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Abstract

We consider the problem of tabular infinite horizon concave utility reinforcement learning
(CURL) with convex constraints. For this, we propose a model-based learning algorithm that
also achieves zero constraint violations. Assuming that the concave objective and the convex
constraints have a solution interior to the set of feasible occupation measures, we solve a
tighter optimization problem to ensure that the constraints are never violated despite the
imprecise model knowledge and model stochasticity. We use Bellman error-based analysis
for tabular infinite-horizon setups which allows analyzing stochastic policies. Combining
the Bellman error-based analysis and tighter optimization equation, for T' interactions with
the environment, we obtain a high-probability regret guarantee for objective which grows
as O(1/ VT ), excluding other factors. The proposed method can be applied for optimistic
algorithms to obtain high-probability regret bounds and also be used for posterior sampling
algorithms to obtain a loose Bayesian regret bounds but with significant improvement in
computational complexity.

1 Introduction

In many applications where a learning agent uses reinforcement learning to find optimal policies, the agent
optimizes a concave function of the expected rewards or the agent must satisfy certain constraints while
maximizing an objective (Altman & Schwartz, [1991; [Roijers et al.,|2013). For example, in network scheduling,
the controller may attempt to maximize fairness of the users using a concave function of the average rewards
received by each of the users (Chen et al., |2021). Or, consider autonomous vehicles where the goal is not
just to reach the destination as early as possible, but also to ensure the safety of the surroundings (Le et al.,
2019; |Tessler et al., |2018|). Further, there are certain environments in which the agent is required to ensure
the constraint violations are reduced while optimizing the objective as well (Leike et all 2017; [Ray et al.,
2019). Even in the absence of explicit rewards, the agent may aim to efficiently explore the environment by
maximizing the entropy of the distribution induced over the state and action space (Hazan et al.; |2019)).

Owing to the variety of the use cases, recently, there has been significant effort to make RL algorithms for
setups with constraints, or concave utilties, or both. For episodic setup, works range from model based
algorithms (Brantley et al., |2020; |Yu et al., |2021]) to primal-dual based model-free algorithms (Ding et al.,
2021). Recently, there has been a thrust towards developing algorithms which can also achieve zero-constraint
violations in the learning phase as well (Wei et al., [2022a; [Liu et al.l 2021bsa)). However, for the episodic
setup, the majority of the current works consider the weaker regret definition specified by (Efroni et al.l |2020])
and only achieve zero expected constraint violations. Further, these algorithms require the knowledge of a
safe policy following which the agent does not violate constraints, or the knowledge of the Slater’s gap
which determines how far a safe policy is from the constraint boundary.

The definition which considers the average over time makes sense for an infinite horizon setup as the long-term
average is naturally defined (Puterman) 2014). For a tabular infinite-horizon setup, (Singh et al., 2020)
proposed an optimistic epoch-based algorithm. Much recently, (Chen et al.| 2022)) proposed an Optimistic
Online Mirror Descent based algorithm. In this work, we consider the problem of maximizing concave utility
of the expected rewards while also ensuring that a set of convex constraints of the expected rewards are also
satisfied. Moreover, we aim to develop algorithms that can also ensure that the constraints are not violated
during the training phase as well. We work with tabular MDP with infinite horizon. For such setup, our
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algorithm updates policies as it learns the system model. Further, our approach also bound the accumulated
observed constraint violations as compared to the expected constraint violations.

In past various works proposed multiple methods to work with infinite horizon setups for non-constrained
setup (Fruit et al.l |2018; [Jaksch et all 2010). However, we note that the dealing with constraints and
non-linear setup requires additional attention because of the stochastic policies. Further, unlike episodic
setup, the distribution at the epoch is not constant and hence the policy switching cost has to be accounted
explicitly. Prior works in infinite horizon also faced this issue and provide some tools to overcome this
limitation. (Singh et al., [2020)) builds confidence intervals for transition probability for every next state given
the current state-action pair and obtains a regret bound of O(7T%/3). (Chen et al., [2022) obtains a regret
bound of O(TyV/T) with O(T3,S%A) constraint violations for ergodic MDPs with T); mixing time following
an analysis which works with confidence intervals on both transition probability vectors and value functions.

To overcome the limitations mentioned in previous analysis and to obtain a tighter result, we propose an
optimism based UC-CURL algorithm which proceeds in epochs e. At each epoch, we solve for an policy
which considers constraints tighter by €. than the true bounds for the optimistic MDP in the confidence
intervals for the transition probabilities. Further, as the knowledge of the model improves with increased
interactions with the environment, we reduce this tightness. This e.-sequence is critical to our algorithm as,
if the sequence decays too fast, the constraints violations cannot be bounded by zero. And, if this sequences
decays too slow, the objective regret may not decay fast enough. Further, using the e.-sequence, we do not
require the knowledge of the total time T" for which the algorithm runs.

We bound our regret by bounding the gap between the optimal policy in the feasible region and the optimal
policy for the optimization problem with €. tight constraints. We bound this gap with a multiplicative factor
of O(1/6), where ¢ is Slater’s parameter. Based on our analysis using the Slater’s parameter J, we consider a
case where a lower bound 7; on the time horizon 7" is known. This knowledge of T; allows us to relax our
assumption on 4.

Further, for the regret analysis of the proposed UC-CURL algorithm, we use Bellman error for infinite
horizon setup to bound the difference between the performance of optimistic policy on the optimistic MDP
and the true MDP. Compared to analysis of (Jaksch et al., |2010), this allows us to work with stochastic
policies. We bound our regret as O(%LdTMS\/A/T + CTwS?A/(1 — p)) and constraint violations as 0,
where S and A are the number of states and actions respectively, L is the Lipschitz constant of the objective
and constraint functions, d is the number of costs the agent is trying to optimize, and T, is the mixing
time of the MDP. The Bellman error based analysis along with Slater’s slackness assumption also allows to
develop posterior sampling based methods for constrained RL (see Appendix by showing feasibility of the
optimization problem for the sampled MDPs.

To summarize our contributions, we improve prior results on infinite horizon concave utility reinforcement
learning setup on multiple fronts. First, we consider convex function for objectives and constraints. Second,
even with a non-linear function setup, we reduce the regret order to O(TyS+v/A/T) and bound the constraint
violations with 0. Third, our algorithm does not require the knowledge of the time horizon T, safe policy, or
Slater’s gap §. Lastly, we provide analysis for posterior sampling algorithm which improves both emprical
performance and computational complexity.

2 Related Works

Constrained RL: (Altman| 1999) builds the formulation for constrained MDPs to study constrained
reinforcement learning and provides algorithms for obtaining policies with known transition models. (Zheng
& Ratliff] |2020) considered an episodic CMDP and use an optimism based algorithm to bound the constraint
violation as O(1/T%2%) with high probability. (Kalagarla et al., [2020) also considered the episodic setup to
obtain PAC-style bound for an optimism based algorithm. (Ding et al.|[2021)) considered the setup of H-episode
length episodic CMDPs with d-dimensional linear function approximation to bound the constraint violations
as O(dy/H?/T) by mixing the optimal policy with an exploration policy. (Efroni et al., |2020) proposes a
linear-programming and primal-dual policy optimization algorithm to bound the regret as O(S+/H3/T).
(Wei et al., |2022a; [Liu et al., |2021al) considered the problem of ensuring zero constraint violations using a
model-free algorithm for tabular MDPs with linear rewards and constraints. However, for infinite horizon
setups, the analysis from finite horizon algorithms does not directly holds. This is because finite horizon
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setups can update the policy after every episode. But this policy switch modifies the induced Markov chains
which takes time to converge to stationary distribution.

(Xu et al., 2020) consider an infinite horizon discounted setup with constraints and obtain global convergence
using policy gradient algorithms. (Ding et al., 2020) also considers an infinite horizon discounted setup. They
use a natural policy gradient to update the primal variable and sub-gradient descent to update the dual
variable. (Singh et al., |2020]) considered the setup of infinite-horizon ergodic CMDPs with long-term average
constraints with an optimism based algorithm. (Gattami et al., [2021) analyzed the asymptotic performance
for Lagrangian based algorithms for infinite-horizon long-term average constraints, however they only show
convergence guarantees without explicit convergence rates. (Chen et al., [2022) provide an optimistic online
mirror descent algorithm for ergodic MDPs which obtain a regret bound of O(Ty; SV SAT), and (Wei et al.l
2022b) provide a model free SARSA algorithm which obtains a regret bound of O(v/SAT®/) for discounted
constrained MDPs. (Liu et al., 2021b) proposed an algorithm which achieves O(1/e®) sample complexity to
obtain zero constraint violations in infinite horizon discounted setup.

Algorithm(s) Setup Regret Constraint Violation | Non-Linear
CONRL (Brantley et al.| [2020) FH | O(LH’?S\/A/K) | O(H®?S\/A/K) Yes
MOMA (Yu et al., [2021) FH | O(LH*?\/SA/K) | O(H*?,/SA/K) Yes
TripleQ (Wei et al., [2022a)) FH O( H4F AK—1/5) 0 No
OptPess-LP (Liu et al., |2021a)) FH D(E- . \/S3A/K) 0 No
OptPess-Primal Dual (Liu et al.| [2021a) | FH (H—\/S?’A/K) O(H*S?A/6) No
UCRL-CMDP (Singh et al. 2020) IH (F T-1/3) O(VSA/T'/3) No
Chen et al. (Chen et al., 2022) H D(3TmS\/SA/T) O(£T3 S%A) No
Wei et al. (Wei et al., [2022b) IH O(3VSAT-1/6) 0 No
UC-CURL (This work) TH O(%LTMS\/A /T) 0 Yes

Table 1: Overview of work for constrained reinforcement learning setups. For finite horizon (FH) setups, H
is the episode length and K is the number of episodes for which the algorithm runs. For infinite horizon
(TH) setups, Ty denotes the mixing time of the MDP, and T is the time for which algorithm runs. L is the
Lipschitz constant.

Concave Utility RL: Another major research area related to this work is concave utility RL (Hazan
et al} 2019). Along this direction, (Cheung, [2019)) considered a concave function of expected per-step vector
reward and developed an algorithm using Frank-Wolfe gradient of the concave function for tabular infinite
horizon MDPs. (Agarwal & Aggarwall |2019)) also considered the same setup using a posterior sampling based
algorithm. Recently, (Brantley et al. 2020)) combined concave utility reinforcement learning and constrained
reinforcement learning for an episodic setup. (Yu et al., [2021) also considered the case of episodic setup with
concave utility RL. However, both (Brantley et al., 2020) and (Yu et al., [2021)) consider the weaker regret
definition by (Efroni et al., [2020), and (Cheung), 2019) and (Yu et all|2021)) do not target the convergence of
the policy. Further, these works do not target zero-constraint violations.

Compared to prior works, we consider the constrained reinforcement learning with convex constraints and
concave objective function. Using infinite-horizon setup, we consider the tightest possible regret definition.
Further, we achieve zero constraint violations with objective regret tight in 7" using an optimization problem
with decaying tightness. A comparative survey of prior works and our work is also presented in Table

3 Problem Formulation

We consider an ergodic tabular infinite-horizon constrained Markov Decision Process M =
(S, A,r, f,c1,-++ ,ca,9,P). S is finite set of S states, and A is a finite set of A actions. P: S x A — A(S)
denotes the transition probability distribution such that on taking action a € A in state s € S, the system
moves to state s’ € § with probability P(s'|s,a). r: S x A — [0,1] and ¢; : S x A — [0,1],4 € 1,--- ,d
denotes the average reward obtained and average costs incurred in state action pair (s,a) € § X A.

The agent interacts with M in time-steps t € 1,2, --- for a total of T' time-steps. We note that T is possibly
unknown. At each time ¢, the agent observes state s;, plays action a;. The agent selects an action on
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observing the state s using a policy 7 : S — A(A), where A(A) is the probability simplex on the action
space. On following a policy 7, the long-term average reward of the agent is denoted as:

N = tim B |3 r(se,an)/7 (1)

T—0Q

where E; p[-] denotes the expectation over the state and action trajectory generated from following 7 on
transitions P. The long-term average reward can also be represented as:

AP = Zs’a pL(s,a)r(s,a) = %1_>ml(1 NV (s)VseS

where V7" (s) is the discounted cumulative reward on following policy 7, and pf € A(S x A) is the steady-
state occupancy measure generated from following policy 7 on MDP with transitions P (Puterman, 2014).
Similarly, we also define the long-term average costs as follows:

¢r (i)

lim E; p {Z . ci(st, at)/T:| = ~£I—>m1(1 — V)VWW’P(S;Z') VseS

T—00 t

S h (s a)e(s,0) 2)

The agent interacting with the CMDP M aims to maximize a function f : [0,1] — R of the average per-step
reward. Further, the agent attempts to ensure that a function of average per-step costs g : [0,1]9 — R is at
most 0. The goal is represented mathematically as:

Let ans denote the t-step transition probability on following policy 7 in MDP M starting from some state s.
Also, let TT, , denotes the time taken by the Markov chain induced by the policy 7 to hit state s’ starting
from state s. Then let Thy = Ty := max, E[T, ] be the mixing time of the MDP M. We now introduce
our assumptions on the MDP M.

Assumption 3.1. The MDP M is ergodic, or ||P} , — Pr|| < Cp" with P being the long-term steady state
distribution induced by policy 7, and C' > 0 and p < 1 are problem specific constants. And, the mixing time
of the MDP M if finite or Ths < co.

Assumption 3.2. The rewards r(s,a), the costs ¢;(s,a);V ¢ and the functions f and g are known to the
agent.

Assumption 3.3. The scalarization function f is jointly concave and the constraints g are jointly convex.
Hence for any arbitrary distributions D; and D,, the following holds.

f (Bonp, [2]) 2 Eono, [f (2)] (4)
9 (Ex~p, [x]) < Exvp, l9 ()]; x € R ()

Assumption 3.4. The function f and g are assumed to be a L— Lipschitz function, or

If(x) = f W) <Lz —yl; 2,y €R (6)
lg(x) =g < Llx—yl;; x,y € R? (7)

Remark 3.5. We consider a standard setup of concave and the Lipschitz function as considered by (Cheungj,
2019; Brantley et al., [2020;|Yu et al.| [2021). Note that the analysis in this paper directly works for f : R® — R,
where the function takes as input K average per-step rewards for K objectives.

Remark 3.6. For non-Lipshitz continuous functions such as entropy, we can obtain maximum entropy
exploration if choose function f = — 3, A log(A +n) with 74(s,a) = 1y, 4,1 for a particular state action
pair sg,ar, and choosing K = S x A to cover all state-action pairs and a regularizer n (Hazan et al., [2019).

Assumption 3.7. There exists a policy 7, and one constant 6 > LdSTys+/(AlogT)/T+(CSAlogT)/(T(1—
p)) such that

g(Cr(),- ¢ () <=0 (8)
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This assumption is again a standard assumption in the constrained RL literature (Efroni et al., |2020; |Ding
et al., 2021; [2020; Wei et al., |2022al). § is referred as Slater’s constant. (Ding et al., 2021) assumes that the
Slater’s constant ¢ is known. (Wei et al., [2022a) assumes that the number of iterations of the algorithm is at
least Q(SAH/J)5 for episode length H. On the contrary, we simply assume the existence of § and a lower
bound on the value of § which gets relaxed as the agent acquires more time to interact with the environment.

Any online algorithm starting with no prior knowledge will require to obtain estimates of transition probabilities
P and obtain reward r and costs ¢,V k € {1,--- ,d} for each state action pair. Initially, when algorithm
does not have good estimate of the model, it accumulates a regret as well as violates constraints as it does
not know the optimal policy. We define reward regret R(T') as the difference between the average cumulative
reward obtained vs the expected rewards from running the optimal policy 7* for T steps, or

R(T)=f(\.) — f (Zf_l (st at)/T)

Additionally, we define constraint regret C'(T) as the gap between the constraint function and incurred and
constraint bounds, or
T T

C(T) = <g (Zt—l ci(se, ar) /T, 7Zt:

where (z)4+ = max(0, ).

) cl(st,at)/T>)+

In the following section, we present a model-based algorithm to obtain this policy 7*, and reward regret and
the constraint regret accumulated by the algorithm.

4 Algorithm

We now present our algorithm UC-CURL and the key ideas used in designing the algorithm. Note that if
the agent is aware of the true transition P, it can solve the following optimization problem for the optimal
feasible policy.

max f(zsﬂr(s,a)p(s,a)) (9)

p(s,a)

with the following set of constraints,
Y psa)=1, p(s,a) >0 (10)
/ o ’
S s =3 Pl (s, a) (11)
g(zsacl(saa)p(saa)7"' 72 cd(s,a)p(&a)) S 0 (12)

s,a
forall s € S, Vs eS8, and V a € A. Equation equation [11] denotes the constraint on the transition structure
for the underlying Markov Process. Equation equation [10] ensures that the solution is a valid probability
distribution. Finally, Equation equation [12|are the constraints for the constrained MDP setup which the
policy must satisfy. Using the solution for p, we can obtain the optimal policy as:

2 BV
m*(als) = Sn p(s’b)v , (13)

However, the agent does not have the knowledge of P to solve this optimization problem, and thus starts
learning the transitions with an arbitrary policy. We first note that if the agent does not have complete
knowledge of the transition P of the true MDP M, it should be conservative in its policy to allow room
to violate constraints. Based on this idea, we formulate the e-tight optimization problem by modifying the
constraint in Equation equation [12] as.

g( Zm(cwe)(s, a), -, Z&a(clpe)(s, a)) < —e (14)
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Let p. be the solution of the e-tight optimization problem, then the optimal conservative policy becomes:

oy )
ml(als) = ZbeAPe(va)v , (15)

We are now ready to design our algorithm UC-CURL which is based on the optimism principle (Jaksch
et al| 2010). The UC-CURL algorithm is presented in Algorithm |1} The algorithm proceeds in epochs e.
The algorithm maintains three key variables v,(s,a), N.(s,a), and P(s,a,s’) for all s,a. v.(s,a) stores the
number of times state-action pair (s, a) are visited in epoch e. N.(s,a) stores the number of times (s, a) are
visited till the start of epoch e. 13(8, a, s") stores the number of times the system transitions to state s’ after

taking action @ in state s. Another key parameter of the algorithm is . = K+/(logt.)/t. where t. is the start
time of the epoch e and K is a configurable constant. Using these variables, the agent solves for the optimal
€c.~conservative policy for the optimistic MDP by replacing the constraints in Equation equation [11| by:

>, rlsha) < Zs Puls . )p(s. ) (16)

P.(s|s,a) >OZ (s's,a) =1 (17)
B P(s,a,-) 145 log(2At)
|Pe(ls.a) 1V Ne(s,a) Il =< 1V N(s,a) (18)

for all s € S,Vs € §, and Va € A and z V y = max(x,y). Equation equation [18| ensures that the agent
searches for optimistic policy in the confidence intervals of the transition probability estimates.

Combining the right hand side of equation [T6] with equation [10] gives

Z Zéa |S a)p (,a):1=Zs/7ap(S/7a)

Thus, joint with equation we see that equality in equationwill be satisfied at the boundary as ) p(s’, a)
for some s” can never exceed the boundary to compensate for another s" and hence, for all s, >~ p(s, a) will lie
on the boundary. In other words, the above constraints give > . 4 p(s’,a) = >__, P,(s'|s,a)p(s,a). Further,
we note that the region for the constraints is convex. This is because the set {z,y, z : xy > 2z} is convex when
x,y,z > 0. We note that even though the optimization problem may look non-convex due to constraints
having product of two variables, we see Equations equation [J] equation [I4] and equation [I6}equation
form a convex optimization problem. We expand more on this in Appendix [Bl We note that (Rosenberg &
Mansour}, 2019) provide another approach to obtain a convex optimization problem for optimistic MDP.

Let p. be the solution for e.-tight optimization equation for the optimistic MDP. Then, we obtain the optimal
conservative policy for epoch e as:

pe (s, a) s,.a
me(als) = ZbeApe(S b)v (19)

The agent plays the optimistic conservative policy m. for epoch e. Note that the conservative parameter e,
decays with time. As the agent interacts with the environment, the system model improves and the agent
does not need to be as conservative as before. This allows us to bound both constraint violations and the
objective regret. Further, if during the initial iterations of the algorithms a conservative solution is not
feasible, we can ignore the constraints completely. We will show that the conservation behavior is required
when t = O(T) to compensate for the violations in the initial period of the algorithm

For the UC-CURL algorithm described in Algorithm |1} we choose {e.} = {K+/(logt.)/t.}. However, if the
agent has access to a lower bound 7; (Assumption on the time horizon 7', the algorithm can change the

€e = K+\/(In(t. VT))/(te V) < § in each epoch e as follows. Note that if 7; = 0, €. becomes as specified in
Algorithm [I] and if T; = T', €. becomes constant for all epochs e.
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Algorithm 1 UC-CURL
Parameters: K
Input: S, A, r,d, ¢; Vié€eld]

Lett=1,e=1,¢ = K /¢

1: P

2: for (s,a) € S x Ado

3: ve(s,a) =0, N(s,a) =0, ﬁ(s', a,s) =0V s €8
4: end for

5: Solve for policy 7. using Eq. equation [I9]

6: fort € {1,2,---} do

7:  Observe s¢, and play a; ~ 7.(+|s¢)

8:  Observe s;y1, r(st,at) and ¢;(s¢,a¢) V i € [d]

9: VA@(St, ag) = Z/E(St,/(\lt) +1

10: P(St,at,8t+1) ZP(St,G,t,St+1)+1

11:  if ve(s,a) = max{1l, N.(s,a)} for any s,a then
12: for (s,a) € S x A do

13: Net1(s,a) = Ne(s,a) + ve(s, a)

14: e=e+1,ve(s,a) =0

15: end for

16: € = K, /1nt

17: Solve for policy 7, using Eq. equation

18: end if

19: end for

5 Regret Analysis

After describing UC-CURL algorithm, we now perform the regret and constraint violation analysis. We note
that the standard analysis tools (Jaksch et al., [2010} [Fruit et al. 2018) of an infinite-horizon setup could not
be directly used. The optimal policies are possibly non-deterministic,

using Bellman error. We note that the standard analysis for infinite horizon tabular MDPs of UCRL2 (Jaksch
et al.l [2010) cannot be directly applied as the policy 7. is possibly stochastic for every epoch. Another
peculiar aspect of the analysis of the infinite horizon MDPs is that the regret grows linearly with the number
of epochs (or policy switches). This is because a new policy induces a new Markov chain and this chain take
time to converge to the stationary distribution. The analysis still bounds the regret by O~(TMS VA/T) as
the number of epochs are bounded by O(SAlogT). Further,

Before diving into the details, we first define few important variables which are key to our analysis. The first
variable is the standard @-value function. We define QZ’P as the long term expected reward on taking action
a in state s and then following policy 7 for the MDP with transition P. Mathematically, we have

Q7" (s,a) =r(s,a) +'yz (s']s,a) VP ().

We also define Bellman error B™” (s,a) for the infinite horizon MDPs as the difference between the cumulative
expected rewards obtained for deviating from the system model with transition P for one step by taking
action a in state s and then following policy m. We have:

BT P(s a) = lim (Q’T P(s a) —r(s,a) 'yzs eS (s'|s,a VV”’P(s,a)) (20)

y—1

After defining the key variables, we can now jump into bounding the objective regret R(T). Intuitively, the
algorithm incurs regret on three accounts. First source is following the conservative policy which we require
to limit the constraint violations. Second source of regret is solving for the policy which is optimal for the
optimistic MDP. Third source of regret is the stochastic behavior of the system. We also note that the
constraints are violated because of the imperfect MDP knowledge and the stochastic behavior. However, the
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conservative behavior actually allows us to violate the constraints within some limits which we will discuss in
the later part of this section.

We start by stating our first lemma which relates the regret because we solve for a conservative policy. We
define e.-tight optimization problem as optimization problem for the true MDP with transitions P with
€ = €.. We bound the gap between the value of function f at the long-term expected reward of the policy for
€e-tight optimization problem and the true optimization problem (Equation equation @equation in the
following lemma.

Lemma 5.1. Let AL, be the long-term average reward following the optimal feasible policy T for the
true MDP M and let )\fe be the long-term average rewards following the optimal policy 7. for the €. tight
optimization problem for the true MDP M, then for e, < 0, we have,

FAR) = £ (AE) <2Le/s (21)

Proof Sketch. We construct a policy for which the steady state distribution is the weighted average of two
steady state distributions. First distribution is for the optimal policy for the true optimization problem.
Second distribution is for the policy which satisfies Assumption [3.7 Now, we show that this constructed
policy satisfies the e.-tight constraints. Now, using Lipschitz continuity, we convert the difference between
function values into the difference between the long-term average rewards to obtain the required result. The
detailed proof is provided in Appendix [C] O

Lemma [5.T] and our construction of €. sequence allows us to limit the growth of regret because of conservative
policy by O(LdTy S+/A/T).

To bound the regret from the second source, we use a Bellman error based analysis. In our next lemma, we
show that the difference between the performance of a policy on two different MDPs is bounded by long-term
averaged Bellman error. Formally, we have:

Lemma 5.2. The difference of long-term average rewards for running the optimistic policy me on the
optimistic MDP, L= and the average long-term average rewards for running the optimistic policy m. on the

Te ?

true MDP, AL | is the long-term average Bellman error as

Te?

P _\P _ P pme,P.
N =L =) R BT (sa) (22)

Proof Sketch. We start by writing Qge’ﬁ) e in terms of the Bellman error. Now, subtracting V,Y”E’P from V,Y”e’l5 e

and using the fact that A = lim,_,; V""" and )\fg = lim,, Vf’l5 ° we obtain the required result. A complete
proof is provided in Appendix O

After relating the gap between the long-term average rewards of policy m. on the two MDPs, we now want to
bound the sum of Bellman error over an epoch. For this, we first bound the Bellman error for a particular
state action pair s, a in the form of following lemma. We have,

Lemma 5.3. With probability at least 1 — 1/t5, the Bellman error Bre:Pe (s,a) for state-action pair s,a in
epoch e is upper bounded as

2 14S1og(2AT)  +

Bwe,Pe < h i 23

(5,0) <\ Ty N (o oy W (23)

where N,(s,a) is the number of visitations to s,a till epoch e and h is the bias of the MDP with transition
probability P,.

Proof Sketch. We start by noting that the Bellman error essentially bounds the impact of the difference in
value obtained because of the difference in transition probability to the immediate next state. We bound the
difference in transition probability between the optimistic MDP and the true MDP using the result from
(Weissman et al.| [2003)). This approach gives the required result. A complete proof is provided in Appendix
D.3l O
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We use Lemma [5.2] and Lemma to bound the regret because of the imperfect knowledge of the system
model. We bound the expected Bellman error in epoch e starting from state s;, and action a;, by constructing
a Martingale sequence with filtration F; = {s1, a1, -+, $t—1, a;—1} and using Azuma’s inequality (Bercu et al.|
2015)). Using the Azuma’s inequality, we can also bound the deviations because of the stochasticity of the
Markov Decision Process. The result is stated in the following lemma with proof in Appendix

Lemma 5.4. With probability at least 1 — T—°/*, the regret incurred from imperfect model knowledge and
process stochastics is bounded by

O(Tnm S/ A(log AT) /T + (CTy S?Alog T) /(1 — p)) (24)

The regret analysis framework also prepares us to bound the constraint violations as well. We again start
by quantifying the reasons for constraint violations. The agent violates the constraint because 1. it is
playing with the imperfect knowledge of the MDP and 2. the stochasticity of the MDP which results in the
deviation from the average costs. We note that the conservative policy 7. for every epoch does not violate
the constraints, but instead allows the agent to manage the constraint violations because of the imperfect
model knowledge and the system dynamics.

We note that the Lipschitz continuity of the constraint function g allows us to convert the function of d
averaged costs to the sum of d averaged costs. Further, we note that we can treat the cost similar to rewards
(Brantley et al., 2020). This property allows us to bound the cost incurred incurred in a way similar to how we

bound the gap from the optimal reward by LdTy;S+/A(log AT)/T. We now want that the slackness provided

by the conservative policy should allow LdTy;S+/A(log AT)/T constraint violations. This is ensured by our
chosen €. sequence. We formally state that result in the following lemma proven in parts in Appendix [D|and

Appendix [E]
Lemma 5.5. The cumulative sum of the €. sequence is upper and lower bounded as,

E

Yo (e —t)ee =0 (K\/W) (25)

After giving the details on bounds on the possible sources of regret and constraint violations, we can formally
state the result in the form of following theorem.

Theorem 5.6. For all T and K = ©(LdTySvVA+ CSA/(1 — p)), the regret R(T) of UC-CURL algorithm

s bounded by
1 log AT Ty S%2AlogT
R(T)=0 (6LdTMS\/A OgT + ¢ Mls_ pog ) (26)

1

and the constraints are bounded as C(T) = 0, with probability at least 1 — =57 .

5.1 Posterior Sampling Algorithm

We can also modify the analysis to obtain Bayesian regret for a posterior sampling version of the UC-CURL
algorithm using (?)Lemma 1Josband2013more. In the posterior sampling algorithm, instead of finding the
optimistic MDP, we sample the transition probability P. using an updated posterior. This sampling allows
to reduce the complexity of the optimization problem by eliminating Eq. equation [I7]and Eq. equation
The complete algorithm is described in Appendix [G] We note that optimization problem for the UC-CURL
algorithm is feasible because the true MDP lies in the confidence interval. However, for the sampled MD