
Amplifying Membership Exposure via Data Poisoning

Yufei Chen
1,2

Chao Shen
1

Yun Shen
3

Cong Wang
2

Yang Zhang
4

1Xi’an Jiaotong University 2City University of Hong Kong
3NetApp 4CISPA Helmholtz Center for Information Security

Abstract

As in-the-wild data are increasingly involved in the training stage, machine learning
applications become more susceptible to data poisoning attacks. Such attacks
typically lead to test-time accuracy degradation or controlled misprediction. In this
paper, we investigate the third type of exploitation of data poisoning - increasing
the risks of privacy leakage of benign training samples. To this end, we demonstrate
a set of data poisoning attacks to amplify the membership exposure of the targeted
class. We first propose a generic dirty-label attack for supervised classification
algorithms. We then propose an optimization-based clean-label attack in the
transfer learning scenario, whereby the poisoning samples are correctly labeled
and look “natural” to evade human moderation. We extensively evaluate our
attacks on computer vision benchmarks. Our results show that the proposed attacks
can substantially increase the membership inference precision with minimum
overall test-time model performance degradation. To mitigate the potential negative
impacts of our attacks, we also investigate feasible countermeasures.1

1 Introduction

Training data are the most critical ingredients of machine learning, which are sometimes regarded as a
new type of fuel in the era of artificial intelligence [30]. Over the last decade, training data collection
and preservation have received growing concerns [10, 29], among which two focal agendas arise.

One is data corruption caused by data poisoning attacks, posing serious threats to training data
integrity. Data poisoning attacks exploit the common practice to (usually automatically) collect
training data in the wild, e.g., from the Internet. This practice opens doors for attackers to inject
malicious data at the training time to manipulate model behaviors at the test time. Consequently,
models trained with poisoned training data suffer from either accuracy degradation [7, 19], targeted
misclassification [34, 55], or backdoor implantation [32, 50].

The other is data leakage caused by privacy inference attacks, mainly violating training data confiden-

tiality. Ideally, a machine learning model learns generalizable knowledge of the training data, rather
than details of specific data points. However, previous studies show that conventional learning algo-
rithms can unintentionally remember sensitive information. Such information can later be inferred by
various privacy inference attacks, such as membership inference attacks [33, 38]. Essentially, data
poisoning is a training time attack, while privacy inference is performed at the testing time. Despite
intensive research efforts, most existing works study them separately. It remains unclear whether
these two attacks can be integrated to cause more severe damage to machine learning models.

In this paper, we aim to advance the research frontier on the connection between data integrity
and confidentiality. To this end, we propose a set of poisoning attacks to increase the precision of
membership inference attacks, which is widely adopted as a standard tool to measure privacy leakage
in statistical analysis [15, 40]. In particular, we first show a simple but effective dirty-label poisoning

1Code is available at https://github.com/yfchen1994/poisoning_membership.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/yfchen1994/poisoning_membership

attack that is generic for supervised classification applications. We then demonstrate a clean-label
poisoning attack applicable to the transfer learning scenario. It has two significant advantages: (1) no
requirements on the labeling process and (2) natural appearances to human moderation. Consequently,
our proposed clean-label poisoning attack challenges the case where automatically crawling data
from the Internet has become a common practice.

Our contributions are as follows: (1) We reveal an underexplored data poisoning attack threatening the
training data privacy. In particular, we demonstrate how to amplify membership inference exposure
of a specific class with only slight impacts on the model performance. (2) In generic supervised
learning settings, we introduce a naïve dirty-label poisoning attack by modifying the labels of the
poisoning samples. (3) In the transfer learning setting, we propose an optimization-based clean-label
poisoning attack, wherein for each poisoning sample, we make imperceptible modifications without
changing its label. It presents a more practical attack example since it does not require control over
the labeling process. It is also a more stealthy attack as the contents of poisoning instances “look
similar” to the natural ones. (4) We conduct extensive empirical studies to investigate the impacts of
various factors, including datasets, architectures, poisoning budgets, and learning setups. Our results
show that our proposed poisoning attacks are able to increase the membership exposure obviously
with just limited influences on the victim model’s performance on testing samples. (5) At the end, we
also consider several potential countermeasures and investigate their effectiveness.

2 Background

In this work, we focus on deep supervised classification in the computer vision field. That is, given a
training dataset Dtrain composed of input-label pairs (x, y), a deep classifier f(x; ✓) with model param-
eters ✓, and a learning objective L (f(x; ✓), y), the learning process aims to find a set of model param-
eters ✓⇤ to minimize the learning objective on Dtrain, i.e., ✓⇤ = arg min

✓

P
(x,y)2Dtrain

L (f(x; ✓), y).

2.1 Data Poisoning

In a poisoning attack, an attacker crafts and injects a set of malicious training samples Dpoison (i.e.,
poisoning dataset) into the benign dataset Dclean (i.e., clean dataset). In the training stage, the model
holder executes the machine learning algorithm on the full poisoned dataset Dtrain = Dclean [Dpoison
to obtain the trained model f(x; ✓⇤). In the inference stage, f(x; ✓⇤) tends to show unexpected
behaviors on targeted inputs (x, y) 2 Dtarget. Most existing literature poses the poisoning attack as a
bi-level optimization problem [8, 16]:

Dpoison = arg min
D

X

(x,y)2Dtarget

A (f(x; ✓⇤)) ,

s.t. ✓⇤ = arg min
✓

X

(x,y)2Dclean[Dpoison

L (f(x; ✓), y)
(1)

where A is the adversarial objective of the poisoning attack. Typically, there are three adversarial
objectives: (1) in the accuracy degradation case, Dtarget contains all testing samples and A =
�L(f(x; ✓⇤), y); (2) in the targeted misclassification case, Dtarget contains samples expected to be
misclassified into the target class t and A = L(f(x; ✓⇤), t); (3) in the backdoor implantation case,
Dtarget involves samples with a trigger �, where inputs embedded with the trigger are to be classified
into the target class t and A = L(f(x � �; ✓⇤), t).

Based on the attacker’s capability, poisoning attacks can be further grouped into two categories:

• Dirty-label Poisoning. Most classical poisoning attacks require the control of the labeling
process, where the attacker is allowed to modify the labels in Dpoison [19, 42, 48]. Such an
attack is called dirty-label poisoning. Despite promising attack performance, dirty-label
poisoning becomes impractical in supervised machine learning scenarios for two main
reasons. First, in reality, it is a common practice that only unlabeled data (e.g., images and
videos) are scraped by crawlers and then labeled by human moderators. Second, machine
learning developers usually utilize anomaly detection algorithms to filter out wrongly labeled

2

samples. Therefore, there exists a minimal chance that the data samples with modified labels
are preserved in the dataset.

• Clean-label Poisoning. To overcome the shortcomings of dirty-label poisoning, recent
studies propose clean-label poisoning attacks [34, 53, 55]. A clean-label poisoning attack
satisfies two properties. First, the labels of poisoning samples remain unchanged in the poi-
soning process. Second, to be inconspicuous, each poisoning sample xp visually resembles
a natural sample xn, which is always constrained by a Lp-norm distance kxp � xnkp < ✏.

Our Setup. In this work, we investigate data poisoning under a newly identified and underexplored
adversarial objective: privacy leakage amplification. In particular, we focus on one of the most
representative privacy inference attacks: membership inference attack [33, 38]. We start from the
dirty-label poisoning setup, which establishes a baseline and cornerstone for more advanced attacks.
Then, we investigate attack methods in the clean-label poisoning setup to improve practicability. Note
that there are concurrent works that propose to use poisoning attacks to cause privacy leakage [26, 43].

2.2 Membership Inference Attack

In a membership inference attack, an attacker aims to infer whether a specific sample (x, y) belongs
to the training dataset Dtrain at the test time [24, 33, 38]. Unintended membership exposure causes
catastrophic privacy loss for individuals. For example, in the real world, a data sample x can be a
clinical record or an individual. Membership inference attacks enable the attackers to infer whether
this clinical record or individual has been used to train a model associated with a certain disease. As
such, these attacks are widely adopted as basic metrics to quantify privacy exposure in statistical data
analysis algorithms [13, 23]. Henceforth, we use membership inference attacks to demonstrate how
to exploit data poisoning to amplify privacy leakage in this paper.

Based on the attacker’s capability, membership inference attacks can be grouped into two categories:

• Black-box Membership Inference. In this case, the attacker distinguishes members and
non-members only using model outputs [17, 37, 38]. This case is generic to most machine
learning contexts. There are two attack strategies in general. The first strategy is model-

based [38], where the attacker builds multiple shadow models to mimic the victim model,
then utilizes them to construct a dataset with member/non-member labels, and finally
trains a binary classifier to predict member/non-member. The second strategy is metric-

based [33, 39], where the attacker compares a designed metric Mmem, such as correctness
or entropy, with a predefined threshold ⌧ to infer if a sample belongs to the training dataset.

• White-box Membership Inference. In this case, model parameters ✓⇤ or even intermediate
training information such as gradients @L

@✓ are observable by the attacker [22, 27, 31]. Such
capability provides additional information supporting inference attacks, which is usually
achievable in collaborative learning settings. Most white-box attacks are model-based, as
the attacker needs to access the internals of deep models to extract model-specific features.

Our Setup. Our evaluation is carried out in the metric-based black-box membership inference setting.
We adopt the following metric proposed by Song et al. [40] to measure the membership exposure:2

Mmem = � (1 � f(x)y) log (f(x)y) �
X

i 6=y

log (1 � f(x)i) f(x)i (2)

where f(x)j refers to the confidence value of label j. Equation 2 simultaneously considers the
correctness and entropy metric. In the training stage, the learning algorithm continuously fits the
training samples, by decreasing the entropy loss (i.e., the learning objective) and increasing the
confidence score of the correct label. As a result, a member is likely to produce a lower Mmem than
a non-member. To gain a holistic view of the membership exposure, we calculate the true positive
rate (TPR) and false positive rate (FPR) of the membership inference attack by varying the threshold
⌧ , and plot the ROC curve. Then we adopt the AUC (area under the ROC curve) score to measure
membership exposure. In general, a higher AUC score means a higher risk of membership exposure,
as we can find a threshold ⌧ with high TPR and low FPR. It is notable that the AUC score is an
average-case metric, which hardly effectively reflects the worst-case privacy [9]. Therefore, we also

2For simplicity, we use the notation f(x) to represent the trained model f(x; ✓⇤).

3

report the TPR when the FPR is low (1% in our case), which works as a compensation for the AUC
metric to indicate the worst-case privacy.3

2.3 Threat Model

Before diving into our attack design, we first elaborate on the threat model considered in this paper.

Attack Goals. The first goal of the attacker is increasing the chance of leaking the membership

of training samples within a targeted class. At the same time, the attacker attempts to make the
poisoning attack as stealthy as possible. As such, the second goal of the attacker is generating

poisoning samples that have limited impacts on the model performance for untargeted classes and

are indistinguishable from natural samples.

Attacker Capabilities. We assume the attacker has the basic capabilities set up by existing data
poisoning and membership inference attack games. The attacker can craft poisoning samples and
inject them into the victim’s clean dataset Dclean. However, there exists a poisoning budget bpoison to
limit the amount of training samples (|Dpoison|  bpoison ⌧ |Dclean|). We assume the attacker owns a
shadow dataset Dshadow to craft poisoning samples, which contains natural samples from the same
distribution with Dclean. Moreover, the attacker cannot modify poisoning data labels in the clean-label
poisoning setting. But we assume the attacker knows the feature extractor (i.e., an encoder) used
by the victim model. This assumption is practical since developing models with public pretrained
feature extractors is a common practice in existing clean-label poisoning literature [34, 53].

Remark. In our setup, the clean dataset Dclean is unknown by the attacker, which is different from
most existing data poisoning games [7, 19, 26].

3 Attack Methodology

Although Equation 1 establishes a generic framework for poisoning attack, it is unsuitable for our
case. First, classic solutions for the optimization problem posed by Equation 1 require differentiation
to the inner loss minimizer, which is intractable to models with high complexity. Second, although
meta-learning algorithms have been proposed to solve the bi-level optimization problem in the deep
learning setting [16, 52, 54], they lead to huge computing costs, limiting the practicability of the
attack. Third, in our threat model, Dclean is unobservable, making Equation 1 no longer applicable to
our attack. Facing these obstacles, we explore heuristic strategies to achieve the attack goals.

3.1 Dirty-label Poisoning Attack: A Naïve Approach

Dirty-label Poisoned ModelClean Model

Figure 1: Conceptual illustration of the decision
boundary of models trained without/with our dirty-
label poisoning attack. To achieve a low training
accuracy, the model has to learn a more compli-
cated decision boundary, making the learning pro-
cess more susceptible to overfitting.

We start our investigation in the dirty-label poi-
soning setting. This case has more limitations in
the real world as discussed in Section 2.1. But it
relaxes the attack constraints and helps to verify
the feasibility of our attack strategy.

The key to amplifying membership exposure is
to cause overfitting in the targeted class. We
propose the following attack strategy:

Our Dirty-label Poisoning Attack. Given the
label of the target group t , the shadow dataset
Dshadow, and a poisoning budget bpoison, the poi-
soning dataset is constructed by the following
steps: (1) select all samples (x, t) 2 Dshadow
with label t; (2) for each sample (x, t), randomly
change the label to another class i 6= t; (3) preserve at most bpoison samples (x, i) to compose Dpoison.

3We also evaluate our poisoning attacks with a stronger membership inference attack [9] on the CIFAR-10
dataset. The experimental results show that our poisoning attacks can also help improve the membership
inference accuracy by a stronger membership inference attacker. We recommend interested readers to find more
results in the appendix. In the main body of the paper, our experiments only assume the weak attack used by [40],
as it has lower computational costs and is more practical.

4

10�3 10�2 10�1 100

False Positive Rate

10�3

10�2

10�1

100

T
ru

e
P
os

it
iv

e
R
at

e

Clean Model

Poisoned Model

Random Guess

Figure 2: Membership inference against the
airplane class of CIFAR-10 dataset. The
poisoning budget is set as bpoison = 10% ⇥
|Dclean|. The AUC score, i.e., the area under
the ROC curve, is increased from 0.6917 to
0.9255, indicating that our dirty-label poison-
ing attack is effective.

Intuitively, only learning general concepts/features is
insufficient to discriminate the clean samples of class
t from poisoning samples, since, in fact, they share
similar features. To minimize the training loss, the
victim model has to learn more specific features of
each sample. As conceptually illustrated by Figure 1,
the generalization performance on class t tends to
degrade. Figure 2 gives an example to show how our
poisoning attack improves the membership exposure
of the airplane category for an InceptionV3-based
CIFAR-10 classifier. In this example, we assume
the numbers of members and non-members are both
10,000 and bpoison=1,000.

Remark. We do not pose extra assumptions to the
training process in this case. Our dirty-label poi-
soning attack is generic to all supervised learning
scenarios, including end-to-end learning and transfer
learning. Similar to the concurrent work [43], we
also use the classical label flipping strategy [7] to carry out the dirty-label attack.

3.2 Clean-label Poisoning Attack: A Stealthy Approach

In this part, we aim to improve our poisoning attack to amplify membership exposure while attaining
stealthiness. Following the basic setup in [34], we consider the transfer learning setting. In transfer
learning, we assume the victim model is composed of two parts: a pretrained feature extractor g(·) to
extract high-level features from the input x and a newly-trained classifier c(·) to predict labels.

The key to our clean-label poisoning is to exploit one vulnerability of deep feature extractors: a
slight change in the input space may cause a significant change in the feature space. We propose the
following attack strategy.

Our Clean-label Poisoning Attack. Given the label of the target class t , the shadow dataset Dshadow,
a poisoning budget bpoison, and the adopted feature extractor g(·), the poisoning dataset is constructed
by the following steps: (1) from Dshadow, select a base sample (xbase, t) with label t and a sample
(x, y) where y 6= t; (2) find a x⇤ that is close to x in the input space (kx⇤ � xkp  ✏) and close to
xbase in the feature space (g(x⇤) ⇡ g(xbase)), and insert (x⇤, y) to Dpoison; (3) repeat step (1) and (2)
until |Dpoison| = bpoison.

The intuition of our clean-label poisoning attack is straightforward: we actually mount a dirty-label
poisoning attack in the feature space. That is, the poisoning sample (x⇤, y) is close to (xbase, t), a
clean sample from class t, in the feature space but labeled as y. We formalize step (2) as a constrained
optimization problem:

x⇤ = arg min
x0

kg(x0) � g(xbase)k2, s.t. kx0 � xk1  ✏ and x0 2 X (3)

where X refers to the input space. For instance, for a normalized RGB image input, a valid pixel
value in one color channel should be within [0, 1]. For ease of optimization, we adopt L2-norm to
measure the distance in the feature space. Following the convention of adversarial attack work, we
adopt L1 to measure the distance in the input space. In our case, the constraint can be expressed as
x0 2 [xmin, xmax], where xmin = max(0, x � ✏), xmax = min(1, x + ✏).

Optimization. We adopt the variable substitution method introduced by [11] to solve Equation 3.
We introduce a new variable w and let

tanh(w) =
2(x0 � xmin)

xmax � xmin
� 1 (4)

Based on the fact that tanh(w) 2 [�1, 1], we can prove that the constraint x0 2 [xmin, xmax] holds
in Equation 4. Plugging Equation 4 into Equation 3, we can obtain

5

cat cat horse deer ship cat cat horse deer ship

Figure 3: Examples of poisoning samples against the airplane category. Left: Dirty-label poisoning
samples. Right: Clean-label poisoning samples (✏=16/255). We provide the label of each sample on
the top. For the clean-label poisoning samples, they look like natural ones.

w⇤ = arg min
w

kg (0.5 ⇤ (tanh(w) + 1)(xmax � xmin) + xmin) � g(xbase)k2,

and x⇤ =0.5(tanh(w⇤) + 1)(xmax � xmin) + xmin

(5)

which poses an unconstrained optimization problem that can be simply solved by mainstream gradient
optimization methods. In our implementation, we first initialize variable w with x by Equation 4 and
iterate the optimization process 1,000 times, using an Adam optimizer with the learning rate 0.01.

Figure 3 illustrates some examples generated by our proposed two poisoning attacks. We can see that
the poisoning samples produced by our clean-label poisoning method look natural to human eyes,
which are hard to detect by manual moderation.

4 Evaluation

4.1 Experimental Setup

Datasets. In our experiment, we split each dataset into three portions: the clean training dataset
Dclean containing the members, the testing dataset Dtest containing the non-members, and the shadow
dataset Dshadow for generating poisoning samples. We follow the same setup with [38], where
|Dclean| = |Dtest| = |Dshadow|, and each of them does not overlap with others. Additionally, we set the
three datasets to be balanced for the simplicity of evaluation among each class. We adopt five datasets
for our experiments, including (1) MNIST [1] that contains 60,000 handwritten digits from 0 to 9.
(2) CIFAR-10 [2] that contains 60,000 images from 10 classes. (3) STL-10 [3] that contains 13,000
labeled images from 10 classes. (4) CelebA [25] that contains 202,599 face images annotated by 40
attributes. In our experiment, we train a two-class classifier to predict the Charming attribute; (5)
PatchCamelyon [46] that contains 327,680 images to predict the presence of metastatic tissue. For
MNIST, CIFAR-10, CelebA, and PatchCamelyon dataset, we set |Dclean|=10,000, while for STL-10,
we set |Dclean|=4,000. Each sample is transformed into a 96 ⇥ 96 ⇥ 3 RGB image.

Models. We use five pretrained models provided by Tensorflow(v2.5.2): Xception, ResNet18,
MobileNetv2, InceptionV3, and VGG16. For each model, we remove the fully connected (FC) layers
to build up the feature extractor g(·). Then, we add two FC layers on top of the feature extractor to
form c(·): one layer with 128 hidden units using the Tanh activation function, followed by an output
layer using the Softmax activation function. We fix the feature extractor and train the newly added
FC layers with the Adam optimizer, with the learning rate of 10�3 and batch size of 100.

Poisoning Setup. For each learning task, we mount the poisoning attack against each class. We
set the poisoning budget bpoison as |Dclean|

#classes . To make our poisoning attack stealthy to the victim,

we assume Dpoison is evenly distributed among all classes with each having approximately bpoison
#classes

poisoned data samples. For instance, for a CIFAR-10 classifier, we set bpoison = 1, 000, where only
100 samples for each class are in Dpoison. Note that this assumption means that there are bpoison

#classes clean
samples in Dpoison for the target class t. For the clean-label poisoning dataset, we set the perturbation
constraint ✏ = 16/255.

Equipment. Our experiments were conducted on a deep learning server, which is equipped with an
Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 128GB RAM, and four NVIDIA GeForce RTX
3090 GPUs with 24GB of memory.

6

Without Poisoning Dirty-Label Poisoning Clean-Label Poisoning
MI AUC TPR@FPR=1% Test Acc. MI AUC TPR@FPR=1% Test Acc. MI AUC TPR@FPR=1% Test Acc.

MNIST

Xception .538±.022 1.22±0.56% .939 .697±.020 4.12±1.49% .918±.007 .627±.032 1.50±0.72% .924±.005
InceptionV3 .546±.029 1.01±0.39% .928 .791±.026 3.52±1.21% .902±.002 .674±.053 1.34±0.61% .910±.005
VGG16 .536±.021 1.24±0.55% .954 .740±.029 3.77±1.34% .934±.004 .604±.033 0.94±0.35% .943±.002
ResNet50 .525±.021 1.22±0.62% .967 .721±.034 3.68±1.56% .946±.009 .583±.022 1.38±0.33% .963±.002
MobileNetV2 .529±.019 1.04±0.49% .960 .759±.043 3.91±1.06% .937±.004 .626±.039 1.60±0.58% .949±.004

CIFAR-10

Xception .642±.057 1.21±0.55% .768 .893±.018 3.08±1.21% .735±.004 .868±.032 2.46±0.56% .738±.004
InceptionV3 .733±.057 1.35±0.46% .677 .935±.015 7.28±2.83% .648±.005 .827±.046 1.44±0.59% .663±.001
VGG16 .619±.049 1.12±0.40% .815 .899±.011 4.60±1.26% .779±.004 .869±.019 2.69±0.76% .783±.003
ResNet50 .597±.035 1.06±0.29% .848 .930±.015 7.38±2.77% .832±.003 .861±.042 1.73±0.77% .838±.002
MobileNetV2 .602±.050 1.20±0.66% .842 .916±.011 3.15±1.44% .813±.002 .836±.037 2.03±0.63% .820±.002

STL-10

Xception .578±.043 1.50±0.91% .857 .906±.021 6.83±2.92% .836±.004 .876±.027 3.90±1.63% .838±.004
InceptionV3 .696±.069 1.57±0.78% .758 .940±.020 12.80±8.09% .735±.006 .809±.065 1.60±1.44% .750±.002
VGG16 .596±.040 1.00±0.66% .875 .895±.017 8.07±6.36% .842±.004 .858±.029 3.80±2.71% .846±.005
ResNet50 .572±.031 1.65±0.79% .897 .931±.015 11.28±10.28% .875±.005 .860±.041 2.83±1.44% .883±.003
MobileNetV2 .558±.033 1.12±0.92% .935 .900±.019 4.35±3.35% .906±.004 .822±.042 2.08±1.27% .916±.004

CelebA

Xception .644±.011 1.01±0.01% .724 .752±.001 2.90±1.10% .693±.002 .710±.027 2.61±0.69% .689±.005
InceptionV3 .748±.019 1.10±0.28% .687 .849±.008 2.75±0.01% .655±.000 .759±.056 1.58±0.30% .661±.001
VGG16 .711±.019 1.26±0.06% .724 .747±.005 2.29±0.35% .684±.003 .713±.005 1.37±0.17% .680±.003
ResNet50 .571±.000 0.89±0.09% .744 .680±.007 1.92±0.04% .698±.007 .616±.049 1.13±0.13% .712±.000
MobileNetV2 .680±.009 1.21±0.11% .750 .823±.002 2.22±0.04% .704±.002 .742±.031 1.44±0.16% .696±.006

PatchCamelyon

Xception .564±.003 1.18±0.04% .847 .678±.020 2.12±0.22% .797±.002 .644±.007 1.65±0.13% .816±.001
InceptionV3 .617±.008 0.94±0.10% .832 .739±.029 2.38±0.02% .774±.008 .627±.038 1.13±0.05% .800±.001
VGG16 .538±.003 1.15±0.05% .862 .623±.016 1.69±0.13% .842±.004 .593±.004 1.25±0.11% .838±.001
ResNet50 .543±.005 1.35±0.17% .891 .701±.038 2.25±0.29% .820±.015 .611±.017 1.47±0.11% .862±.002
MobileNetV2 .565±.004 1.04±0.18% .890 .728±.029 1.79±0.07% .819±.000 .674±.001 1.17±0.05% .842±.007

Table 1: Membership inference (MI) results for the target class t and test-time accuracy on Dtest, for
models not poisoned, poisoned by dirty-label attacks, and poisoned by clean-label attacks, respectively.
We run the attack and evaluation over each class, and we report the average value with standard
deviation for each metric.

4.2 Results

Table 1 reports the evaluation results on our proposed two poisoning attacks. In general, we can
observe that our attacks obviously increase the AUC score of the membership inference against the
target class t, with slight testing accuracy decay. For instance, for the clean-label poisoning attack
against the STL-10 Xception-based classifier, the membership inference AUC is increased from
0.578 to 0.876 on average, while the testing accuracy is decreased from 0.857 to 0.838 on average.
The results show that the poisoned samples resemble the clean samples and the performance of the
poisoned models degrades subtly on the testing dataset. Consequently, there are chances that the
clean-label poisoning attack evades the manual inspection, when the classification performance for
each class does not get carefully examined.

Another observation is that the dirty-label poisoning attack causes more significant membership
exposure than the clean-label poisoning attack. A potential explanation of this phenomenon is that
our clean-label poisoning attack can be considered as an “approximate” version of the dirty-label
poisoning attack in the feature space.

5 Ablation Study

5.1 Study 1: Impact of Dshadow

In our prior study, we assume the attacker can obtain a shadow dataset Dshadow with the same
distribution of the victim’s clean training dataset Dclean. However, the model developer may hide
the training dataset information to fortify privacy and intellectual property (IP) protection. In this
ablation section, we examine how the Dshadow affects the attack performance.

In our experiment, we assume the attacker aims to poison the airplane and cat categories against
the CIFAR-10 classifiers respectively. For each target class t, we select 1,000 samples from t in

7

t = 0 (airplane) t = 3 (cat)

� MI AUC � TPR@TPR=1% � Test Acc. � MI AUC � TPR@TPR=1% � Test Acc.

Xception .058 -0.80% .000 .065 0.00% -.006
InceptionV3 .066 0.00% -.013 .045 0.60% -.007
VGG16 .057 0.30% -.016 -.009 -0.10% -.003
ResNet50 .019 -0.50% -.009 -.017 -0.10% -.007
MobileNetV2 .019 -0.20% .000 .000 -0.10% -.001

Table 2: Dirty-poisoning attack results when Dclean comes from CIFAR-10 and Dshadow contains
1,000 instances from the target class t of STL-10. We report the membership exposure difference and
testing accuracy difference between the poisoned model and the clean model.

Without Poisoning Dirty-Label Poisoning Clean-Label Poisoning
MI AUC TPR@FPR=1% Test Acc. MI AUC TPR@FPR=1% Test Acc. MI AUC TPR@FPR=1% Test Acc.

InceptionV3 .619±.053 1.32±0.57% .862 .956±.008 15.17±6.42% .845±.002 .618±.054 1.20±0.43% .863±.001
MobileNetV2 .553±.026 1.27±0.70% .906 .820±.021 4.76±1.17% .896±.002 .556±.024 1.11±0.41% .909±.001
Xception .573±.030 1.08±0.51% .898 .923±.007 9.02±2.71% .878±.002 .581±.030 1.26±0.37% .898±.001
VGG16 .622±.052 1.04±0.38% .875 .904±.010 13.98±5.07% .858±.002 .622±.060 1.58±0.92% .874±.002
ResNet50 .584±.030 1.26±0.43% .903 .942±.009 13.37±4.40% .884±.002 .592±.032 1.30±0.66% .901±.001

Table 3: Dirty-label and clean-label attack results on fine-tuned CIFAR-10 classifiers (bpoison =
1, 000). We run the attack and evaluation over each class, and we report the average value with
standard deviation for each metric.

STL-10. In this ablation study, we start with the dirty-label poisoning attack to estimate the upper
bound performance of our clean-label poisoning attack. Table 2 reports the attack performance. Our
results show that the attack performance declines when the attacker’s shadow data has a different
distribution from the actual clean dataset.

5.2 Study 2: Impact of bpoison

0 200 400 600 800 1000
bpoison

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
I
A
U

C Xception

InceptionV3

VGG16

ResNet50

MobileNetV2

Figure 4: Membership exposure under differ-
ent bpoison. We plot the average MI AUC on
the CIFAR-10 dataset.

We then study how the size of poisoning samples
affects the attack performance. Figure 4 depicts the
membership exposure under dirty-label poisoning
attacks with different poisoning budget bpoison. Un-
surprisingly, as we gradually decrease the poisoning
budget, the membership inference AUC score de-
creases as well. Yet, it is still possible to achieve a
significant membership exposure increase even with
a small poison budget. Take ResNet50 for instance,
when bpoison is 100, i.e., the amount of poisoning sam-
ples is only 1% of that for the clean samples, we can
improve the membership inference AUC score from
0.5971 to 0.7076 on average.

5.3 Impact of Fine-tuning

In the transfer learning scenario, there are also chances that model developers fine-tune parameters of
feature extractors [14, 36, 47]. The fine-tuning operation is supposed to make the transfer learning
model better fit the new dataset. Inevitably, it may affect how the feature extractor extracts latent
features from the inputs. As a result, our poisoning attack may get affected. In this part, we explore
how the fine-tuning process impacts our attack performance.

In our experiment, we train CIFAR-10 classifiers with fine-tuning on the poisoned dataset, with the
learning rate set as 1e-5. We report the attack performance in Table 3. It can be seen that, for our
dirty-label poisoning attack, we achieve more significant membership exposure amplifications. While
for our clean-label poisoning attack, the membership exposure changes are nearly negligible.

To understand this phenomenon, we investigate how the feature extractor behaves in different cases.
We visualize the latent features of clean samples and poisoning samples by t-SNE technique [45]
in Figure 5. We can observe that, for the dirty-label poisoning attack in the fine-tuning setting, the
poisoning samples distribute closely to the targeted clean samples in the feature space (as shown

8

Poisons
0

1

2

3

4

5

6

7

8

9

(a)

Poisons
0

1

2

3

4

5

6

7

8

9

(b)

Poisons
0

1

2

3

4

5

6

7

8

9

(c)

Poisons
0

1

2

3

4

5

6

7

8

9

(d)

Figure 5: Visualization of latent features extracted by different poisoned CIFAR-10 classifiers from
the InceptionV3 feature extractor. The targeted class is 0 (airplane). (a) Dirty-label attack against a
fixed feature extractor. (b) Clean-label attack against a fixed feature extractor. (c) Dirty-label attack
against a fine-tuned model. (d) Clean-label attack against a fine-tuned model. The colored points are
the clean training samples, while the dark star marks are the poisoning sample.

in Figure 5c. Besides, for the clean-label poisoning attack in the fine-tuning setting, the poisoning
samples distribute among each class in the feature space (as shown in Figure 5d). It indicates that
the more poisoning samples in the target class, the more significant membership exposure results
we can get. By comparing Figure 5a and Figure 5b, we can also partially illustrate that dirty-label
poisoning tends to achieve better attack performance than clean-label poisoning. This trend is actually
consistent with the intuition of our attack. In fact, this is the case called “adversarial training” by some
adversarial example defense literature [35, 44, 49]. During adversarial training, model parameters
are gradually tuned to eliminate the effects of input perturbations.

6 Discussion on Potential Countermeasures

In general, there are two potential ways to defend our poisoning attacks: One is to detect and filter
out poisoning data, while the other is to reduce membership exposure. We will investigate the
former direction in the future, and in this part, we mainly explore defenses by limiting membership
information leakage, including:

• Regularization. Overfitting is considered to be one of the major culprits of membership
exposure [38, 51, 33]. Therefore, the regularization technique may be feasible to defend
against our attacks. In our experiment, we introduce an L2-norm regularizer with a penalty
of 0.05 during the model training process.

• Early Stopping. Early stopping is another common practice to prevent overfitting [21].
During the training process, for each epoch, we randomly sample out 10% of the training
data as validation data and use 90% of other data as training data. We monitor the validation
loss, and if it does not decrease in three epochs, we stop the training process.

• DP-SGD. Differential privacy (DP) provides a rigorous guarantee to limit privacy leak-
age [12, 13]. Recently, privacy-preserving machine learning algorithms under the differen-
tial privacy have been proposed [6, 18, 41], among which differentially private stochastic
descent (DP-SGD) [4] receives the most attention [5, 20, 28]. In our experiment, we uti-
lize the DP-SGD optimizer provided by the TensorFlow Privacy package4 to implement
differential privacy training. The hyperparameters used in our implementation are sum-
marized in Table 4. As reported by the analysis tool provided by TensorFlow Privacy,
we achieve (3.25, 10�6)-differential privacy on the clean model (|Dtrain|=|Dclean|=10,000),
while we achieve (3.10, 10�6)-differential privacy on poisoned models (bpoison = 1, 000,
|Dtrain|=|Dclean [Dpoison|=11,000).

We evaluate the three potential countermeasures on the CIFAR-10 dataset and summarize the results
in Table 5. By comparing the membership exposure between unprotected (Table 1) and protected
models (Table 5), the three defenses can help weaken the membership exposure amplification effect
by our attacks. Besides, in our experiment, we observe that the regularization technique has the best

4https://github.com/tensorflow/privacy

9

https://github.com/tensorflow/privacy

Hyperparameter Value

LEARNING RATE 0.001 for InceptionV3; 0.01 for others
NOISE MULTIPLIER 1.0

MAX L2-NORM OF GRADIENTS 1.0
BATCH SIZE 100

MICRO BATCH SIZE 100
EPOCHS 20

Table 4: Hyperparameters used by the differential private training algorithms.

Without Poisoning Dirty-Label Poisoning Clean-Label Poisoning
MI AUC TPR@FPR=1% Test Acc. MI AUC TPR@FPR=1% Test Acc. MI AUC TPR@FPR=1% Test Acc.

Early Stopping

InceptionV3 .598±.045 0.95±0.23% .622 .614±.034 1.17±0.37% .674±.001 .621±.031 1.09±0.30% .676±.003
MobileNetV2 .561±.036 1.40±0.48% .758 .560±.026 1.33±0.58% .840±.000 .560±.026 1.40±0.54% .840±.000
Xception .567±.043 1.00±0.44% .699 .576±.031 1.19±0.37% .769±.000 .576±.031 1.18±0.36% .769±.000
VGG16 .560±.036 1.12±0.44% .728 .570±.030 1.22±0.47% .798±.003 .571±.029 1.29±0.38% .798±.000
ResNet50 .561±.037 0.88±0.26% .771 .566±.026 1.07±0.34% .849±.001 .569±.025 1.08±0.31% .851±.000

Regularization

InceptionV3 .524±.011 1.01±0.42% .642 .522±.011 1.09±0.56% .639±.006 .525±.008 1.01±0.41% .643±.005
MobileNetV2 .517±.010 1.32±0.56% .797 .522±.008 1.12±0.32% .801±.009 .525±.008 1.11±0.33% .798±.007
Xception .513±.011 1.21±0.43% .722 .514±.013 1.31±0.67% .702±.008 .514±.014 1.29±0.83% .702±.006
VGG16 .524±.012 1.34±0.50% .792 .525±.009 1.48±0.60% .803±.003 .538±.012 1.57±0.55% .797±.002
ResNet50 .519±.008 1.22±0.52% .828 .521±.010 1.18±0.21% .806±.009 .527±.010 1.41±0.48% .801±.008

DP-SGD

InceptionV3 .527±.015 1.16±0.52% .616 .531±.016 1.32±0.47% .613±.001 .529±.015 1.26±0.51% .617±.001
MobileNetV2 .525±.012 0.14±0.42% .689 .539±.007 1.52±0.73% .726±.003 .538±.009 1.62±0.74% .728±.002
Xception .526±.012 0.81±0.79% .653 .540±.012 1.12±0.35% .683±.001 .541±.009 1.07±0.36% .682±.002
VGG16 .514±.011 0.92±0.83% .665 .525±.008 1.24±0.44% .691±.003 .524±.009 1.45±0.59% .693±.003
ResNet50 .518±.010 0.56±1.19% .705 .533±.009 1.04±0.31% .735±.001 .531±.008 1.13±0.57% .736±.002

Table 5: Effectiveness of our poisoning attacks when student models are trained with early stopping,
regularization, and DP-SGD countermeasures, respectively. The results come from CIFAR-10 with
bpoison = 1, 000. We run the attack and evaluation over each class, and we report the average value
with standard deviation for each metric.

model utility-privacy trade-off. The regularization technique achieves a relatively high model testing
accuracy and keeps the AUC scores at lower levels.

7 Conclusion

In this paper, we demonstrate the feasibility of exploiting data poisoning to amplify the membership
exposure of the training dataset. We present attacks that significantly increase the precision of the
membership inference attack on the targeted class, with limited negative influences on the model’s
test-time performance. We also conduct extensive evaluations to study how different factors may
affect attack performance.

Our findings uncover a new challenge to modern machine learning ecosystems. Data from the open
world may not only affect the model performance but also raise real threats to private training data.
Even worse, we show it is possible to mount clean-label attacks to evade human moderation. Our
research is thus a call to action. One primary limitation of our clean-label attacks is that we assume
the attacker has knowledge of the feature extractor. How to create clean-label poisons in a black-box
manner remains our future work.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their constructive comments. This work is supported by the
National Key Research and Development Program of China (2020AAA0107702), National Natural
Science Foundation of China (U21B2018, 62161160337, 62132011), Shaanxi Province Key Industry
Innovation Program (2021ZDLGY01-02), the Research Grants Council of Hong Kong under Grants
N_CityU139/21, R6021-20F, R1012-21, C2004-21G, and the Helmholtz Association within the
project “Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I-OO1 4). Chao Shen,
Cong Wang, and Yang Zhang are the corresponding authors.

10

References

[1] http://yann.lecun.com/exdb/mnist/. 6

[2] https://www.cs.toronto.edu/~kriz/cifar.html. 6

[3] https://cs.stanford.edu/%7Eacoates/stl10/. 6

[4] Martin Abadi, Andy Chu, Ian Goodfellow, Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep Learning with Differential Privacy. In ACM SIGSAC Conference on Computer

and Communications Security (CCS), pages 308–318. ACM, 2016. 9

[5] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential Privacy Has Dis-
parate Impact on Model Accuracy. In Annual Conference on Neural Information Processing

Systems (NeurIPS), pages 15453–15462. NeurIPS, 2019. 9

[6] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Differentially Private Empirical Risk Min-
imization: Efficient Algorithms and Tight Error Bounds. In Annual Symposium on Foundations

of Computer Science (FOCS), pages 464–473. IEEE, 2014. 9

[7] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks against Support Vector
Machines. In International Conference on Machine Learning (ICML). icml.cc / Omnipress,
2012. 1, 4, 5

[8] Aleksandar Bojchevski and Stephan Günnemann. Adversarial Attacks on Node Embeddings via
Graph Poisoning. In International Conference on Machine Learning (ICML), pages 695–704.
PMLR, 2019. 2

[9] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr.
Membership Inference Attacks From First Principles. In IEEE Symposium on Security and

Privacy (S&P), pages 1897–1914. IEEE, 2022. 3, 4

[10] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The Secret Sharer:
Evaluating and Testing Unintended Memorization in Neural Networks. In USENIX Security

Symposium (USENIX Security), pages 267–284. USENIX, 2019. 1

[11] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks.
In IEEE Symposium on Security and Privacy (S&P), pages 39–57. IEEE, 2017. 5

[12] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to
Sensitivity in Private Data Analysis. In Theory of Cryptography Conference (TCC), pages
265–284. Springer, 2006. 9

[13] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Now
Publishers Inc., 2014. 3, 9

[14] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and
Rogério Schmidt Feris. SpotTune: Transfer Learning Through Adaptive Fine-Tuning. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4805–4814.
IEEE, 2019. 8

[15] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. LOGAN: Evaluating
Privacy Leakage of Generative Models Using Generative Adversarial Networks. Privacy

Enhancing Technologies Symposium, 2019. 1

[16] W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. MetaPoison:
Practical General-purpose Clean-label Data Poisoning. In Annual Conference on Neural

Information Processing Systems (NeurIPS). NeurIPS, 2020. 2, 4

[17] Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina, Neil Zhenqiang Gong, and Yinzhi Cao.
Practical Blind Membership Inference Attack via Differential Comparisons. In Network and

Distributed System Security Symposium (NDSS). Internet Society, 2021. 3

11

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/%7Eacoates/stl10/

[18] Roger Iyengar, Joseph P. Near, Dawn Xiaodong Song, Om Dipakbhai Thakkar, Abhradeep
Thakurta, and Lun Wang. Towards Practical Differentially Private Convex Optimization. In
IEEE Symposium on Security and Privacy (S&P), pages 299–316. IEEE, 2019. 9

[19] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression
Learning. In IEEE Symposium on Security and Privacy (S&P), pages 19–35. IEEE, 2018. 1, 2,
4

[20] Bargav Jayaraman and David Evans. Evaluating Differentially Private Machine Learning in
Practice. In USENIX Security Symposium (USENIX Security), pages 1895–1912. USENIX,
2019. 9

[21] Anders Krogh and John A. Hertz. A Simple Weight Decay Can Improve Generalization. In
Annual Conference on Neural Information Processing Systems (NIPS), pages 950–957. NIPS,
1991. 9

[22] Klas Leino and Matt Fredrikson. Stolen Memories: Leveraging Model Memorization for
Calibrated White-Box Membership Inference. In USENIX Security Symposium (USENIX

Security), pages 1605–1622. USENIX, 2020. 3

[23] Ninghui Li, Wahbeh H. Qardaji, Dong Su, Yi Wu, and Weining Yang. Membership Privacy: A
Unifying Framework for Privacy Definitions. In ACM SIGSAC Conference on Computer and

Communications Security (CCS), pages 889–900. ACM, 2013. 3

[24] Zheng Li and Yang Zhang. Membership Leakage in Label-Only Exposures. In ACM SIGSAC

Conference on Computer and Communications Security (CCS), pages 880–895. ACM, 2021. 3

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face Attributes in the
Wild. In IEEE International Conference on Computer Vision (ICCV), pages 3730–3738. IEEE,
2015. 6

[26] Saeed Mahloujifar, Esha Ghosh, and Melissa Chase. Property Inference from Poisoning. In
IEEE Symposium on Security and Privacy (S&P), pages 1120–1137. IEEE, 2022. 3, 4

[27] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Privacy Analysis of Deep
Learning: Passive and Active White-box Inference Attacks against Centralized and Federated
Learning. In IEEE Symposium on Security and Privacy (S&P), pages 1021–1035. IEEE, 2019.
3

[28] Milad Nasr, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, and Nicholas Carlini. Ad-
versary Instantiation: Lower Bounds for Differentially Private Machine Learning. In IEEE

Symposium on Security and Privacy (S&P). IEEE, 2021. 9

[29] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. SoK: Towards
the Science of Security and Privacy in Machine Learning. In IEEE European Symposium on

Security and Privacy (Euro S&P), pages 399–414. IEEE, 2018. 1

[30] Yuji Roh, Geon Heo, and Steven Euijong Whang. A Survey on Data Collection for Machine
Learning: A Big Data - AI Integration Perspective. IEEE Transactions on Knowledge and Data

Engineering, 2021. 1

[31] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou.
White-box vs Black-box: Bayes Optimal Strategies for Membership Inference. In International

Conference on Machine Learning (ICML), pages 5558–5567. PMLR, 2019. 3

[32] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic Backdoor
Attacks Against Machine Learning Models. In IEEE European Symposium on Security and

Privacy (Euro S&P), pages 703–718. IEEE, 2022. 1

[33] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael
Backes. ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses
on Machine Learning Models. In Network and Distributed System Security Symposium (NDSS).
Internet Society, 2019. 1, 3, 9

12

[34] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumi-
tras, and Tom Goldstein. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural
Networks. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
6103–6113. NeurIPS, 2018. 1, 3, 4, 5

[35] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John P. Dickerson, Christoph Studer,
Larry S. Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Annual

Conference on Neural Information Processing Systems (NeurIPS), pages 3353–3364. NeurIPS,
2019. 9

[36] Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David W. Jacobs,
and Tom Goldstein. Adversarially Robust Transfer Learning. In International Conference on

Learning Representations (ICLR), 2020. 8

[37] Reza Shokri, Martin Strobel, and Yair Zick. Exploiting Transparency Measures for Member-
ship Inference: a Cautionary Tale. In The AAAI Workshop on Privacy-Preserving Artificial

Intelligence (PPAI). AAAI, 2020. 3

[38] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference
Attacks Against Machine Learning Models. In IEEE Symposium on Security and Privacy (S&P),
pages 3–18. IEEE, 2017. 1, 3, 6, 9

[39] Liwei Song and Prateek Mittal. Systematic Evaluation of Privacy Risks of Machine Learning
Models. In USENIX Security Symposium (USENIX Security). USENIX, 2021. 3

[40] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy Risks of Securing Machine Learn-
ing Models against Adversarial Examples. In ACM SIGSAC Conference on Computer and

Communications Security (CCS), pages 241–257. ACM, 2019. 1, 3, 4

[41] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic Gradient Descent
with Differentially Private Updates. In IEEE Global Conference on Signal and Information

Processing (GlobalSIP), pages 245–248. IEEE, 2013. 9

[42] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data Poisoning Attacks
Against Federated Learning Systems. In European Symposium on Research in Computer

Security (ESORICS), pages 480–501. Springer, 2020. 2

[43] Florian Tramè, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun
Hong, and Nicholas Carlini. Truth Serum: Poisoning Machine Learning Models to Reveal Their
Secrets. In ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2022. 3, 5, 16

[44] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. Ensemble Adversarial Training: Attacks and Defenses. In International Conference

on Learning Representations (ICLR), 2017. 9

[45] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of

Machine Learning Research, 2008. 8

[46] Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
Equivariant CNNs for Digital Pathology. In Medical Image Computing and Computer Assisted

Intervention (MICCAI), pages 210–218. Springer, 2018. 6

[47] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. With Great
Training Comes Great Vulnerability: Practical Attacks against Transfer Learning. In USENIX

Security Symposium (USENIX Security), pages 1281–1297. USENIX, 2018. 8

[48] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the Tails: Yes, You Really
Can Backdoor Federated Learning. In Annual Conference on Neural Information Processing

Systems (NeurIPS). NeurIPS, 2020. 2

[49] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast Is Better Than Free: Revisiting Adversarial
Training. In International Conference on Learning Representations (ICLR), 2020. 9

13

[50] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph Backdoor. In USENIX Security

Symposium (USENIX Security). USENIX, 2021. 1

[51] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy Risk in Machine
Learning: Analyzing the Connection to Overfitting. In IEEE Computer Security Foundations

Symposium (CSF), pages 268–282. IEEE, 2018. 9, 16

[52] Hengtong Zhang, Jing Gao, and Lu Su. Data Poisoning Attacks Against Outcome Interpretations
of Predictive Models. In ACM Conference on Knowledge Discovery and Data Mining (KDD),
pages 2165–2173. ACM, 2021. 4

[53] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang.
Clean-Label Backdoor Attacks on Video Recognition Models. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 14443–144528. IEEE, 2020. 3, 4

[54] Tianhang Zheng and Baochun Li. First-Order Efficient General-Purpose Clean-Label Data
Poisoning. In IEEE Conference on Computer Communications (INFOCOM), pages 1–10. IEEE,
2021. 4

[55] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Transferable Clean-label Poisoning Attacks on Deep Neural Nets. In International Conference

on Machine Learning (ICML), pages 7614–7623. JMLR, 2019. 1, 3

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec-

tion 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will submit
the code, link to data we used, and instructions in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.1.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] We reset the random seed (54321) at the beginning of
building clean models and poisoned models.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the data and

models we used in Section 4.1.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We did not use any new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]

14

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

