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ABSTRACT

The paper provides generalized assessment integration frameworks for multimodel,
multimodal and distributed sets of specialized convolutional neural networks. This
framework involves two processing stages. In the first stage called specialization,
any convolutional neural network learns to predict independently from others. In
the second stage called generalization, an integration network learns to predict
from assessment measures forwarded by specialized networks: in contrast with
the standard learning paradigm based on prediction errors, the integration network
learns from assessment measures being considered as deep and densely connected
network activations. The multimodel framework is built from different representa-
tion functionals associated with different network architectures. The multimodal
framework applies on data with different types considered respectively as inputs
of a series of cloned or distinct networks. The distributed framework corresponds
to local collaborations with assessment exchanges between several specialized
networks: it is such that the aggregation aims at determining relevant joint assess-
ments for mapping a given input to a single or a multiple output category. The
paper also addresses the difficult and open extreme classification issue in image
analysis by proposing a describable texture classification framework. The describ-
able textures dataset is used as a case study thanks to its multiple output category
annotations. Performance obtained in both standard and extreme classification
allows to state that assessment aggregation is a consistent direction for building
generalized artificial intelligence.

1 INTRODUCTION

Artificial Intelligence (AI) is a science in effervescence due to the considerable advances obtained the
last 10 years in connectionist Machine Learning (ML) through deep Convolutional Neural Networks
(CNN). After a decade of fine-tuning CNN hyperparameters, we have now empirically proven that
CNN variants such as Chollet (2017), Szegedy et al. (2015), Huang et al. (2017), Simonyan &
Zisserman (2014), Krizhevsky et al. (2012) are stable and performant in visual object classification.
These CNNs, associated with near optimal weights at large, have some interesting generalization
properties through transfer learning, but their performance strongly depends on the transfer intricacy
and none of them is unquestionably the best. These CNNs will thus be called of Specialized AI (SAI)
type hereafter.

There exist several plausible scenarios for the construction of a Generalized AI (GAI) that will be
unconditionally the best in terms of generalization proof by transfer learning. Indeed, one direction
to seek GAI is expanding the numbers of classes, parameters and learning examples. However, this
raises commensurability issues and such a direction is, furthermore, biologically questionable since
human brain does not only rely on learning by examples, but also on concurrent advice to make
decisions in complex situations.

Another direction in establishing GAI is the consideration of collaborative AI systems, where one can
essentially distinguish presently from the literature, two widely used approaches. The first approach
is associated with Collaborative ML frameworks: they consist in building AIs from (i) data that
are inaccessible entirety in a limited time Huang et al. (2019), (ii) generative adversarial networks
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Chae et al. (2019), (iii) a unified latent space Li et al. (2019), (iv) multivariate data such as those
associated with spatial and spectral dimensions Shen et al. (2019). Foundations of these approaches
can be found in Wolpert (1992).

The second approach relates to Collaborative AI agents: presented as a rule-based request manage-
ment on multi-agent systems that can be supervised by experts as in Vallam et al. (2019), constrained
to data sharing limitations depending on agent reliability Zhao et al. (2020), subject to reinforcement
learning as in Chen et al. (2019) (for multi-agent collaborative exploration) and Pan et al. (2019)
(for finding homogeneous agents) or managed by semantic collaborative inference Gehrmann et al.
(2020).

For collaborative ML frameworks, the goal is to adapt to the distributed availability of data/information
in the construction of a ML system and not the deduction of GAIs by aggregation of features from
complementary SAI. Therefore, the authors do not develop a proof of GAI concept in the sense of
balancing generalization-versus-specialization properties. In addition, the same network1 is shared at
central and terminal nodes and this may limit performance since there exists no universally the most
performant network architecture whatever the data/classification issue at present time.

For collaborative AI agents, agent decisions are counterbalanced by intelligent rules or completed
every now and then when complementary: there is no concern on listening agent ‘narration’ (feature
level, not decision level) and learning deeply, the aggregation parameters of a GAI.

We consider in this paper, aggregative learning of very deep interactions between SAI high level
features. In this learning framework, the GAI is a set of interconnected independent SAIs whose
upstream neurons are Integrated by an AI (IAI). The IAI learns appropriate weights (penalized
integration) to compensate the defaults of any SAI under consideration: the collaboration will be
performed with respect to the minimization of the same classification objective as that of individual
SAI considered so that the GAI will inherit the most important classification capabilities of the
integrated SAIs. Thus, the GAI is expected to be more performant than the SAI at large, which
suffices to prove the generalization property. This framework will be proven efficient both for
establishing the basics of GAIs by aggregation learning and to increase performance on standard and
extreme classification tasks.

The organization of the paper is the following. Section 2 presents the GAI framework proposed and
its related integration principle. The remaining sections provide different GAI designs from this
principle: Section 3 provides multimodel and modal GAI designs by aggregation of SAIs and with
respect to the standard classification issue. Section 4 presents some adaptations of the GAI for the
extreme classification issue in a possibly distributed framework. Section 5 concludes the work.

Table 1: State-of-the-art performance on DTD standard classification issue.
SIFT based methods

SIFT-KCB SIFT-LLC SIFT-BoVW SIFT-VLAD SIFT-IFV
51.08± 1.88 52.89± 1.52 53.55± 1.53 57.34± 1.49 58.59± 2.04

CNN methods
From scratch Transfer

DeepTEN HistRes DEP FV-CNN LFV-CNN
69.60 71.98± 1.23 73.2 73.8± 1.0 75.2± 1.2

2 GENERALIZED ARTIFICIAL INTELLIGENCE BY ASSESSMENT AGGREGATION

Denote NK = {1, 2, . . . ,K}, where K will represent in practice the number of categories in a
standard classification process. A collection S = (Sk)k∈NK of random variables will be called a
stochastic assessment process if:

1The belief is that the network made up of the average of the parameters of several of its clones is a more
robust network than each of the cloned network, given that learning is performed at the clone level Konecny
et al. (2015), Savazzi et al. (2020).
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SAI-3 / DENSENET

IAI / XCEPTION⊕GOOGLENET⊕DENSENET

�
�
�

Figure 1: Multimodel assessment GAI composed by B = 3 SAIs and a single IAI. Training,
validation and testing examples are assumed to pertain to the same observation modality.

• Sk : Ω −→ [0, 1] represents an objective concept or the set of properties defining a single
object or a physical phenomenon (characteristics of a being) and

• for any ω ∈ Ω, we have:
K∑
k=1

Sk(ω) = 1.

The space [0, 1] used in this definition represents the set of admissible probabilities for consideration
as a being with respect to the essential properties defining S. The universal set Ω contains all elements
of a given dataset. For instance, in a multinomial assignment framework, the assessment process is
the step consisting in computing the categorical probabilities for an arbitrary query ω to belong to the
category indexed by k ∈ NK .

One can note that an assessment process is placed in general just before a standard deci-
sion/classification making. This is the case for instance in ML frameworks where softmax probabili-
ties:

pk(ω) = eXk(ω)
/ K∑
k=1

eXk(ω)

associated with the feature variables (Xk)k∈NK are computed prior to mutual-exclusive category
assignation. We will use such softmax probabilities to define several stochastic assessment processes
Λ =

{
S[b] : b = 1, 2, . . . , B

}
from B distinct ML frameworks. The goal will then consist in learning

an intelligent aggregation system from Λ.

In what follows, any assessment process S[b] : ω 7→ S[b](ω) issued from a standard ML based SAI
framework will be called a witness2. Given that several witnesses have observed and interpreted
some intricate scenes from Ω, the aim of this paper is the derivation of GAI (tribunal or wise juror)
by aggregation of witness interpretations. A GAI operating on the countable set Λ of witnesses is a
functional

F(Λ) = F
{
S[b], b = 1, 2, . . . , B

}
2This terminology is chosen, in contrast with ‘agent’, because the decisions of witnesses are not integrated

by the IAI: only their interpretations of the observed scene are integrated.
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where F will be associated with neuro-convolutional frameworks illustrated by Figures 1, 2 and 3
respectively for multimodel, multimodal and distributed aggregation issues. The main difference
of the forthcoming developments, in comparison with standard multi-agent processes, consists in
the construction of an integration CNN (called IAI) inside the GAI and learning how to correct the
probabilities forwarded by SAIs and this, at the IAI level.

Given an observation I ∈ Ω, the assessment process sequence ΛI) issued from our witnesses
(specialized CNNs) is the input (Layer #1) of the IAI network that has in charge the assessment
aggregation. Layer #2 of the IAI has input Λ(I) and it computes, for any b and any d pertaining to
{1, 2, . . . , B}, a Geometric Convergence Matrix (GCM):

Θ[b, d](I) =
√
S[b](I)

√
tS[d](I) = (Θk,`[b, d](I))k,`∈NK

satisfying diag (Θ[b, b](I)) = S[b](I), where diag is the diagonal operator of a matrix. Thus, the
specialized assessment processes are located on the diagonal of Θ[b, b](I) whereas a non-diagonal
term of Θ[b, b](I) represents the weight of an assignation of I to a joint category. Similarly, when
b 6= d, then Θ[b, d](I) represents the weights of a cross-assessment assignation of I either to a
given category when considering diag (Θ[b, d](I)) or to a joint category when focusing on a non-
diagonal element of Θ[b, d](I). The output of layer #2 is thus a double indexed GCM sequence{

(Θk,`[b, d](I))k,`∈NK : 1 6 b, d 6 B
}

that is reshaped as a B2 multichannel image:{
(Θk,`[b′](I))k,`∈NK : 1 6 b′ 6 B2

}
Layer #3 is composed by M convolution operators {hm : m = 1, 2, . . . ,M} that compute a series:

Cm[k, `, b] =
∑
q∈EQ

hm[q]Θk,`[τb− q](I) (1)

associated with MQ learnable linear parameters (hm[q])m,q and stride parameter τ .

Layer #4 is designed to learn neural transfer features through:

Υαm,βm,γm(Cm[k, `, b])

=

{ Cm[k,`,b]−αm
1+e−β(Cm[k,`,b]−γm) if Cm[k, `, b] > αm

0 if Cm[k, `, b] < αm
(2)

where (αm, βm, γm) are 3M non-linear parameters for m = 1, 2, . . . ,M .

We can repeat convolutions and additional non-linear transfer functions, however, the above 3M
non-linearities have accelerated performance in practice and we keep this lightweight CNN de-
sign complemented by three standard final layers being respectively associated with (i) a densely
connected K ×M linear operator:

Zn =

M∑
m=1

K∑
k,`=1

λn,m

B∑
b=1

Υαm,βm,γm (Cm[k, `, b]) (3)

(ii) a softmax operator that computes the new (aggregated) GAI assessment process: Z =
(Zn)n∈NK 7→ S∗ =

(
S∗n = eZn/

∑
n∈NK e

Zn
)
n∈NK

and (iii) a classification layer based on the
cross entropy loss for K mutually exclusive classes when considering the standard3 classification for
instance.

3 ASSESSMENT GAI AND STANDARD CLASSIFICATION

A GAI has to show outstanding performance in standard classification tasks. Standard classification
issues are those associated with mono-class assignment with respect to a small number of output
categories (up to 1 000 classes at present time in ImageNet4 challenge). Since we will use SAIs

3An adaptation of this GAI will also be provided later for the extreme classification issue.
4ImageNet: large-scale database Russakovsky et al. (2015).
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trained on ImageNet, we need an external and complex dataset that does not interact with ImageNet
as, on the contrary, testing can be biased when the SAI has already seen the query during its training to
classify ImageNet. We consider the Describable Textures Dataset5 (DTD) as one of the rare complex
case studies that is not biased by the ImageNet challenge.

For the standard classification problem, performance of SIFT (Scale-Invariant Feature Transform,
Lowe (1999)) based methods given in Cimpoi et al. (2015) are limited to 58%: this confirms that DTD
is a complex case study. In addition, the limited number of training samples and the possible confusion
between classes (superimposition of elementary perceptual fields) make the most performant CNN
associated with a learning from scratch limited to 69% accuracy, see Zhang et al. (2017) (specific
design inspired by CNN and GMM called Texture Encoding Network, DeepTEN). Transfer learning
has shown the most relevant performance for standard classification of DTD, see Table 1, respectively
by using: (i) Histogram based ResNet CNN feature extractor (HistRes) Peeples et al. (2020), (ii)
dual texture and average pooling features based ResNet CNN (DEP) Xue et al. (2018), (iii) Fisher
Vector CNN (FV-CNN) based on dense and local pooling per region and AlexNet Cimpoi et al. (2015)
and (iv) a Local Fisher Vector CNN variant (LFV-CNN) based on VGG Song et al. (2017).

Table 2: Performance of SAIs XCEPTION, GOOGLENET and DENSENET and the GAI given by
Figure 1 on DTD standard classification issue: mean accuracy and the maximum absolute deviation
(number after the symbol ±) of the accuracy sequences are computed over the 10 splits of the DTD.

Accuracies of SAI models and the corresponding GAI
RGB based SAI models GAI (multimodel)

XCEPTION GOOGLENET DENSENET
72± 2 64± 3 67± 4 74± 2

�

SAI-1 / XCEPTION[RGB]

�

SAI-2 / XCEPTION[PSD]
�

SAI-3 / XCEPTION[LSD]

IAI / XCEPTION[RGB⊕PSD⊕LSD]

�
�
�

Figure 2: Multimodal GAI: the upstream part of the network learns to efficiently integrate assessment
processes issued from the downstream SAIs, the latter have been trained with respect to several image
observation modalities. Figure 1

5DTD Cimpoi et al. (2015) is collection of 5640 wild textural images annotated with a series of perceptual
description characteristics. DTD dataset consists of 47 texture categories, with at least 90% of the image surface
covered by the category description characteristics. DTD has been divided in 10 splits, each split being associated
with train, validation and test images.
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3.1 MULTIMODEL ASSESSMENTS AND STANDARD CLASSIFICATION

Figure 1 provides a block diagram summarizing the multimodel framework for assessment integration:
the GAI is composed by a set of downstream CNNs (SAI-1, SAI-2, . . . , SAI-B) and an upstream
integration CNN (IAI). The later aggregates the assessments issued from the B SAIs. For the
sake of illustration, we will assume that B = 3 and that SAI-1, SAI-2 and SAI-3 are respectively
XCEPTION Chollet (2017), GOOGLENET Szegedy et al. (2015) and DENSENET Huang et al. (2017).

The processing steps for training the multimodel GAI on a standard classification paradigm are given
below.

Step 1 (specialization): individual CNNs that are chosen with respect to the diversity criteria on
both their diagram configurations and their layer compositions learn independently to classify the
training database. Transfer learning6 is used here since the training examples are very limited7 for the
DTD dataset. At the end of this step, these CNNs are specialized with respect to the DTD standard
classification issue and thus, they deserve their calling name of SAIs: performance of some SAIs
considered as case studies are given for the DTD test dataset in Table 2. The IAI part of the GAI is
turned off in this learning stage.

Step 2 (learning optimal IAI aggregation): SAIs have now fixed weights and IAI is turned on. Any
training example I is sent to the different SAIs and the output SAI assessment sequence, for instance

Λ1(I) =
{
SXCEPTION(I),SGOOGLENET(I),SDENSENET(I)

}
is transmitted to the IAI for integration learning as highlighted in Figure 1: IAI updates its linear and
nonlinear weights (see equation 1, equation 2 and equation 3) with respect to a cross-entropy loss.

As it can be seen in Table 2, the GAI obtained outperforms any of the corresponding SAI. Moreover,
its performance is on the top-highest reached on DTD and recalled in Table 1 and this, without any
resort to expert based assistance for feature extraction as in FV methods given in Table 1.

Table 3: Performance of SAIs XCEPTIONRGB, XCEPTIONPSD, XCEPTIONLSD and GAI
XCEPTIONRGB⊕PSD⊕LSD (Figure 2) for standard classification: mean accuracy and the maximum
absolute deviation (number after the symbol ±) of the accuracy sequences are computed over the 10
splits of the DTD.

Accuracies on DTD for modality based SAIs and the corresponding GAI
SAI models GAI (multimodal)

XCEPTIONRGB XCEPTIONPSD XCEPTIONLSD
72± 2 71± 3 68± 5 76± 4

3.2 MULTIMODAL ASSESSMENTS AND STANDARD CLASSIFICATION

We now consider the derivation of a GAI adapted to a multimodal image observation frameworks. A
main domain where such a GAI can be relevant is information fusion from different sensors [Option
1]. However, since any transform of an image by using a projective kernel being the creation of
a new observation modality [Option 2], then the results provided here are not limited to standard
sensor information fusion. Furthermore, since annotation is usually intricate when considering other
observations than standard optical modality8, then we will use Option 2 and, more specifically, the
DTD classification issue under transforms over RGB domain. Figure 2 summarizes the multimodal
GAI framework proposed.

We have assumed in Figure 2, a simple case study where the same CNN model is used for analyzing
the observation modalities RGB, PSD and LSD selected: RGB is associated by default to DTD

6The transfer involves learning optimal fully connected layer.
7Otherwise, training from scratch must be preferred.
8Our eyes are naturally configured only for the spectral band corresponding to visible wavelength, the other

bands of the electromagnetic spectrum such as those corresponding to radar or infrared are therefore more
difficult for us to unscramble and annotate.
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whereas PSD and LSD are respectively Power Spectral Density9 and Local Standard Deviation10

transformations on the original RGB DTD. The processing steps for training such a multimodal GAI
are given below.

Step 0 (pre-processing, multimodality concern): this step aims at the generation or reorganization
of the dataset associated with all the observation modalities selected. For the chosen Option 2, it suf-
fices to generate PSD and LSD since the original DTD dataset is provided an annotated RGB dataset.
One can note that this pre-processing step is also required if one chooses Option 1 mentioned above:
the sensor acquisitions performed in optical, radar and infrared modalities for instance have to be
jointly annotated with respect to the same and pre-specified output categories.

Step 1 (specialization): it consists in training any instance of the selected network architecture with
respect to the selected modalities. This step generates modality-specialized SAIs: classification
performance of the SAIs specialized with respect to modalities RGB, PSD and LSD of DTD are
given when using transfer learning and the XCEPTION network in Table 3.

Step 2 (generalization): the IAI (head of the GAI) takes a mutimodal set of assessment processes:

Λ2(IRGB, IPSD, ILSD) ={
SXCEPTIONRGB (IRGB),SXCEPTIONPSD (IPSD),SXCEPTIONLSD (ILSD)

}
issued from the downstream SAIs (that are trained in Step 1) and this IAI learns to aggregate efficiently
the assessment processes from the calculus detailed in Section 2.

Table 3 shows that the GAI obtained outperforms any of the corresponding monomodal SAI. In
addition, one can note, by comparing Table 2 and Table 3 that the multimodal GAI outperforms
the multimodel one. Modality based diversity integrated in the best relevant network architecture
(XCEPTION) is a good catalyst in boosting accuracy. Moreover, we obtain the highest performance
ever reached on DTD, up-to-date.

The next section addresses some additional extensions of the GAI framework when considering a
decentralized learning scheme and extreme classification tasks.

Table 4: Performance of the GAI described by Figure 3 in extreme classification issues associated
with 2 and 3 category interactions. Every GAI involved in this Figure has a form given by Figure 1.

Accuracies of GAIs and DGAIs in extreme classification
multimodel GAIs multimodal DGAI

GAI-1 GAI-2 GAI-3 DGAI-1 DGAI-2
2 characteristics 41.86 48.64 39.59 57.69 55.43

3 characteristics 30.39 31.86 27.45 33.82 32.84

4 DISTRIBUTED GAI AND EXTREME CLASSIFICATION

Extreme classification involves testing multiple assignations to non-necessarily independent cate-
gories. It is associated with a very large number of output categories, for example when seeking
the best representative powerset element, where the powerset applies on the possible combinations
of interacting elementary categories. Since an overcomplete expert annotation with respect to mil-
lions of categories is unthinkable11 in a reasonable delay, extreme classification has to deserve a
learning paradigm that is different from the one used in standard classification: training has to be
complemented by additional rules for testing multiple hypotheses on a given observation.

9Power Spectral Density: Fourier transform of the 2D autocorrelation function. This transform is used
because Fourier transform and its variants are known to be relevant for texture representation.

10Local Standard Deviation: replacing a pixel value by the standard deviation computed with respect to data
included in a small window associated with the neighborhood of this pixel.

11The 1 000 categories of ImageNet are the result of several years of evaluations by a large community of
experts and users.
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�

GAI-1[PSD]

�

GAI-2[RGB]
�

GAI-3[LSD]

DIAI-2 / GAI-2⊕GAI-3

DIAI-1 / GAI-1⊕GAI-2
�

�

�

�

Figure 3: Distributed multimodal system with cooperative GAIs. DGAI = (DGAI-1, DGAI-2), where
DGAI-1 = (DIAI-1, GAI-1, GAI-2) and DGAI-2 = (DIAI-2, GAI-2, GAI-3). Any GAI has the form
XCEPTION ⊕ GOOGLENET ⊕ DENSENET given in Figure 1.

4.1 ASSESSMENT AND DISTRIBUTED GAIS : EXTREME CLASSIFICATION

The extreme classification paradigm developed here is incremental from the standard classification
described in Section 3. We consider first a monomodal multimodel GAI defined as in Section 3.1
and after its training stage, thus with fixed optimal weights for both its IAI and SAIs. In addition,
we consider the case of a multinomodal distributed set of GAIs (DGAI) defined as in Section 3.2,
any of these GAI operating on multimodel SAIs as in Section 3.1. Figure 3 illustrates the distributed
integration sub-network (DIAI for Distributed IAI) associated with this system. Any DIAI is assumed
to have the same design as an IAI (see layer composition given by Section 2), but a DIAI aggregates
assessment processes that directly issue from local multimodel GAI.

The assessment delivered by a local DGAI for considering ν as pertaining to the category k is a
probability S∗k(ν). Let Tk denotes the union of the training and validation examples associated with
the k-th label in the standard mono-label classification issue described in Section 3. Let Vk ⊂ Tk be
the set of examples associated with dominant12 assessment k that are correctly classified by the GAI
in this standard classification issue.

Define the admissibility bound for being considered by a GAI as an element of the category k:

A∗k = min
ν
{S∗k(ν) : ν ∈ Vk} (4)

Note that Ak represents the assessment of a correct classification for the training/validation example
having the weakest SAI features. The multi-output categorization is hereafter related to multiple
decision testing, where ν is questioned independently to belong to any of the different categories
indexed by NK from the test:

d(ν) =

(
{S∗k(ν) : k ∈ NK}

1
≷
0
{A∗k : k ∈ NK}

)
(5)

where ≷ is the greater or less than statistical assignment operator. The comparison is element wise
and d(ν) is a set of carnality K. For instance, d = (1, 0, 0, 0, . . . , 0) refers to category #1 assignment
solely, whereas d = (1, 1, 0, 0, . . . , 0) refers to both categories #1 and #2 assignment.

12The k-th assessment is a dominant one if S∗
k(ν) > S∗

` (ν) for every ` such that 1 6 ` 6 K.
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The metric proposed for performance evaluation is associated with the number of positions at which
the set of query’s decisions d(ν) corresponds to the true annotation sequence d†(ν), relatively to the
true number of the active categories:

a(ν) =

∑
m dm(ν)⊗ d†m(ν)∑

m d
†
m(ν)

where ⊗ is the AND operator. Accuracy is then an average over a(ν) for the different ν tested.

4.2 GAI AND DGAI EXTREME CLASSIFICATION: THE DTD CASE STUDY

If we consider the 47 texture classes associated with DTD in the standard classification issue
(mutually exclusive categories, see Section 3), then the corresponding extreme classification for
seeking all possible interacting elementary phenomena on a given texture observation encompasses∑47
k=1

(
47
k

)
categories, thus more than 1014 categories: such a multiclass annotation by human

experts is highly demanding since one has to decide if a query texture I0 pertains to K0 subcategories
with 1 6 K0 6 47 and also point out these K0 categories. At large, this amounts to admit that
there are multiple correct nested decisions that can allow the description of a given texture. An
overcomplete annotation to decide which texture pertains exactly to one of the (a) 47 mutually
exclusive elementary characteristics, (b) 1 081 categories corresponding to interactions between 2
elementary characteristics (superimposition on the same observation), (c) 16 215 categories for 3
characteristics in interaction, (d) 178 365 categories for exactly 4 characteristics in interaction, etc.,
is naturally difficult and the notion of correct answers will remain imprecise in general.

Specifically, for DTD, ground truth annotation is available for 821, 68 and 5 examples having
respectively 2, 3 and 4 characteristics. All examples possessing 4 characteristics, as well as 600
among examples possessing 2 characteristics, are transferred to the GAI training dataset V in the
category corresponding to their dominant characteristics. Testing GAI/DGAI concerns the remaining
221 double category and 68 triple category textures. Table 4 presents accuracies of the 3 GAIs and
the 2 DGAI presented in Figure 3 thanks to the metrics defined in Section 4.1, respectively for 2 and
3 correct answers.

5 CONCLUSION

The paper has provided assessment integration frameworks for multimodel, multimodal and dis-
tributed convolutional neural network frameworks. It has also addressed the difficult and open
extreme classification issue in image analysis. The DTD dataset has been used as a case study thanks
to its multiple output category annotations. Performance obtained in both standard and extreme clas-
sification allows to state that assessment aggregation is a consistent direction for building generalized
artificial intelligence.

The paper has considered CNNs as case study of the generalization by learning from assessment
processes. It is worth emphasizing that the generalization framework is not limited to CNNs. Indeed,
assessment measures can also be requested/provided in an agent/expert-based learning system where
one focuses, not on experts’ decision, but on experts’ interpretation of the facts. The latter are expected
to lead to a more efficient aggregation-learning because expert assessments and interpretations of a
complex scene is a less biased process than a final expert decision on the same scene.
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