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Abstract

We aim to predict ordinal age classes via mouse
trajectories collected through web surveys. We com-
pare performance of different neural network archi-
tectures, including dense neural networks using the
entire trajectory as input, 1D- and 2D-convolutional
neural networks, long short-term memory neural
networks, and transformers against gradient boost-
ing models that use hand-crafted features of the
trajectories as inputs. The results show that neural
networks as well as gradient boosting models are
able to predict age classes with accuracies above
pure chance. However, despite their higher complex-
ity, neural networks do not clearly outperform the
boosting models and do not offer the advantages of
supplying interpretable results and detecting infor-
mative covariates.

1 Introduction

Simple paradata like response time is easy to capture
and informative for tasks such as cognitive impair-
ment detection [1]. However, richer paradata such as
cursor trajectories captured during computer tasks
provide a more nuanced view of participant behavior,
and might further improve predictions. For example,
Fernédndez-Fontelo et al. [2] were able to predict the
difficulty respondents faced using manually defined
mouse trajectory features collected in online sur-
veys. Due to the complexity and volume of the data,
neural networks promise to further improve predic-
tion based on trajectory data. Building on previous
work showing a relationship between age and com-
puter mouse movements [3, 4], we predict age via
mouse trajectories, comparing neural networks and
gradient boosting models. Ultimately, we want to
determine whether it is beneficial to use more com-
plex neural networks over classical machine learning
approaches.

2 Methods

The neural network architectures we consider are:
dense neural networks (DNN), 1D-convolutional
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Figure 1. Example trajectory of a survey question as
input for the 2D-convolutional neural networks. Clicks
are shown as red circles.

neural networks (1D-CNN), 2D-convolutional net-
works (2D-CNN), Long Short-Term Memory net-
works (LSTM), and transformers. We chose DNNs
as a baseline comparison for the other architectures,
1D-CNNs and LSTMs due to their ability to han-
dle time series data, 2D-CNNs to work with image
visualizations of the trajectories, and transformers
because of their current success and popularity.

2.1 Preprocessing

The form of the input differs between the selected
architectures and therefore so does the related pre-
processing of the data. We firstly preprocessed all
raw trajectories using the mousetrap package [5].
All raw trajectories were time-normalized to achieve
a uniform sequence length of 101 sampling points.
We then added temporal features, i.e. whether a
click happened, time between different timestamps,
acceleration, and velocity of the mouse at a given
time point ¢, since they were informative in previous
research [2, 6]. Finally, we included layout informa-
tion such as the positions of question and answer
text as inputs to provide context to the trajecto-
ries. This input was concatenated to the final layers
of each neural network, with exception of the 2D-
CNNs, after handling of the trajectory covariates.
The layout was directly processed by the 2D-CNNs
alongside the trajectories (see figure 1). We modeled
ordinal responses within the neural networks via the
CORAL framework [7]. As a second model class, we
chose Gradient Boosting models as they showed
promising results in the work of Fernandez-Fontelo
et al. [8] handling similar data. They were also
straightforward to implement via xgboost and the
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Figure 2. Accuracies of different modeling approaches.
Circles show the mean value over all 10 folds and vertical
lines the standard deviation over all 10 folds. The dotted
line shows the accuracy when just predicting the most
prevalent age class.

mlr3 package [9].

For DNNs, the seven time-normalized functional
variables (timestamps, x-positions, y-positions,
clicks, distance, velocity, and acceleration) were
stacked to create an input vector £ € R™7. For
1D-CNNs and Transformers, the seven time-
normalized functional variables were stacked in such
a way as to create an input matrix X € R19x7, For
the 2D-CNNs, visualizations of the trajectories as
300x300 pixel images were used as inputs. Similarly
to Niu et al. [6], we encoded acceleration and veloc-
ity at a given point in the red, green, and blue color
channels (see the example trajectory in figure 1).

2.2 Data

Our data was collected in a wave of the Under-
standing America Study, a survey panel with 14,000
participants. Trajectories were filtered to remove
touchscreen trajectories. The total sample size was
26520 trajectories from 3315 respondents answer-
ing 8 questions. We assessed model performance
through 10-fold-cross-validation. The validation
dataset was used for early stopping. All models
were trained and evaluated using the same folds, cre-
ated such that all the trajectories of one participant
were only part of either the training dataset, the
validation dataset, or the testing dataset within each
fold. The age classes and counts are 18-30: 2280,
31-42: 4144, 43-54: 5056, 55-66: 6672, 67-78: 6592,
79+4-:1776.

3 Results

Since the response variable is unbalanced, we com-
pare the performances of the different approaches to
the majority class accuracy of 25.2%. The mean ac-
curacies (%1 standard deviation) on the testing data
can be seen in figure 2. We also show an example
of a confusion matrix in figure 3.
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Figure 3. Confusion matrix on a test dataset of a
transformer model. The accuracy is displayed in the
bottom right corner. Brighter colors indicate higher
prediction counts.

4 Discussion and Conclusion

In this work, we show the usefulness of mouse trajec-
tories as a predictor for age class classification. As a
representative result, a trend towards the diagonal
of the confusion matrix can be seen in figure 3. The
poor performance of 1D-CNNs might be an indicator
of incorrect model architecture. Choosing a differ-
ent one could possibly improve the performance.
However, even though neural networks offer higher
complexity, the gradient boosting method was able
to compete with their accuracies and did not per-
form substantially worse. In the case of age class
prediction, opting for more complex neural networks
does not result in clearly better performances and
machine learning models on hand-crafted features
appear to be a valid approach. Additionally, users
benefit from interpretability of results and determi-
nation of informative features. Out of the tested
network architectures, 2D-CNNs performed best,
but with only small improvements over boosting. It
is still possible that a specialized neural network ar-
chitecture might perform better on this type of data
and improve prediction accuracies. In conclusion,
our results - just like the works of Ferndndez-Fontelo
et al. [2] and Thorpe et al. [10] - show that paradata
is informative and can possibly be used for different
prediction tasks.
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