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Abstract001

We aim to predict ordinal age classes via mouse002

trajectories collected through web surveys. We com-003

pare performance of different neural network archi-004

tectures, including dense neural networks using the005

entire trajectory as input, 1D- and 2D-convolutional006

neural networks, long short-term memory neural007

networks, and transformers against gradient boost-008

ing models that use hand-crafted features of the009

trajectories as inputs. The results show that neural010

networks as well as gradient boosting models are011

able to predict age classes with accuracies above012

pure chance. However, despite their higher complex-013

ity, neural networks do not clearly outperform the014

boosting models and do not offer the advantages of015

supplying interpretable results and detecting infor-016

mative covariates.017

1 Introduction018

Simple paradata like response time is easy to capture019

and informative for tasks such as cognitive impair-020

ment detection [1]. However, richer paradata such as021

cursor trajectories captured during computer tasks022

provide a more nuanced view of participant behavior,023

and might further improve predictions. For example,024

Fernández-Fontelo et al. [2] were able to predict the025

difficulty respondents faced using manually defined026

mouse trajectory features collected in online sur-027

veys. Due to the complexity and volume of the data,028

neural networks promise to further improve predic-029

tion based on trajectory data. Building on previous030

work showing a relationship between age and com-031

puter mouse movements [3, 4], we predict age via032

mouse trajectories, comparing neural networks and033

gradient boosting models. Ultimately, we want to034

determine whether it is beneficial to use more com-035

plex neural networks over classical machine learning036

approaches.037

2 Methods038

The neural network architectures we consider are:039

dense neural networks (DNN), 1D-convolutional040

Figure 1. Example trajectory of a survey question as
input for the 2D-convolutional neural networks. Clicks
are shown as red circles.

neural networks (1D-CNN), 2D-convolutional net- 041

works (2D-CNN), Long Short-Term Memory net- 042

works (LSTM), and transformers. We chose DNNs 043

as a baseline comparison for the other architectures, 044

1D-CNNs and LSTMs due to their ability to han- 045

dle time series data, 2D-CNNs to work with image 046

visualizations of the trajectories, and transformers 047

because of their current success and popularity. 048

2.1 Preprocessing 049

The form of the input differs between the selected 050

architectures and therefore so does the related pre- 051

processing of the data. We firstly preprocessed all 052

raw trajectories using the mousetrap package [5]. 053

All raw trajectories were time-normalized to achieve 054

a uniform sequence length of 101 sampling points. 055

We then added temporal features, i.e. whether a 056

click happened, time between different timestamps, 057

acceleration, and velocity of the mouse at a given 058

time point t, since they were informative in previous 059

research [2, 6]. Finally, we included layout informa- 060

tion such as the positions of question and answer 061

text as inputs to provide context to the trajecto- 062

ries. This input was concatenated to the final layers 063

of each neural network, with exception of the 2D- 064

CNNs, after handling of the trajectory covariates. 065

The layout was directly processed by the 2D-CNNs 066

alongside the trajectories (see figure 1). We modeled 067

ordinal responses within the neural networks via the 068

CORAL framework [7]. As a second model class, we 069

chose Gradient Boosting models as they showed 070

promising results in the work of Fernández-Fontelo 071

et al. [8] handling similar data. They were also 072

straightforward to implement via xgboost and the 073
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Figure 2. Accuracies of different modeling approaches.
Circles show the mean value over all 10 folds and vertical
lines the standard deviation over all 10 folds. The dotted
line shows the accuracy when just predicting the most
prevalent age class.

mlr3 package [9].074

For DNNs, the seven time-normalized functional075

variables (timestamps, x-positions, y-positions,076

clicks, distance, velocity, and acceleration) were077

stacked to create an input vector x⃗ ∈ R707. For078

1D-CNNs and Transformers, the seven time-079

normalized functional variables were stacked in such080

a way as to create an input matrix X ∈ R101×7. For081

the 2D-CNNs, visualizations of the trajectories as082

300x300 pixel images were used as inputs. Similarly083

to Niu et al. [6], we encoded acceleration and veloc-084

ity at a given point in the red, green, and blue color085

channels (see the example trajectory in figure 1).086

2.2 Data087

Our data was collected in a wave of the Under-088

standing America Study, a survey panel with 14,000089

participants. Trajectories were filtered to remove090

touchscreen trajectories. The total sample size was091

26520 trajectories from 3315 respondents answer-092

ing 8 questions. We assessed model performance093

through 10-fold-cross-validation. The validation094

dataset was used for early stopping. All models095

were trained and evaluated using the same folds, cre-096

ated such that all the trajectories of one participant097

were only part of either the training dataset, the098

validation dataset, or the testing dataset within each099

fold. The age classes and counts are 18-30: 2280,100

31-42: 4144, 43-54: 5056, 55-66: 6672, 67-78: 6592,101

79+:1776.102

3 Results103

Since the response variable is unbalanced, we com-104

pare the performances of the different approaches to105

the majority class accuracy of 25.2%. The mean ac-106

curacies (±1 standard deviation) on the testing data107

can be seen in figure 2. We also show an example108

of a confusion matrix in figure 3.109

Figure 3. Confusion matrix on a test dataset of a
transformer model. The accuracy is displayed in the
bottom right corner. Brighter colors indicate higher
prediction counts.

4 Discussion and Conclusion 110

In this work, we show the usefulness of mouse trajec- 111

tories as a predictor for age class classification. As a 112

representative result, a trend towards the diagonal 113

of the confusion matrix can be seen in figure 3. The 114

poor performance of 1D-CNNs might be an indicator 115

of incorrect model architecture. Choosing a differ- 116

ent one could possibly improve the performance. 117

However, even though neural networks offer higher 118

complexity, the gradient boosting method was able 119

to compete with their accuracies and did not per- 120

form substantially worse. In the case of age class 121

prediction, opting for more complex neural networks 122

does not result in clearly better performances and 123

machine learning models on hand-crafted features 124

appear to be a valid approach. Additionally, users 125

benefit from interpretability of results and determi- 126

nation of informative features. Out of the tested 127

network architectures, 2D-CNNs performed best, 128

but with only small improvements over boosting. It 129

is still possible that a specialized neural network ar- 130

chitecture might perform better on this type of data 131

and improve prediction accuracies. In conclusion, 132

our results - just like the works of Fernández-Fontelo 133

et al. [2] and Thorpe et al. [10] - show that paradata 134

is informative and can possibly be used for different 135

prediction tasks. 136
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