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Figure 1. On the left, we analyze semantic labels from the BEAT2 dataset [31] and visualize frame-level motion, revealing that semantically
relevant motions are rare and sparse, aligning with real-life observations. On the right, this observation drives the design of SemTalk,
which establishes a rhythm-aligned base motion and dynamically emphasizes sparse semantic gestures at the frame-level. In this example,
SemTalk amplifies expressiveness on words like “watching” and “just,” enhancing gesture and torso movements. The semantic scores
below are automatically generated by SemTalk to modulate semantic emphasis over time.

Abstract

A good co-speech motion generation cannot be achieved
without a careful integration of common rhythmic motion
and rare yet essential semantic motion. In this work, we
propose SemTalk for holistic co-speech motion generation
with frame-level semantic emphasis. Qur key insight is
to separately learn base motions and sparse motions, and
then adaptively fuse them. In particular, coarse2fine cross-
attention module and rhythmic consistency learning are ex-
plored to establish rhythm-related base motion, ensuring
a coherent foundation that synchronizes gestures with the
speech rhythm. Subsequently, semantic emphasis learn-
ing is designed to generate semantic-aware sparse mo-
tion, focusing on frame-level semantic cues. Finally, to
integrate sparse motion into the base motion and gener-
ate semantic-emphasized co-speech gestures, we further
leverage a learned semantic score for adaptive synthe-
sis. Qualitative and quantitative comparisons on two pub-
lic datasets demonstrate that our method outperforms the
state-of-the-art, delivering high-quality co-speech motion
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with enhanced semantic richness over a stable base motion.

1. Introduction

Nonverbal communication, including body language, hand
gestures, and facial expressions, is integral to human inter-
actions. It enriches conversations with contextual cues and
enhances understanding among participants [0, 14, 20, 24].
This aspect is particularly significant in holistic co-speech
motion generation, where the challenge lies in synthesizing
gestures that align with speech rhythm while also capturing
the infrequent yet critical semantic gestures [25, 38].

Most existing methods [17, 30, 48] rely heavily on
rhythm-related audio features as conditions for gesture gen-
eration. While these rhythm-based features successfully
align gestures with the timing of speech, they often over-
shadow the sparse yet expressive semantic motion (see
Fig. 1). As a result, the generated motions may lack the
contextual depth necessary and nuanced expressiveness for
natural interaction. Some methods try to address this by in-
corporating semantic information like emotion, style, and
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content[10, 12, 23, 32]. However, the rhythm features tend
to dominate, making the models difficult to capture sparse,
semantically relevant gestures at the frame level. These rare
but impactful gestures are often diluted or overlooked, high-
lighting the challenge of balancing rhythmic alignment with
semantic expressiveness in co-speech motion generation.

In real-world human conversations, we have an obser-
vation that while most speech-related gestures are indeed
rhythm-related, only a limited number of frames involve
semantically emphasized gestures. This insight suggests
that co-speech motions can be decomposed into two dis-
tinct components: (z) Rhythm-related base motion. These
provide a continuous, coherent base motion aligned with
the speech rhythm, reflecting the natural timing of speak-
ing. (¢2) Semantic-aware sparse motion: These occur infre-
quently but are essential for conveying specific meanings or
emphasizing key points within the conversation.

Inspired by this observation, we propose a new frame-
work SemTalk. SemTalk models the base motion and
the sparse motion separately and then fuses them adap-
tively to generate high-fidelity co-speech motion. Specifi-
cally, we first focus on generating rhythm-related base mo-
tion by introducing coarse2fine cross-attention module and
rhythmic consistency learning. We design a hierarchical
coarse2fine cross-attention module, which progressively re-
fines the base motion cues in a coarse-to-fine manner, start-
ing from the face and moving through the hands, upper
body, and lower body. This approach ensures consistent
rhythmic transmission across all body parts, enhancing co-
herence base motion. Moreover, we propose a local-global
rhythmic consistency learning approach, which enforces
alignment at both the frame and sequence levels. Locally,
a frame-level consistency loss ensures that each frame is
precisely synchronized with its corresponding speech fea-
tures, guaranteeing accurate temporal alignment. Globally,
a sequence-level consistency loss sustains a coherent rhyth-
mic flow across the entire motion sequence, preserving con-
sistency throughout the generated gestures.

Furthermore, we introduce semantic emphasis learn-
ing approach, which focuses on generating semantic-aware
sparse motion. This approach utilizes frame-level seman-
tic cues from textual information, high-level speech fea-
tures, and emotion to identify frames that require empha-
sis through a learned semantic score produced by a gating
strategy, i.e., sem-gate. The sem-gate is designed to dy-
namically activate semantic motions at key frames through
two weighting methods applied on the motion condition and
the loss, respectively, and semantic label guidance, allowing
the model to produce motion that enhances the motion with
deeper semantic meaning and contextual relevance.

Finally, the base motion and sparse motion are integrated
through semantic score-based motion fusion, which adap-
tively amplifies expressiveness by incorporating semantic-

aware key frames into the rhythm-related base motion.
Our contributions are summarized below:

* We propose SemTalk, a novel framework for holistic co-
speech motion generation that separately models rhythm-
related base motion and semantic-aware sparse motion,
adaptively integrating them via a learned semantic gate.

* We propose a hierarchical coarse2fine cross-attention
module to refine base motion and a local-global rhyth-
mic consistency learning to integrate latent face and hand
features with rhythm-related priors, ensuring coherence
and rhythmic consistency. We then propose semantic em-
phasis learning to generate semantic gestures at certain
frames, enhancing semantic-aware sparse motion.

» Experimental results show that our model surpasses
state-of-the-art methods qualitatively and quantitatively,
achieving higher motion quality and richer semantics.

2. Related Work

Co-speech Gesture Generation. Co-speech gesture gener-
ation aims to produce gestures aligned with speech. Early
rule-based methods [7, 19, 21, 22, 41] lacked variability,
while deterministic models [5, 7, 29, 36, 46, 49] mapped
speech directly to gestures. Probabilistic models, including
GANSs [1, 17, 40] and diffusion models [2, 10, 47, 54], in-
troduced variability. Some methods incorporated semantic
cues, such as HA2G [32] and SEEG [28], which used hi-
erarchical networks and alignment techniques. SynTalker
[8] employs prompt-based control but treats inputs as
signal strengths rather than fully interpreting semantics.
LivelySpeaker [53] combines rhythmic features and seman-
tic cues using CLIP [39] but struggles to integrate gestures
with rhythm and capture semantics consistently, moreover,
it only provides global control, limiting fine-grained refine-
ment. DisCo [29] disentangles content and rhythm but lacks
explicit modeling of sparse semantic gestures. SemTalk
addresses this by separately modeling rhythm-related base
motion and semantic-aware sparse motion, integrating them
adaptively through a learned semantic score.

Holistic Co-speech Motion Generation. Generating syn-
chronized, expressive full-body motion from speech re-
mains challenging, especially in coordinating the face,
hands, and torso [9, 31, 34, 37, 48, 52]. Early methods
introduced generative models to improve synchronization,
but issues persisted. TalkSHOW [48] improved with VQ-
VAE [42] cross-conditioning but handled facial expressions
separately, causing fragmented outputs. Diff SHEG [9] and
EMAGE [31] used separate encoders for expressions and
gestures, but their unidirectional flow limited coherence.
ProbTalk [33] leverages PQ-VAE [43] for improved body-
facial synchronization but mainly relies on rhythmic cues,
risking the loss of nuanced semantic gestures. Inspired by
TM2D [15], which decomposes dance motion into music-
related components, we separately model co-speech motion



into rhythm-related and semantic-aware motion.

3. Method
3.1. Preliminary on RVQ-VAE

Following [4, 16, 51], our approach uses a residual vector-
quantized autoencoder (RVQ-VAE) to progressively cap-
ture complex body movements in a few players. To retain
unique motion characteristics across body regions, we seg-
ment the body into four parts—face, upper body, hands, and
lower body—each with a dedicated RVQ-VAE, following
[3, 31]. This segmentation preserves each part’s dynamics
and prevents feature entanglement.

3.2. Overview

As shown in Figure 2, our SemTalk pipeline includes two
main components: the Base Motion Blocks f,.(-) and the
Sparse Motion Blocks f3(-). Given rhythmic features ~,,
~n, a seed pose m, and a speaker ID id, the Base Mo-
tion Blocks generate rhythm-aligned codes ¢°, forming the
rhythmic foundation of the base motion:

fT : (’Yb,’Yh, Thaid; efT) — qbv (D

where 0 _denotes the learnable parameters of the Base Mo-
tion Blocks. The Sparse Motion Blocks then take semantic
features ¢;, ¢4, ¢, along with v, m and id, to produce
frame-level semantic codes ¢° and semantic score .
then triggers these codes only for semantically significant
frames, producing a sparse motion representation:

fs: (¢la¢gv¢evm7id§ efs) — (qsa"/))a )

where 0 represents the Sparse Motion Block parameters.
Finally, the semantic emphasis mechanism £ combines ¢®
and ¢°, guided by 1, to form the final motion codes ¢":

" =E(d", % ). 3)

The motion decoder then uses g™ to generate the output m/'.

3.3. Generating Rhythm-related Base Motion

The Base Motion Generation (Fig. 3 a) in SemTalk estab-
lishes a rhythmically aligned foundation by leveraging both
rhythmic and speaker-specific features, enhancing the natu-
ralness and personalization of generated motion.

Rhythmic Speech Encoding. To synchronize motion with
speech, SemTalk incorporates rhythmic features: beats
and HuBERT features ~;. <3, derived from amplitude,
short-time energy [1 1], and onset detection, mark key rhyth-
mic points for aligning gestures with speech. Meanwhile,
v, extracted by the HUBERT encoder [18], captures high-
level audio traits. In addition to rhythmic features -,
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Figure 2. An overview of the SemTalk pipeline. SemTalk gener-
ates holistic co-speech motion by first constructing rhythm-aligned
q" in fr, guided by rhythmic consistency loss Lrny. Meanwhile,
fs produce frame-level semantic codes ¢°, activated selectively by
the semantic score v. Finally, ¢" is achieved by fusing ¢" and
q° based on v, with motion decoder, yielding synchronized and
contextually enriched motions.

SemTalk uses a seed pose m and speaker identity id to gen-
erate a personalized, rhythm-aligned latent pose p. Then
MLP-based Face Enhancement and Body Part-Aware mod-
ules utilize v, p and id to obtain latent face f., hands fy,
upper body f,, and lower body f;.

Coarse2Fine Cross-Attention Module. To facilitate the
learning of base motion, we first proposed a transformer-
based hierarchical Coarse2Fine Cross-Attn Module utilize
fe» fn» fu and f; to obtain latent base motion f3. The refine-
ment begins with « for f., which guides the rhythmic rep-
resentation for f, followed by conditioning f,, and finally
influencing f;. Since mouth movements closely correspond
to speech syllables with minimal delay, we use the face to
guide hand motions, inspired by DiffSHEG [9]. As the up-
per and lower body movements are less directly driven by
speech and instead reflect the natural swinging of the hands
and torso, we adopt cascading guidance: hands influence
the upper body, which in turn drives the lower body. This
structured approach, moving from the face to the hands, up-
per body, and lower body, ensures smooth and coherent mo-
tion propagation across the entire body.

Rhythmic Consistency Learning. Inspired by CoG’s use
of InfoNCE loss [45] to synchronize facial expressions with
audio cues, our approach adopts a similar philosophy of
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Figure 3. Architecture of SemTalk. SemTalk generates holistic co-speech motion in three stages.

(a) Base Motion Generation uses

rhythmic consistency learning to produce rhythm-aligned codes ¢, conditioned on rhythmic features s, v5. (b) Sparse Motion Generation

employs semantic emphasis learning to generate semantic codes ¢°
combines ¢° and ¢°* based on 1 to produce mixed codes ¢™

aligning motion and speech rhythm. It can be defined as:

Z log P (sim (h (fi),7) /7)

. b

Sy exo (sim (k (i), /7)

“4)
where IV denotes the number of frames(or the batch size), 7
denotes the temperature hyperparameter, i(-) is the projec-
tion head for latent motion, f; and 'y,i are the latent motion
and rhythmic features at frame (or sample) ¢, and sim(-)
represents cosine similarity.

Unlike CoG, our approach fundamentally differs by in-
corporating separate local and global rhythmic consistency
losses, which are applied to both latent face f. and latent
hands f,, ensuring a more cohesive and synchronized rep-
resentation across the entire motion sequence. This rhyth-
mic consistency loss ensures that the motions are not only
synchronized at the frame level but also maintain a consis-
tent rhythmic flow across the entire sequence.

»CRhy

The local frame-level consistency loss ﬁf{;ﬁ aligns the
motion features of each frame with the corresponding rhyth-
mic cues ;. By leveraging HuBERT features ~;, instead of
basic beat features ~y;, which only capture rhythmic pauses,
we incorporate rich, high-level audio representations that
enhance the model’s ability to capture rhythm-related mo-
tion patterns and maintain temporal coherence.

The global sentence-level consistency loss El({fy) is de-
signed to ensure rhythmic coherence at a global level. Un-
like local loss, ﬁl(zfy) reinforces rhythm consistency through-
out the sequence, ensuring that the generated motion main-
tains smooth and rhythm-aligned throughout its duration.

By jointly minimizing Ll h) and ERh , rhythmic con-
sistency learning enables SemTalk to produce base mo-
tions that are rthythmically aligned and temporally cohesive,

, activated by semantic score . (c) Adaptively Fusion automatically
at frame level for rhythmically aligned and contextually rich motions.

forming a solid rhythm-related base motion foundation.

3.4. Generating Semantic-aware Sparse Motion

The Sparse Motion Generation (Fig. 3 b) in SemTalk adds
semantic-aware sparse motion to base motion by incorpo-
rating semantic cues drawn from speech content and emo-
tional tone. By separating rhythm and semantics, this stage
enhances motion generation by emphasizing contextually
meaningful motion at key semantic moments.

Semantic Speech Encoding. To capture semantic cues in
speech, similar to [10], Semantic Emphasis Learning com-
bines frame-level text embeddings ¢;, sentence-level fea-
tures ¢, from the CLIP model [39], and emotion features
¢, from the emotion2vec model [35]. These features form
a comprehensive semantic representation f;, together with
audio feature -y, that reflects both the content and emo-
tional undertones of speech, enabling SemTalk to activate
motions that are sensitive to nuanced semantic cues.
Semantic Emphasis Learning. The process begins by
generating f;, combining local and global cues from text,
speech, emotion embeddings and HuBERT features ~y,.
Then, the sem-gate leverages multi-modal inputs to gen-
erate a semantic score, identifying frames that require en-
hanced semantic emphasis. The sem-gate in SemTalk re-
fines keyframe motion by applying two forms of weighting
methods W: feature weighting ¥/, and loss weighting WV,.
Using f; and ~y;,, SemTalk computes a semantic score ),
which dynamically scales feature weighting—filtering back
semantic features f; to activate frames with significant rel-
evance, ensuring that the model emphasizes frames aligned
with specific communicative intentions. Second, the loss
weighting is applied by supervising v, with a classifica-
tion loss ﬁcls based on semantic labels, further enhancing
the model’s ability to identify key frames. The two weight-
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Figure 4. Concept comparison with LivelySpeaker [53]. (Top)
LivelySpeaker generates semantic gestures with CLIP embeddings
in SAG and refines rhythm-related gestures separately using diffu-
sion, causing potential jitter. (Bottom) SemTalk integrates text and
speech, uses a semantic gate for fine-grained control, and unifies
rhythm and semantics for smoother, more coherent motions.

ing methods allow SemTalk to selectively enhance semantic
gestures while suppressing uninformative motion, leading
to more expressive co-speech motion.

Once 1 is established, it modulates the integration of
rhythm-aligned base motion f; and sparse semantic motion
fs. Through alpha-blending, frames with high semantic rel-
evance draw more from f;, while others rely on f,. The
final motion codes ¢° are computed as:

¢ =MLP()fs + (1 =) fp), )

To ensure cohesive propagation of semantic emphasis
across body regions, we employ the Coarse2Fine Cross-
Attention Module, similar to Sec. 3.3. In this stage, we fo-
cuses solely on body motion, excluding facial movements,
as body gestures play a more critical role in conveying se-
mantic meaning in co-speech interactions.

To foster diverse motion generation, SemTalk includes a
code classification loss £.;s and a reconstruction loss £,....
These losses are specifically focused on frames with high
semantic scores, guiding the model to prioritize the genera-
tion of sparse, meaningful gestures.

Discussion. Recently, LivelySpeaker [53] designs the
Semantic-Aware Generator (SAG) and Rhythm-Aware
Generator (RAG) for co-speech gesture generation, com-
bining them through beat empowerment. While effective,
key differences exist between LivelySpeaker and SemTalk,
see Fig. 4. First, SAG generates gestures from text using
CLIP embeddings, but bridging words and expressive ges-
tures is challenging, causing jitter. SemTalk incorporates
speech features (pitch, tone, emotion) alongside text and GT
supervision for adaptive gestures. Second, LivelySpeaker
applies global control, missing local semantic details, while
SemTalk uses fine-grained, frame-level semantic control
for subtle variations. Third, LivelySpeaker fuses SAG and
RAG in separate latent spaces, leading to misalignment and
inconsistencies. SemTalk jointly models rhythm and se-
mantics in a unified framework, ensuring smoother transi-
tions and coherence. We further compare SAG with our

semantic gate in experiments.

3.5. Semantic Score-based motion fusion

The Adaptive Fusion stage (Fig. 3 ¢) in SemTalk seamlessly
integrates semantic-aware sparse motion into the rhythmic-
related base motion. By strategically enhancing frames
based on their semantic importance, it maintains a smooth
and natural motion flow across sequences. For each frame ¢,
the semantic score v; computed during the Sparse Motion
Generation stage is compared to a threshold 3. If ¢; > £,
the base motion’s latent code ¢ is replaced with the sparse
semantic code ¢;, effectively highlighting expressive ges-
tures where they are most relevant; otherwise, ¢; = q; .
This selective replacement emphasizes semantically crit-
ical gestures while preserving the natural rhythmic base
motion. By blending ¢ and ¢® based on semantic scores,
SemTalk adapts to the expressive needs of the speech con-
text while ensuring coherence. Additionally, the convo-
lution structure of the RVQ-VAE decoder ensures smooth
transitions between frames, preserving motion continuity.

4. Experiments

4.1. Experimental Setup

Datasets. For training and evaluation, we use two datasets:
BEAT?2 and SHOW. BEAT?2, introduced in EMAGE [31],
extends BEAT [30] with 76 hours of data from 30 speakers,
standardized into a mesh representation with paired audio,
text, and frame-level semantic labels. We follow [31] and
use the BEAT?2-standard subset with an 85%/7.5%/7.5%
train/val/test split. SHOW [48] includes 26.9 hours of high-
quality talk show videos with 3D body meshes at 30fps.
Since it lacks frame-level semantic labels, we use the sem-
gate from SemTalk, pre-trained on BEAT2, to generate
them. Following [48], we select video clips longer than 10
seconds and split the data 80%/10%/10% for train/val/test.
Implementation Details. Our model is trained on a single
NVIDIA A100 GPU for 200 epochs with a batch size of
64. We use RVQ-VAE [42], downscaling by 4. The resid-
ual quantization has 6 layers, a codebook size of 256 and a
dropout rate of 0.2. We use five transformer layers to pre-
dict the last five layer codes. In Base Motion Learning, T =
0.1; in Sparse Motion Learning, 5 = 0.5 empirically. The
training uses ADAM with a le-4 learning rate. Following
[31], we start with a 4-frame seed pose, gradually increasing
masked frames from O to 40% over 120 epochs.
Metrics.We evaluate generated body gestures using FGD
[50] to measure distributional alignment with GT, reflect-
ing realism. DIV [26] quantifies gesture variation via the
average L1 distance across clips. BC [27] assesses speech-
motion synchrony. For facial expressions, we use MSE [47]
to quantify positional differences and LVD [48] to measure
discrepancies between GT and generated facial vertices.
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Figure 5. Comparison on BEAT2 [31] Dataset. SemTalk* refers to the model trained solely on the Base Motion Generation stage,
capturing rhythmic alignment but lacking semantic gestures. In contrast, SemTalk successfully emphasized sparse yet vivid motions.
For instance, when saying “my opinion,” SemTalk generates a hand-raising gesture followed by an index finger extension for emphasis.
Similarly, for “never tell,” our model produces a clear, repeated gesture matching the rhythm, reinforcing the intended emphasis.
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Figure 6. Comparison on SHOW [48] Dataset. Our method performs better in motion diversity and semantic richness.

4.2. Qualitative Results gesture diversity over EMAGE and TalkSHOW, though

EMAGE maintains greater naturalness. SemTalk surpasses
Qualitative Comparisons. We encourage readers to watch all baselines in both realism and diversity. Compared to
our demo video for a clearer understanding of SemTalk’s SemTalk*, SemTalk generates more expressive gestures,
qualitative performance. Our method achieves superior emphasizing key phrases (e.g., raising hands for “dream
speech-motion alignment, generating more realistic, di- job” or pointing for “that is why”). While SemTalk* ensures
verse, and semantically consistent gestures than the base- I‘hythmic Consistency, it lacks semantic expressiveness_ By
lines. As shown in Fig. 5, LivelySpeaker, TalkSHOW, integrating frame-level semantic emphasis, SemTalk aligns
EMAGE, and DiffSHEG exhibit jitter—EMAGE mainly in motion with both rhythm and semantics, demonstrating the
the legs and shoulders, while TalkSHOW affects the entire effectiveness of rhythmic consistency learning and semantic
body. LivelySpeaker and DiffSHEG, which focus primarily emphasis learning. In facial comparisons (Fig. 7), EMAGE
on the upper body, produce slow and inconsistent motions, shows minimal lip movement, while both DiffSHEG and

especially at speech clip boundaries. DiffSHEG improves
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Figure 8. Qualitative study on semantic score. Semantic score
aligns with keywords, influencing gesture intensity.

EMAGE reveal inconsistencies between lip motion and the
rhythm of speech. In contrast, SemTalk produces smooth,
natural transitions across syllables, resulting in realistic and
expressive lips, significantly surpassing the baselines.

On the SHOW dataset (Fig. 6), SemTalk shows more ag-
ile gestures than all baselines, when applied to unseen data.
Our method captures natural and contextually rich gestures,
particularly in moments of emphasis such as “I like to do”
and “relaxing,” where our model produces lively hand and
body movements that align with the speech content.
Semantic Score. Fig. 8 shows how semantic emphasis in-
fluences gesture intensity, with peaks in the semantic score
aligning with keywords like ”comes,” “fantastic,” and “cap-
tured.” By extracting semantic scores from key frames, we
track gesture emphasis trends. Furthermore, as shown in
Fig. 9, SemTalk adapts to different emotional tones even
when the text remains unchanged. This adaptability pre-
vents overfitting to the text itself, allowing the model to gen-
erate gestures that vary according to the emotional delivery
of the speech. The learned semantic score provides fine-
grained, frame-level control, keeping gestures both rhyth-
mically synchronized and semantically aligned in real time.
User Study. We conducted a user study with 10 video sam-
ples and 25 participants from diverse backgrounds, eval-
uating realism, semantic consistency, motion-speech syn-
chrony, and diversity. Participants were required to rank
shuffled videos across different methods. As shown in
Fig. 10, our approach received dominant preferences across
all metrics, especially in semantic consistency and realism.

) emo: ¢ emo: (& emo: ®

i ¥

{ b A A A A ‘v

- ) A A {
Semantic Score Semantic Score —_—
——_ —_— T~ T Semantic Score T

g g 0

emo: ¢ emo: (& emo: &

os yunp j,uop [ )

e
{ R

Semantic Score Semantic Score
f—
D))) 0 m— (] ", Score

Figure 9. Same words with different speech from the internet.
“emo” represents different emotional tones extracted from speech.
SemTalk can generate different motions, even when the text script
is the same, preventing overfitting to the text itself.
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Figure 10. Results of the user study.

4.3. Quantitative Results

Comparison with Baselines. As shown in Tab. 1, SemTalk
outperforms previous methods on BEAT?2, achieving lower
FGD, MSE, and LVD, indicating better distribution align-
ment and reduced motion errors. For fairness, we follow
[31] and add a lower-body VQ-VAE to TalkSHOW, Dift-
SHEG, and SemTalk. Notably, SemTalk significantly re-
duces FGD, ensuring strong distribution matching. While
TalkSHOW and EMAGE achieve competitive diversity
(DIV) scores, SemTalk balances high semantic relevance
with natural motion flow.

On the SHOW dataset, SemTalk excels with the low-
est FGD, MSE, and the highest BC, indicating precise beat
alignment with the audio and enhanced semantic consis-
tency in generated motions. Although EMAGE exhibits
high DIV, our model achieves comparable results while
maintaining smooth, realistic motion free from jitter.
Sem-gate. Tab. 2 highlights the effectiveness of sem-gate.
Without sem-gate, the model fails to emphasize key mo-
ments. Randomized semantic scores led to poor perfor-
mance by preventing meaningful frame distinction. Intro-
ducing a learned sem-gate even (w/o W) significantly im-
proves semantic alignment and classification accuracy. Re-
finement is further enhanced through weighting strategies:
feature weighting W enhances motion emphasis, while
loss weighting W, improves FGD and overall accuracy.
These results suggest that weighting methods enhance the
accuracy of the semantic score and help the model prioritize
important frames. The best results come from applying two
weighting methods together, where frames with stronger se-



Dataset Method FGD, BCt DIVt MSE| LVD|

FaceFormer [13] - - - 7.787  7.593
CodeTalker [44] - - - 8.026  7.766
CaMN [30] 6.644  6.769 10.86 - -

. DSG [47] 8.811 7.241 1149 -

2 LivelySpeaker [17] 11.80  6.659 11.28 - -

‘:.ﬂ Habibie ef al. [17] 9.040 7.716 8.213 8.614 8.043
TalkSHOW [48] 6.209 6947 1347 7791 7.771
EMAGE [31] 5512 7.724 13.06 7.680  7.556
DiffSHEG [9] 8986 7.142 1191 7.665 8.673
SemTalk (Ours) 4278 7.770 1291 6.153 6.938
FaceFormer [13] - - - 138.1  43.69
CodeTalker [44] - - - 140.7 4584
CaMN [30] 22.12  7.712  10.37 - -
DSG [47] 2484 8.027 10.23 -

% LivelySpeaker [17]  32.17 7.844 10.14 - -

:7-:: Habibie er al. [17] 2722 8209 8541 1456 47.35
TalkSHOW [48] 2443 8249 1098 139.6 45.17
EMAGE [31] 22.12  8.280 1246 136.1 4244
DiffSHEG [9] 2487 8.061 10.79 139.0 45.77

SemTalk (Ours) 20.18 8.304 1136 1341 39.15

Table 1. Quantitative comparison with SOTA. SemTalk consis-
tently outperforms baselines across both the BEAT2 and SHOW
datasets. Lower values are better for FMD, FGD, MSE, and LVD.
Higher values are better for BC and DIV. We report FGDx 1071,
BCx1071, MSEx 10~ 8 and LVD x 1075 for simplify.

mantic signals receive higher emphasis. We also compare
sem-gate with LivelySpeaker’s SAG [53]. We find that re-
placing the Sparse Motion stage with SAG and substituting
motion using GT semantic labels led to poor performance.
SAG relies only on text-motion alignment, ignoring emo-
tional tone, making it more prone to overfitting the text.
In contrast, our sem-gate applies GT supervision with two
weighting methods, achieving more accurate and stable se-
mantic motion.

Ablation Study on Components. We assess the impact of
each component of our model on BEAT2 and present the
results in Tab. 3, which reveals several key insights (more
ablation results please see supplementary material) :

* Rhythmic Consistency Learning (RC) not only boosts
performance on key metrics like FGD, LVD, and BC but
also reduces the MSE, contributing to smoother and more
realistic base motion.

* Semantic Emphasis Learning (SE) proves essential for
selectively enhancing semantic-rich gestures. The inclu-
sion of SE, as shown in rows with SE enabled, improves
both diversity (DIV) and FGD, enabling the model to em-
phasize semantically relevant motions. SE demonstrates
its effectiveness in focusing on frame-level semantic in-
formation, which contributes to the generation of lifelike
gestures with enriched contextual meaning.

¢ Coarse2Fine Cross-Attention Module (C2F) effec-
tively refines motion details, improving BC, FGD, and
DIV. When combined with RVQ and RC, C2F achieves
the best MSE and LVD, highlighting its role in enhancing
motion realism and diversity hierarchically.

Method FGD), BC} DIV: Acc(%)t

w/o Sem-gate 4.803 7.702 12.42 -
SAG (LivelySpeaker [53]) 4.618 7.682 1245 -
Sem-gate (Random 1)) 4.634 7.700 12.44 50.07

Sem-gate (w/o W) 4495 7.633 12.26 72.32
Sem-gate (w/ Wy) 4408 7.679 12.28 78.52
Sem-gate (w/ W) 4366 7772 11.94 77.83
Sem-gate (ours) 4278 7.770 1291 82.76

Table 2. Ablation study on Sem-gate. “Acc” denotes se-

mantic classification performance on BEAT2. “w/o Sem-gate”
means directly input f; and -~y without Sem-gate. “SAG
(LivelySpeaker [53])” replaces the Sparse Motion Generation
stage with LivelySpeaker’s SAG method. “Random )" assigns
frame-level scores randomly. “w/o VW” applies the semantic gate
but excludes frame-level weighting. “w/ W;” applies feature
weighting. “w/ W),” applies loss weighting. (as mentioned in
Sec. 3.4). Sem-gate (ours) integrates both the semantic gate and
frame-level weighting to enhance emphasis.

RC SE C2F RVQ FGD, BCt DIVf MSE| LVD]
6234 7628 1144 8239 7.831

- Vv 5484 7641 1184 13882 1542
v - J 4867 7701 1238 6201 6928
V. Vv 4526 7751 1283 6215 6997
- - Y 4897 7702 1242 13416 1572
v v - - 5831 7758 1197 6587 7.106
V- 4397 1776 1249 6100 6898
v Vv VvV 4218 7770 1291 6153 6938

Table 3. Ablation study on each key component. “RC” denotes
rhythmic consistency learning, “SE” denotes the semantic empha-
sis learning, and “C2F” denotes Coarse2Fine Cross-Att Module,
“RVQ” denotes the RVQ-VAE.

* RVQ-VAE (RVQ) enhances the diversity and realism of
generated motion. Though it slightly increases MSE and
LVD, it notably improves FGD, leading to more natural
motion generation compared to standard VQ-VAE.

5. Conclusion

We propose SemTalk, a novel approach for holistic co-
speech motion generation with frame-level semantic em-
phasis. Our method addresses the integration of sparse
yet expressive motion into foundational rhythm-related mo-
tion, which has received less attention in previous works.
We develop a framework that separately learns rhythm-
related base motion through coarse2fine cross-attention
module and rhythmic consistency learning, while capturing
semantic-aware motion through Semantic Emphasis Learn-
ing. These components are then adaptively fused based on
a learned semantic score. Our approach has demonstrated
state-of-the-art performance on two public datasets quanti-
tatively and qualitatively. The qualitative results and user
study show that our method can generate high-quality co-
speech motion sequences that enhance frame-level seman-
tics over robust base motions, reflecting the full spectrum of
human expressiveness.
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