
Asynchronous Local-SGD Training for Language Modeling

Bo Liu 1 Rachita Chhaparia 2 Arthur Douillard 2 Satyen Kale 2 Andrei Alex Rusu 2 Jiajun Shen 2

Arthur Szlam 2 MarcAurelio Ranzato 2

Abstract
Local stochastic gradient descent (Local-SGD),
also referred to as federated averaging, is an ap-
proach to distributed optimization where each de-
vice performs more than one SGD update per
communication. This work presents an empiri-
cal study of asynchronous Local-SGD for train-
ing language models; that is, each worker up-
dates the global parameters as soon as it has
finished its SGD steps. We conduct a compre-
hensive investigation by examining how worker
hardware heterogeneity, model size, number of
workers, and optimizer could impact the learning
performance. We find that with naive implementa-
tions, asynchronous Local-SGD takes more itera-
tions to converge than its synchronous counterpart
despite updating the (global) model parameters
more frequently. We identify momentum accel-
eration on the global parameters when worker
gradients are stale as a key challenge. We pro-
pose a novel method that utilizes a delayed Nes-
terov momentum update and adjusts the workers’
local training steps based on their computation
speed. This approach, evaluated with models up
to 150M parameters on the C4 dataset, matches
the performance of synchronous Local-SGD in
terms of perplexity per update step, and signif-
icantly surpasses it in terms of wall clock time.
Code is available at https://github.com/
google-deepmind/asyncdiloco.

1. Introduction
Large language models (LLMs) have revolutionized many
applications, transforming the way machines interact with
human language. The cornerstone of this revolution is train-
ing these models at massive scale. To manage such large-
scale training in reasonable amounts of time, it has been

1The University of Texas at Austin 2Google DeepMind. Corre-
spondence to: Bo Liu <bliu@cs.utexas.edu>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

Training	starts Training	ends

Sync.

Async.

Time

Time

Model	synchronization
…

…

Figure 1. Illustration of async. v.s. sync. training with 2 workers
(in blue and red). Sync. training suffers from the straggler effect,
while async. training reduces the idling time of the fast worker.

necessary to distribute computations across multiple devices.
However, the standard approaches to this distributed training
uses co-located devices with fast interconnects.

One might hope to be able to effectively harness a broader
range of computational resources, perhaps geographically
distant from each other, to build even more powerful large
models. However, utilizing numerous distant devices faces
a significant hurdle: communication latency. When devices
focus solely on computing gradients before sending them
back to a central server, communication time may exceed
computation time, creating an efficiency bottleneck.

Local Stochastic Gradient Descent (Local-SGD) is a collec-
tion of optimization methods that can reduce communication
bottlenecks.1 These methods involve each device perform-
ing multiple local gradient steps before syncing their pa-
rameter updates with a parameter server. While Local-SGD
enhances training efficiency by reducing communication
frequency, it can suffer from the straggler effect caused
by heterogeneous devices. For instance, faster devices are
idle waiting for slower ones to catch up, undermining the
overall efficiency of the system. Moreover, all devices are
forced to communicate at the same time requiring high band-
width connection with the parameter server. Asynchronous
Local-SGD presents a more viable solution (illustrated in
Figure 1), as it allows the server to update the model as soon
as the updates of a worker are available, thereby enhancing
computational utilization and minimizing communication
bandwidth requirements.

1The term Local-SGD, sometimes also known as Federated
Average (FedAvg), is used here to emphasize its roots in distributed
optimization, where users have control over data allocation to
different workers.

1

https://github.com/google-deepmind/asyncdiloco
https://github.com/google-deepmind/asyncdiloco

Submission and Formatting Instructions for ICML 2024

20k 22k 24k

Figure 2. Comparative evaluation of language models using sync. and async. Local-SGD methods with 4 heterogeneous workers on a
20M parameter model. The state-of-the-art sync. Local-SGD method, DiLoCo (Douillard et al., 2023), employs AdamW and Nesterov
momentum as the worker-side and server-side optimizers, respectively. This optimizer combination remains the strongest for async.
Local-SGD training (See Figure 5), yet underperforms DiLoCo significantly. By integrating Delayed Nesterov (DN) (Algorithm 2) for
outer optimization and Dynamic Local Updates (DyLU) (Section 5), we significantly bridge the performance gap in terms of perplexity
versus updates between sync. and async. training in language modeling. Moreover, the proposed method significantly surpasses DiLoCo
in terms of perplexity versus wall clock time.

In this study, we explore the viability of asynchronously
training LLMs using Local-SGD. We expand upon previous
works that have attempted to alternate steps on subsets of
workers or randomly drop certain subset of workers during
synchronous Local-SGD (Ryabinin et al., 2021; Douillard
et al., 2023). The main content is structured into three parts:

1. Framework (Section 3). The first part introduces our
high-level design for the asynchronous training framework.
We discuss how each worker determines which data shard
to train on, for how many steps, with what learning rates,
and how the server updates models asynchronously.

2. Optimization Challenge (Section 4). In the second
part, we conduct an empirical study of various existing opti-
mization strategies suitable for asynchronous Local-SGD.
This includes both worker-side optimization (inner optimiza-
tion) and server-side optimization (outer optimization). We
uncover a key challenge in utilizing momentum effectively.
Notably, while adaptive momentum methods accelerate con-
vergence of both inner and outer optimizations, their efficacy
in asynchronous Local-SGD is comparatively reduced when
both optimizations employ momentum techniques, when
contrasted with the synchronous implementation.

3. Proposed Solutions (Section 5). We introduce two
simple and effective techniques: the Delayed Nesterov mo-
mentum update (DN) and Dynamic Local Updates (DyLU).
These techniques, when combined and evaluated on train-
ing language model, allow asynchronous Local-SGD to
approach synchronous Local-SGD in terms of perplexity
versus the total number of local updates, and further improve

asynchronous Local-SGD vs. synchronous Local-SGD in
terms of perplexity versus wall-clock (Figure 2).

2. Background
In this study, we focus on the distributed optimization of
shared model parameters θ across k data shards, denoted as
D = {D1, . . . ,Dk}, with k workers.2 The primary goal is
described by the following equation:

min
θ

k∑
i=1

|Di|∑
j |Dj |

Ex∼Di

[
ℓ(x; θ)

]
, (1)

where ℓ(·; θ) represents the loss function (for instance, cross-
entropy loss for next token prediction in language modeling),
and | · | indicates the set size.

We extend the definition of Local-SGD in this work to in-
clude not just the original Local-SGD method, but also its
variants that incorporate advanced optimization techniques.
We particularly focus on DiLoCo (Douillard et al., 2023),
which sets the standard for synchronous Local-SGD in lan-
guage modeling. DiLoCo’s methodology is detailed in Al-
gorithm 3. Each worker i performs H local updates using
an inner optimizer on their data shard Di before sending the
parameter change (pseudo-gradient) δ(t)i = θ(t−1) − θ

(t)
i

back to the server. The server then computes the aggregated
outer gradient ∆(t) = 1

k

∑k
i=1 δ

(t)
i , and applies an outer op-

2We assume the number of workers (k) equals the number of
data shards, though our methods are also applicable when there
are fewer workers than data shards.

2

Submission and Formatting Instructions for ICML 2024

timizer with ∆(t) to update θ. A key insight from DiLoCo
is the optimal use of AdamW and Nesterov Momentum
as the best inner and outer optimizers, respectively.

3. Async. Local-SGD Framework
This section outlines the asynchronous Local-SGD pipeline
design, where we assume a central server controls all work-
ers and asynchronously aggregates their updates.

Data Shard Sampling Unlike in the federated learning
setting where each device is attached to its own data, in
distributed optimization, the user has the right to choose
which data shard is assigned to which worker, even dynam-
ically. To balance the learning progress on different data
shards (as workers are heterogeneous), whenever a worker
is ready to start a new local optimization round, we sample
a data shard inversely proportional to its “learning progress”.
Specifically, define ni as the number of learned data points
in Di, then we sample a shard isampled according to:

isampled ∼ p,

where pi ∝ max(
|Di|∑
j |Dj |

− ni∑
j nj

, 0).
(2)

In other words, we sample a data shard only when it is
“under-sampled” (i.e., ni∑

j nj
≤ |Di|∑

j |Dj |). The degree to
which a shard is under-sampled determines its sampling
rate. By doing so, we ensure that the data shard with slower
progress is more likely to be sampled for training, therefore
balancing the learning progress across shards.

Learning Rate Scheduling In contrast to synchronous
training methods like DiLoCo, asynchronous training can
lead to uneven progress across different data shards, espe-
cially when workers are allowed varying numbers of training
steps. This raises the question of how to effectively schedule
learning rates. In our approach we assign each data shard
its own learning rate schedule. Specifically, we implement a
linear warmup combined with a cosine learning rate decay,
where T represents the target total training iterations for
each data shard:

ηt =

tηmax/twarmup t < twarmup

ηmin + 0.5(ηmax − ηmin)(
1 + cos

(t−twarmup

T−twarmup
π
))

t ≥ twarmup.

(3)

In practice, asynchronous training may conclude with dif-
ferent final iteration counts (tend) for each data shard. Since
we cannot predetermine tend due to the unpredictability of
asynchrony, we set the minimum learning rate (ηmin) to a
small positive value. This ensures continued progress even
if t exceeds T . Additionally, we adjust T−twarmup to be non-
negative and ensure that the ratio t−twarmup

T−twarmup
remains within

the range of [0, 1]. This helps maintain effective learning
rate adjustments throughout the training process.

Grace Period for Model Synchronization In asyn-
chronous training, the completion time of each worker’s
tasks can vary. For example, if worker B completes training
shortly after worker A, it might be beneficial for A to wait
briefly until the server processes updates from both work-
ers before receiving the updated model for its next training
task. However, this waiting period should be minimal and
occur only when necessary. Specifically, if no other worker
completes its task within the grace period while worker A is
synchronizing with the server’s model, A should promptly
commence its new training task using the server’s current
model. For a visual representation of this process, please
refer to Figure 3.

Grace	period Time

1st	sync.

Model	synchronization

A B C

Training	ends

Figure 3. We consecutively synchronize the update from B after
we synchronize A because B finishes training after A but before
the end of the grace period. So A and B use the same server model
to start new training jobs, while C will start its own grace period.

Asynchronous Task Scheduling In Algorithm 1, we
present the asynchronous task scheduling pipeline. Through-
out the algorithm, we use τ to denote the actual wall clock
time and t to denote model updates. In line 1-4, we initialize
the model, total local updates tlocal, and the list of workers
W and the completed workersWcompleted. In line 5, we start
the first training job for all workers with the initial model
parameter θ(0). Note that the train() function implements
the data sampling technique and performs the learning rate
scheduling mentioned before. In line 6, we reset the starting
time of the grace period τsync to∞. This is because we want
to synchronize with a worker only when its completion time
is within τsync + τgrace. The main asynchronous Local-SGD
training loop is provided in line 6-19. Within the loop, we
first attempt to get a completed worker w (line 7). We re-
trieve the earliest completed worker that we have not yet
processed yet, as long as its completion time is still within
the grace period (e.g., w.completed time ≤ τsync + τgrace).
If no such workers exist, get worker() will return null. In
line 10-15 where such a worker w is found, we synchronize
its update with the server model θ. In line 17-20 when no
such workers are found, we assign new training jobs for all
completed workers and empty the list of completed workers.
For the detailed pseudocode of the train() and get worker()
functions, please refer to Appendix E. In practice, for the
sake of reproducibility of research, we implement a deter-
mininistic version of Algorithm 1 with faked training time
based on real-world device statistics. We validate the cor-

3

Submission and Formatting Instructions for ICML 2024

Algorithm 1 Async. Local-SGD Task Scheduling.

1: Require: Initial pretrained model θ(0)

2: Require: k workers
3: Require: Grace period τgrace
4: Require: Total local updates tmax
5: tlocal = 0
6: θ ← θ(0)

7: W = [init worker() for i in [k]]
8: Wcompleted = []
9: train(W, θ) // the initial round of training

10: τsync =∞ // start of the grace period
11: while tlocal < tmax do
12: // get a completed worker
13: w = get worker(W, τgrace, τsync)
14: if w exists then
15: // synchronize the update with server
16: τsync = min(τsync, w.completed time)
17: θ ← sync(θ, w.update)
18: Wcompleted.add(w)
19: tlocal += w.local updates
20: else
21: // assign jobs for completed workers
22: τsync =∞
23: train(Wcompleted, θ)
24: Wcompleted = []
25: end if
26: end while

rectness of the training pipeline by simulating synchronous
updates using the asynchronous framework.

4. Optimization Challenge
Effect of InnerOpt + OuterOpt To study how op-
timization affects the language modeling performance in
asynchronous Local-SGD, we first experiment with dif-
ferent combinations of the inner and outer optimizers
(we use A+B to denote A and B as the inner and outer
optimizer, respectively): SGD+Nesterov, SGD+Adam,
AdamW+SGD, AdamW+SGD Momentum, AdamW+Adam,
AdamW+Nesterov. The hyperparameters for each combi-
nation are tuned separately, for AdamW as InnerOpt we
kept the default values. We assume there are k = 4 workers,
whose device speed is shown in Figure 4. Then we apply
asynchronous Local-SGD finetuning on a 20M-parameter
language model for 64,000 steps per worker (256,000 lo-
cal steps in total), where the initial model checkpoint was
pretrained for 24,000 steps with Adam without distributed
training. We choose finetuning with Local-SGD as it has
been observed that Local-SGD style methods work well in
finetuning but is less efficient from scratch (Lin et al., 2018),
though others have also observed that Local-SGD works
well even for training from scratch (Douillard et al., 2023).

The learning rate scheduling and task scheduling follow the
procedures described in Section 3. We use inner steps = 50
across all workers in all experiments by default. The result
is shown in Figure 5.

Figure 4. Steps per second for each device.

Figure 5. Performance of using different combinations of inner and
outer optimizers for asynchronous Local-SGD training on a 20M
language model with 4 workers.

Observation The analysis reveals that combining AdamW
as the inner optimizer with Nesterov momentum as the
outer optimizer yields the best results, aligning with find-
ings from synchronous training, like the DiLoCo method.
Notably, using AdamW as the outer optimizer is less effec-
tive. This may be because AdamW, derived from Adam,
introduces a normalization effect, which can be counter-
productive in Local-SGD where pseudo-gradients tend to
be larger than true gradients, potentially slowing conver-
gence. When AdamW is used in the inner optimization, SGD,
SGD Momentum, and Nesterov show comparable per-
formance. However, Nesterov not only stabilizes the
learning curve but also slightly improves final performance.
This can be attributed to its update mechanism (here we
abuse the notation and let t denote tserver):

mt+1 = βmt + gt

θt+1 = θt − ϵ
(
β2mt + (1 + β)gt

)
,

(4)

where ϵ is the learning rate, mt is the momentum, gt the
gradient at time t, and β ∈ (0, 1) the decay factor. The
key difference between Nesterov and SGD Momentum
is in how Nesterov adjusts the weightings, reducing the

4

Submission and Formatting Instructions for ICML 2024

momentum component (β2 instead of β) and increasing the
gradient component (1 + β instead of 1). This suggests that
momentum plays a crucial yet intricate role in Local-SGD.

Momentum in the OuterOpt To delve deeper into the
momentum term’s impact on the outer optimizer, we con-
ducted comparative analyses between AdamW+SGD and
AdamW+Nesterov under both synchronous and asyn-
chronous training settings. These experiments were car-
ried out under identical conditions as described earlier. The
results are reported in Figure 6.

Figure 6. Comparison of AdamW+SGD and AdamW+Nesterov
in both synchronous and asynchronous Local-SGD training.

Observation The figure clearly shows that in asynchronous
Local-SGD, AdamW+SGD, which lacks a momentum term,
leads to better final perplexity and learning efficiency
than its synchronous counterpart. However, incorporating
Nesterov momentum into the OuterOpt significantly
boosts the performance of synchronous Local-SGD, out-
performing the asynchronous version. It’s noteworthy that
asynchronous AdamW+Nesterov remains the best per-
former across all tested combinations of inner and outer
optimizers (as seen in Figure 5). This observation indicates
that while momentum is beneficial in asynchronous Local-
SGD for language modeling, its effect is more pronounced
in synchronous settings.

Is Staleness the Cause? We further apply the asyn-
chronous DiLoCo algorithm with homogeneous devices.
By doing so, we maximally diminish the staled gradient
problem in Local-SGD, which refers to the fact that we are
using an outdated outer gradient to update the server model.
In particular, this means if we have k workers, all of them
will return the computed outer gradient back to the server
at the same time. Therefore, the only staleness comes from
the fact that we are sequentially applying the individual
updates instead of aggregating them together and apply it
once. Results are summarized in Figure 7.

Observation Figure 7 reveals a notable finding: even with
homogeneity among workers, asynchronous DiLoCo sig-

Figure 7. Async. DiLoCo with heterogeneous devices.

nificantly lags behind its synchronous counterpart. This
suggests that the inherent staleness from sequentially apply-
ing simultaneous updates leads to considerable performance
drops. To elucidate this effect, let’s consider a scenario
with k = 4 workers providing identical outer gradients
(denoted as g). The standard Nesterov momentum update
is outlined in Equation (4). In a sequential application of
pseudo-gradients:

mt+1 = β4mt + (1 + β + β2 + β3)g

θt+1 = θt − ϵ
(
(4 + 4β + 3β2 + 2β3 + β4)g

+ β2(1 + β + β2 + β3)mt

)
.

(5)

From this, we observe that sequential application results
in a more rapidly decaying momentum term but amplifies
the actual change in parameter θ. Consequently, a higher β
maintains more recent momentum but may lead to greater
changes in parameters, and vice versa. Note this imbalance
cannot be easily removed by reducing the learning rate.

Baselines We consider several synchronous baselines
from the literature, and their naive application to an asyn-
chronous setting: 1) Finetune 1 worker (4xbatch): This
involves finetuning a single worker with a larger batch size,
equating to synchronous SGD. 2) DiLoCo (Douillard et al.,
2023): This synchronous Local-SGD method combines
AdamW with Nesterov. 3) Async. DiLoCo: The asyn-
chronous version of DiLoCo.

Existing Fixes We investigated potential fixes from the
asynchronous Local-SGD literature to address observed
challenges. The following methods were considered: 1)
Async. DiLoCo + Poly (Xie et al., 2019): Extends Async.
DiLoCo by downweighting the pseudo-gradient with g ←
(1+ staleness)−0.5g. 2) Async. DiLoCo + PolyThres: Adds
a threshold to discard updates with staleness beyond 10.
3) Async. DiLoCo + Delay Comp. (Zheng et al., 2017):
Introduces delay compensation (Delay Comp.) to approxi-
mate true pseudo-gradients. Denote the gradient function

5

Submission and Formatting Instructions for ICML 2024

at θ as g(θ), then the main idea of delay compensation is
to approximate the true gradient g(θt) by a stale gradient
g(θt′) (t′ < t) with the first-order Taylor approximation,
e.g., g(θt) ≈ g(θt′) + ∇g(θt′)(θt − θt′). In practice, the
Hessian ∇g(θt′) is approximated by diagonalized gradi-
ent outer product, e.g., ∇g(θt′) ≈ λg(θt′)⊙ g(θt′), where
λ ∈ R+ is a hyperparameter. In our setting, we apply the
delay compensation technique to pseudogradients instead
of gradients. 4) Async. Buffer: Accumulates and averages
all gradients in a First-In, First-Out fashion before applying
Nesterov updates; a variation of the original FedBuff al-
gorithm (Nguyen et al., 2022), using AdamW+Nesterov.
The results are provided in Figure 8.

Figure 8. Comparison of different asynchronous Local-SGD ap-
proaches. Poly, PolyThres, and Delay Comp. barely improve
the async. Local-SGD performance. Async. Buffer significantly
closes the gap between sync. and async. training, while introduc-
ing instability in early stage of training.
Observation Polynomial discounting of the pseudo-
gradient shows marginal benefits. Thresholding and delay
compensation techniques don’t offer much improvements.
Again, the fact that delay compensation is not working well
points out the difference between asynchronous SGD and
asynchronous Local-SGD. The Async. Buffer method ex-
cels at convergence but exhibits instability early in training.
Crucially, none of the methods match the performance of
the synchronous DiLoCo baseline.

A Minimal Toy Example To facilitate future research
and expedite the prototyping of novel ideas, we provide a
minimal toy example (a one-file Python code), that repro-
duces the optimization challenge observed in asynchronous
Local-SGD (refer to Appendix C)

5. Proposed Solutions
In addressing the optimization challenges outlined in Sec-
tion 4, we developed two strategies.

Delayed Nesterov Update Notably, the Async. Buffer
method demonstrated promising performance (as shown

Algorithm 2 Delayed Nesterov Update.
1: Require: Initial model parameter θ0
2: Require: Momentum decay β ∈ (0, 1)
3: Require: Momentum activation c ∈ [0, 1/N]
4: // default to c = 0
5: Require: Buffer size N
6: t = 0
7: m0 = 0 // momentum
8: ∆ = 0 // aggregated gradient
9: while not finished do

10: Receive the pseudo-gradient gt
11: // sync. step in Alg. 1.
12: ∆← ∆+ gt
13: if (t+ 1) % N == 0 then
14: mt+1 ← βmt +∆/N
15: θt+1 ← θt − ϵ

(
(1− cN + c)βmt+1 + gt/N

)
16: ∆ = 0
17: else
18: mt+1 ← mt // delay momentum update
19: θt+1 ← θt − ϵ

(
cβmt+1 + gt/N

)
20: end if
21: t← t+ 1
22: end while

in Figure 8). Additionally, our analysis revealed that asyn-
chronous training with AdamW+SGD, sans outer momentum,
outperforms synchronous methods (Figure 5). Based on
these insights, we propose the Delayed Nesterov (DN) strat-
egy, which represents the sync() function in Algorithm 1.
This approach involves using the Nesterov update inter-
mittently—every N server updates. Between Nesterov
updates, we aggregate pseudo-gradients in a buffer ∆ and
update the model parameters using gradient descent (or gra-
dient descent plus a small fraction of the old momentum).
To balance gradient and momentum-based descent, we in-
troduce a parameter c ∈ [0, 1/N]. A c value of 0 indicates
pure gradient descent between Nesterov updates, while
c equal to 1 evenly distributes the momentum term over N
updates. The specifics of this algorithm are detailed in Al-
gorithm 2. Unlike the Async. Buffer (Nguyen et al., 2022),
which updates model parameters only once in N periods,
the Delayed Nesterov continuously updates using gradients,
incorporating a fraction of the old momentum, and updates
the momentum term once every N server updates.

Dynamic Local Updates The Delayed Nesterov approach
addresses the momentum challenge in the OuterOpt by
buffering pseudo-gradients and strategically delaying mo-
mentum updates. An alternative perspective considers syn-
chronous training as a solution, where pseudo-gradients
from all workers are synchronized. However, the diversity
in device capabilities often hinders simultaneous pseudo-
gradient returns, if each worker executes the same number

6

Submission and Formatting Instructions for ICML 2024

of local training steps. A viable workaround involves cus-
tomizing local training steps (e.g., w.steps) based on the
processing speed of each device. In particular, denote v(w)
as the training speed (in terms of steps per second) for
worker w, we can compute a worker’s desired training steps
as:

w.step =

⌊
v(w)

maxw′∈W v(w′)
H

⌋
, (6)

where H denotes the number of local training steps the
fastest worker runs and ⌊x⌋ denotes the largest integer not
greater than x.3 We name this approach the Dynamic Local
Updates (DyLU). This adjustment allows slower workers to
execute fewer steps, aligning the completion times across
different workers. Incorporating a grace period for model
synchronization in this setup further reduces the impact of
stale gradients, improving overall performance.

6. Experiments
This section details experiments conducted to assess the
efficacy of our two proposed methods, Delayed Nesterov
(DN) and Dynamic Local Updates (DyLU). Additionally,
ablation studies explore the effectiveness of these methods
as we vary the number of workers and model sizes.

Evaluating Delayed Nesterov (DN) + Dynamic Local
Updates (DyLU) Figure 2 compares async. Local-SGD
with DN+DyLU against baselines such as single worker
finetuning and DiLoCo, using the same setup as in Figure 8.

Observation The results demonstrate that DN combined
with DyLU significantly reduces perplexity, surpassing the
synchronous DiLoCo’s performance over updates. Addi-
tionally, DN+DyLU outperforms in terms of time efficiency,
avoiding delays from slower workers.

Assessing Different Levels of Worker Heterogeneity
We examine how both the proposed DN+DyLU method
and vanilla asynchronous DiLoCo fare under varying de-
grees of worker device heterogeneity, as shown in Figure 9
(perplexity curve) and Table 1 (final perplexity).

Table 1. Varying the level of worker heterogeneity (top-left, top-
right, bottom-left, and bottom-right of Figure 9 correspond to
no, slight, moderate, and very, respectively).
Level of heterogeneity no slight moderate very

Pretrained (24K) 61.64 61.64 61.64 61.64
Finetune (4× batch size) 42.47 42.47 42.47 42.47
DiLoCo (Douillard et al., 2023) 41.35 41.35 41.35 41.35

Async. DiLoCo 44.27 44.38 44.29 44.27
Async. DN + DyLU (ours) 41.27 41.27 41.09 41.13

3We implicitly assume the device speeds are given. Otherwise,
it is straightforward to estimate the device speed empirically.

Observation DN+DyLU consistently excels across all het-
erogeneity levels.4 Interestingly, even with homogeneous
devices, vanilla asynchronous DiLoCo struggles, suggesting
that the issue partly lies in the sequential application of pseu-
dogradients. This underscores the importance of delayed
momentum updates. Additionally, a periodic oscillation
in performance is observed in certain device groupings,
further highlighting the lack of robustness of the original
asynchronous algorithm.

Ablation with Different Numbers of Workers We ap-
ply DN+DyLU while varying the number of workers (4, 8,
16) using a 20M model, with results summarized in Fig-
ure 10 (perplexity curve) and Table 2 (final perplexity).

Table 2. Varying the number of workers.

Number of workers k 4 8 16

Pretrained (24K) 61.64 61.64 61.64
Finetune (k× batch size) 42.47 41.28 40.60
DiLoCo (Douillard et al., 2023) 41.35 41.23 41.25

Async. DiLoCo 44.27 44.23 44.23
Async. DN + DyLU (ours) 41.13 41.02 40.98

Observation As the number of workers increases, the ben-
efit of Local-SGD training diminishes. Notably, with 16
workers, single worker finetuning (16x batch size) shows
the best performance over updates. Yet, DN+DyLU closely
aligns with synchronous DiLoCo in performance, demon-
strating its potential as a DiLoCo alternative in heteroge-
neous settings.

Ablation with Different Model Sizes Lastly, we apply
DN+DyLU to models of varying sizes (20M, 60M, 150M),
with results summarized in Figure 11 (perplexity curve) and
Table 3 (final perplexity).

Table 3. Varying the model sizes.

Model size 20M 60M 150M

Pretrained (24K) 61.64 30.19 22.80
Finetune (4x batch size) 42.47 24.80 17.47
DiLoCo (Douillard et al., 2023) 41.35 24.55 17.23

Async. DiLoCo 44.27 25.64 18.08
Async. DN + DyLU (ours) 41.13 24.53 17.26

Observation Both synchronous and asynchronous Local-
SGD methods outperform the approach of finetuning a sin-
gle worker with an increased batch size. Notably, this ad-
vantage becomes more pronounced during the later stages
of convergence, aligning with findings from previous re-
search that highlight Local-SGD’s superior generalization
capabilities (Gu et al., 2023). Additionally, our proposed

4We notice that Async. DN+DyLU performs slightly better
than DiLoCo when there is no heterogeneity, this is due to the
numerical error, as the training curves match almost perfectly.

7

Submission and Formatting Instructions for ICML 2024

DN+DyLU method demonstrates consistent efficacy across
various model sizes. It’s important to note that the perfor-
mance disparity between synchronous and asynchronous
DiLoCo does not diminish even as the model size increases.

Ablation with Different c We apply c ∈ {0, 0.1} in
Async. DN+DyLU with varying k (4, 8, 16) and model
sizes (20M, 60M, 150M), with the 4 “very” heterogeneous
workers. This is because when the level of heterogeneity is
small, using different c will have smaller difference (e.g.,
when there is no heterogeneity, any c results in the same
algorithm). Results are summarized in Table 4.

Table 4. Varying the c ∈ {0, 0.1} in Algorithm 2.

Number of workers k 4 8 16

Async. DN + DyLU (c = 0) 41.13 41.02 40.98
Async. DN + DyLU (c = 0.1) 41.16 40.93 41.04

Model size 20M 60M 150M

Async. DN + DyLU (c = 0) 41.13 24.53 17.26
Async. DN + DyLU (c = 0.1) 41.16 24.69 17.27

Observation Empirically, we observe no significant dif-
ference between c = 0 and c = 0.1, indicating that adding
slight momentum at intermediate steps does not help too
much. As a result, we set c = 0 as the default value in
Algorithm 2, which corresponds to performing SGD up-
dates between two consecutive Nesterov updates. Note that
setting the value of c does not introduce any overhead to the
overall algorithm.

7. Related Work
This section provides a concise overview of the literature
on federated learning and local-SGD style distributed opti-
mization, particularly focusing on the asynchronous settings.

Local-SGD and Distributed Optimization Local-SGD
is a specific distributed optimization technique designed to
reduce communication frequency (Stich, 2018; Zhang et al.,
2016; Bijral et al., 2016; McDonald et al., 2010; Coppola,
2015; Zinkevich et al., 2010). The core principle of Local-
SGD is to let each worker execute several local training
iterations before engaging in global synchronization. This
technique was later applied to the federated learning setting,
leading to the development of the FedAvg method (McMa-
han et al., 2017), which aims to reduce communication over-
head. Unlike Local-SGD, federated learning also addresses
user privacy issues and typically involves heterogeneous
devices. To further minimize communication overhead, Fe-
dOpt integrates adaptive optimization methods like SGD
momentum and Adam (Reddi et al., 2020). However, as
worker heterogeneity increases, the convergence rate often
deteriorates. Methods like SCAFFOLD (Karimireddy et al.,
2020) and MIME (Karimireddy et al., 2021) are introduced

to adapt these methods for heterogeneous environments.

Asynchronous Training Asynchronous training was de-
veloped to mitigate the “straggler effect” observed in syn-
chronous distributed optimization, where learning efficiency
is bottlenecked by the slowest worker (Koh et al., 2006;
Recht et al., 2011; Dean et al., 2012; Lian et al., 2015;
2018; Diskin et al., 2021b). A significant challenge in asyn-
chronous optimization is the staled gradient problem, which
occurs when an outdated gradient is applied to a recently
updated model. Asynchronous SGD with delay compensa-
tion (Zheng et al., 2017) addresses this issue by approximat-
ing the true gradient using the old gradient. Asynchronous
methods have also been explored in federated learning con-
texts (Xie et al., 2019). Despite the challenge, asynchronous
training has demonstrated success for language modeling as
well (Diskin et al., 2021b), by using devices world-wide.

Local-SGD for Language Modeling The concept of
local-SGD (or FedAvg) has previously been applied in the
realm of language modeling. Cross-device federated learn-
ing, for instance, has been utilized to pretrain and fine-
tune language models (Hilmkil et al., 2021; Ro et al., 2022;
Ryabinin et al., 2021; Diskin et al., 2021a; Presser, 2020;
Borzunov et al., 2022). More recently, DiLoCo has extended
the local-SGD methodology to encompass larger language
models, specifically proposing the use of AdamW + Nes-
terov momentum as the InnerOpt + OuterOpt pairing.
In asynchronous settings, the FedBuff (Nguyen et al., 2022)
algorithm buffers pseudogradients from clients, updating the
server model only after accumulating a sufficient number
of pseudogradients. TimelyFL (Zhang et al., 2023) aims to
reduce asynchrony by allowing slower devices to train only
parts of the model.

8. Conclusions and Limitations
This study examines asynchronous Local-SGD in language
modeling, identifying that while momentum is key in the
outer optimization loop, its effectiveness decreases in asyn-
chronous settings compared to synchronous ones when ap-
plied simplistically. To address this, we propose a novel
method using sporadic momentum updates with buffered
pseudogradients alongside continuous stochastic pseudogra-
dient updates. We find that adjusting local training steps
to match each worker’s computational speed significantly
boosts performance. This study, while thorough, has several
limitations. The exact cause of the optimization challenge
is uncertain, highlighting a need for further theoretical re-
search. Additionally, the effectiveness of the Local-SGD
method appears to decrease as the number of workers in-
creases, an issue that affects its scalability and requires
more understanding. Lastly, despite DN+DyLU’s enhanced
performance, it lacks a theoretical convergence analysis,
warranting additional exploration.

8

Submission and Formatting Instructions for ICML 2024

References
Bijral, A. S., Sarwate, A. D., and Srebro, N. On data de-

pendence in distributed stochastic optimization. arXiv
preprint arXiv:1603.04379, 2016.

Borzunov, A., Baranchuk, D., Dettmers, T., Ryabinin, M.,
Belkada, Y., Chumachenko, A., Samygin, P., and Raffel,
C. Petals: Collaborative inference and fine-tuning of
large models. arXiv preprint library, 2022.

Coppola, G. F. Iterative parameter mixing for distributed
large-margin training of structured predictors for natural
language processing. 2015.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
et al. Large scale distributed deep networks. Advances in
neural information processing systems, 25, 2012.

Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L.,
Lhoest, Q., Sinitsin, A., Popov, D., Pyrkin, D., Kashirin,
M., Borzunov, A., Villanova del Moral, A., Mazur, D.,
Kobelev, I., Jernite, Y., Wolf, T., and Pekhimenko, G. Dis-
tributed deep learning in open collaborations. Advances
in Neural Information Processing Systems (NeurIPS),
2021a.

Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L.,
Sinitsin, A., Popov, D., Pyrkin, D. V., Kashirin, M.,
Borzunov, A., Villanova del Moral, A., et al. Distributed
deep learning in open collaborations. Advances in Neural
Information Processing Systems, 34:7879–7897, 2021b.

Douillard, A., Feng, Q., Rusu, A. A., Chhaparia, R.,
Donchev, Y., Kuncoro, A., Ranzato, M., Szlam, A., and
Shen, J. Diloco: Distributed low-communication training
of language models. arXiv preprint arXiv:2311.08105,
2023.

Gu, X., Lyu, K., Huang, L., and Arora, S. Why (and when)
does local sgd generalize better than sgd? arXiv preprint
arXiv:2303.01215, 2023.

Hilmkil, A., Callh, S., Barbieri, M., Sütfeld, L. R., Zec,
E. L., and Mogren, O. Scaling federated learning for
fine-tuning of large language models. In International
Conference on Applications of Natural Language to In-
formation Systems, pp. 15–23. Springer, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal
large language models. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International conference on
machine learning, pp. 5132–5143. PMLR, 2020.

Karimireddy, S. P., Jaggi, M., Kale, S., Mohri, M., Reddi, S.,
Stich, S. U., and Suresh, A. T. Breaking the centralized
barrier for cross-device federated learning. Advances
in Neural Information Processing Systems, 34:28663–
28676, 2021.

Koh, B.-I., George, A. D., Haftka, R. T., and Fregly, B. J.
Parallel asynchronous particle swarm optimization. Inter-
national journal for numerical methods in engineering,
67(4):578–595, 2006.

Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous
parallel stochastic gradient for nonconvex optimization.
Advances in neural information processing systems, 28,
2015.

Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous
decentralized parallel stochastic gradient descent. In In-
ternational Conference on Machine Learning, pp. 3043–
3052. PMLR, 2018.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t use
large mini-batches, use local sgd. Proceedings of the
International Conference on Learning Representations
(ICLR), 2020.

McDonald, R., Hall, K., and Mann, G. Distributed training
strategies for the structured perceptron. In Human lan-
guage technologies: The 2010 annual conference of the
North American chapter of the association for computa-
tional linguistics, pp. 456–464, 2010.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with
buffered asynchronous aggregation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3581–
3607. PMLR, 2022.

Presser, S. Swarm training, 2020. URL https://
battle.shawwn.com/swarm-training-v01a.
pdf.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring

9

https://battle.shawwn.com/swarm-training-v01a.pdf
https://battle.shawwn.com/swarm-training-v01a.pdf
https://battle.shawwn.com/swarm-training-v01a.pdf

Submission and Formatting Instructions for ICML 2024

the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
2020.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-
free approach to parallelizing stochastic gradient descent.
Advances in neural information processing systems, 24,
2011.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Ro, J. H., Breiner, T., McConnaughey, L., Chen, M., Suresh,
A. T., Kumar, S., and Mathews, R. Scaling language
model size in cross-device federated learning. arXiv
preprint arXiv:2204.09715, 2022.

Ryabinin, M., Gorbunov, E., Plokhotnyuk, V., and Pekhi-
menko, G. Moshpit sgd: Communication-efficient de-
centralized training on heterogeneous unreliable devices.
Advances in Neural Information Processing Systems, 34:
18195–18211, 2021.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

Zhang, J., De Sa, C., Mitliagkas, I., and Ré, C. Paral-
lel sgd: When does averaging help? arXiv preprint
arXiv:1606.07365, 2016.

Zhang, T., Gao, L., Lee, S., Zhang, M., and Avestimehr, S.
Timelyfl: Heterogeneity-aware asynchronous federated
learning with adaptive partial training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5063–5072, 2023.

Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.-M.,
and Liu, T.-Y. Asynchronous stochastic gradient descent
with delay compensation. In International Conference on
Machine Learning, pp. 4120–4129. PMLR, 2017.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. Paral-
lelized stochastic gradient descent. Advances in neural
information processing systems, 23, 2010.

10

Submission and Formatting Instructions for ICML 2024

A. Synchronous Local-SGD (DiLoCo (Douillard et al., 2023)) Pseudocode
Here, we provide the pseudocode for the synchronous Local-SGD training pipeline in Algorithm 3, using the optimization
suggested by DiLoCo (Douillard et al., 2023).

Algorithm 3 DiLoCo Algorithm (synchronous)

1: Require: Initial pretrained model θ(0)

2: Require: k workers
3: Require: Data shards {D1, . . . ,Dk}
4: Require: Optimizers InnerOpt and OuterOpt
5: for outer step t = 1 . . . T do
6: for worker i = 1 . . . k in parallel do
7: θ

(t)
i ← θ(t−1)

8: for inner step h = 1 . . . H do
9: x ∼ Di

10: L ← f(x, θ
(t)
i)

11: θ
(t)
i ← InnerOpt(θ(t)i ,∇L)

12: end for
13: δ

(t)
i = θ(t−1) − θ

(t)
i

14: end for
15: ∆(t) ← 1

k

∑k
i=1 δ

(t)
i // outer gradients

16: θ(t) ← OuterOpt(θ(t−1),∆(t))
17: end for

B. Additional Results
We provide the plots of the performance (perplexity) of various methods for different ablation studies mentioned in Section 6
in the following.

Figure 9. Varying the heterogeneity in devices.

11

Submission and Formatting Instructions for ICML 2024

4	workers 8	workers 16	workers

Figure 10. Varying the number of workers.

20M 60M 150M

Figure 11. Varying the model size.

C. A Minimal Toy Example
For the convenience of future research and quick prototyping of new ideas, we present a minimal toy example that replicates
the observed optimization challenge in asynchronous Local-SGD (See Figure ??).5

12

Submission and Formatting Instructions for ICML 2024

D. Implementation Details

Hyperparameter Value

Inner learning rate 0.1
Final inner learning rate 0.0, 0.000001, 0.0002
Number of warmup steps 0, 1,000
Weight decay 0.1
Batch Size 128, 512
Sequence length 256

Outer Optimizer SGD, SGDM, Nesterov, Adam, delayed momentum SGD
Inner Optimizer SGD, AdamW
Outer learning rate 0.03, 0.3, 0.1, 0.7
Async soup weight 0.125, 0.25, 0.5, 1.0
Async soup method constant, polynomial, svrg
Delay period 4, 8, 16
Communication frequency H 50, 100, 150
Number of pretraining steps 24, 000

Table 5. Optimization Hyperparameters evaluated during in this work. Chosen values for the main experiments are highlighted in bold.

Network Architecture We displayed in Table 6 the architectural difference between the 20M, 60M, and 150M models.
They are all transformer decoder-only, based on the Chinchilla family (Hoffmann et al., 2022).

Training Dataset We consider a language modeling task on the C4 dataset, a dataset derived from Common Crawl (Raffel
et al., 2020). The total number of steps is set to 88,000 for all models, with 24,000 steps of pre-training done without any
federated learning methods, akin to post Local-SGD (Lin et al., 2020).

Hyperparameters In Table 5, we outline the optimization hyperparameters considered for this study.

Inner Optimizer States Following Douillard et al. (2023), in all experiments, when worker B picks up the data shard
worker A just finishes training on, we reset the AdamW’s optimizer state. In other words, each local worker-side training
is an independent training process with a new optimizer, and only the learning rate is adjusted according as described in
Section 3.

E. Additional Pseudocode for the Asynchronous Training Pipeline
In this section, we provide the pseudocode for the train() and get worker() functions in Algorithm 1.

Algorithm 4 train() in Algorithm 1.
1: Require: Available workersW
2: Require: Current server model θ
3: for w ∈ W do
4: Sample shard D′ for w (Eq. 2).
5: w.local updates = DyLU(D′) (Eq. 6).
6: Decide lr schedule (w.lr) (Eq. 3).
7: w.update = train worker(w, D′, θ).
8: end for

13

Submission and Formatting Instructions for ICML 2024

Table 6. Model Configuration for the three evaluated sizes. All are based on the transformer architecture, chinchilla-style (Hoffmann
et al., 2022).

Hyperparameter 20M 60M 150M

Number of layers 6 3 12
Hidden dim 256 896 896
Number of heads 4 16 16
K/V size 64 64 64
Vocab size 32,000

Algorithm 5 get worker() in Algorithm 1.
1: Require: WorkersW
2: Require: Grace period τgrace
3: Require: Start of the grace period τsync.
4: if all workers inW are not done then
5: return null
6: else
7: w = earliest completed worker inW .
8: if w.completed time− τsync ≤ τgrace then
9: return w

10: else
11: return null
12: end if
13: end if

14

