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ABSTRACT

Identifying time-delayed temporal latent process is crucial for understanding
temporal dynamics and enabling downstream reasoning.  Although recent
methods have made remarkable progress in this field, they cannot address the
dynamics in which the influence of some latent factors on both the subsequent
latent states and the observed data can become inactive or irrelevant at different
time steps. Therefore, we introduce intermittent temporal latent processes, where:
(1) any subset of latent factors may be missing during nonlinear data generation
at any time step, and (2) the active latent factors at each step are unknown. This
framework encompasses both nonstationary and stationary transitions, accom-
modating changing or consistent active factors over time. Our work shows that
under certain assumptions, the latent variables are block-wise identifiable. With
further conditional independence assumption, each latent variable can even be
recovered up to component-wise transformations. Using this identification theory,
we propose an unsupervised approach, InterLatent , to reliably uncover the
representations of the intermittent temporal latent process. The experiments on
both synthetic and real-world datasets verify our theoretical claims.

1 INTRODUCTION

Learning meaningful representations from sequential data remains a fundamental challenge across
various fields. Time series data, such as financial markets and climate observations, are ubiquitous
and exhibit high nonlinearity |Berzuini et al.|(2012); \Ghysels et al.|(2016). This inspires a extensive
line of works to temporal latent representation learning [Yao et al.| (2022bza); |(Chen et al.| (2024),
upon the recent advancement in nonlinear ICA |Khemakhem et al.| (2020); |[Zhang et al.; [Kong et al.
(2022); Zheng et al.| (2022); |Li et al.| (2023)); [von Kiigelgen et al.[ (2024); Ng et al.| (2023)); [Zheng
& Zhang| (2024)); Morioka & Hyvarinen| (2024); |Yao et al.| (2024)); Zheng et al.| (2024); [Kong et al.
(2024); [Lachapelle et al.| (2024a). However, many real-world systems exhibit latent time-delayed
dynamics where the influence of certain latent factors on both subsequent latent states and
observed data can be inactive or irrelevant at specific time steps. Consider, for example, a complex
manufacturing process: various machine components contribute to the final product quality at
different stages, with some components becoming temporarily inactive or irrelevant during certain
production phases. Current works may struggle to capture these intermittent influences, potentially
missing crucial aspects of the underlying dynamics. This highlights the need for a more flexible
and robust framework to identify such temporal processes with intermittence of latent variables.

In this work, we investigate the identification of representations of intermittent temporal latent pro-
cesses. Two key properties characterize the intermittence of a temporal latent process: (1) any subset
of latent factors can be missing during the nonlinear time-delayed data generation at any time step,
and (2) the specific set of active latent factors at a time step is unknown. Figure [I]takes an example
of data generating mechanism of an intermittent latent temporal process to illustrate its concept. In
the transition mechanism (top of Figure [Ib), we see the zero entries in Jacobians indicating that
not all latent variables influence each other’s transitions. Similarly, in the generating mechanism
(bottom of Figure [Ib), the sparse Jacobians show that not all latent variables contribute to every
observed variable. We define the “support” as the set of active latent factors at each time step, for
both the transition and generating mechanisms. “Missingness” occurs when a latent factor is absent
from the support, having no influence on the subsequent latent state or the observed data.
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The intermittent nature of these processes presents two significant challenges for representation
learning: (1) The supports for both transition and generating mechanisms are unknown, requiring
methods to adapt to the data generated by only active latent factors at each time step. (2) The in-
teractions between intermittently active latent variables may be intricate and time-varying in both
mechanisms, necessitating the models that can capture the possible various support and missingness.
The existing literature has yet to fully address these challenges. Wiedemer et al.| (2024) relies on
compositional mixing functions and requires supervision on the latent variables. [Lachapelle et al.
(2023)); [Fumero et al.[ (2023)); | Xu et al.[ (2024) are restricted to linear or piecewise linear settings.
CaRiNG |Chen et al.| (2024) tackles missingness only within the mixing function by leveraging his-
torical information during the unmixing process.

In contrast to previous works, we present identification guarantees for uncovering intermittent tem-
poral latent processes. Our theoretical analysis begins with establishing block-wise identifiability
under assumptions of the sufficient variability of transitions of latent variables (Theorem([I]). Notably,
this outcome holds regardless of whether latent variables are within the support or missingness.
Building on this foundation, we further prove component-wise identifiability for latent variables
within the support in Theorem [2} given an additional assumption of independence of latent vari-
ables conditioning on previous time steps. Moreover, our identifiability results are able to handle
both nonstationary and stationary temporal latent process, allowing for changing or consistent active
factors over time without compromising identifiability guarantees. These theoretical contributions
establish, to the best of our knowledge, one of the first general frameworks for uncovering latent
variables in intermittent temporal processes with appropriate identifiability guarantees.

Leveraging these theoretical insights, we introduce a novel unsupervised method that extends
the Sequential Variational Autoencoder |[Li & Mandt (2018). Our method, InterLatent ,
accommodates supports and missingnesses through sparsity regularizations on both mixing and
transition functions, enabling it to model complex interactions between intermittently active latent
variables and handle sparse, temporally variable latent spaces. We evaluate our approach on
synthetic and real-world datasets, demonstrating its effectiveness in uncovering complex hidden
temporal processes, as well as validating the proposed identifiability theory.

2 PROBLEM SETTING

Given a temporal sequence ranging from ¢t = 1 to ¢t = T, let x = {xX1,X2,...,Xx7} denote the
K-dimensional observations. At each time step ¢, N latent causal variables z; = {2},...,2N}
generate x, € RX. We formalize the data generating process as follows:

Xi=g(z), 2z = fn(Pa(zy),e) for ne[l,N] (D

Here, g is assumed to be an injective, nonlinear, non-parametric mixing function: RY — R, In
this work, we work on the undercomplete case, where K > N to ensure the injectivity of g. f,
denotes the nonlinear, nonparametric time-delayed transition function for the n-th latent variable.
Pa(z]') represents the parent nodes of z} from previous time steps. Without loss of generality, we
assume a time lag of 1 in Eq. equation i.e., Pa(z}) C z;—1. The general case of multiple lags
and sequence lengths is discussed in Appendix €f is the noise term, sampled independently for

each z} from a standard normal distribution A/(0, 1).

We are now ready to introduce the intermittent temporal latent process upon the concept of miss-
ingness of latent variables. In particular, not all components of z; participate in the data generating
process at a time step. Formally, there exists a u € [1, N| such that the u-th row of Jacobian of the

U,

transition function f*, denoted as J £l and the u-th column of the Jacobian of the mixing function,

;’)IZ, are zero. This implies that when z{' is missing, it neither receives influence from z;_; nor
exerts influence on z, 1 or x; in the data generation process. Figure[T]illustrates this concept, where
z} and z2 are examples of such missing latent variables.

The “non-missing” indices of z; help to define the support of the data generating process in Eq.
by:

se:={i € [1,N] | 3z¢_1 and 7y, J;3(z) # O N J7i(zem1) # O AT 1 (zi) 0} (2)
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A similar formulation can define the missingness of z; by s{. We assume that s; and s partition the
index set [1, N]

s; == {u € [1,N] | 3z;—1 and 24, J; (z¢) = O N J ;5 (ze—1) = ONJ7y (z) =0} (3)
Equations 2] and [3] sets the
stage for identifying z; by
characterizing a sparse sup-
port at ¢ of both transition and
mixing functions. Specifi-
cally, there may exist latent
variables {z}|u € s{} that
do not participate in the data

Jacobian of the transition function

1 ,2 1 ,2
zy 77 z; 7y

Z%()() Z%o.
zZ | o ZZ|o0 o0

Jacobian of the mixing function
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generating process described 72 z} 7% z} 7%
in Eq. The zero entries A 2 (o (. o
in the Jacobian matrices of x; e o 2lo .| 2|+ 0
both the transition and mix- il . . lo . 3l o
x x x
1 2 3

ing functions, as illustrated in
Figure [[[b), provide a clear
visual representation of this
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(a) Data generating process (b) Jacobian structures of

sparsity. Let d; = |s¢| denote transition and mixing functions
the cardinality of s;, and con-  Figure 1: Data generations of Intermittent Temporal Latent Process
sequently, |sf| = df = N —  and its Jacobian Structures for a three-step sequence, e.g., z} means

d¢. In our analysis, we as- the latent variable z* at t = 3. (a) illustrates the connections be-
sume both s; anq S{ are non-  tween time steps and how z; generates x; in intermittent temporal
empty for all time steps ¢. Jatent process. (b) Jacobian structures reveals the definition of sup-

The case where s{ = () canbe port and missingness in Eq. P]and Eq. B|by e and 0, respectively.
considered a special instance

of the intermittent temporal
latent process. In order to introduce our identification resutls, we define the observational equiv-
alence next.

Definition 1 (Observational Equivalence): Given a sequence of observed variables x =
{x1,X2,...,x7} for t = 1to T, let the true temporally causal latent process be specified by

fyg9,p(€) as in Eq. equation A learned generative model f,§, p(€) is observationally equivalent
to the ground truth if the model distribution matches the data distribution everywhere:

P .op6)X1T) = Df gp(e)(X1:7) )

Both the mixing function and transition functions can be recovered (up to certain indeterminacies)
once z; is identified as we assume the injectivity of g and no latent causal confounders, respectively.

Suppose there exists an invertible mapping h, such that z; = h(z;). We further provide the definition
of block-wise identifiability and component-wise idenfiability in the following

Definition 2 (Block-wise Identifiability): & is considered block-wise identifiable if, given a block
of the true latent variables z?, there exists an unique partitioning B' of #; that matches z2 up to a

permutation T, such that 28 = hB(n(zP)), where hP is invertible.

Definition 3 (Component-wise Identifiability): For an individual component of the latent vari-
ables 7}, there exists a unique component n' of z; matches z} up to a permutation 7, such that

zy = h"(w(2})), where h™ is invertible. z} is component-wise identifiable.

3 IDENTIFIABILITY THEORY

This section presents our identifiability results. We first leverage the assumptions of sufficient vari-
ability of temporal data and support sparsity to establish block-wise identifiability, as detailed in
Theorem [I] Building upon this foundation, we then demonstrate component-wise identifiability of
latent variables by exploiting conditional independence assumptions, as formalized in Theorem [2]
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3.1 BLOCK-WISE IDENTIFIABILITY

Eq. [2| and [3| enable the partitioning of z; into two subsets: {z!|i € s;} and {z}|u € s{}. We now
present our findings on the block-wise identifiability of these subsets:

Theorem 1 For the observations x, € RX and estimated latent variables z, € RY, suppose

that there exist functions § and f satisfying observational equivalence in Eq. 4| If the following
assumptions and regularization hold:

i (Smoothness and positivity): The probability density function of the latent causal variables,
p(z¢), has positive measure in the space of z, and is twice continuously differentiable.

ii (Path connected): For any z°,z!

#(0) = 2% and $(1) = z* .

iii (Sufficient variability of z; and z;): Let q(z¢|zi—1) = log p(z¢|zi—1), as well as q(2¢|z¢—1) =
log p(2¢|2¢—1), and Hy, 2, ,q(2¢|Zi—1) denotes the Hessian matrix of q(z¢|z¢—1) w.rt. z, and
zi_1. Suppose G% € {0,1}N*N as a binary adjacency matrix that indicates the existence of

the transitions from z;_1 and z., where G% ,, = 1 means that there exists a transition from z.' |
;

€ Z, there is a continous function ¢ : [0,1] — Z, s.t.

to zi2. We assume that:

span{Ha, z,_,q(zelze-1) 5, = R ™

and

Span{Hit,it—1 q(2t|it*1)}jt:1 = Rdé::dt .

iv (Support sparsity regularization): For any time step t, s; is not an empty set, dt < d;

There exists a permutation o, such that
§t =o(st) and 8§ =o(sy).
In other words, Vi, {zt|i € s;} and Vu,{z!|u € s§} are block-wise identifiable.

Proof sketch The complete proof is provided in the Appendix [B.I] Here, we outline the key steps:
First, let p(z¢|z;—1) be the ground-truth transition pdf and p(z.|z;—1) be the estimated transition
pdf. Define q(z¢|z:—1) = logp(z¢|z:—1) and q(2¢|Z:—1) = logp(2+|Z:—1). Using h defined in
Z: = h(z:) helps us derive: Hz, 5, ,q9(Zt|2e—1) = (Jn-1(2¢))"Haz, 2,1 9(Zt|Z2—1) Tp-1(Z¢-1),
where H denotes the Hessian matrix and .J;, -1 is the inverse Jacobian of h. We further leverage the
sufficient variability assumption to establish a connection between the support sets s; and §;, as well
as their complements s{ and s7, respectively. By incorporating the support sparsity regularization

d, < dy, we conclude the block-wise identifiability of both Vi, {zi|i € s,} and Vu, {z"|u € s¢}.

Remarks Assumptions i and ii have been commonly adopted for the identification theory Chen et al.
(2024); [Lachapelle et al.| (2024b). These assumptions provide the foundations to present Theorem(1]
which concerns the transitions from z,_; to z,; over the space Z.

Recall that this work does not require all components of z; to actively participate in the data gener-
ation process. The crux of our identification approach lies in formalizing the relationships between
the support sets s; and S;, as well as their complements s§ and s{. To this end, we further intro-
duce the sufficient variability in assumption iii to ensure the span of the Hessian matrices of the
log-transition probabilities covers the full space of Vi, {zi|i € s;}. We can thus establish our main
result on partial identifiability by leveraging support sparsity regularization to reach our conclusion
of the block-wise identifiability.

Notably, we do not assume the invariance of the support set s; over time. Regardless of whether
s; changes or remains constant, we demonstrate in Section that for all ¢, {z}|¢ € s;} can be
recovered up to a component-wise invertible transformation and a permutation.

3.2 COMPONENT-WISE IDENTIFIABILITY

In this section, we exploit the conditional independence assumption to establish the component-wise
identifiability of {z}|i € s;}.
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Theorem 2  Let all assumptions from the Theorem |l| hold. Additionally, suppose the following
assumption is exposed to data generating process in Eq. [I|as well:

i (Conditional independence): At t, we assume that each component of z, is conditional indepen-
dent given the previous latent variables z,_1. For any il,i2 € [N]:

zi' 1 2%z 4 (5)

Then {Z]|j € &} must be a component-wise transformation of a permuted version of true {z!|i €
St}~

Proof Sketch: Our main idea rests on proving component-wise identifiability by contradiction. We

demonstrate that if component-wise identifiability does not hold, it would violate the conditional in-
dependence assumption. More specifically, The proof proceeds as follows: 1. From the Theorem|T]
we have: s, 5, q(2¢|24—1) = (Jp-1(2¢)) "Mz, 2,1 4(2¢|Ze—1)Jp—1(Z¢—1); 2. the conditional in-
dependence of ¢(z;|z;_1) as established in Eq. only hold if J;, ! (2;) is a diagonal matrix.

Remarks: The conditional independence is widely adopted in identification results for time-series
data, as evidenced in recent works |Yao et al.[ (2022bfa)); (Chen et al.| (2024). Our analysis demon-
strates that this regularization plays a crucial role in establishing our identification results.

The conclusions derived from Theorem [T]and Theorem [2)are applicable to both stationary and non-
stationary processes. We consider the process is nonstationary if the support sets s; and s vary over
time since the transition from z;_; to z; changes as well. Conversely, the process is stationary if
these support sets remains unchanged over time. Our framework allows for temporal variation in the
support sets s; and their complements s{, subject only to the constraint that neither is an empty set
at any time point.

Our proposed data generating process encompasses previous models as special cases. For instance,
if we remove the intermittent feature described in Eq.[2]and Eq. [3] our model reduces to LEAP [Yao
et al.| (2022b)) without the domain index. When handling non-stationary sequences, our identifia-
bility results removes the assumption of known auxiliary variables, which is required by |Yao et al.
(2022bta); [Chen et al.|(2024).

4 INTERLATENT APPROACH

Building upon our identifiability results, we now introduce InterLatent to estimate the latent causal
variables. Our approach aims to achieve the observational equivalence by modeling the support
sparsity and the conditional independence assumptions for the data generating process in Eq.[I} In
general, InterLatent formalizes the probabilistic joint distribution of Eq. [T]as:

T

p(x1.7,21.7) = Py (X1(21)pg (21) pr(xt|zt)p¢(zt‘zt71)~ (6)
=2

where v denotes the parameters for the mixing function g, and ¢ denotes the parameters for the
transition function f. To learn z; from the observations x;, we also introduce the encoder ¢, (z:|x;)
with parameters w. We build our approach upon Sequential Variational Auto-Encoders|Li & Mandt
(2018). Fi gure@illustrates the overall framework of InterLatent . In what follows, we introduce
each part of our network individually.

4.1 NETWORK DESIGN

Eq. [f] suggests that the architecture of InterLatent comprises of three key components. The encoder
acquires latent causal representations by inferring ¢, (2|2 ) from observations. These learned latent
variables are then used by the step-to-step decoder p~y(&;|Z;) to reconstruct the observations, imple-
menting the mixing function g in Eq. 1. To learn the latent variables, we constrain them through the
KL divergence between their posterior distribution and a prior distribution, which is estimated using
a normalizing flow that converts the prior into Gaussian noise. A detailed exploration of all modules
is forthcoming.
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Encoder g, (z:|x;): We assume Z; is independent of Z;/ LT 2

conditioning on x, where ¢ # t’. Therefore, the decom- Decoder LT

position of joint probability distribution of the posterior 1 N u I v
A Tempora

. . . L L

is g, (z]x) = H w(2¢|x¢). We choose to approximate ~Rg°"  Z1:T Prior LD

q by an 1sotr0p1c Gauss1an characterized by mean u; and Encoder €1.7

covariance o;. To learn the posterior we use an encoder |

X1

Figure 2: The overall framework of
InterLatent consists of: (1) an en-
coder that maps observations x; to la-
tent variables z, (¢t € [1,T]), (2) a de-
coder that reconstructs observations X;
(t € [1,T)) from z;, and (3) a tempo-
ral prior estimation module that models
the transition dynamics between latent
states. We train InterLatent by Lrecon
along Lxip. € (¢t € [1,T]) denotes
the estimation of the true noise terms
€ (t € [1,T])

composed of an MLP followed by leaky ReLU activation:
Zy ~ N (e, 00), pe, o = LeakyReLU(MLP(x;)). (7)

Temporal Prior Estimation p,(z;|z;_1): To enforce the
conditional independence assumption in Eq. 5] we min-
imize the KL divergence between the posterior distribu-
tion and a prior distribution. This approach encourages the
posterior to adopt the independence property as well, such
that z;|x; are mutually independent. To address the chal-
lenges of directly estimating the arbitrary density func-
tion pg(z¢|z¢—1), we introduce a transition prior module
based on normalizing flows. This design represents the
prior as a Gaussian distribution transformed by the Jaco-
bian of the transition function, enabling efficient comput-
ing. Formally, vJ, {zt |j € 8:}, we formulate the prior
module as €] = f (zt |Z:—1). This computation meets the requirement that f,, to be invertible.

Then the prior distribution of the j-th dimension of the temporal dynamics, ii , can be computed as
v Of; A1 adia af; "
Po(&D)| 75| = polf; (] |2e-1)) | %y

In addition, for any v, such that {2} |v € 8¢}, we evaluate that ¢V = f;-1(2?). The prior distribution

is calculated by pg(€})| =5 f“ \ = ps(fi (2 ))|8f”u | as 2z} is independent of z,_;. Combing
together, the total prior d1str1buti0n is:
N
a 1
Po(Zt|Ze—1) H f | (®)

The flow model f in Eq.[8]is built with the MLP layers. For more details on the derivations of prior
estimation, please refer to Appendix [C.1}

Decoder p.,(%;|2,): The decoder pairs with our encoder to generate an reconstruct of the observation
X, from the estimated latent variables z;, which consists of a stacked MLP followed by leaky ReLU
activation:

= LeakyReLU(MLP(%;)). 9
4.2 LEARNING OBIJECTIVE
In this work, we extend our learning objective from Sequential Variational Autoencoder|Li & Mandt;
(2018) with a modified ELBO. In general, the ELBO implements the observational equivalence

requirement from Definition[T} which ensures our learned model matches the data-generating distri-
bution. We formulate the entire ELBO objective in the following:

T T
Lrgo = Y Bz g, 10gpy(Rel2) = > BEz, g, (log q (2e]x:) — log py(2e]2:-1))
t=1 t=1

L:Recon LKLD

T T
+ 3 (atlon + Tz 4000 + D 1 lon (10)
t=1 t=2

Sparsity Regularization
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Figure 3: Mean Correlation Coefficient (MCC) scores for various methods for both ”Nonstationary”
and ”Stationary” settings. d° means the size of s in a sequence. Higher MCC scores indicate better

performance in identifying latent variables.

where [ is the hyperparameter to balance the two losses. The reconstruction 10ss Lrecon minimizes
the discrepancy between x; and X; using mean-squared error.

The KL divergence loss Lx;p serves dual theoretical purposes. It enforces the conditional inde-
pendence assumption from Theorem 2 through the factorized prior py(2z:|z.—1) by Eq. [8] while
simultaneously satisfying the sufficient variability assumption from Theorem 1 by encouraging di-
verse transitions in the latent space. When computing Lk p, we follow [Yao et al.| (2022a)); Chen
employ a sampling method since the prior distribution lacks an explicit form.

The sparsity regularization implements the support sparsity of intermittent sequences through three
terms. The L1 norm on decoder Jacobian columns Jj ;|2 1 enforces sparse mixing patterns. The L1
norm on transition Jacobian rows ||J P |11 ensures sparse transitions from z;_; to z;. The L1 norm
on transition Jacobian columns |.J P |2,1 maintains consistent sparsity structure. Following standard
practice, we use these L1 norms to approximate the LO norm for differentiability.

5 EXPERIMENTS

5.1 SYNTHETIC EXPERIMENTS

Experimental Setup To evaluate InterLatent ability to learn causal processes and identify
latent variables in non-invertible scenarios, we conduct simulation experiments using random causal
structures with specified sample and variable sizes. We generate synthetic dataset satisfying the
identifiability assumptions outlined in Theorem|[T]and [2](details in Appendix[D.T), considering both
nonstationary (s; varying across the sequence) and stationary (s; constant throughout) settings.

For each setting, we generate three scenarios of sequences, resulting in six scenarios in total.
Each scenario has a particular value of df. This design allows us to assess the performance of
InterLatent under different complexities of missingness. The Mean Correlation Coefficient
(MCC) serves as our evaluation metric, measuring latent factor recovery by computing absolute cor-
relation coefficients between ground-truth and estimated latent variables. MCC scores range from 0
to 1, with higher values indicating better identifiability.

Results Figure [3] summarizes our main results on our simulations. We evaluate InterLatent
against several state-of-the-art approaches in identifying time-series causal variables and represen-

tation learning, such as LEAP [Yao et al. (2022b), TDRL [Yao et al| (2022a) and CaRiNG
et al|(2024). Additionally, we include classic representation learning approaches, such as BetaVAE

Higgins et al.| (2016)), i-VAE |[Khemakhem et al.|(2020) and Slow VAE [Klindt et al.| (2020).
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Figure 4: Visualization of the correlations between z; and z; at time steps ¢ = 2,5, and 8. The top
row represents a scatter plot on a nonstationary sequence, while the bottom row depicts a scatter
plot on a stationary sequence. The red bounding boxes depicts the missing part of z, i.e, {z%|u €
s¢}. The green bounding boxes highlight the latent variables that are component-wise identified for
{z!|i € s;}. The results confirm that InterLatent successfully identifies {z|i € s;} in both
nonstationary and stationary sequences. Also, we can observe that {z"|u € s{} is distinguishable
from {z|i € s;}.

The results from Figure 3]demonstrate that InterLatent consistently achieves higher Mean Cor-
relation Coefficient (MCC) across both nonstationary and stationary scenarios. For instance, in the
nonstationary sequence with df = 1, InterLatent outperforms all other methods by a substan-
tial margin, exceeding 0.1 in MCC. We attribute the superior performance of InterLatent to its
capability of handling missingness in z;, a feature not present in the comparative methods. This key
distinction enables our approach to more accurately capture the temporal dynamics of the latent vari-
ables. Figure [ visualizes the disentanglement between the true latent variable and the estimations
at different time steps from a sequence.

Ablation Study and Discussions To elucidate the key assumptions of our data generating process
in Eq.[T] we further conduct ablation study focusing on the impact of sparse support. We introduce
four baselines: (1) “W/O s of f”, which removes sparsity regularization on transition functions;
(2) “W/O s of g”, which removes sparsity regularization on mixing functions; (3) “WS”, a weakly
supervised variant drops all sparse regularizations as having access to s; and s{ during training;
and (4) “ES”, which estimates s; and s{ using the gumbel softmax trick following the literature of

structure learning [Brouillard et al.| (2020); [Lorch et al (2021).

We summarize our experimental results in Figure [3] InterLatent obtains the scores on par with
“WS” baseline. This speaks the effectiveness of using the sparsity regularization terms against
using s; and s§ for g and f directly. Also, InterLatent advances “ES” baseline across all the settings.
The “W/O S of f” baseline, which assumes s{ = (), yields a significantly lower Mean Correlation
Coefficient (MCC) compared to InterLatent approach. Similarly, “W/O S of ¢” fails to achieve
competitive results due to its disregard for missingness in the mixing function. These outcomes
confirm that without accounting for missing components, the baselines are unable to adequately
model our simulated data. Experiments on various N can be found in Appendix [D.4]
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5.2 REAL-WORLD EXPERIMENTS

Task setup To evaluate our proposed identification theories in complex real-world scenarios, we
apply them to the task of Group Activity Recognition (GAR) using the Volleyball dataset Ibrahim
et al.| (2016). GAR aims to categorize the activity for an individual frames in multi-actor scenes,
aligning well with our scenario of intermittent temporal latent processes. This is because not all
actors participate in every activity, reflecting real-world dynamics where some may be occluded
or out of view in fast-evolving sporting scenarios. In our implementation, each actor at a given
time point is modeled as a specific component of the latent variables, with occluded or out-of-view
actors treated as “missing” in the activity representations. This setup provides a solid testbed for our
identification theory, allowing us to assess its robustness and effectiveness in handling real-world
complexities such as partial observations and dynamic participant involvement.

Letx = {x?}tT:’]f_nzl denote a video consisting of T'-frame observations and [V agents. For each

time step ¢ and agent n, there exists a latent variable z}* € {z;‘}tT:JXn:l that generates xj* according

to Equation

We take inspirations from the two-phase training pipeline from |Li et al.| (2024) to modify our train-
ing objective. First, we train InterLatent using the objective function defined in Eq.[TI0] Sub-
sequently, a classifier ¢ predicts the one-hot activity label § from the learned sequence of latent
representations 1.7 using an MLP: § = MLP(Concat(z1.7)). The classifier is trained using a
cross-entropy loss with a L1 regularization on its Jacobian:

ECCISE =—-E, (one-hot(y) -1og(softmax(gj))) + | Jel2,1 a1

where one-hot(y) denotes the one-hot embedding of the true activity label. More data preprocessing
details can be found in Appendix [D.2]

Data and Comparing Methods The Volleyball “Fioihods MCA
dataset|Ibrahim et al.|(2016) contains 55 video record- “SACRF|Pramono et al| (2020) | 833
ings of volleyball games and is split into 3493 training A Gavrilyuk et al. (2020) 84.3
clips and 1337 testing clips. The center frame of each ¢ AN ¥an ot al. ©020) 6.3
clip is annotated with one group activity label out of  NNuan ot al. @021) 86.5
eight labels (i.e. right set, right spike, right pass, right  HEGARIKIm of al. 2022) 90.5
wippoint, left set, left spike, left pass, and left win-  HiGCINNan ot al. (2023) 91.4
point). PAP [Nakatani et al.| (2024) 91.8
The comparing methods include the state-of-the-art ~ Dual-Al/Han et al.|(2022) 93.2
methods on GAR task, such as SAM Yan et al|(2020), _ BiCausalZhang et al[(2024) | 934
AT |Gavrilyuk et al.| (2020), ASACRF Pramono et al. TDRL[Yao et al.[(2022a) 92.9
(2020), DIN |Yuan et al.| (2021), DFGAR |[Kim et al. CaRiNG [Chen et al.|(2024) 94.0
(2022)), HiGCIN [Yan et al.| (2023)), PAPNakatani et al. InterLatent 95.7

(2024), and BiCausal [Zhang et al.| (2024). We also
benchmark against TDRL |Yao et al.[(2022a) and CaR-
iNG|Chen et al.| (2024) to evaluate the efficacy of iden-
tifying the intermittent temporal latent process. For
fair comparisons, InterLatent adopts the ResNet-18 backbone |[He et al.| (2016) and weakly su-
pervised setting from |Yan et al.| (2020) for feature extractions from the RGB frames, which is also
commonly utilized by other approaches.

Table 1: Comparison with the state-of-
the-art methods on Volleball dataset

Results and Discussions Table || presents a comparison of Multi-class Classification Accuracy
(MCA) on the Volleyball dataset. Notably, InterLatent demonstrates superior performance with
respect to those do not consider the missingness in both transition and mixing functions, i.e., CaR-
iNG and TDRL. For example, InterLatent achieves the highest accuracy of 95.7, significantly
surpassing the previous best result of 94.0 obtained by CaRiNG. InterLatent also outperforms
the state-of-the-art approaches on GAR, such as Dual-Al and BiCausal by significant margins of 2.5
and 2.3 points, respectively.

Figure [3] illustrates the visual examples of activity classification outcomes produced by
InterLatent . The model demonstrates robust performance in handling occlusion-induced miss-
ingness, accurately categorizing activities in challenging scenarios. Figure [Sah [5c| showcase suc-
cessful classifications of “right set”, “left set” and “left pass” respectively, despite partial occlusions
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label: left spike . prediction: left set

[¢ d

Figure 5: The visual examples of InterLatent on Volleyball dataset. Highlighted frames show
the annotated activity, with yellow bounding boxes indicating occluded actors. InterLatent
correctly predicts the three activities but misclassifies a video of left spike” as left set”. Note that the
spike activity is performed by a actor that is severely occluded. This implies the misclassification
may stem from that the label itself is not grounded by the true process.

of key players. We also present a failure case in Figure [5dl where InterLatent misclassifies
a “left spike” as a “left set.” However, this misclassification stems from that the label itself is not
grounded by the true process, since the spike activity is performed by a player that is severely oc-
cluded.

6 CONCLUSION

We establish a set of novel identifiability results for intermittent latent temporal processes, extend-
ing the identifiability theory to scenarios where latent factors may be missing or inactive at different
time steps. Specifically, we prove block-wise identifiability under assumptions on support spar-
sity, and further demonstrate component-wise identifiability within the support given conditional
independence assumption. These results hold for both nonstationary and stationary transitions, ac-
commodating a wide range of real-world temporal dynamics. Our theoretical findings are validated
through experiments on both synthetic and real-world datasets, demonstrating the practical appli-
cability of our approach. Future work could explore the application of this framework to related
tasks such as temporal disentanglement, transfer learning in time series data, and causal discovery
in dynamic systems. The identifiability guarantees we’ve established for intermittent latent temporal
processes strengthen our ability to uncover hidden truths in diverse real-world settings, potentially
impacting fields ranging from neuroscience to economics. While we have demonstrated the effec-
tiveness of our approach on visual group activity recognition task, the lack of other applications is a
limitation of this work.
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A  NOTIONS

Table of notions

Data and estimations

X € RK Observations X; € RE Reconstructions

z, € RY Latent variables z, € RV Latent variable estimations
€ True noise term €t Estimated noise term

St The support of z; St The support of z,

S§ The missingness of z; 8§ The missingness of z;
dy The cardinality of s; dy The cardinality of §;

d; The cardinality of s§ e The cardinality of 8§

Indices

te[l,T] Time step n € [N] The indices of z,

1 € st The indices of z; within s; Jj E 8¢ The indices of z; within §;
u € sy The indices of z; within s UNSE¥ The indices of z, within §§

Ground-truth & Learned model

g True mixing function g Learned mixing function

f True transition function f Learned transition function

Jy Jacobian of g Jy Jacobian of §

Jr Jacobian of f Ji Jacobian of f
Optimizations

10} True parameters of f qB Learned parameters of f

¥ True parameters of g o Learned parameters of §

w True parameters of encoder w Learned parameters of encoder

[ * |21 L1 norm on columns of * EXIE L1 norm on rows of *

B PROOF OF THEOREMI] AND THEOREMZ]

In this section, we provide proof of our identifiability results in Theoren[I] and Theoren2] To this
end, we take insiprations from Lemma B.1 of [Lachapelle et al.|(2023) to present a Lemma that is
throughout our proof.

Lemma 1 (Invertible matrix contains a permutation) Let L € RY*" be an invertible matrix.
Then, there exists a permutation o such that Lwo(n) 2 0 for all n, In other words, PT C L where
‘P is the permutation matrix associated with o, i.e. Pe” = eo(n),

Proof: Since the matrix L is invertible, its determinant is nonzero. We can obtain the following with
the assistance of Leibniz formula:

|det L| = Z sign(o) H Lo oL (12)

oceS i

where S denotes a set of permutation. Eq.[12|suggests that at least one term of the sum is non-zero,
meaning there exists o € S, such that Vn, L™7(") =£ (.

B.1 PROOF OF THEOREM/[I]

Theorem [I]is where most of the theoretical contribution of this work lies. Let us recall Theorem [I}
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Theorem 1 (Block-wise identifiability): For the observations x; € R¥ and estimated latent vari-
ables z; € RYN, suppose there exist functions § satisfying observational equivalence in Eq. If the
following assumptions and regularization hold:

i (Smoothness and positivity): The probability density function of the latent causal variables,
p(z¢), has positive measure in the space of z; and is twice continuously differentiable.

ii (Path connected): For any z°,z'

#(0) = 2% and $(1) = z* .

iii (Sufficient variability of z; and z;): Let q(z¢|zi—1) = log p(z¢|zi—1), as well as q(2¢|z¢—1) =
log p(2¢|2¢—1), and Hy, 2, ,q(2¢|Zi—1) denotes the Hessian matrix of q(z;|z(—1) w.rt. z, and
z:_1. Suppose G* € {0,1}V*N as a binary adjacency matrix that indicates the existence of

the transitions from z,_1 and z,. G} ,, = 1 means that there exists a transition from zil | to

€ Z, there is a continous function ¢ : [0,1] — Z, s.t.

zi2. We assume that:

span{Ha, z,_4(zdlze-1) L, = RES"

and
span{Ms, z,_,q(2|2 1) }ie, = REX%H

iv (Support sparsity regularization): For any time step t, s; is not an empty set, cit < d;
There exists a permutation o, such that
§t =o(st) and 8§ =o(sf)
In other words, both Vi, {z|i € s;} and Vu, {z¥|u € s¢} are block-wise identifiable.

Proof: Taking inspirations from Zheng & Zhang|(2024)), applying the chain rule to our definition in
Definition[lleads to:

xp =% = g(ze) = g(h " (20)) = §(2e) = Jg(ze) - Tp—1(2e) = J5(24), (13)

where Jg, Jj,-1, and J denote the Jacobian matrices of g, h~1, and g, respectively. Eq. provides
a rigorous definition of observational equivalence in the context of intermittent temporal latent pro-
cesses, establishing the relationship between the true and learned models through their distributions
and Jacobians.

We follow Yao et al.|(2022bja)); Song et al.| (2023)); Chen et al.| (2024); Song et al.| (2024) to connect

Jyn-1(2¢) in Eq.[13]with the transition probability density function p(z|z;_1) as we work on identi-

fication over the time-series data. Given the fact that p(z:|z;—1) = p(z¢|g(z:—1)) = p(z¢|x1—1) as

well as p(z¢|z:—1) = p(2+|g(Z:—1)) = p(z¢|x:—1), we are able to map (x;_1,2Z¢) to (x¢—1, Z¢) with
0

the jaocbian é Tn(22)

P(2¢|x—1) = p(2¢|X¢—1)|det Ji(z¢)| = p(Ze|ze—1) = p(2¢|2e—1)|det T (ze)], (14)

where h is an invertible mapping, such that z; = h(z;). |det J;(z;)| denotes the determinant of
h(Zt).

Taking the logarithm on both sides of Eq.[I4] we have:
log p(zt|z:—1) — log |det Jp,(z¢)| = log p(Zt|2:—1). (15)

We replace q(Z¢|2z:—1) = logp(2¢|2¢—1)) as well as q(z¢|z:—1) = log p(2z¢|z:—1), and calculate the
Hessian with z; and z;_, on both sides of Eq.[I5|using change-of-variable and chain rule:

Ha a1 4(2e|2e-1) = (Jp-1(2¢)) Mz, 2,1 A(2e]Ze—1) Tp—1(2e-1). (16)
We can rewrite Eq. [I6]based on assumption iii by:

Span{Hit,i,,_1Q(2t|2t—1)}§t:1 = (Jn-1(2e))"span{Ha, 2, a(2e|Ze—1) Yo" Tn-1(2e—1),  (1T)
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where o denotes the Hadmard product.

For any 71,42 € sy, (i1 # i2) we can obtain the standrad one-hot basis vector e;; and e;o of Hessian

matrix, such that e;1(e;2)T € Rétzfdt. Eq. indicates the existence of a permutation matrix P

associated with the permutation o of J;—1 (Lemma [I]), such that:

PTei o (€i2)"P = eq(in)(€o(in)T € Réf;fjt (18)
which implies:
(0(7’1)70(7’2» € Hit’itfﬂ.ﬂitlit*l)' (19)

The support sparsity constraint suggests that:
dy = [Hay 201 9(2t|2e-1) 110 < [Hay 20, q(2e|2e-1) |10 = do
where | * |1 o denotes the y-norm of the rows of matrix *.
Combining this with Equation [I9] we can conclude that:
ét = O'(St). (20)

If this were not the case, there would exist a pair (i],i5) € G*t, where ¢} # i, that contradicts
Equation [T9]

Using a similar strategy, combing Lemmaand Eq. we can also conclude that, Vu € s§, o(u) C
5¢. This leads to:

8¢ = o(sf). (21)

If Eq.[21]is unstatisfied, h cannot be invertible, which contradicts with h being a invertible mapping.
Eq.[20]and Eq. [21] suggest that, Vi € s; and v € §§:

0zt

>V
0z}

=0 (22)

Thus, we reach the conclusion of block-wise identification.

Generalize from z;_; to z.,: Notably we can easily generalize Theorem [I|by replacing z;_; with
Z<y, and z,_ with 2, from Eq.[I4]to Eq.[I7} respectively. In other words, we can extend the condi-
tional probability density function into a non-markov setting. Accordingly, G** € {0, 1}% xdi(t=1)

and G% ¢ {0, 1}dfx‘if(t’1), if both z_; and Z; start from ¢ = 1 in Eq.

B.2  PROOF OF THEOREM[Z|
Theorem |1| allows us to further explore the identifiability Vi, {z:|i € s;}. In what follows, we
provide the proof of Theorem [2]in details.

Theorem 2 (Component-wise identifiability Vi, {zi|i € s;}): Let all assumptions from the Theorem
hold. Additionally, suppose the following assumption is true for data generating process in Eq.[I|as
well:

i (Conditional independence): At t, we assume that each component of z, is conditional indepen-
dent given the previous latent variables z,_1. For any il,i2 € [N]:

zi' 1 2%z 4
Then for {ig |7 € 8t} must be a component-wise transformation of a permuted version of true
{ZHZ S St}.

Proof: Following previous worksZheng & Zhang|(2024), our goal can be rewritten as demonstrating
that Jy,—1(2¢) = D(2:)P, where D denotes an diagonal matrix. P is a permutation matrix that is
defined in Lemmall] and has been proven in Theorem[l] If .J,-1(2;) # D(2;)P, there must exist il
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and i2 (i1 # i2), such that j1, 52 € Jo*}, and j2 € J;3. ;%) is the i1-th column of Jj,-1, which

g

corresponds to z:!. Similarly, J h_21 corresponds to z¢2. Given Eq.|16] we can obtain:
w57 € T (20) " Hay oo 4(Ze]Ze—1) Tn-1 (2e—1). (23)
Also,
2 € 3% (2) Map 201 Q20|20 1) Tpr (20-1). (24)

Therefore, zi! and zi2 are dependent as given they are both dependent on z>. This contradicts with
our conditional independence assumption.

B.3 EXTENSION OF TEMPORAL SUPPORT SPARSITY

Proosition 1(Identifiability under temporal support sparsity): In addition to the assumptions of The-
oreml[l] if the following assumption and regularization hold:

i (positivity and independence of the support): For any time step t, there exists the probability
density function of the support, p(s;), has positive measure in the space of s;. The support at
any time step t is independent of the supports at other time steps, thus can be factorized by

T

p(slzT) = tl;ll St

ii (temporal support sparsity regularization): For any time step t, s; is not an empty set, E(dy.7) <
E(dlzT)

There exists a permutation o, such that
St =o(st) and 87 =o(sy)
In other words, both Vi, {zt|i € s;} and Vu,{z!|u € s¢} are block-wise identifiable.

Proof:

We start from Eq. in Theorem 1 to prove the Theorem 3. Let H; = Hy, 2, ,q(Z¢|Zi—1), and
Hy = Hay, 2, ,q(2z:|7;_1), the expected sparsity constraint can be reformulated by:

N
E(dy.r) = E[H1r|10 = By EQ | LM # 0)]sy)
n=1
N
= Epsyr) O E(L(H #0)[sy)
n=1

N
= Epsrr) (O Pouyjs, (M #0)) (25)
n=1

where 1 () denotes the indicator function of *, IPy|s, denotes the

Let J = J,-1(24-1), and J ~* = J,-1(2;). We can perform the similar steps to obtain:

N
E(di.r) = BlH11|10 = By B WT T H T #0)lst)
n=1

N

=Epsr) O E(L(IT HT #0)lst)
n=1
N

= Epsrr) (O Poyjs, (T HT #0)) (26)

n=1
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The temporal support sparsity constraint suggests that: E(dy.7) < E(dy.r), which leads to

N N
Emsm(Z Prg,js (T H™ T #0)) = Episyy (O Pogyjs, (H™ #0)) <0

n=1

N
p(Sr T) Z ]P)Ht\st IH?’IJ) - IP)’HHSf, (H?’)) <0 27

Eq.|19[suggests that Vn € [1, N], 30 (n), s.t.Py, s, (H{") = (Pa,1s, (T~ 17—[ ") 7), the L.H.S. of
Eq.[27]is a sum of non-negative terms which is itself non-positive. This means that every term in
the sum is zero. The rest of the proof remains the same with Theorem [I] to obtain the block-wise
identifiability. Moreover, if the conditional independence assumption in Theorem [2] holds, we can
further obtain the component-wise identifiability.

B.4 ESTIMATING s; AND MODIFIED ELBO

The temporal support sparsity in Theorem 3 requires to obtain p(s;.r) for the identifiability results.
In order to allow for gradient-based optimization of §1.7, we take inspirations from the structure
learning Brouillard et al.[(2020); Lorch et al.|(2021)) to treat §; US{ = S as a1 x N vector. Each
entries of this vector is a independent Bernoulli random variable with probability of success o (a,),
where o is the sigmoid function and «,, is a parameter learned using the Gumbel-Softmax trick.
Accordingly, our ELBO needs to be modified as following:

Lr1Bo = Lrecon + EKLD, subject to ES~a(a)|S| < 5 (28)

where 3 is an hyperparameter (which should be set ideally to the true d;) and S ~ o(«) means that
each entry of S are independent and distributed according to o(«). Comparing to Eq. Eq.
drops the sparsity regularization terms as we use Gumbel-Softmax instead.

C IMPLEMENTATION DETAILS

C.1 PRIOR LIKELIHOOD DERIVATION

Consider a paradigmatic instance of latent causal processes In this case, we are concerned with two
time-delayed latent variables, namely, z; = [z},z2]. We set time lag is defined as 1 for simplicity.
This implies that each latent variable, z}', is formulated as z}* = f,,(Pa(z}), €'), where Pa(z}') C
z_1 is the parent of z{'. The noise terms, €;', are mutually independent. To represent this latent
process more succinctly, we introduce a transformation map, denoted as f. It’s worth noting that
in this context, we employ an overloaded notation; specifically, the symbol f serves dual purposes,
representing both transition functions and the transformation map.

1 1

Z§7 1 Z571
Z VA
t—1 _ t—1
=1 % (29)
Z; €}

By leveraging the change of variables formula on the map f, we can evaluate the joint distribution
of the latent variables p(z}_,,z> ,2z;,27) as:

p(zi}—hzf—lvzivzﬁ) :p(Z% 1azf 1a€ta€t)/‘det‘]f| (30)

where J is the Jacobian matrix of the map f, which is naturally a low-triangular matrix:

1 0 0 0
0 1 0 0
1 1 1
Jr = Oz, Oz, 0z,
f 0zl 0z7_, Oe; 0
9z 9z o 2z

T s 3
0z;_, 0z;_, €}
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8zt

Given that this Jacobian is triangular, we can efficiently compute its determinant as H . Further-

more, because the noise terms are mutually independent, and hence et 1 et, and ¢; J_ Zi_1, We can
write Eq. [30]as:

p(zi_1,27_1,24,2;) = p(zi_1,2;_1) x p(et,€;)/ |det J;|  (because e; L z;_1)

= p(2z{_1,27_1) X Hp )/|det J;| (because e; L €7). G

Let{f, 1}n:1,2,3”_ be a set of learned inverse dynamics transition functions that take the estimated
latent causal variables in the dynamics subspace and lagged latent variables, and output the noise
terms, i.e., € = f.!(z?, Pa(z})). By eliminating the marginals of the lagged latent variable
p(z}_,,2? ;) on both sides, we derive the total transition prior likelihood as:

p(zi, 22|z, 27 ;) Hp (€)/ |det J;| = Hp L(z7, Pa(z}))) x ‘detJ;l‘ (32)

in which, Vi, {zi|i € s,}, the prior likelihood is:

p(zylzi—1) = [ [ p(e))/|det Jy| = Hp ! (2, Pa(z})) x det J; " (33)

Then, Vu, {z}|u € si*}, given Pa(z}') = 0, the prior likelihood is:
=TT otep)/ tdet gy = [T p(fi (1)) x [det ;2. (34)
u u

C.2 NETWORK ARCHITECTURES

Configuration Description Output dimensions
Encoder
Input: concat(xy.7) BSxT x K
Dense 128 neurons, LeakyReLU BS x T x 128
Dense 128 neurons, LeakyReLLU BS x T x 128
Dense Temporal embeddings BS xT x 2N
Bottleneck Compute mean and variance of posterior p, o
Reparameterization Sequential sampling Z1.7
Decoder
Input: zy.p BSxT x N
Dense 128 neurons, LeakyReLU BS x T x 128
Dense 128 neurons, LeakyReLLU BS x T x 128
Dense input embeddings BS xT x K
Temporal prior module
Input Z21.7 BSxT x N
InverseTransition €t BSxT x N
JacobianCompute log |det.J | BS

Table 2: The details of our network architectures for InterLatent , where BS means batch size.
Table 2] summarizes the network architectures of InterLatent .

C.3 TRAINING DETAILS

Simulation Experiments
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We implemented our models using PyTorch 1.11.0. For optimization, we employed the AdamW op-
timizer |Loshchilov & Hutter| (2019), which has been shown to improve generalization performance
in deep learning models. The hyperparameters were set as follows: learning rate of le-3 and mini-
batch size of 64. To ensure robustness and statistical significance, we trained each model under 10
different random seeds and report the overall performance as mean =+ standard deviation across these
runs. The loss function balances reconstruction error and KL-divergence, with the latter weighted
by f = 0.02. This choice of 8 was determined through preliminary experiments to achieve an
optimal trade-off between reconstruction quality and latent space regularity. All experiments were
conducted on a single NVIDIA GeForce RTX 2080 Ti GPU with 11GB meory.

Real-World Experiments

We employ the AdamW optimizer with cosine annealing for training our network. The initial learn-
ing rate is set to 2e-3, with a weight decay of le-2 to mitigate overfitting. For all video sequences
in Volleyball dataset, we uniformly sample 7" = 10 frames as input. The ELBO loss is computed
with a 3 value of 0.02. We utilize a batch size of 128, which we found to provide a good trade-off
between computational efficiency and optimization stability. The network is implemented using Py-
Torch [2], leveraging its dynamic computational graph and GPU acceleration capabilities. Training
is conducted for 80 epochs on a multi-GPU setup consisting of four NVIDIA GeForce RTX 2080 Ti
GPUs, providing a total of 44GB of meory.

D ADDITIONAL EXPERIMENTS DETAILS

D.1 SYNTHETIC DATA GENERATION PROCESS

Our approach generates six distinct scenarios of sequences, encompassing both stationary and non-
stationary settings with varying degrees of missingness. Each sequence consists of 9 time steps,
with latent variables z; € R® and observations x; € R®. Missingness is introduced by selecting
a constant value d¢ € {1, 2, 3} for each sequence, representing the number of missing dimensions
throughout that sequence. The set of missing dimensions, s, is then determined based on df. We
generate six scenarios in total: (1). non-stationary sequences with df = 1; (2). non-stationary
sequences with df = 2; (3). non-stationary sequences with df = 3; (4). stationary sequences with
di = 1; (5). stationary sequences with df = 2; (6). stationary sequences with df = 3. In non-
stationary sequences, sy varies every 3 time steps, while in stationary sequences, it remains fixed
throughout.

For each scenario, the data generation process begins with 10,000 initial states drawn from zg ~

U(0,1). Fromt = 1tot = 9, z; within s; is generated using a nonlinear function f with non-
, , syl

additive, zero-biased Gaussian noise €%, where (o = 0.1): Vi € s, 2z, = fl(zt{ii =1, €?), where

d
{/y5F . - Lo .. . .
z, 1"~ is the set of z_, within s;_;. The missing dimensions are set as Vu € s§,z}' = f,(e).

Observations are then generated using a mixing function g that only considers z; within s;: x; =

dy
g {iids

L dy .
zt{z}i:1 ), where z; is the set of z! within s;.

D.2 ADDITOINAL DETAILS OF THE VOLLEYBALL DATASET

Our preprocessing and feature extraction pipeline builds upon the procedure from|Yan et al.| (2023).
We leverage a pretrained Faster R-CNN model |Ren et al.|(2016) implemented via the MMDetection
toolbox (Chen et al.| (2019) to detect potential persons in each frame. These detections are then
tracked across frames using the method proposed by |Danelljan et al.|(2014)). For feature extraction,
we utilize ResNet-18 He et al.| (2016)). We apply RolAlign He et al|(2017) with a crop size of 5 x 5.
The resulting features are embedded into a K = 1024 vector. we select the top N = 20 person
proposals based on detection confidence scores.

D.3 ADDITIONAL EXPERIMENTS ON VARIOUS d;

In this section, we aim to understand the robustness of InterLatent under the settings with
changing d;. In particular, we synthesize another 10,000 sequence with identical procedure in pre-
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Figure 6: Mean Correlation Coefficient (MCC) scores for varying d;. Higher MCC scores indicate
better performance in identifying latent variables.

vious section. The only difference is that we introduce the missingness by choosing d; = 1, (¢t €
[17 5]) and ds.9 = 2, (t S [5,9])

Figure [6] shows the outcomes of our experiments on the varying d;. Despite WS having access to
ground truth values of s; and s{ across all time steps, InterLatent achieves comparable performance,
ranking second best among all comparisons. This demonstrates the effectiveness of applying sparsity
regularization to the Jacobians of both functions f and ¢ in Eq. 10.

D.4 ADDITIONAL EXPERIMENTS ON VARIOUS N

To demonstrate our method’s scalability, we extended our non-stationary sequence experiments to
higher dimensions. We examined scenarios with latent dimensions N € {8, 12} and corresponding
observation dimensions K € {10, 16}, while maintaining df = 1.

N=38 N =12
CaRiNG 0.574 +0.03 0.491 £+ 0.02
InterLatent | 0.818 = 0.01 0.655 + 0.02

Table 3: Ablation study results on the various N

Table 1 summarizes our ablation study findings. Our proposed model, InterLatent , consistently
outperforms CaRiN across different values of [V, the dimensionality of the latent variables. While
we observe a general decline in performance as IV increases and the complexity of data generating
spikes, InterLatent demonstrates a bettercapability in identifying intermittent temporal latent
processes compared to CaRiNG.

D.5 ADDITIONAL EXPERIMENTS ON ACTION RECOGNITION
We also test the effectiveness of InterLatent on action recognition task by using Something Some-

thing V2 dataset |Goyal et al.|(2017). Something-Something v2 (SSv2) is a dataset containing 174
action categories of common human-object interactions. It includes 220,847 videos, with 168,913
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in the training set, 24,777 in the validation set and 27,157 in the test set. In each video sequence,
there might be occlusion between human and object. Thus, this dataset plays a solid ground for
our experiments. InterLatent adopts ViT-B/16 [Radford et al| (2021) pretrained on as the backbone
to obtain z;. Regarding the hyperparameters, we set N = 12 in Eq. 1. Also, we use the same
two-phase training strategy.

To evaluate the efficacy of identifying intermittent temporal latent processes, we benchmark InterLa-
tent against both causal representation learning methods (TDRL (2022a)), CaRiNG
(2024)) and state-of-the-art action recognition approaches (SViT [Ben Avraham et al| (2022),
VideoMAE [Tong et al (2022), CAST (2024), StructVit [Kim et al| (2024)). The Top-
1 accuracy results from Table [d] demonstrate that InterLatent outperforms all competing methods,
validating its effectiveness.

Top-1
SViT 65.8
VideoMAE 70.8
CAST 71.6
StructVit 71.5
TDRL 71.4
CaRiNG 72.0
InterLatent 72.7

Table 4: The Top-1 results on SSv2
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