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Abstract

Recent advancements in time series forecasting have led to the development of
foundation models, but they frequently overlook domain-specific features that are
crucial for accuracy, particularly in volatile markets such as African retail. Despite
the African retail sector’s rapid growth, there is a lack of benchmarks and models
tailored to its unique conditions. We present Lag-Llama Retail, an adaptation of
Lag-Llama, a state-of-the-art foundation model, capable of effectively modelling
covariates like promotions and pricing. We pretrain this model on a large-scale,
private dataset comprising sales data from four African retailers over two years.
Our results demonstrate significant improvements in forecasting accuracy and bias,
especially in capturing sales spikes caused by promotions, compared to fine-tuned
Lag-Llama, DeepAR and Temporal Fusion Transformer (TFT). This work positions
Lag-Llama Retail as a new baseline for time series forecasting in the African retail
sector, highlighting the potential of the approach in high-volatility settings and the
limitations of foundation models lacking domain-specific covariates.

1 Introduction

In recent years, foundation models have transformed machine learning with their ability to generalize
across diverse domains, achieving strong zero-shot and few-shot performance (1). Foundation models
such as GPT in natural language processing and Vision Transformers in computer vision have
revolutionised their respective fields (2), (3). However, the application of these foundation models to
time series forecasting has lagged behind, with much of the existing research focusing primarily on
univariate time series prediction without sufficient consideration of domain-specific complexities (4),
(5), (6), (7), (8). More recently, promising results have emerged by incorporating covariate modelling
into time series forecasting foundation models (9), (10).

Time series forecasting is particularly challenging in the retail sector, due to promotions, seasonality,
and rapidly shifting consumer behaviour (11), (12). Yet achieving high accuracy is essential for
aligning inventory with demand, minimizing costs, and optimizing overall supply chain efficiency (13).
These challenges are magnified in African retail, where economic stress, distribution inefficiencies,
and political instability further complicate forecasting (14), (15), (16). As illustrated in Figure 1 from
our dataset, sales volatility is pronounced during promotional periods, highlighting the limitations of
models that fail to incorporate domain-specific covariates.

Lag-Llama, a recent foundation model for time series forecasting, employs a decoder-only transformer
inspired by the success of LLMs like Llama (4), (17). Similarly, concurrent works like Chronos
also adapt LLM architectures with minimal changes, tokenizing time series into a discrete space (6).
However, we show that in domains like African retail, where promotions and local events heavily
influence sales, the standard Lag-Llama model falls short. To address this, we present Lag-Llama
Retail, an adaptation of the original Lag-Llama model, by incorporating retail-specific covariates such
as promotions and pricing indicators. This also enables counterfactual modelling, such as predicting
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Figure 1: Time series of product sales showing volatility due to promotions.

outcomes without promotions, essential for decision-making. We adapt the model for point estimates,
for both efficiency and compatibility with production retail planning systems. Retail performance is
highly sensitive to point estimate forecast accuracy and bias; improved accuracy reduces working
capital, and controlling bias mitigates overstocking and outages (18), (19).

Despite the growing importance of African retail (20), tailored benchmarks and models remain scarce.
To address this, we validate our approach on a large-scale time series dataset comprised of sales
data from four African retailers collected over two years. Although this sensitive dataset cannot be
published, it highlights the unique dynamics of African retail, where forecasting requires covariates
to capture high sensitivity to promotions, events, and seasonality.

Our evaluation compared several forecasting models, including zero-shot and fine-tuned versions of
the original Lag-Llama (4), DeepAR (21), and TFT (22). Results show that our adapted Lag-Llama
consistently achieved the highest accuracy and lowest bias, particularly in promotional scenarios
where covariates are essential. While TFT performed well on non-promotional daily data, it struggled
on weekly data and exhibited less reliable bias patterns. These findings establish Lag-Llama Retail
as a new baseline for forecasting in African retail, as well as demonstrating the model’s potential in
high-volatility environments.

2 Method

2.1 Overview of Lag-LLama

Our approach builds upon the Lag-Llama model introduced by Rasul et al. (4). Lag-Llama is a
foundation model for univariate probabilistic time series forecasting, using a decoder-only transformer
architecture. It employs lag features and date-time information for tokenization, and outputs the
parameters of a Student’s t-distribution for probabilistic forecasts. The model also utilizes robust
standardization to handle varying scales of data (23), as well as frequency based data augmentations
for better generalisation (24). Pretrained on a diverse corpus of time series datasets, Lag-Llama
demonstrates strong zero-shot generalization and few-shot adaptation capabilities on unseen datasets,
often outperforming dataset-specific models when fine-tuned.

2.2 Tokenization: Incorporating retail-specific covariates

The most crucial aspect which Lag-Llama lacks for retail forecasting is the ability to consider
covariates in the time-series. In particular, we have a number of promotional and price-related
covariates which are available both in the past and future. For a given time series i at time step t,
Lag-Llama creates a token embedding by performing a linear projection on a vector describing the
time step, including the standardized target variable and its lags, the standardization factors, and
time features. We incorporate additional covariates into this initial vector before linear projection, as
demonstrated in Figure 2.
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Figure 2: Tokenization scheme for incorporating additional covariates. x̂ is the scaled target variable;
dow, dom and dot are the day-of-week, day-of-month, and day-of-year time features respectively;
ĉreal and ccat are the scaled real-valued covariates and categorical covariates respectively; and iqr and
med are the Interquartile Range and median of a feature’s time series respectively.

As in the original Lag-Llama approach, standardization is performed using the robust standardization
method described in (23), by removing the median and scaling by the Interquartile Range. Similarly,
we scale our real-value covariates using the same robust-scaling method used in Lag-Llama, and
include the scaling factors as static features. We also leverage known future covariates, such as
promotions, by using the lead of the feature (e.g., ct+1 instead of ct), incorporating future information
into the model predictions.

Incorporating covariates in our model not only enhances accuracy but also allows us to estimate the
counterfactual - what sales would have been without promotions - by setting promtional covariates to
0. This is crucial for retailers in assessing the true impact of promotions and determining how much
of their sales are directly driven by these campaigns.

2.3 Optimising for point-estimates

Lag-Llama uses a distribution-head to project logits into probability distribution parameters, along
with a Monte Carlo simulation approach to simulate multiple parallel paths for the forecast. This use
of multiple simulated paths is resource-intensive, and makes it cumbersome for industrial use.

To improve efficiency and better suit Lag-Llama for point-estimate forecasting, we implement a
greedy-search approach, assuming the expected value of the distribution as the point estimate and
adding it to the model’s context. These adaptations led to two open-source contributions for forecast
efficiency, these are detailed in Appendix B. Additionally, we optimise the model using loss functions
focused on point-estimate accuracy, specifically the mean absolute scaled error (MASE) (25), which
we selected because it is scale-independent, ensuring balanced performance across multiple datasets
of varying scales during pre-training.

3 Experiments

3.1 Dataset

We evaluate our approach on a large-scale dataset comprising region-aggregated point-of-sale (POS)
data from four African retailers. This dataset contains approximately 15 million data points across
19,244 unique region-product pairs over two years, with records at daily or weekly intervals depending
on the retailer. The dataset includes covariates such as promotions and pricing information, a full list
of features available as well as sizes of datasets from each retailer is provided in Appendix A.
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3.2 Data Splitting and Evaluation

We use a time-based split instead of the original Lag-Llama’s zero-shot or few-shot evaluation, due to
the intermittent and unpredictable nature of our retail data. The standard in retail is to use a 4-week
forecast horizon as the most crucial for decision-making, we structure our data splits accordingly.
We reserve two 4-week horizons for validation and another two for testing. The dataset reflects
varying product demand; to align with industry standards, we evaluate the forecasting accuracy using
a volume-weighted measure, prioritising more critical, high-volume products. Specifically, we use
Weighted Mean Absolute Percentage Error (WMAPE) and relative bias, both detailed in Appendix
C.1, which provides a more comprehensive explanation of the evaluation procedure. These metrics
focus on overall accuracy while accounting for the balance between over- and under-prediction.

Additionally, we modify the validation loss function to exclude predictions on the context portion of
the sequence, as training on context combined with a time-based split would lead to data leakage. To
handle different frequencies in our dataset (daily vs. weekly), we maintain the same time intervals
across splits, padding weekly datasets as needed to ensure a consistent prediction length during
training and early stopping.

3.3 Results

Table 1 shows the results for each approach on each dataset as well as averaged across all datasets. To
align with industry standards for future forecasts and avoid overestimating performance, metrics are
collected with a 3-week lag. See Appendix C for a more detailed experimental analysis, including,
evaluations on promotional and non-promotional data, and a qualitative study visualising aggregated
and individual product forecasts. Due to computational costs, experiments were not repeated to obtain
standard deviations.

Table 1: Comparison of forecasting approaches across retailers, measured by weighted mean average
percentage error (WMAPE) and relative bias (RB), shown as (WMAPE / RB) in percentages. The
best approach is bolded, with ties within 1% also bolded.

Approach Daily 1 Daily 2 Daily 3 Weekly 1 Average Inference
Time (s)

DeepAR 22.0 / -6.74 29.1 / -13.6 26.3 / -13.5 33.8 / 3.74 27.8 / -7.54 226

TFT 19.6 / 0.20 30.2 / -7.28 22.9 / -4.37 38.5 / 9.93 27.8 / -0.38 81
Lag-Llama
Zero-Shot 33.3 / -22.6 42.4 / -21.3 35.5 / -15.2 48.0 / -10.5 39.8 / -17.4 1304

Lag-Llama
Finetuned 21.6 / -7.5 36.1 / -18.3 23.5 / -4.98 39.8 / -18.1 30.3 / -12.2 1334

Lag-Llama
Retail 19.4 / -0.76 30.6 / -3.28 23.9 / -0.95 28.5 / -4.13 25.6 / -2.28 144

4 Conclusion

Lag-Llama Retail consistently outperforms DeepAR, TFT, and other Lag-Llama variants across most
datasets, achieving the lowest average WMAPE and significantly reduced bias, crucial for minimizing
stockouts and missed sales during peak demand. While TFT has the fastest inference time, Lag-Llama
Retail remains competitively fast and far outperforms the original Lag-Llama in speed, making it
highly practical for real-time retail forecasting. Although TFT shows a lower average bias, this is due
to opposing biases on daily (negative) and weekly (positive) data, which is less desirable for reliable
forecasting accuracy, especially given its large performance drop on weekly data.

Lag-Llama Retail’s ability to capture promotion-driven sales spikes further demonstrates its strength
during volatile periods, as detailed in Appendix C. In non-promotional scenarios, the performance gap
narrows as all models benefit from steady patterns, yet it continues to exhibit balanced accuracy and
bias. These findings establish a robust baseline for time series forecasting in the African retail sector
and suggest that future research should focus on refining foundation models to better understand
covariates, which are essential for handling volatile cases.
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A Dataset Characteristics

The dataset characteristics for each retailer are presented in Table 2.

6

https://www.afdb.org/en/documents/african-economic-outlook-2024


Table 2: Dataset characteristics for each retailer

Dataset Number of
Data Points

Number of
Promotions

Number of
Regions

Number of
Products

Number of
Time Series

Daily 1 12,359,444 1,948,720 29 992 15,851
Daily 2 280,815 127,675 1 375 375
Daily 3 1,953,656 91,617 4 888 2,611
Weekly 1 44,029 25,234 1 407 407

Total 14,637,944 2,193,246 35 2,662 19,244

The full list of dataset features utilised in forecasting, available for each retailer:

• sales_date: The date of sale, indicating when the transaction occurred.

• product_code: A unique identifier for each product.

• region_code: A unique identifier for each region, each region-product pair corresponds to
unique time series.

• volume: The quantity of the product sold on a given day. This is the response variable that
we aim to forecast.

• relative_price: A relative measure of the price of the product relative to other products in
the dataset.

• is_promo: A binary flag (1 or 0) indicating whether a promotion was applied to the product
on that day. A value of 1 indicates a promotion was active, while 0 indicates no promotion
or the promotion was invalid.

• is_single_price_promo: A binary flag indicating whether the promotion was a single
product discount, such as a percentage off the retail price. This is the most common type of
promotion.

• is_multibuy_promo: A binary flag indicating whether the promotion required purchasing
multiple items, such as a "buy 2 get 1 free" offer, which is designed to encourage bulk
purchases.

• rel_promo_price: The relative price of the product during a promotion compared to the
standard retail price. This feature helps to quantify the discount provided during promotional
periods.

• planned_promo_vol: An estimate of the sales volume that the retailer planned to achieve
through the promotion.

• promo_strength: A representation of the strength of a promotion between 0 and 1 using
the relative promotional price, with 0 meaning no promotion and 1 representing a 100%
discount.

B A more efficient approach to probabilistic forecasting

Lag-Llama uses a distribution-head to project logits into probability distribution parameters. A Monte
Carlo simulation approach is then used for probabilistic forecasting: the underlying distribution is
sampled n times, each sample is added to the model’s context, and the process is repeated for p
prediction steps, resulting in n parallel paths, each of length p, which represent possible forecast
outcomes. While effective, this method is resource-intensive, increasing the forward passes by a
factor of n for a total of p× n forwarded passes.

To address this, we propose a more efficient approach by directly leveraging the distribution-head’s
output. Instead of maintaining n parallel paths, we construct a single sample path using a type of
greedy search, where each step represents the expected value (the mean of the Student t-distribution).
At each time step, n samples are drawn from the distribution head and stored in memory, allowing
for only p forward passes while maintaining n samples per step. This method, implemented as
’single-pass-sampling,’ is available through our open-source contribution to the Lag-Llama repository
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1. We also fixed the erroneous key-value (KV) cache implementation in the original repository
through an additional open-source contribution, further improving efficiency 2.

C Detailed Experimental Analysis

C.1 Performance Metrics

Our evaluation uses two key performance metrics: Weighted Mean Absolute Percentage Error
(WMAPE) and relative bias, both weighted by volume to reflect the significance of higher-volume
products, which are critical to retailers. These metrics ensure our evaluation aligns with industry
priorities, where both overall accuracy and the balance between over- and under-prediction are critical
for decision-making.

One crucial factor which we also consider in our evaluation is the fact that while we collect data at a
region-level, our retailers need to order stock on a weekly basis aggregated across all regions. Thus,
we first aggregate volumes by week date and product code, before computing the WMAPE. This
allows errors to cancel out between the same product and week in different regions. For our daily
datasets, this also means that errors may cancel between different days of the same week.

Additionally, inference time is measure for a measure of computational efficiency. Inference time as
reported in Tab. 1 is totaled across all forecasts and was captured on the following machine: 1x A10
(24 GB PCIe), 30 CPU cores, 205.4 GB RAM, 1.5 TB SSD.

C.1.1 WMAPE

WMAPE measures the accuracy of the forecasts by calculating the weighted average of the absolute
percentage errors accross all time steps (not averaged per time series), with weights proportional to
the actual sales volume. It is computed as:

WMAPE =

∑T
t=1

∑N
i=1 |Ai,t − Fi,t|∑T

t=1

∑N
i=1 Ai,t

, (1)

C.1.2 Relative Bias

Understanding model bias is crucial for retail applications, where stock ordering relies on accurate
forecasts, and systematic bias can lead to costly inefficiencies. Relative bias directly measures the
tendency of the model to over- or under-predict sales by simply dividing the total forecasted volume
sold by the actual volume sold, calculated as:

Bias =
∑T

t=1

∑N
i=1 Fi,t∑T

t=1

∑N
i=1 Ai,t

. (2)

A relative bias of 0 indicates no bias, while values greater than or less than 0 indicate consistent over-
or under-prediction, respectively.

C.2 Performance On Promotional and Non-Promotional Data

While the main evaluation focused on overall performance, retailers also need insights into specific
contexts like promotions and non-promotions. Tables 3 and 4 provide a comparative analysis of
model performance specifically on entries with and without promotions, respectively.

On promotional data, Lag-Llama Retail consistently outperforms other models, showing significantly
better accuracy and reduced bias, which is expected given its ability to incorporate promotion-specific
covariates. TFT and DeepAR also perform well, indicating the effectiveness of covariate integration in
handling promotional variability. In contrast, the original Lag-Llama models, especially in zero-shot
mode, exhibit strong negative bias during promotions, likely due to their inability to account for

1https://github.com/time-series-foundation-models/lag-llama/pull/77
2https://github.com/time-series-foundation-models/lag-llama/pull/84

8

https://github.com/time-series-foundation-models/lag-llama/pull/77
https://github.com/time-series-foundation-models/lag-llama/pull/84


Table 3: Comparison of forecasting approaches across retailers, focusing only on promotional data
entries. Approaches are measured by weighted mean average percentage error (WMAPE) and relative
bias (RB), shown as (WMAPE / RB) in percentages. The best approach is bolded, with ties within 1%
also bolded. Metrics are collected with a 3-week lag.

Approach Daily 1 Daily 2 Daily 3 Weekly 1 Average
DeepAR 26.2 / -3.49 29.6 / -18.7 32.8 / -22.8 27.6 / -2.39 29.1 / -11.3

TFT 23.3 / -1.58 31.2 / -12.3 27.1 / -17.0 34.7 / 1.62 29.1 / -7.32
Lag-Llama
Zero-Shot 40.4 / -32.2 43.8 / -38.5 46.2 / -39.0 42.3 / -30.17 43.2 / -34.0

Lag-Llama
Finetuned 26.5 / -14.4 37.5 / -32.5 35.0 / -24.4 38.4 / -30.7 34.4 / -25.5

Lag-Llama
Retail 21.6 / -2.24 29.8 / -3.59 31.8 / -7.71 25.5 / -7.71 27.2 / -5.31

Table 4: Comparison of forecasting approaches across retailers, focusing only on non-promotional
data entries. Approaches are measured by weighted mean average percentage error (WMAPE) and
relative bias (RB), shown as (WMAPE / RB) in percentages. The best approach is bolded, with ties
within 1% also bolded. Metrics are collected with a 3-week lag.

Approach Daily 1 Daily 2 Daily 3 Weekly 1 Average
DeepAR 18.0 / -12.0 28.3 / -4.78 26.1 / -12.4 47.8 / 18.4 30.1 / -2.70
TFT 16.4 / 3.20 28.9 / 1.75 22.9 / -2.71 47.5 / 29.2 28.9 / 7.82
Lag-Llama
Zero-Shot 25.0 / -7.70 39.9 / 7.94 34.7 / -12.1 63.5 / 36.4 40.8 / 16.3

Lag-Llama
Finetuned 19.2 / 4.64 34.2 / 9.82 23.4 / -2.50 42.7 / 13.3 29.9 / 9.47

Lag-Llama
Retail 18.8 / 5.82 32.2 / -2.74 23.7 / 2.09 35.3 / 4.18 27.5 / 2.34

promotion-driven spikes, resulting in predictions that are closer to a baseline, agnostic of these events.
Consistent with the overall results, TFT’s performance drops significantly on the weekly dataset for
both promotions and non-promotions, highlighting its limitations in capturing multi-frequency trends,
which Lag-Llama models handle more robustly.

On non-promotional data, the performance gap between Lag-Llama Retail and the original Lag-
Llama models narrows, with the fine-tuned Lag-Llama achieving similar accuracy and sometimes
surpassing DeepAR, particularly in terms of bias reduction. TFT achieves the best performance on
non-promotional daily data, highlighting its strength in handling steady trends without promotional
noise. This overall narrowing in performance suggests that while covariates are crucial for capturing
promotional effects, as expected, their impact is less pronounced in non-promotional contexts across
all models.

Additionally, the original Lag-Llama models demonstrate a pattern of predicting with strong negative
bias during promotions and a weaker but still significant positive bias for non-promotions. This
indicates that the original model isn’t simply predicting a baseline; instead, it’s predicting something
in between promotions and non-promotions. This behaviour is undesirable for retailers, as it fails
to adequately distinguish between the different contexts, leading to suboptimal stock management
decisions. These results underscore the importance of domain-specific covariates in improving
forecasting accuracy, particularly in contexts with significant sales fluctuations.

C.3 Qualitative Evaluation

To further explore model performance, we conduct a qualitative analysis. To understand potential
sources of bias, Figure 3 shows aggregated forecasts across all products and regions for each
retailer. The daily forecasts are aggregated to weekly forecasts, aligning with our weekly-level metric
evaluation. As in the quantitative evaluation, forecasts are shown with a lag of 3 weeks, meaning for
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each predicted time step, the model had access to 3-week old actual data. The visualised forecasts
contain 13 weeks of predictions over both the validation and test sets (16 weeks total, with 3 weeks
ignored due to lag).

For this analysis, we selected DeepAR as a baseline and the fine-tuned Lag-Llama as a representation
of the original model our adaptation builds upon, as including additional models would overly clutter
the visualizations.

The aggregated forecast visualizations provide a number of insights into the performance of the
models. In Figure 3c, we observe almost non-existent planned promotional volumes, which was
due to the limited promotional information provided by the retailer. This explains why the original
finetuned Lag-Llama achieves similar performance to our Lag-Llama Retail model, as there are few
promotions to leverage. Importantly, this also demonstrates that our model remains robust even when
promotional data is sparse, as indicated by the closely aligned total forecasts. This is not the case
with DeepAR, which comparatively shows far more negative bias in this scenario.

Across all datasets, the performance differences between the finetuned Lag-Llama and our Lag-Llama
Retail variant are most pronounced during sales spikes, typically corresponding with end-of-month
promotions. The original Lag-Llama consistently underpredicts these spikes, showing a strong
negative bias, whereas our model exhibits far less negative bias. Although both models predict sales
spikes, the magnitude is more accurately captured by our model.

(a) Aggregated weekly forecasts for Daily Retailer 1, derived from daily forecasts and aggregated across all
products and regions.

(b) Aggregated weekly forecasts for Daily Retailer 2, derived from daily forecasts and aggregated across all
products and regions.

Figure 3: Aggregated weekly forecasts derived from daily and weekly forecasts across all products
and regions for various retailers. Each time step is predicted at a 3-week lag.
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(c) Aggregated weekly forecasts for Daily Retailer 3, derived from daily forecasts and aggregated across all
products and regions.

(d) Aggregated weekly forecasts for Weekly Retailer 1, derived from weekly forecasts and aggregated across all
products and regions.

Figure 3: Aggregated weekly forecasts derived from daily and weekly forecasts across all products
and regions for each retailer. Each time step is predicted at a 3-week lag. (Continued)

The shape of our forecasts closely follows the planned promotional volumes, suggesting that while
our model is generally accurate, it may be vulnerable to errors in promotional planning. For instance,
in Figure 3b, a spike in actual sales occurs a week before the planned promotional volume spike,
leading our model to forecast a spike one week late, whereas the original Lag-Llama correctly predicts
the timing, though not the magnitude, of the spike.

In Figure 3d, both DeepAR and the original Lag-Llama perform poorly, likely due to the limited
amount of weekly data available for training. However, models incorporating covariates, including
Lag-Llama Retail and DeepAR, perform significantly better, closely following the planned promo-
tional volumes. This suggests that our model may be more adept at handling multi-frequency data, as
it provides accurate forecasts despite the scarcity of weekly data (about 90% of the time series are
daily), although further data is needed to confirm this.

Finally, we observe a general trend of underprediction rather than overprediction, likely due to the
spikes and volatility in the data. This may indicate that the models are learning a more conservative
baseline, although the exact reasons for this behaviour require further investigation.
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