects
is certainly beneficial for designing learning systems aimed
at artificial general intelligence. One telling evidence is
that we humans have naturally built up the vocabulary of
geometric key quantities, such as height, width, and diam-
eter, when perceiving and modeling everyday objects, and
used them to perform various tasks. Besides being succinct
yet effective abstractions of objects for quickly estimating
the feasibility for the downstream tasks, such crucial geo-
metric eigen-lengths are also highly interpretable, which
exposes the principled reasoning process behind the feasibil-
ity checking, and universal, as they are generally applicable
to objects with arbitrary shapes and useful across different
downstream tasks.
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(b) Fit under the table:
height and width

(c) Place into the box:  
width and depth

(d) Put into and close the drawer: 
height, width, and length

(a) Stack plates:
diameter

Figure 1. Example tasks and the hypothesized crucial geometric measurements by humans.

Current research in representation learning for computer
vision and robotics has mostly been focusing on learning
high-dimensional latent codes or heavily injecting human
knowledge as inductive biases for learning structured rep-
resentations. While learning high-dimensional latent codes
provides total flexibility in learning any useful feature for
mastering the downstream tasks, these latent codes are hard
to interpret and may be prone to overfitting the training do-
main. For structured representations, though researchers
have explored using different kinds of object representa-
tions, such as bounding boxes (Tulsiani et al., 2017) and key
points (Manuelli et al., 2019), to accomplish various down-
stream tasks in computer vision and robotics, these structure
priors are manually specified based on human knowledge
about the tasks. In contrast, we aim to explore the auto-
matic discovery of low-dimensional yet crucial geometric
quantities for downstream tasks while injecting the mini-
mal human prior knowledge – only assuming that we are
measuring some 1D lengths of the input objects.

In this paper, we first propose to study a novel learning
problem on discovering low-dimensional geometric eigen-
lengths crucial for downstream tasks and set up the bench-
mark suite for studying the problem. Specifically, we target
a family of fitting tasks where the goal is to find a place-
ment/trajectory for an object in an environment, subject to
geometric and semantic constraints, e.g. no collision. As
illustrated in Figure 2, given a fitting task (putting the bowl
inside the drawer of the table) that involves an environment
geometry (the table) and an object shape (the bowl), we
are interested in predicting whether the object can fit in
the scene accomplishing the task or not, via discovering a
few crucial geometric eigen-lengths and composing them
with a task program which outputs the final task feasibility
prediction. To study the problem, we also define a set of
commonly seen fitting tasks, generate large-scale data for
the training and evaluation on each task, and set up a set
of quantitative and qualitative metrics for evaluating and
analyzing the method performance and if the emergent geo-
metric eigen-lengths match the desired ones humans usually
use.

We also explore potential solutions to the proposed learning
problem and present several of our key findings. First of all,
we will show that learning such low-dimensional key geo-

metric eigen-lengths are achievable from only using weak
supervision signals such as the success or failure of train-
ing fitting trials. Secondly, the learned crucial geometric
eigen-lengths can be more accurately measured if geometric
grounding is allowed and attainable for certain fitting tasks.
Finally, we make an initial stab at exploring how to share
and re-use the learned geometric eigen-lengths across differ-
ent tasks and even for novel tasks. Marking the first step in
defining and approaching this important yet underexplored
problem, we hope our work can draw people’s attention to
this direction and inspire future research.

To summarize, this work makes the following contributions:

• We propose a novel learning problem on discovering
low-dimensional geometric eigen-lengths crucial for
fitting tasks;

• We set up a benchmark suite for studying the problem,
including a set of fitting tasks, the dataset for each task,
and a range of quantitative and qualitative metrics for
thorough performance evaluation and analysis;

• We explore potential solutions to the proposed learning
problem and present some key take-away messages
summarizing both the successes and unresolved chal-
lenges.

2. Related Work
Learning Geometry Abstraction. A long line of research
has focused on learning low-dimensional and compact ab-
straction for input geometry. Given as input a 2D or 3D
shape, past works have studied learning various geomet-
ric abstraction as the shape representation, such as bound-
ing boxes (Tulsiani et al., 2017; Sun et al., 2019), con-
vex shapes (Deng et al., 2020), Gaussian mixtures (Gen-
ova et al., 2019; 2020), superquadratics (Paschalidou et al.,
2019; 2020), parametric curves (Reddy et al., 2021) and sur-
faces (Sharma et al., 2020; Smirnov et al., 2020), etc.. Most
of these works use geometry fitting as the primary objective.
Our work, however, focuses on discovering geometric ab-
straction that can help solve the downstream manipulation
tasks instead of reconstruction.

There are also previous works exploring ways to learn task-
specific geometry representation for manipulation tasks. For
example, researchers have tried to learn key points (Manuelli
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Figure 2. Proposed Learning Paradigm where we first predict a set of geometric eigen-lengths from the input geometries, then compose
them using a task program to get the final task output.

et al., 2019; Qin et al., 2020; Wang et al., 2020; Chen et al.,
2020; Jakab et al., 2021; Chen et al., 2021) and affordance
information (Kim & Sukhatme, 2014; Mo et al., 2021a;b;
Turpin et al., 2021; Deng et al., 2021) for robotic manip-
ulation tasks. These works mostly pre-define the types of
geometry abstraction and the downstream policies to use the
extracted shape summaries, and the abstraction is mostly
dense or high dimensional. In this paper, we aim for useful
geometric eigen-lengths and ways to automatically discover
and compose them for solving manipulation tasks.

Disentangled Visual Representation Learning. Another
line of work focuses on unsupervised representation learn-
ing techniques that pursue disentangled and compositional
latent representations for visual concepts. For example,
InfoGAN (Chen et al., 2016), beta-VAE (Higgins et al.,
2017), and many more works (Higgins et al., 2016; Sid-
dharth et al., 2017; Yang et al., 2020) discover disentangled
features, each of which controls a certain aspect of visual
attributes, usually with reconstruction as the objective. In
contrast to their primary objectives of controllable recon-
struction or generation, we explore the problem of learning
geometric eigen-lengths driven by the goal of accomplishing
downstream fitting tasks. Also, our task involves reason-
ing over two geometric inputs and comparing the extracted
eigen-lengths on both inputs, while these previous works on
disentangled visual representation learning factor out visual
attributes for a single input datum.

3. Learning Problem Formulation
Given a fitting task T ∈ T , we aim to learn very few but
the crucial geometric eigen-lengths LT (e.g., width, length,
height) of the object shape O ∈ O and the environment
geometry E ∈ E that are useful for checking the feasibility
of fitting O into E under the task T . Figure 2 presents an
example of the proposed learning problem where the task is
to put the bowl (O) inside the drawer of the cabinet (E). In
this example, the width, length, height of the drawer and the
bowl are the crucial desired geometric eigen-lengths (LT )
and we can compose them in a task program to output the
final task feasibility prediction.

We define each eigen-length L ∈ LT as a function mapping

from the input object shape O or the environment geometry
E to a scalar value, which is the eigen-length measurement,
i.e. L : O ∪ E → R. After obtaining the eigen-length mea-
surements for both the object and environment inputs, i.e.
{L(O)|L ∈ LT } and {L(E)|L ∈ LT }, we perform pair-
wise comparisons between the corresponding eigen-lengths
checking if L(O) < L(E) holds for every L ∈ LT . The
task of fitting O in E is predicted as successful if all the
conditions hold and as failed if any condition does not hold.
This format of task program is based on the intuition that in
fitting tasks, we require the object to be “smaller” than the
parts of the environment affording the action.

During training, the learning systems see many fitting
trials over different object and environment configura-
tions together with their ground-truth fitting feasibility, i.e.
{(Oi, Ei,Successful/Failed)|i = 0, 1, 2, · · · }. The goal is
to learn eigen-length functions based on which correct pre-
diction of task feasibility given test input (Otest, Etest) can
be made.

4. Can Geometric Eigen-Lengths be Learned
from Binary Task Supervision?

In this work, we are interested in learning geometric eigen-
lengths that are crucial for downstream tasks. We hope to
achieve automatic discovery of these eigen-lengths from
doing tasks as it requires the least human prior and allows
maximum flexibility. Therefore, we start with the minimum
form of supervision and explore the following question:
given only binary task success/failure supervision, is it pos-
sible to learn geometric eigen-lengths of input geometries
that are sufficient for the task?

4.1. Testbed for Eigen-Length Learning
We start by curating a set of tasks as the testbed for the
learning problem, as summarized in Fig. 3. For each task,
we build a large-scale dataset comprising diverse shapes and
configurations.
Task Design Principles We design the tasks to (1) cover
a wide range of geometries, including synthetic, simple
primitive shapes and more complex ones like ShapeNet ob-
jects; (2) facilitate the analysis and interpretation of learned
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Figure 3. Summary of tasks and their human-hypothesized key measurements/eigen-lengths.
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Figure 4. Network architectures. (a) A minimal eigen-length learning pipeline where we separately encode environment and object into
eigen-length values, perform pair-wise comparison, and take the logical AND of results. (b) A geometry-grounded framework where we
first predict vectors and points as the geometry grounding, then compute eigen-lengths from them.

eigen-lengths. Specifically, here we base the analysis on
comparisons to human-hypothesized eigen-lengths: given a
task, humans can identify related key eigen-lengths (referred
to as “ground truth” in the following), e.g., object height
when putting them on shelves. Comparing the learned eigen-
lengths to these “ground truth” may provide important in-
sights. To achieve this, we need accessible ground truth
eigen-lengths to begin with. Primitive shapes like cylinders
are ideal as they are parameterized by eigen-lengths like
radius and height.

Task Specifications In all tasks, we aim to determine
whether a placement/motion of the object exists in a certain
environment, specifically:

(a) Tube passing. (Tube) Pass an object through a rect-
angular tube. A tube is a cuboid without the front and
back faces. Width and height of the tube/object are the
key eigen-lengths.

(b) Cylinder fitting. (Cylinder) Place an object into a
cylindrical container. Bounding sphere radius of the
object in XY plane, its height, the radius and height of
the cylinder container are the key eigen-lengths.

(c) Sphere fitting. (Sphere) Place an object into a spher-
ical container. Radii of the bounding sphere of the
object and the container are the key eigen-lengths.

(d) Container fitting. (Fit) Place an object into cavities
in a ShapeNet container object. Example cavities are
drawers or shelves (See Fig. 3d). Most cavities have
cuboid-like shapes. Thus, key eigen-lengths are width,
length and height of cavities and objects.

(e) Countertop placing. (Top) Place an object on top
of another ShapeNet environment object, such that its
projection along the gravity axis is fully enclosed by

the environment countertop. Width and length of the
countertop surface and the object are key eigen-lengths.

(f) Mug hanging. (Mug) Hang a mug on a cylinder-
shaped mug holder by its handle. Key eigen-lengths
are the distance between the handle and mug body and
the diameter of the mug holder.

Data Generation Details For objects to be fitted in tasks
(a)-(e), we use ∼1200 common household object models
from 8 training and 4 testing categories in ShapeNet (Chang
et al., 2015), following Mo et al. (2021b). We apply ran-
dom scaling and rotation to the object model, then sample
N = 1024 points from its surface. In (d),(e), we use fur-
niture and appliances from ShapeNet as the environment,
including ∼550 shapes from 7 categories. In (f), we use
∼200 ShapeNet mugs. We randomly sample the parame-
ters of primitive shapes and the scaling factors of ShapeNet
shapes, then sample M = 1024 points from their surfaces.
For all tasks, we generated 75k training and 20k testing
environment-object pairs. Please refer to Appendix A.3 for
more data generation details.

4.2. A Minimal Network Architecture
Intuitively, we can measure the object and the environment
separately and see if the object is “smaller" than the en-
vironment. Thus we come up with the minimal network
architecture shown in Fig. 4(a). We separately map the
object and environment geometries into two sets of eigen-
lengths, perform pairwise comparisons between them, and
compose comparison results using logical AND.

More specifically, we encode object point cloud O and en-
vironment point cloud E using two PointNet (Qi et al.,
2017) networks, ObjNet and EnvNet. Both networks out-
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Figure 5. Correlation Analysis. Each plot shows the relationship between one learned eigen-length (Y coord.) and its matching “ground
truth” measurement (X coord.). Higher R2 values imply a stronger correlation. Please refer to Appendix B.2 for complete S × S′ plots.

put S-dim vectors ⃗Lobj = (Lobj
1 , Lobj

2 , . . . , Lobj
S ), ⃗Lenv =

(Lenv
1 , Lenv

2 , . . . , Lenv
S ). We then compute task success as

T̂ (E,O) =
∧S

s=1[L
env
s (E) > Lobj

s (O)]. During train-
ing, we use a differentiable approximation T̃ (E,O) =∏S

s=1 σ((L
env
s (E)− Lobj

s (O))/τ), where τ is a learnable
parameter. We set S = 1 for (c) Sphere, (f) Mug, S = 2
for (a) Tube, (b) Cylinder, S = 3 for (d) Fit, (e) Top. We
supervise T̃ with binary cross-entropy loss.
4.3. Analysis of Learned Eigen-Lengths
We analyze the eigen-lengths learned by the network by
comparing them to “ground truth” eigen-lengths as shown
in Fig. 3. For each task, we randomly sample N = 512 test
data points and obtain the corresponding N eigen-length
predictions {Lpred

s,i }i=0,...,N−1 for each of the S learned
eigen-lengths, as well as N values {Lgt

s′,i}i=0,...,N−1 for
each of the S′ “ground truth” eigen-lengths.

For each pair of predicted and “ground truth” eigen-lengths
(s, s′), we draw a scatter plot of points (Lgt

s′,i, L
pred
s′,i ) and

perform least squares linear regression over them to get
corresponding R2-scores. We match the predictions and
groundtruths by maximizing the sum of R2-scores and show
the scatter plots of matched pairs in Fig. 5. Note that in
(e) Top, since we predict S = 3 eigen-lengths while there
are only S′ = 2 groundtruth eigen-lengths, we show the
unmatched prediction with its most correlated groundtruth.
For complete S × S′ plots, please refer to Appendix B.2.

Learned eigen-lengths are strongly correlated with
human-hypothesized measurements. As Fig. 5 shows,
R2 values between predictions and “ground truths” are close
to or greater than 0.9 except for the redundant prediction
slot 3 in (e) Top. They also have clear one-to-one corre-
spondences with ground truth in tasks with multiple eigen-
lengths, suggesting good disentanglement is learned.

Knowing the number of eigen-lengths beforehand is not
a requirement for successful learning. The number S
of eigen-lengths to learn is a hyperparameter set before
learning. However, it does not have to be the exact number
of relevant eigen-lengths. As shown in (e) Top, when we
have more slots for eigen-lengths than needed, “ground truth”

eigen-lengths are still captured by the first two predictions.
The third prediction does not strongly correlate with any
“ground truth”. A further probe reveals that comparisons of
this eigen-length almost never (only in 0.4% of the cases)
contribute to the final result, outputting True most of the
time. The network learns a pair of degenerate eigen-lengths
as there is no more necessary information to capture. Please
see Appendix E.3 for further discussion.

5. Can Geometry Groundings be Discovered
for Eigen-Lengths?

While Fig. 5 shows a strong correlation between learned
eigen-lengths and “ground truth”, their relationship is not
always perfectly linear, as can be observed in (d) Fit and
(e) Top with complex geometries. Even in more linear cases,
the scaling and offset make the raw eigen-length value hard
to understand, e.g., negative “length” values are less intu-
itive. As eigen-lengths can be seen as measurements of
the object, many of them have sparse supports or geometry
groundings on the objects, e.g., height is the distance be-
tween the base plane supporting the object and its highest
point. These geometry groundings anchor the corresponding
eigen-length values, provide an intuitive explanation of these
values, and usually carry geometric/semantic importance
themselves. We are therefore interested in the following
question: can we ground the eigen-lengths on geometry?
From a high level, instead of directly predicting eigen-length
values, if we first predict some geometric entities like points,
vectors, and planes, then derive eigen-lengths from them, is
it possible to learn meaningful eigen-lengths and geometry
groundings?
5.1. Grounding Eigen-Length Predictions on Geometric

Primitives

Consider fitting tasks like (d) Container Fitting and (e) Coun-
tertop Placing where the spaces affording the task can be
roughly described by a set of parallel planes. 1 To compute

1Note that other tasks may require other inductive bias. We
focus on this type of tasks to study the feasibility of geometry-
grounded eigen-length learning. We leave a more versatile system
as future work.
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Figure 6. Improved correlation after using geometry groundings. We show scatter plots of predicted eigen-length (Y coord.) and their
matching “ground truth” (X coord.) in (d) Fit and (e) Top. Please refer to Appendix B.2 for complete S × S′ plots.

Front View, Pred 1,2 Top View, Pred 3

(a) Tube Passing (d) Container Fitting (e) Countertop Placing

Environment Top View, Pred 1,2,3 Environment

Figure 7. Geometry Grounding Visualizations. We plot the learned vectors (as arrows) and planes (as disks) on top of input environment
point clouds. We also show the object model next to point clouds for a clearer view of object structure. For (d) Fit, we visualize predictions
in two views for clarity. Please refer to Appendix B.1 for more visualizations.

the success label of the task, say fitting an object into a night-
stand, we can measure the size of the spaces of interest in
the environment (the drawer part) along important directions
(its main axes) and compare it to the measurement of the
object. Inspired by this, we ground a pair of eigen-lengths
on a tuple of one unit vector and two planes (v⃗,Πp,Πq) as
illustrated in Fig. 8: we measure both the object and the
environment along v⃗. We take the object measurement as
the diameter of the projection of the object point cloud O on
the vector v⃗, i.e. Lobj(O) = maxp∈O v⃗T p−minp∈O v⃗T p.
For the environment, we use a pair of parallel planes Πp,Πq

with normal v⃗ to separate out a certain region relevant to the
task (the drawer), then measure the distance between the
planes. In practice, we adopt the (point, normal) plane repre-
sentation and predict a point pair (p, q) that determines the
plane pair. The environment eigen-length is then computed
as Lenv(E) = v⃗T (q − p).

Figure 4(b) illustrates our network. In VectorNet, we em-
ploy a PointNet classification backbone to extract global
feature of the environment point cloud E ∈ RM×3, then
use an MLP to predict S 3D vectors {v⃗s}s=1,2,...,S . In
WeightNet, we employ a PointNet segmentation backbone
to extract per-point features, then use S×2 MLPs to predict
S pairs of probability distributions W p

s ,W
q
s over the point

cloud. The point coordinates of (ps, qs) are then computed
as the weighted average of original point cloud coordinates,

length < L?

𝚷p = (v, p)

𝚷q = (v, q)
vector v

1 vector v 0

vector v2

vector v
1

vector v 0

vector v2
length = L

height=H

v

Figure 8. Eigen-Length Geometry Groundings. We ground each
eigen-length L with a unit vector v and two parallel planes Πp,Πq

with normal v. L is computed as the distance between Πp,Πq .

namely ps = W p
s
TE, qs = W q

s
TE.

5.2. Analysis of Learned Geometric Primitives and
Eigen-Length Values

We perform the same correlation analysis and visualize
the results in Fig. 6. Compared to Fig. 5, learned eigen-
lengths are now almost equal to “groundtruth” thanks to
the anchoring effect of the geometry grounding. The extra
predicted eigen-length in (e) Top also behaves differently,
capturing the same “ground truth” as another learned eigen-
length. This suggests the regularization from geometry
grounding makes learned eigen-lengths more likely to be
meaningful measurements. It also reaffirms the fact that the
number S of eigen-lengths we set in advance can be different
from the actual number of key eigen-lengths. Please see
Appendix E.3 for a detailed discussion.
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We also visualize the learned geometry groundings in Fig. 7.
The learned vectors align with the main axes of object ge-
ometry. The learned planes overlap with tube surfaces in
(a) Tube, surround the edge of countertops in (e) Top, and
separate out the region of interest in (d) Fit, e.g. the higher
one out of two storage spaces. These meaningful geomet-
ric entities provide a clear interpretation of learned eigen-
lengths, e.g. in (e) Top’s case, red and green predictions
coincide with each other and both capture the back-to-front
length of the countertop.

5.3. A Study on the Data Efficiency of
Geometry-Grounded Eigen-Lengths

Geometry grounding of eigen-lengths can be seen as a form
of regularization. We are therefore curious how the intro-
duction of geometry groundings may influence the model’s
data efficiency. Fig. 10 shows the trend of test performances
as we change the size of training data. We compare our
geometry-grounded version to Direct, a no-eigen-length
approach, where an MLP directly predicts the final label
from the concatenation of object and environment latent
features. We also plot the difference between “ground truth”
eigen-length measurement directions (local up and right)
and predicted vectors as a way to quantify eigen-length
quality. Results suggest that the geometry-grounded version
is more data efficient if meaningful geometry groundings
emerge. When the training data is limited (< 3000 sam-
ples), however, the predicted directions of groundings are far
from ground truth measurement directions, suggesting that
the model fails to learn meaningful groundings for eigen-
lengths, and thus the final accuracy is lower than Direct.
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Figure 10. Trend of Left: test accuracy and Right: average angle
between learned vector groundings and “ground truth” directions
w.r.t. # training samples.

6. Can Eigen-Lengths be Learned in Multi-
Task Settings and Applied to New Tasks?
As humans, we are able to develop a library of useful
measurements/eigen-lengths like height from past experi-
ence. Given a new task, instead of trying cluelessly, we
would start with known measurements and investigate their
role in the task. In this section, we ask if learned eigen-
lengths can work in a similar way, i.e., given a set of training
tasks, is it possible to learn a shared set of eigen-lengths
from them? Further, given a novel task, can we learn to
select a subset of learned eigen-lengths that are sufficient
for it? In other words, can agents accumulate and transfer
knowledge in the form of eigen-lengths?

6.1. Multi-Task Testbed
We design a set of tasks that share key eigen-lengths as the
testbed for multi-task learning. As shown in Fig. 9(a), we
consider box-fitting tasks where the box only has a subset
of six faces. Each mode of face existence corresponds to
a different task with different geometric constraints. For
example, to be able to fit, an object has to be narrower than
the box in Task 2 and shorter than the box in Task 3. We set
aside the box with all six faces present as the test task. We
expect to learn width, height, and length from the training
task set, and learn to use all of them during testing. By
boxes with partial faces, we aim to mimic different types of
cavities in the furniture, e.g., a closed drawer as a box with
all faces, an open space on the shelf as a box without the
front face, etc.

6.2. Multi-Task Learning Framework
Fig. 9(b) shows the multi-task learning framework we
experiment with. From a high level, we learn a set of
S eigen-lengths and allow each task to select relevant
ones from them. This selection step is implemented as
a learnable binary mask {mk

s}s=1,2,...,S over eigen-lengths
for each task Tk. We simply insert the mask in the
AND-composition and compute the outcome for Tk as∏S

s=1 m
k
s · σ((Lenv

s (E)− Lobj
s (O))/τ).

During training, we optimize both the eigen-length predic-
tion networks and a continuous version of per-task masks
m̃k ∈ [0, 1]. At test time, we freeze network weights and
only learn a mask to choose from eigen-lengths learned dur-
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Figure 11. Correlation scatter plots of predicted eigen-length and their matching “ground truth” in rotated Tube Passing and rotated
Container Fitting. Please refer to appendix B.3 for the full plot.

ing training. Notably, we limit the size of test task data to 10
batches (320 samples) to examine if learned eigen-lengths
help in few-shot adaptation scenarios.

6.3. Multi-Task Learning and Few-Shot Test Task
Adaptation

We experiment with both implicit and geometry-grounded
eigen-length prediction networks. To analyze the learned
eigen-lengths and per-task masks, we visualize learned ge-
ometry groundings that are selected (ms > 0.5) in each task
in Fig. 12. Meaningful groundings are learned and correctly
selected for each task, including the test task.

To explore whether eigen-lengths learned during training
help quicker adaptation to new tasks, we compare the test
task performance of Implicit (Section 4), Grounded (Section
5) to Direct trained from scratch on the test task. Here
Direct directly predicts the final label from object and scene
latent codes. All methods are limited to 10 batches of test
task samples. As shown in Table 1, within one epoch of
finetuning, methods based on the reuse of learned eigen-
lengths already achieve high performance, surpassing Direct
trained from scratch by a large margin, even when the latter
has been trained for 100 epochs.

Training Tasks Test Tasks

Training Tasks Test Tasks

Figure 12. Learned Geometry Grounding in Multi-Task Setting.
We only show learned geometry grounding (vectors as arrows,
planes as disks) selected by the mask in each task.

Table 1. Multi-Task learning, novel task adaptation results. We
finetune eigen-length-based methods on novel task for 1 epoch and
compare them to the direct method trained from scratch for 1 and
100 epochs.

Single Task Eigen-Length
Direct Implicit Grounded

Epoch 1 100 1 1

Accuracy 73.14 88.47 97.71 99.48

7. Extension to More Challenging Tasks
So far, we have focused on single-step fitting tasks in con-
trolled settings for better understanding and analysis of the
learned eigen-lengths. In this section, we extend our method
to more challenging settings and tasks to demonstrate its
potential in a wider application scope.

7.1. Applying Random Rotations to Input Environments

In previous experiments, we take environment geometry di-
rectly from ShapeNet(Chang et al., 2015) where shapes are
roughly axis-aligned. We now consider a more challenging
setting where we randomly rotate the environment geome-
try in Container Fitting and Tube Passing tasks. We apply
the geometry-based method described in Section 5. Fig.11
shows the correlation scatter plots of the learned eigen-
lengths with the closest “ground-truth” measurements. De-
spite the increased difficulty, strong correlations can still be
observed. Fig. 13 visualizes the learned geometry ground-
ings, where the predicted planes roughly align with the main
cavities of the objects.

Rotated Tube Passing Rotated Container Fitting

Figure 13. Visualization of learned geometry groundings in ro-
tated Tube Passing and rotated Container Fitting. The learned
vectors and planes roughly align with the rotated object. Regions
of interest like drawers are also selected by planes.

7.2. Relative Rotation Estimation

The network learned in 7.1 not only discovers geometric
eigen-lengths but also vectors as their geometry groundings.
These vectors are intrinsic properties of the geometry and
can serve as a strong indicator of the object’s rotation. In
this section, we show how they can be leveraged to estimate
object relative rotation. Specifically, given two randomly
rotated versions (RaP,RbP ) of point cloud P , estimate the
relative rotation RbR

−1
a between them.

We directly use the network trained in 7.1, which outputs

8
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S vectors v⃗1, v⃗2, . . . , v⃗S as part of the geometry grounding.
We feed the input point cloud pair (RaP,RbP ) to the net-
work, get two sets of unit-length vectors V a, V b ∈ R3×3,
and compute their relative rotation difference. Please see
C.1 for more details.

The network trained on Tube Passing/Container Fitting tasks
with only binary supervision achieves an average rotation
error of 25.39º on ShapeNet furniture, and 13.63º on Tubes.
Figure 14 visualizes the predicted rotations, which aligns
considerably well with ground truth.

Input 1 Input 2 Input 1 Rotated by 
Prediction Overlay

Tu
be

Co
nt
ai
ne

r

Figure 14. Visualization of predicted relative rotations. From
left to right, we show the two input point clouds Pa, Pb, the first
point cloud transformed by the predicted rotation RPa, and its
overlay with Pb. Good alignment can be observed, suggesting
good relative rotation estimation.

7.3. Embodied Visual Navigation

Eigen-lengths are widely useful in geometric tasks that
go beyond fitting. Here we demonstrate its application in
embodied visual navigation. We consider cylinder-shaped
robots (real-life examples are robot vacuums or robot wait-
ers) navigating scenes from AI2-THOR (Kolve et al., 2017).
The goal is to devise a navigation policy that avoids ob-
stacles, based on the robot’s egocentric visual input, i.e.
the single-view point cloud from its forward-facing depth
camera.

We employ the minimal framework in Section 4 to learn
whether the robot can move forward by d = 0.2m. We
use the robot point cloud as the object, its egocentric point
cloud observation as the environment, and collect training
labels by moving randomly-placed robots in simulation. The
network achieves 93.3% accuracy on views from the unseen
testing scene, showing good generalization.

Based on the learned feasibility, we implement a visual
navigation policy and deploy it on a robot vacuum operating
in real-time in the testing scene. With a simple policy of
moving forward when the network outputs positive and
turning clockwise by 20 degrees otherwise, the robot is able
to navigate around the room. Figure 15 shows a snapshot of
the navigation process. Please refer to the project website
for the full demo video and see C.2 for more details.

Figure 15. Snapshot of the visual navigation scenario. The pre-
dicted environment eigen-lengths are visualized with a rectangle,
indicating the size of the navigable space. The color (green/red)
represents the final output (positive/negative) obtained by compar-
ing the eigen-lengths of the robot and the environment.

8. Conclusion
In this work, we formulate a novel learning problem of au-
tomatically discovering low-dimensional geometric eigen-
lengths crucial for fitting tasks. We set up a benchmark suite
comprising a curated set of fitting tasks and corresponding
datasets, as well as metric and tools for analysis and evalua-
tion. We demonstrate the feasibility of learning meaningful
eigen-lengths as sufficient geometry summary only from
binary task supervision. We show that proper geometry
grounding of the eigen-lengths contributes to their accuracy
and interpretability. We also make an initial attempt at learn-
ing shared eigen-lengths in multi-task settings and applying
them to novel tasks.

Our exploration suggests broad opportunities in this new re-
search direction and reveals many challenges. For example,
grounding eigen-length predictions on geometries requires
reasonable choice of geometric primitives, which relies on
inductive bias of the specific tasks considered. It would be a
challenging future direction to build a universal framework
that accommodates a wide range of tasks by leveraging all
kinds of geometric primitives. In many task instances, we
may have access to signals beyond binary success or failure,
e.g., a possible placement position of the object. How to
leverage these task signals in eigen-length learning remains
an open problem. As a first-step attempt at defining and
exploring the challenging problem of eigen-length learning,
we do hope our work can inspire more researchers to work
on this important yet underexplored direction.
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A. Implementation Details
Below we provide network and dataset details. We will also release our code and data to facilitate future research.

A.1. Network Architecture

The framework in Section 4 consists of a PointNet and an MLP output head that maps the PointNet global feature to S scalar
values. The architecture is outlined below, where the numbers in the parenthesis refer to the number of channels in each
layer. We use batch normalization and LeakyReLU after all FC layers, except for the output layer.

PointNet


Per-Point MLP(3 → 64 → 128 → 1024)

↓
Max Pooling

↓
MLP(1024 → 256 → S)

Output: S scalars.

The framework in Section 5 consists of VectorNet and WeightNet. VectorNet consists of a PointNet classification backbone
and an MLP output head, as outlined below.

PointNet


Per-Point MLP(3 → 64 → 128 → 1024)

↓
Max Pooling

↓
MLP(1024 → 256 → 3S)

Output: S vectors.

WeightNet consists of a PointNet segmentation backbone and 2S parallel MLP output heads, each outputs a weight
distribution over all points, as outlined below.

PointNet


Per-Point MLP(3 → 64[per-point feature] → 128 → 1024)

↓
Max Pooling[global feature]

Concat(per-point feature, global feature)
↓

MLP((1024 + 64) → 512 → 256 → 128)

↓
Output Weight MLPi(128 → 256 → 1), i = 1, 2, . . . , 2S

↓
SoftMax

Output: 2S sets of per-point weights.

We use LeakyReLU and batch normalization after each FC layer except for the output layers.

A.2. Training Details

All networks are implemented using PyTorch and optimized by the Adam optimizer, with a learning rate starting at 10−3

and decay by half every 10 epochs. Each batch contains 32 data points; each epoch contains around 1600 batches. We train
models for ∼ 100 epochs on all tasks. The learnable parameter τ is initialized with τ = 1. All experiments are run on a
single NVIDIA TITAN X GPU.
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A.3. Dataset Details

Table 2 and 3 summarizes the statistics of environment/object shapes used in our dataset. Each shape is drawn with
probability in inverse proportion to the number of shapes in its category, such that each object category appears with similar
frequency in the final dataset.

During data generation for the tasks where both the environment and the object are ShapeNet objects, we apply random
scaling s ∼ U([0.9, 1.1]) to the environment objects, set all joints to closed state and sample M = 1024 points from the
object model. Given an object-environment pair, we randomly sample T = 1000 candidate positions in the environment
point cloud, and check whether placement of the object at each candidate satisfy the task specification using SAPIEN (Xiang
et al., 2020) simulation. If all candidates fail, we label the pair as negative, otherwise as positive. Specifically, the candidate
positions are sampled from “applicable and possible regions" following Mo et al. (2021b)’s definition. For example, we only
consider points with upward facing normals, and for task (e) only consider points with close to highest z coordinates. We
generated around 75K training data and 20K testing data for each task.

Table 2. Environment Shape Statistics.

Box Microwave Refrigerator Safe Storage Furniture Table Washing Machine Total

Train 21 9 34 21 272 70 13 440
Test 7 3 9 7 73 25 3 127

Table 3. Object Shape Statistics.

Train

Basket Bottle Bowl Box Can Pot Mug TrashCan Total
77 16 128 17 65 16 134 25 478

Test

Bucket Dispenser Jar Kettle Total
33 9 528 26 554

B. Additional Results
B.1. Geometric Grounding Visualization and Failure Case Discussion

Fig. 16 and 17 show more visualizations of the learned eigen-lengths in the three tasks from the main paper. Our framework
is able to learn reasonable eigen-lengths that measure along crucial directions. These eigen-lengths are also grounded by
planes that suggest the relevant part of object which supports the task. In experiments with primitive shapes as environments,
the learned planes almost overlap with the box/tube faces. In experiments with ShapeNet container objects as environments,
especially task (d) (Fit, or container fitting) as shown in Fig. 17, locating the relevant part becomes more challenging.
As this usually involves finding cavities in a shape and selecting the largest one. Fig. 17 shows examples of our learned
eigen-lengths, most of which make sense, as shown in (a)-(o). We are able to ignore irrelevant parts, e.g. the legs of tables,
and find the part of object that affords the "containment" task, e.g. the drawer in (b), the closet in (c). When there are many
cavities that afford the same task, the network picks the largest one, e.g. in (d) and (k).

Failure Cases. We also observe some failure cases where the learned eigen-lengths are inaccurate. Fig. 17(p)-(t) shows
the most representative ones. (p) shows a relatively complex shape, where the network struggles to find the correct width of
the drawer. (q) and (r) show cases where the network finds the wrong cavity. According to our task definition, the object
can only be placed in the drawer part in (q). Instead, the network finds the part on top of the drawer. In (r), the network
finds the second largest cavity instead of the largest one at the bottom. (s) shows an extreme case where the height of the
pizza box is much smaller than the other two extents. As objects usually have correlated extents, comparing height suffices
most of the time. The network probably lacks the motivation to precisely capture the width and the length of the pizza
box, resulting in the underestimation of width and length in (s). Finally, our formulation, i.e. the AND clause of three
eigen-length comparisons, can not fully and precisely describe the nature of this task. The washing machine in (t) has a
cylinder-shaped cavity, which our network tries to approximate by a cuboid, which is reasonable within the range of its
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Figure 16. Additional qualitative results. We visualize the learned vectors and planes for (a) Tube Passing and (e) Countertop Placing.
We show all eigen-lengths in the front(a)/top(e) view. We also show the underlying instances in task (e) countertop placing for a clearer
understanding of the object structure. Note that though some joints are "open" for visualization purpose, all instances in the dataset are at
their rest state.

expressive power but not accurate. Also, there could be shapes that do not have a "largest" cavity, e.g. some drawers in a
closet may be designed for tall and narrow things, while others are designed for flat things. To deal with arbitrary objects,
the extents of both types of drawers are useful. Introducing more complex and flexible formulations, e.g. in Section D,
would help better capture the complexity of the task.

B.2. Correlation Analysis Results

We show here the scatter plots and correlation R2 values between all prediction eigen-lengths and all presumable geometric
measurements. R2 value, or coefficient of determination, is a metric in [0, 1] reflecting linear correlation between two
variables. The closer R2 is to 1, the more linearly correlated the two variables are. Given two set of samples xi, yi, where
i = 1, 2, . . . , n, R2 is defined between yi and the least squares linear regression of yi on xi, ỹ(xi):

R2 = 1−
∑

i (yi − ỹ(xi))
2∑

i (yi − ȳ)
2 ,

where ȳ = 1
n

∑
i yi is the mean value of yi.

Results from Eigen-Length-Implicit are shown in Fig. 18. Results from Eigen-Length-Grounded are shown in Fig. 19. We
can clearly see the one-to-one correspondence between predictions and presumable measurements. R2 is close to or greater
than 0.9 where the prediction is the match for the measurements, otherwise the value is much smaller. It is more apparent in
the Eigen-Length-Grounded variant, where R2 values are close to the theoretical bound 1 when it matches. The models can
learn a compact and appropriate set of eigen-lengths from binary task supervision. Also note that the extraneous prediction
slot in task (e) (Top, or countertop placing) become degenerate with another prediction slot, as has mentioned before in main
text.

14



Towards Learning Geometric Eigen-Lengths Crucial for Fitting Tasks

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

fr
on

t v
ie

w
to

p 
vi

ew
in

st
an

ce
fr

on
t v

ie
w

to
p 

vi
ew

in
st

an
ce

fr
on

t v
ie

w
to

p 
vi

ew
in

st
an

ce
fr

on
t v

ie
w

to
p 

vi
ew

in
st

an
ce

Figure 17. Additional qualitative results in Container Fitting. We show eigen-lengths in two views together with the underlying object
following Fig. 16 (d). (a)-(o) are successful cases where the learned planes correctly separate out the largest cavity in the object. (p)-(t)
show failure cases.
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Figure 18. Full correlation plots and respective R2 values between ground truth measurements and predicted eigen-lengths from
Eigen-Length-Implicit.

B.3. Correlation Analysis Results from Rotated Environment Experiments

Fig. 20 shows the full correlation analysis of learned eigen-lengths from rotated Tube Passing and rotated Container Fitting,
where the environment geometries are randomly rotated. The challenge from rotations results in slightly looser scatters.
Still, a strong, disentangled correlation between learned eigen-lengths and human-hypothesized ones can be observed.

C. Additional Experiment Details of Extension Tasks
C.1. Experiment Details of Relative Rotation Estimation

Data We use the environment point clouds from Tube Passing and Container Fitting, i.e. 1) Tubes as in Tube Passing; 2)
multi-category household furniture/appliances from ShapeNet as in Container Fitting. To create input pairs, we sample two
random rotations from Ra, Rb ∈ SE(3) and apply them to the original point cloud P .

Relative Rotation Computation Given point cloud pair (RaP,RbP ), we feed both of them to the network to get two sets
of unit-length vectors V a = (va1 , v

a
2 , v

a
3 ), V

b = (vb1, v
b
2, v

b
3) ∈ R3×3. As these vectors are intrinsic to the object and should

rotate with the object, we can compute their relative rotation difference and use it as the object’s rotation change.
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Figure 19. Full correlation plots and respective R2 values between ground truth measurements and predicted eigen-lengths from
Eigen-Length-Grounded.
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Figure 20. Full correlation plots and respective R2 values between human-hypothesized measurements and predicted eigen-lengths
in rotated Tube Passing and rotated Container Fitting, respectively. Correspondences between predicted eigen-lengths and human-
hypothesized ones can be observed.

17



Towards Learning Geometric Eigen-Lengths Crucial for Fitting Tasks

Specifically, we use the least-square solution that minimizes |RV a − V b|22. In practice, we also enumerate all possible
matchings between the two sets of vectors and their negatives, e.g. va1 can match with −vb2. For Tubes where we only predict
two vectors v1, v2, we let v3 = v1 × v2.

C.2. Embodied Visual Navigation

Data We collect our training data by randomly placing robots of varying sizes in one AI2THOR scene. We record the
egocentric depth observation and the robot point cloud, as well as a label indicating whether the robot can move forward by
0.2m by running simulation. We test with depth images taken in another scene. In total, we have collected 6,989 views for
training and validation, and 756 views for testing.

Navigation Demo Visualization We visualize the predicted environment eigen-lengths as a rectangle in front of the robot,
which indicates the size of the “hole” or navigable space in the environment. Since learned eigen-lengths can differ from
ground truth by a linear transformation, we mapped the raw eigen-length outputs of the network back to the real-world
scale for better visualization. The linear mapping coefficients are obtained by fitting a linear model to the predicted robot
eigen-lengths and ground truth robot sizes, which are known. Since collisions mostly happen because the environment is too
narrow or the robot is too wide, the eigen-length in the horizontal direction is better learned.

The color (green/red) represents the final output (positive/negative) obtained by comparing the eigen-lengths of the robot
and the environment. Since collisions mostly happen because the environment is too narrow or the robot is too wide, the
eigen-length in the horizontal direction is better learned.

D. Extending AND Clauses to Disjunctive Normal Form (DNF)
D.1. Formulation

We employ the AND clause formulation for all tasks shown in the main paper. Namely, after learning a library of paired
object/environment eigen-lengths {(Lenv

s , Lobj
s )}s, we compose them by

T̂ (E ,O) =
∧

s=1,2,...,S

[Lenv
s (E) > Lobj

s (O)],

(selection mask m is omitted for clarity), approximated by

T̃ (E ,O) =
∏

s=1,2,...,S

σ((Lenv
s (E)− Lobj

s (O))/τ).

Here we show we can extend this formulation to the more general Disjunctive Normal Form (DNF), where an OR connects
multiple AND clauses. Each AND clause composes eigen-length comparison results of a subset of eigen-lengths. The result
of each AND clause is then aggregated by an OR operator. More precisely,

T̂ (E ,O) =
∨

Ua∈U

∧
s∈Ua

[Lenv
s (E) > Lobj

s (O)].

U = {Ua}a specifies the subset Ua of eigen-lengths in each AND clause. We similarly use a differentiable approximation
during training:

T̃ (E ,O) = 1−
∏

Ua∈U
(1−

∏
s∈Ua

σ((Lenv
s (E)− Lobj

s (O))/τ)).

The introduction of two-level logic and the OR operator helps express more complex reasoning and deal with a wider
range of tasks. For example, many realistic tasks have multiple solutions. OR captures the relationship that the task can be
executed if any, not necessarily all, of the solutions work.

D.2. Task and Implementation Details

To demonstrate our framework’s compatibility with this new formulation, we experiment with the Multi-Tube Passing task.
This is a variant of task (a) (Tube, or tube passing) in the main paper, where we have two tubes of random sizes placed

18



Towards Learning Geometric Eigen-Lengths Crucial for Fitting Tasks

next to each other. As long as the object can be translated and passed through any of these tubes, the task is considered as
successful.

Similar to tube passing, we randomly sample the extents of the tubes, the shape, scale, and rotation of the object. The center
of the two tubes are always at two fixed positions on the y-axis.

We set the number of eigen-lengths to learn as S = 4 and split them into two disjoint AND groups, namely U =
{{1, 2}, {3, 4}}. Ideally, the learned eigen-lengths should correspond to the height and width of the tubes. Also, the height
and width of the same tube should be in the same AND group.

D.3. Result Visualization

Fig. 21 visualizes the learned eigen-lengths, where green and yellow belong to one group, purple and red belong to another
group. We successfully learn eigen-lengths that measure along the height/width directions of the tubes. We also learn them
in correct groups, where width and height of the same tube are paired together. Numerically, the network achieves a test
accuracy of 99.59%.

Figure 21. Visualization of the eigen-lengths learned with OR-AND clauses. Green and yellow, purple and red eigen-lengths belong to
the same AND-group. It turns out that each group attends to one of the tubes and captures its width and height.

E. Discussion and Future Work
E.1. Definition of Eigen-Lengths and Application Scope of the Explored Framework

In our setting, an eigen-length is whatever scalar measurement (i.e., just a 1D scalar) the network invents to best perform its
stated downstream task. While this definition for eigen-dimensions is quite general and could be applicable to any object
as long as there exist certain 1D eigen-lengths that are crucial and useful for checking the feasibility of accomplishing a
downstream task, we are assuming in our current experiments that having such sets of 1D eigen-lengths are sufficient for the
tasks. Therefore, our current setting would not apply to the tasks where having only such low-dimensional eigen-lengths is
not sufficient, such as the tasks of geometric contour matching and object collision checking.

E.2. Broader Implication of the Studied Approach for AI and Robotics

We believe the general approach we suggest can have very general applicability in AI and robotics, where the solution to
downstream tasks suggests the emergence of generally useful geometric concepts such as length, height, width, and radius in
unsupervised ways. As we described in the introduction, learning such compact useful geometric eigen-lengths is beneficial
in the ways that 1) they are highly interpretable, while most of the current learned representations in neural networks are
opaque and learned as black-box hidden features which may be unreliable or untrustworthy, 2) they could be shared and
reused across different tasks, enabling fast adaptation to novel test-time tasks, and 3) the proposed learning formulation
may discover novel yet crucial geometric eigen-lengths that are even unknown to us humans given the new test-time tasks.
Furthermore, there could be more geometric concepts of great interest and importance that future work can explore in this
direction. Examples can be 1) symmetry, as a result of trying to complete 3D shapes, 2) regular object arrangements and
poses as a tool for efficient search, and 3) tracking, as an essential capability for predicting the outcome of sports games.
In other words, we want learning networks to invent the notions so symmetry, regularity, or tracking. If such capabilities
could emerge from purely unsupervised learning, we no longer need to rely on black-box-like neural networks and human
annotations for this geometric information over 3D objects.
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E.3. Determining the Number of Eigen-Lengths to Learn

The number of eigen-lengths to learn, i.e. S, is a hyperparameter of our learning framework and has to be set in advance.
However, it should be interpreted as the upper bound on the number of eigen-lengths the system can learn, and does not
have to be the “groundtruth” number of relevant eigen-lengths. As shown in Sec. 4.3 and Sec. 5.2, when we set S = 3 for
the countertop fitting task where only two eigen-lengths matter, the extra “slot” either degenerates or coincides with other
slots. Such cases can be easily detected and filtered, and the actual number of relevant eigen-lengths can be discovered.
Setting a maximum number for an unknown number of targets is also a common practice in problems like object detection
(Redmon & Farhadi, 2017). That being said, a more flexible mechanism that allows an arbitrary number of eigen-lengths
would be desirable, especially for objects with complex compositional structures like robotic arms or closets with many
drawers. We leave this as a future direction.
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