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Abstract

LLMs have demonstrated remarkable performance across various tasks but
face challenges related to unintentionally generating outputs containing
sensitive information. A straightforward approach to address this issue is
to retrain the model after excluding the problematic data. However, this
approach incurs prohibitively high computational costs. To overcome this
limitation, machine unlearning has emerged as a promising solution that
can effectively remove sensitive information without the need to retrain
the model from scratch. Recently, FILA has been proposed as a parameter-
efficient unlearning method by integrating LoRA adapters. Specifically, it
calculates the Fisher information to identify parameters associated with
the forget set and assigns them to LoRA adapters for updates. Despite its
innovative approach, FILA still requires access to all model parameters
and does not adequately account for fundamental assumptions under-
lying Fisher information, leading to inaccuracies in importance estima-
tion. To address these limitations, we propose VILA, a novel unlearning
framework that explicitly considers the assumptions overlooked in FILA,
thereby enhancing the accuracy of parameter identification for the forget
set. Moreover, VILA significantly reduces computational costs by enabling
parameter identification without accessing the entire model. Our method
achieves up to 100× higher parameter efficiency and 40× faster training
speed compared to FILA, and sets new state-of-the-art performance on
benchmarks including TOFU, WMDP, and MUSE. Our code is available at
https://github.com/kyj93790/VILA.

1 Introduction

Large Language Models (LLMs) are driving remarkable progress across a wide range of
applications. However, they also exhibit a critical risk: the tendency to memorize and
regenerate sensitive personal information or copyrighted content from their training data.
For instance, Brown et al. (2022) have shown that LLMs often output personal identifiers
such as email addresses and phone numbers from the training corpus. Similarly, LLMs
are known to reproduce copyrighted materials, such as passages from Harry Potter, with
high fidelity (Eldan & Russinovich, 2023). These issues raise serious concerns about privacy
violations and intellectual property infringement. As a result, there is growing demand for
methods that can effectively remove sensitive or proprietary information from LLMs.

The most straightforward way to remove specific information from a model is to retrain it
from scratch without the corresponding data (i.e., exact unlearning). However, given the
massive size of LLMs and their extensive training corpora, this approach is computationally
expensive and time-consuming. To address this challenge, recent research has focused on
methods that aim to eliminate the information to be forgotten without full retraining (i.e.,
approximate unlearning). For example, loss-based techniques such as Gradient Ascent
(GA) (Jang et al., 2023), Negative Preference Optimization (NPO) (Zhang et al., 2024), and
Inverted Hinge Loss (IHL) (Cha et al., 2025) have been proposed to reduce the likelihood of
generating specific content through fine-tuning.
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Nevertheless, directly updating billions of parameters remains computationally demand-
ing, even when applying approximate unlearning techniques. To alleviate this burden,
Fisher-Initialization of Low-rank Adapters (FILA) (Cha et al., 2025) has been introduced.
FILA leverages Fisher information (Fisher, 1922) to estimate gradient variance and identify
parameters most closely related to the data to be forgotten. These parameters are isolated
from the base model by assigning them to a LoRA adapter (Hu et al., 2022). Unlearning is
then performed exclusively on the adapters. This enables parameter-efficient unlearning
while minimizing the impact on the retained knowledge.

However, our analysis reveals two critical limitations of FILA. First, the Fisher information
used by FILA does not accurately represent parameter importance in the machine unlearning
setting. For Fisher information to indicate importance, the distribution of the forget set must
match that of the full dataset. However, the forget set typically constitutes only a small
fraction of the entire dataset, inevitably leading to a statistical discrepancy between the
forget set and the full dataset. FILA overlooks this discrepancy, which results in a forget
importance map that inaccurately captures the association between the forget set and the
parameters. Moreover, although FILA is designed for parameter-efficient unlearning, it
still requires computing full gradients for all model parameters to construct the importance
map. This significantly undermines its computational efficiency. Our analysis shows that
the cost of FILA grows rapidly with the size of the forget set. When forgetting 10% of the
dataset, the initialization time exceeds that of full model retraining—highlighting a serious
limitation in scalability (refer to Section 4.2).

Building on the above analysis, we propose a precise and scalable approach, Variance-based
Importance estimation and efficient Low-rank Adaptation (VILA). Our method improves
the estimation of parameter importance by explicitly considering the distributional shift
of the forget set. Furthermore, we construct the forget importance map solely using the
gradients from the LoRA adapters, resulting in up to a 40× speedup and approximately 100×
reduction in memory consumption compared to FILA as the size of the forget set increases.

We evaluate our method on multiple LLMs, including Phi-1.5B (Li et al., 2023), Llama2-
7B (Touvron et al., 2023), Zephyr-7B (Tunstall et al., 2024) and ICLM-7B (Shi et al., 2024), in
combination with existing unlearning loss functions such as GA, NPO, and IHL. Experimen-
tal results on the TOFU (Maini et al., 2024), MUSE Books (Shi et al., 2025), WMDP Bio and
WMDP Cyber (Li et al., 2024) benchmarks demonstrate that our method not only improves
resource efficiency but also sets a new state-of-the-art in unlearning performance.

2 Related Work

LLM Unlearning aims to eliminate the influence of specific data from large language
models without incurring the cost of expensive retraining. This approach addresses various
challenges, such as preserving privacy, resolving copyright issues, and removing hazardous
knowledge (Brown et al., 2022; Eldan & Russinovich, 2023; Li et al., 2024).

Several studies mainly focus on modifying the loss function to induce unlearning. A
representative example is Gradient Ascent (GA), which increases the loss on the forget
data in order to reduce the model’s predictive accuracy on that data (Jang et al., 2023).
The limitation of GA is that it can easily degrade performance on retain data (Maini et al.,
2024). To address this issue, Gradient Difference (GD) has been introduced, performing
gradient ascent on forget data to eliminate their influence while applying gradient descent
on retain data to preserve the model’s generalization ability (Liu et al., 2022a). Also, Negative
Preference Optimization (NPO) (Zhang et al., 2024) has been proposed, building on the
LLM alignment approach (Rafailov et al., 2024). By reweighting gradients during the
learning process, NPO addresses the issue of excessive unlearning commonly caused by
GA, significantly improving the stability of the unlearning process. Most recently, Inverted
Hinge Loss (IHL) (Cha et al., 2025) promotes unlearning by decreasing the probability of
the forget token while increasing the probability of the highest-probability alternative token,
excluding the forget token itself.
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Beyond loss function-based methods, various approaches have been proposed. Task Arith-
metic (Ilharco et al., 2023) defines the difference between the fine-tuned model only on the
forget set and the original model as a task vector, which is then negated from the original
model to induce forgetting. This approach, known as Forgetting via Negation, has been
shown to be effective in making LLMs unlearn harmful language generation or fail at
performing specific tasks. ULD (Ji et al., 2024) utilizes an auxiliary LLM to achieve the
unlearning objective during the decoding process of an LLM. The auxiliary LLM is trained
to actively memorize the forget set while simultaneously forgetting the retain set. The un-
learned LLM is generated by calculating the logit difference between the auxiliary LLM and
the original model, thereby effectively achieving the unlearning objective. FILA (Cha et al.,
2025) employs LoRA adapters (Lermen & Rogers-Smith, 2024) to improve the computational
efficiency of LLM unlearning. To achieve this, FILA identifies parameters associated with
the forget set and initializes the LoRA adapters to be strongly correlated with the forget
set, while the base layer is initialized to be closely related to the retain set. Subsequently,
the LoRA adapters are fine-tuned using unlearning loss functions. FILA is the most related
work to our study, as we also focus on achieving parameter-efficient unlearning.

3 Preliminaries

3.1 Problem Definition

The goal of unlearning is to effectively eliminate the knowledge associated with a specified
forget set D f in the LLM, without retraining the model from scratch. At the same time, the
model is expected to preserve its performance on a retain set Dr, which contains knowledge
that must be maintained. This objective can be formulated as an optimization problem as:

min
θ

E(x,y)∈D f

[
L f (y | x; θ)

]
+ λ E(x,y)∈Dr [Lr(y | x; θ)] . (1)

In this formulation, L f denotes the loss function applied to the forget set D f , encouraging
the model to remove the corresponding knowledge. On the other hand, Lr is the loss
function applied to the retain set Dr, which ensures that essential knowledge is preserved.
The model parameters are represented by θ, which are updated during the unlearning
process. The hyperparameter λ controls the strength of the retention loss term, effectively
regulating how strongly the model is penalized for deviating from the retain set.

3.2 FILA: Fisher-Initialization of Low-rank Adapters

FILA achieves parameter-efficient unlearning by employing LoRA to identify parameters
critical to the forget set and focuses updates on these parameters during unlearning. The
overall procedure is as follows.

Low-rank Adaptation (LoRA). LoRA approximates the parameter update ∆W of a model’s
base weight matrix W by training an adapter composed of two low-rank matrices, B and A,
such that ∆W = BA. The adapter is then added to W to produce the final model. Since B
and A contains far fewer parameters than W, this approach enables efficient fine-tuning of
LLMs with substantially fewer computational cost.

Forget Importance Map Extraction. FILA employs Fisher information (FI) to identify
parameters associated with the forget set. The FI of a dataset D with respect to model
parameters θ is defined as:

Fθ(D) = ED

[(
∂

∂θ
log pθ(D)

)2
]
≈ 1
|D| ∑

x∈D

(
∂

∂θ
LLM(x; θ)

)2
. (2)

LLM denotes the next-token prediction loss used in the pre-trained language model. The FI
measures the variance of the score function, which is the gradient of the log-likelihood with
respect to the model parameters. Intuitively, it captures how sensitively the model output
changes in response to perturbations in each parameter. A higher FI value indicates that the
parameter plays a more critical role in modeling the dataset D.
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Method Forget 1% Forget 5% Forget 10%

Retrain 2.28 2.18 2.08

FILA -M(D) extraction 0.25 1.21 9.10
FILA - Unlearning 0.02 0.06 0.12

Table 1: Time Costs. This table reports the GPU hours required for Retrain, Unlearn, and
FILA on the TOFU benchmark using the Llama2-7B model. The Forget N% setting indicates
that N% of the full dataset is designated as the forget set. For Retrain, the model is trained
from scratch using only the retain set, which consists of the remaining (100–N)% of the data.

Based on this interpretation, FILA computes the ratio of FI values obtained from the forget
set and retain set to determine how important each parameter is with respect to the forget
set. This ratio is referred to as the forget importance map, denoted asM(D):

M(D) =
Fθ(D f )

Fθ(Dr)
. (3)

The computedM(D) plays a critical role in assigning weights to important parameter in
LoRA-based efficient unlearning.

LoRA Initialization with Forget Importance Map. FILA modifies the initialization of both
the base layer and the LoRA adapter in a way that is suitable for unlearning by leveraging
the forget importance map. First, FILA formulates the following Weighted Low-Rank
Approximation (WLRA) objective to obtain B∗ and A∗:

B∗, A∗ = arg min
B, A

∑
i,j

(
[M]i,j (W − BA)i,j

)2
. (4)

Since the forget importance mapM assigns larger weights in WLRA to parameters more
relevant to the forget set, the resulting product B∗A∗ captures the components of original
weight matrix W that have significant influence on the forget set. Based on this, we initialize
the LoRA matrices B and A with B∗ and A∗, respectively, so that the adapter focuses on
forget-set-related parameters. FILA then obtains W∗ by subtracting B∗A∗ from W, using
it as the new base layer. Since B∗A∗ concentrates information specific to the forget set, the
subtraction W∗ = W − B∗A∗ removes forget-set-related parameters while preserving those
relevant to the retain set.

Through this initialization of both the adapter and the base layer, the overall model parame-
ters remain unchanged, as W = (W − B∗A∗) + B∗A∗. However, the information associated
with the forget and retain sets becomes cleanly disentangled.

Parameter-efficient Unlearning. After initializing LoRA, FILA freezes the base layer and
updates only the LoRA adapter parameters using an unlearning loss. Since parameters
crucial for the forget set are allocated to the trainable adapter, while those important to the
retain set remain in the frozen base layer, the model can effectively erase the undesired
information while preserving essential knowledge. The final unlearned model is obtained
by merging the updated adapter—now purged of forget set information—with the base
layer.

4 VILA: The Proposed Method

4.1 Corrected Parameter Importance Estimation

We argue that the forget importance map calculated by FILA is inaccurate. FILA estimates
the Fisher information (FI) of each parameter with respect to the forget set and the retain
set, then interprets FI as a variance measure to derive the forget importance map based on
the ratio of these FIs. However, this approach overlooks a critical assumption required to
interpret FI as a variance: the expectation of the score function (i.e., the gradient) must be
zero (Fisher, 1922). This condition holds only when the distribution of the forget set matches
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the distribution of the entire training data. In machine unlearning tasks, however, the forget
set is typically a subset of data that has been intentionally selected for removal, making
its distribution inherently different from that of the entire dataset. As a result, the score
function has a non-zero expectation, violating the necessary assumption. To reliably identify
parameters strongly associated with the forget set, it is essential to account for distributional
discrepancies that arise in unlearning scenarios.

To address this issue, we correct the FI (Equation 2) by explicitly subtracting the squared
expectation of the score function from the original formulation. This is equivalent to the
variance of the parameter ∆W to the dataset D:

VarD [∆W] := ED

[(
∂

∂W
log pW(D)

)2
]
−
(

ED

[
∂

∂W
log pW(D)

])2
. (5)

We regard this modified quantity as an adjusted importance score for the dataset. Ex-
perimental results demonstrate that this modification significantly improves unlearning
performance. While the solution is simple, identifying and correctly addressing this over-
looked aspect in existing work constitutes one of the key contributions of this paper.

4.2 Improving Efficiency via Low-rank Approximation

Despite its intended goal, FILA is not computationally efficient. While FILA aims to perform
parameter-efficient unlearning by adopting LoRA, it still requires access to the entire set of
LLM parameters to compute the forget importance map. As a result, the importance map
calculation remains computationally expensive.

We report the computational time required for model retraining, importance map extraction
using FILA, and model unlearning in Table 1, empirically demonstrating these inefficiencies.
Notably, the extraction of the forget importance map, intended as a preprocessing step,
incurs even greater computational cost than the unlearning process itself. This inefficiency
becomes especially pronounced when the forget set constitutes approximately 10% of the
training data, where importance map computation exceeds the time required for retraining.
These results suggest that FILA does not scale well with forget set size, making it suboptimal
in terms of efficiency. Thus, achieving truly efficient unlearning necessitates a more efficient
approach to extracting the forget importance map.

To address this issue, we propose an approach that utilizes the gradients of LoRA adapter
rather than those of the entire model. First, we initialize the LoRA adapter matrices B
and A independently, following a Gaussian distribution with a mean of zero. Next, we
add the adapter BA to the original model parameter W and compute the gradients of
B and A for a given input data D. Using these gradients, we calculate VarD [∆B] and
VarD [∆A], respectively. We then multiply these two values to obtain the variance of the
model parameters W:

VarD [∆W] ≈ VarD [∆B]VarD [∆A]. (6)

One critical aspect of our approach is understanding how the variance of the gradient of the
model parameter can be approximated with those of LoRA adapters. To explore this, we
present the following theorem:

Theorem 1 (Variance Approximation of LoRA Parameter Updates). Let D be the input data,
W be the model parameter matrix and let ∆W denote its update. In the LoRA framework, the
parameter update ∆W is represented as the product of two low-rank matrices B and A such that:

∆W = BA. (7)

Assuming that both B and A are independently initialized from zero-mean Gaussian distributions,
the variance of each element ∆Wij can be approximated as:

VarD [∆W] ≈ VarD [∆B]VarD [∆A]. (8)

Proof. The proof is provided in the Appendix A.
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Algorithm 1 Unlearning Process

1: Input: Forget set D f , retain set Dr
2: Output: Unlearned model Wunlearn
3: Step 1: Estimate Variance-Based Importance
4: Initialize LoRA matrices: B ∼ N (0, σ2), A ∼ N (0, σ2)
5: Compute gradients of B and A with respect to D f and Dr
6: Calculate variances:

VarD f [∆B], VarD f [∆A], VarDr [∆B], VarDr [∆A] (10)

7: Estimate importance map:

M(D) =
VarD f [∆B]VarD f [∆A]

VarDr [∆B]VarDr [∆A]
(11)

8: Step 2: Compute Weighted Low-Rank Approximation
9: Solve WLRA usingM:

B∗, A∗ = arg min
B,A

∑
i,j

(
Mij(W − BA)ij

)2
(12)

10: Initialize LoRA adapter: lora A← A∗, lora B← B∗
11: Set base layer W∗: base layer←W − B∗A∗
12: Step 3: Perform Unlearning
13: Freeze base layer W∗
14: Optimize LoRA parameters:

B′, A′ = arg min
B∗ ,A∗

E(x,y)∈D f

[
L f (y | x; θ)

]
+ λ E(x,y)∈Dr

[Lr(y | x; θ)] (13)

15: Return: Final unlearned model: Wunlearn = W∗ + B′A′

Finally, we derive the forget importance map as the element-wise ratio of the importance
values calculated for the forget set and the retain set:

M(D) =
VarD f [∆W]

VarDr [∆W]
≈

VarD f [∆B]VarD f [∆A]

VarDr [∆B]VarDr [∆A]
(9)

In this way, we efficiently compute the forget importance map without directly accessing the
entire parameter set of the LLM. The pseudo code of unlearning process is in Algorithm 1.

5 Experiments

Benchmarks and compared methods. We evaluate unlearning performance using three
benchmarks: TOFU (Maini et al., 2024), WMDP (Li et al., 2024), and MUSE (Shi et al., 2025),
and primarily compare our method against FILA with three unlearning loss functions:
GD (Liu et al., 2022b), NPO (Zhang et al., 2024), and IHL (Cha et al., 2025). Further details
on benchmarks and compared methods are provided in Appendix H and I, respectively.

Implementation details. All experiments are conducted using two NVIDIA A6000 GPUs
with 48GB of memory. The batch size is set to 32 for TOFU and MUSE, and 4 for WMDP. The
LoRA rank is set to 8 for TOFU and WMDP, and 16 for MUSE. Weight decay is configured
as 0.01 for TOFU and set to 0 for both MUSE and WMDP. We employ a linear learning rate
scheduler for WMDP and TOFU, and a constant scheduler for MUSE.

Fair and comprehensive experimental designs. To ensure a fair comparison, we conduct
the same number of hyperparameter searches for all compared methods. Specifically, we
perform random search (Bergstra & Bengio, 2012) within a predefined hyperparameter
range for each benchmark. We set the maximum unlearning epoch based on retraining
cost considerations. Furthermore, to avoid evaluating models with significantly degraded
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Model Method Forget 1% Forget 5% Forget 10% AVG Gain (↑)

Phi-1.5B

Original Model -4.05 -11.92 -15.66 -

GD -2.52 -11.18 -14.43 -
GD + FILA -2.17 -10.23 -13.84 0.63
GD + Ours -1.54 -9.61 -10.80 2.06

NPO -2.52 -7.89 -10.03 -
NPO + FILA -2.17 -6.09 -8.83 1.12
NPO + Ours -2.17 -5.17 -9.30 1.27

IHL -2.52 -10.23 -14.13 -
IHL + FILA -2.17 -5.40 -1.79 5.84
IHL + Ours -1.85 -1.17 -0.83 7.68

Llama2-7B

Original Model -3.30 -15.46 -19.31 -

GD -3.30 -9.92 -16.61 -
GD + FILA -3.30 -12.53 -17.27 -1.09
GD + Ours -2.17 -1.40 -1.18 8.36

NPO -3.30 -13.59 -13.84 -
NPO + FILA -3.30 -11.18 -11.06 1.73
NPO + Ours -1.54 -4.32 -4.59 6.76

IHL -3.30 -12.53 -7.70 -
IHL + FILA -3.30 -0.95 -0.47 6.27
IHL + Ours -1.27 -0.20 -0.40 7.22

Method WMDP MUSE BOOKS

BIO (↓) CYB (↓) AVG (↓) VerbM (↓) KnowM (↓) AVG (↓)
Original Model 0.64 0.44 0.54 85.5 30.5 58.0

GD 0.55 0.44 0.50 84.7 17.0 50.9
GD + FILA 0.61 0.44 0.53 85.4 17.0 51.2
GD + Ours 0.37 0.43 0.40 66.4 16.5 41.5

NPO 0.57 0.44 0.51 14.3 0.3 7.3
NPO + FILA 0.61 0.43 0.52 85.0 12.0 48.5
NPO + Ours 0.35 0.43 0.39 2.8 3.7 3.3

IHL 0.60 0.40 0.50 85.4 14.9 50.2
IHL + FILA 0.61 0.39 0.50 85.4 16.7 51.1
IHL + Ours 0.48 0.41 0.45 14.2 1.8 8.0

Table 2: Main Comparison Results. Top: Unlearning performance on TOFU with Phi-1.5B
and Llama2-7B across varying forget ratios. AVG Gain (↑) denotes the average improvement
in unlearning loss from each initialization method, measured across data splits. Bottom:
Unlearning performance on WMDP and MUSE Books. AVG is the mean of the two forget
metrics per benchmark. Lower scores indicate better forgetting performance. Retain perfor-
mance is omitted, as it is constrained to remain above 95% by our evaluation protocol.

utility, we select models that maintain at least 95% of the original model utility (Ilharco et al.,
2023) while achieving the highest forgetting score. As the compared methods demonstrate
comparable model utility, we report only the forgetting performance in the following tables.
Additional details are provided in Appendix J.

5.1 Comparison with FILA

This section presents the results on the TOFU, WMDP, and MUSE benchmarks. Note that
rows labeled as GD, NPO, or IHL refer to standard parameter-efficient unlearning baselines
that utilize a conventional LoRA adapter without applying either FILA or our method.

Main Results. In Table 2, we observe that both FILA and our proposed method significantly
improve forgetting performance compared to applying unlearning loss functions with stan-
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Method Time (GPU hours) Storage forM(D)
Forget 1% Forget 5% Forget 10%

Retrain 2.28 2.18 2.08 –

FILA 0.27 1.27 9.22 25G
Ours 0.04 0.18 0.36 0.3G

Table 3: Comparison of time and storage cost across different methods. We report GPU
hours required for unlearning under varying forget set sizes (1%, 5%, 10%) on the TOFU
benchmark using the Llama2-7B model. Storage forM(D) denotes the additional space
required to store forget information map used during unlearning.

dard LoRA alone. This highlights the effectiveness of explicitly separating the parameters
associated with the forget set, rather than relying on full-parameter updates.

While both approaches benefit from this separation, our method consistently achieves
superior forgetting quality across all benchmarks and loss functions. FILA, in contrast,
performs well primarily when paired with IHL—the loss function introduced alongside
it by Cha et al. (2025)—but offers limited gains with GD or NPO, and in some cases even
degrades performance. For example, on Llama2-7B with GD, applying FILA results in
lower forgetting quality when unlearning 5% or 10% of the TOFU dataset. This aligns with
the analysis in the original submission on OpenReview (Cha et al., 2025), which points to
FILA’s limited generalizability beyond its tailored loss. In contrast, our method not only
outperforms FILA when paired with IHL but also maintains strong performance across
diverse unlearning losses, demonstrating its broader applicability.

Our method yields substantial improvements when applied to GD, where the forget loss is
implemented via GA. Although GA often leads to instability and utility degradation (Zhang
et al., 2024; Cha et al., 2025), our method effectively mitigates these issues and achieves
strong forgetting performance. This result is also significant in MUSE, where the forget
set size exceeds the retain set size, making it particularly difficult to preserve model utility.
Despite this difficulty, our method substantially outperforms existing baselines, delivering
up to a 9.4%p increase in performance (50.9%→ 41.5%) when combined with GD.

TOFU Results. The Forget 1% setting in TOFU is particularly challenging compared to
other configurations. In this setting, only 1% of the entire dataset is designated as the
forget set, meaning the model must remove knowledge from a very small portion of the
data. This also implies that only a very small number of parameters are associated with
the forget set, which makes it challenging to precisely identify and update the relevant
subset. Especially with Llama2-7B, applying unlearning via GD, IHL, or NPO loss alone
produces forget quality scores nearly indistinguishable from those of the original model,
suggesting that information related to the forget set remains. Even when applying FILA,
a slight improvement in forget quality is observed with the Phi-1.5B model; however, for
Llama2-7B, the forget quality remains at the same level as the target model. In contrast,
our method achieves high forgetting quality while maintaining model utility, even when
the forget set size is very small. We attribute this to the method’s capacity to pinpoint
parameters most relevant to the forget set.

WMDP and MUSE Results. In the WMDP experiments, our method continues to demon-
strate strong unlearning performance across all unlearning loss functions, while preserving
accuracy on MMLU. In contrast, FILA consistently underperforms compared to the baselines
on this benchmark, highlighting the limitations of its biased forget importance map estima-
tion strategy. On the MUSE benchmark, models trained with FILA struggle to maintain
retain performance above 95% of the original model. When hyperparameters are chosen to
effectively reduce performance on the forget set, performance on the retain set also drops
noticeably. Conversely, when the retain performance is preserved, the level of unlearning is
limited. This behavior indicates that FILA fails to achieve effective unlearning. By contrast,
our proposed method achieves consistent gains in forgetting performance across all loss
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Loss Method Forget 1% Forget 5% Forget 10% AVG Gain (↑)

GD

FILA (Baseline) -2.17 -10.23 -13.84 —
w/ FI Correction -1.27 -9.61 -9.54 1.94
w/ LoRA Approximation -2.17 -9.61 -13.54 0.30
w/ Both (VILA) -1.54 -9.61 -10.80 1.43

NPO

FILA (Baseline) -2.17 -6.09 -8.83 —
w/ FI Correction -1.85 -6.34 -5.85 1.02
w/ LoRA Approximation -2.17 -6.58 -9.30 -0.32
w/ Both (VILA) -2.17 -5.17 -9.30 0.15

IHL

FILA (Baseline) -2.17 -5.40 -1.79 —
w/ FI Correction -1.54 -0.85 -0.47 2.17
w/ LoRA Approximation -2.17 -4.53 -0.19 0.82
w/ Both (VILA) -1.85 -1.17 -0.83 1.84

Table 4: Ablation results isolating the impact of FI Correction and LoRA Approximation on
unlearning performance. Results show Forget Quality scores (lower is better). AVG Gain
denotes improvement over the FILA baseline.

functions, while sufficiently preserving model utility. These results validate the effectiveness
of our refined approach to estimating forget importance.

5.2 Efficiency Analysis

Table 3 compares the time and storage costs for unlearning on the TOFU benchmark using
Llama2-7B as the backbone model. FILA incurs substantial time costs due to the need to
compute gradients over the entire model to extract the forget importance map. This becomes
increasingly inefficient as the forget set size grows. For instance, FILA takes 0.27 GPU hours
for the 1% setting, but this rises sharply to 9.22 GPU hours for the 10% setting. Notably,
this exceeds the retraining time of approximately 2.08 GPU hours, underscoring FILA’s
limitations in large-scale unlearning scenarios. In contrast, our method requires only 0.04
GPU hours for the 1% setting and 0.36 GPU hours for the 10% setting, while achieving
comparable unlearning quality at a fraction of the computational cost.

A key difference between the two methods lies in storage efficiency. Both approaches require
storing importance maps for the forget and retain sets. FILA computes these maps across all
model parameters, resulting in a total storage requirement of approximately 25 GB—about
twice the size of the original model. In contrast, our method uses LoRA parameters instead
of the full parameter set, requiring only 0.3 GB of additional storage.

5.3 Ablation Study on FI Correction and LoRA Approximation

To investigate how each of our two key contributions individually impacts the overall
unlearning performance, we conduct ablation experiments clearly isolating the following
two components: (i) FI Correction (Eq. 5), which involves correcting the Fisher Information
estimation, and (ii) LoRA Approximation (Eq. 9), which approximates the full-model Fisher
Information using LoRA adapter parameters to enhance computational efficiency.

Table 4 summarizes detailed ablation results conducted using the Phi-1.5B model, across
three unlearning loss functions (GD, NPO, IHL). From these ablation experiments, we
observe the following. FI Correction alone consistently yields the highest unlearning
performance across most settings, confirming the significant effectiveness of correcting
Fisher Information estimation. In contrast, LoRA Approximation alone primarily enhances
computational efficiency but achieves limited or no performance improvement compared to
the FILA baseline. When the two components are combined—as in VILA—the resulting
method achieves performance close to that of FI Correction alone, while significantly
reducing computational overhead. This demonstrates that VILA effectively balances strong
unlearning performance with computational efficiency.
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Loss Method Forget 1% Forget 5% Forget 10% AVG Gain (↑)

GD

FILA -2.17 -10.23 -13.84 –
ExpILA -1.27 -10.54 -10.54 1.93
AbsILA -1.54 -10.23 -10.29 2.03
VILA -1.54 -9.61 -10.80 2.06

NPO

FILA -2.17 -6.09 -8.83 –
ExpILA -1.85 -5.62 -10.54 2.74
AbsILA -1.85 -5.86 -9.06 1.23
VILA -1.85 -1.17 -0.83 7.68

IHL

FILA -2.17 -5.40 -1.79 –
ExpILA -0.39 -3.37 -6.05 2.43
AbsILA -1.27 -3.55 -5.11 5.65
VILA -1.85 -1.17 -0.83 7.68

Table 5: Validity of the Expectation as an Importance Score on Phi-1.5B. AVG Gain (↑)
denotes average improvement in unlearning loss across splits.

5.4 Validity of the Expectation as an Importance Score

When the distribution of the forget set (D f ) significantly differs from that of the entire dataset
(D), the expectation of the score function—specifically, the gradient of the log-likelihood
with respect to the parameters—becomes non-zero. This observation raises an important
question regarding the validity of using the expectation itself directly as an importance
score. To empirically investigate this question, we consider two alternative formulations for
the importance score, both based on the score function ∇W log pW(D):

MExpILA :=

∣∣∣∣ED f

[
∂

∂W
log pW(D f )

]∣∣∣∣∣∣∣∣EDr

[
∂

∂W
log pW(Dr)

]∣∣∣∣ , MAbsILA :=
ED f

[∣∣∣∣ ∂

∂W
log pW(D f )

∣∣∣∣]
EDr

[∣∣∣∣ ∂

∂W
log pW(Dr)

∣∣∣∣] (14)

Here,MEXPILA computes the magnitude of the expected score function, whereasMABSILA
computes the expected magnitude of the score function. Intuitively, while EXPILA focuses
on the norm of the average gradient, ABSILA accounts for the average sensitivity across
data points, regardless of gradient direction cancellation.

Experimental results in Table 5 summarize the trends discussed above on Phi-1.5B. From
these results, we observe several important findings. Both EXPILA and ABSILA generally
perform comparably to, or slightly better than, FILA when the forget set is small (e.g.,
Forget 1%). However, as the forget set grows (e.g., Forget 5% and 10%), VILA consistently
outperforms both alternatives. These results indicate that while EXPILA and ABSILA may
be reasonable under limited forgetting scenarios, correcting the Fisher Information—as
in VILA—is essential for effective unlearning in realistic scenarios where the forget set
significantly diverges from the full data distribution. Similar trends are observed for Llama2-
7B (Appendix C).

6 Conclusion

In this paper, we introduce VILA, a scalable and efficient unlearning technique for large
language models (LLMs) that addresses the limitations of FILA by enhancing importance
estimation and reducing computational overhead. Our approach refines the Fisher infor-
mation extraction process and implements parameter selection related to the forget set by
utilizing only the gradients of the LoRA adapter, significantly lowering time and memory
costs. Extensive experiments on the TOFU, WMDP, and MUSE benchmarks demonstrate
that VILA consistently outperforms existing approaches in unlearning performance while
preserving model utility. Additionally, VILA demonstrates robust compatibility with a wide
range of unlearning loss functions, highlighting its versatility.
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A Proof of Theorem 1

Proof. Step 1 (Parameterization and Approximation).

We start from the LoRA parameter update:

∆W = BA = (B0 + ∆B)(A0 + ∆A),

where B0, A0 denote the initial low-rank parameter matrices, and ∆B, ∆A are their updates
learned during training. Given the negligible magnitude of the initial matrices B0, A0
(assumption A.1), we simplify the update as:

∆W ≈ ∆B∆A.

Thus, each element of the parameter update ∆W can be approximated as:

∆Wij ≈
r

∑
k=1

∆Bik∆Akj.

Step 2 (Variance Expansion).

Applying the standard property of variance to the sum of random variables, we have:

VarD

(
r

∑
k=1

∆Bik∆Akj

)
=

r

∑
k=1

VarD [∆Bik∆Akj] + ∑
k ̸=k′

CovD(∆Bik∆Akj, ∆Bik′∆Ak′ j).

Step 3 (Covariance Terms are Zero).

We now show that all off-diagonal covariance terms vanish. Consider an arbitrary off-
diagonal term (k ̸= k′):

CovD(∆Bik∆Akj, ∆Bik′∆Ak′ j) = ED [∆Bik∆Akj∆Bik′∆Ak′ j]− ED [∆Bik∆Akj]ED [∆Bik′∆Ak′ j].

By the independence of matrices ∆B and ∆A (assumption A.2) and independence among
distinct elements within each matrix (assumption A.3), each expectation factorizes exactly,
yielding:

CovD(∆Bik∆Akj, ∆Bik′∆Ak′ j) = 0.

Thus, all off-diagonal covariance terms vanish, simplifying the expression to:

VarD [∆Wij] =
r

∑
k=1

VarD [∆Bik∆Akj].

Step 4 (Variance Factorization and Practical Approximation).

Since the terms ∆Bik and ∆Akj are independent (assumption A.2), we approximate:

VarD [∆Bik∆Akj] = ED [∆B2
ik]ED [∆A2

kj]− (ED [∆Bik]ED [∆Akj])
2.

Empirically, the squared expectations of the parameter updates are negligible compared to
their variances (assumption A.4). Hence, the above expression simplifies into:

VarD [∆Bik∆Akj] ≈ VarD [∆Bik]VarD [∆Akj].

Consequently, the final simplified variance approximation is:

VarD [∆Wij] ≈
r

∑
k=1

VarD [∆Bik]VarD [∆Akj].
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Term Forget Set Retain Set

B0 A0 0.00568 0.00568
∆BA0 39.75 37.0
B0∆A 40.5 38.5
∆B∆A 688128.0 585728.0

Table 6: Average norm values of each term across all parameters. The gradients are
computed separately for the forget and retain sets, resulting in distinct values for gradient-
dependent terms. Note that B0 A0 does not depend on any gradients but is determined
solely by the initialization, and thus yields the same value for both sets.

A.1 Negligible magnitude of initial matrices B0, A0

Our variance approximation assumes that the initial parameter matrices B0 and A0 in the
LoRA framework have negligible magnitude, allowing their direct contributions to the
parameter updates to be disregarded in our derivations.

Specifically, matrices B0 and A0 are independently initialized from Gaussian distributions
with zero mean and very small variance (typically on the order of 10−4 to 10−6). Due to this
initialization scheme, the initial magnitudes of these matrices are sufficiently small that their
direct contribution terms, such as B0 A0, B0∆A, and ∆BA0, become negligible compared to
the dominant update term ∆B∆A.

In Table 6, we empirically confirm that the magnitude of initial terms is significantly smaller
than that of the learned update term. Specifically, averaged across all parameters, the norm
of the dominant update term ∆B∆A reaches values as high as 688, 128 on forget set and
585, 728 on retain set, while the norms of other terms such as B0 A0, B0∆A, and ∆BA0 are
several orders of magnitude smaller. These observations justify treating the initial-related
terms as negligible when approximating the gradient dynamics.

A.2 Independence between update matrices ∆B and ∆A

We assume that the parameter update matrices ∆B and ∆A are statistically independent.
The independence assumption can be justified if the following two conditions are met: (1)
the entries of ∆B and ∆A follow Gaussian distributions, and (2) the covariance between
elements of ∆B and ∆A is zero, i.e.,

CovD(∆Bik, ∆Akj) = 0 for all i, j, k.

We first examine the Gaussian assumption. This condition naturally arises from the initializa-
tion strategy used in the LoRA framework, particularly in the context of Fisher Information
(FI) computation. When computing FI, the model parameters are kept fixed, and gradients
are repeatedly evaluated at the same point in parameter space. To allow gradients to flow
through the LoRA modules during this process, we initialize the low-rank matrices B0
and A0 with small Gaussian noise rather than zeros (see Appendix D for details). These
initializations are independently drawn from zero-mean Gaussian distributions, which
induces Gaussian in the gradient signals that propagate through ∆B and ∆A. As illustrated
in Figure 1, the empirical distribution of gradient values indeed closely follows a Gaussian
shape, confirming the plausibility of this assumption.

Next, we assess the second requirement—vanishing covariance between elements of ∆B
and ∆A. To this end, we sample 500 gradient instances by repeatedly drawing different
mini-batch combinations, separately for the forget and retain sets, and computing the
corresponding LoRA gradients. We then calculate the element-wise covariance between ∆B
and ∆A across these samples. The results, shown in Figure 2, reveal that the vast majority
of covariance values are sharply concentrated around zero in both cases. This confirms that
any statistical dependencies between the two matrices are negligible.
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Figure 1: Histograms of individual entries in ∆A and ∆B.

Taken together, these empirical validations support the assumption that ∆B and ∆A are
approximately independent. This independence greatly simplifies our variance-based
theoretical derivations and is well-justified experimentally.
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Figure 2: Element-wise covariance between ∆B and ∆A. We compute the covariance
between all pairwise combinations of elements from the ∆B and ∆A gradient matrices,
separately over the forget and retain sets. Each computed covariance value is counted
to construct a histogram, allowing us to visualize the overall distribution of cross-matrix
interactions.

A.3 Practical independence among distinct elements within each update matrix

In our variance approximation, we assume that distinct elements within each update matrix
(∆B and ∆A) are statistically independent. This assumption is crucial for simplifying
higher-order expectations. For instance, the fourth-order moment

ED [∆Bik∆Akj∆Bik′∆Ak′ j]
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is assumed to factorize as

ED [∆Bik] ·ED [∆Akj] ·ED [∆Bik′ ] ·ED [∆Ak′ j].

While Section A.2 has already justified the independence across matrices (i.e., between ∆B
and ∆A), the above factorization further requires that elements within each matrix also
be statistically independent. To support this intra-matrix independence, two conditions
must be satisfied: (1) the elements of each matrix follow Gaussian distributions, and (2) the
pairwise covariances between distinct elements within the same matrix are negligible. The
first condition has already been empirically confirmed in Figure 1, where we show that the
elements of ∆B and ∆A follow approximately zero-mean Gaussian distributions under our
sampling procedure.

To validate the second condition, we compute the element-wise covariance between all
pairs of distinct entries within each matrix (i.e., off-diagonal pairs). We sample 500 gradient
instances by repeatedly drawing different mini-batch combinations, separately for the forget
and retain sets, and compute the corresponding LoRA gradients.

As shown in Figure 3, the off-diagonal covariance terms in both ∆A and ∆B are sharply
concentrated near zero for both the forget and retain sets. This empirically supports the ap-
proximation that distinct elements within each update matrix can be treated as independent.
Therefore, the full factorization of the fourth-order expectation becomes practically valid,
and the assumption of intra-matrix independence is well justified in our analysis.
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Figure 3: Elementwise self-covariance histograms of ∆A and ∆B. The gradients are
computed separately over the forget and retain sets. Each plot illustrates the distribution of
self-covariance values within the gradient matrices, with diagonal entries excluded from
the counting to emphasize inter-parameter interactions.

A.4 Negligible expectation values of parameter updates

We empirically observe that the squared expectation values ED [∆Bik]
2 and ED [∆Akj]

2 are
relatively small (on the order of 10−1 to 10−2), although not strictly negligible.
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We acknowledge that this assumption of negligible squared expectations is not strictly
accurate; however, we made this simplifying assumption intentionally to achieve substantial
computational efficiency. Specifically, this design choice enabled approximately a 100-fold
reduction in memory consumption and a roughly 40-fold speed-up compared to previous
approaches.

Our empirical analysis indicates that this approximation does not significantly degrade the
method’s overall performance. Relaxing this assumption could potentially lead to further
performance improvements; exploring such refinements will be an interesting direction for
future work.

Implementation Remark

Although our theoretical analysis assumes negligible squared expectations for simplicity, we
observed empirically that the exact computation of variances for both ∆A and ∆B, including
their squared expectation terms, leads to significantly improved performance:

VarD [∆Akj] = ED [(∆Akj)
2]− (ED [∆Akj])

2, VarD [∆Bik] = ED [(∆Bik)
2]− (ED [∆Bik])

2.

This indicates that while the assumption A.4 aids analytical simplicity and clarity, practical
scenarios require careful consideration of nonzero expectation values for both ∆A and ∆B
to achieve optimal performance.

B In-domain Unlearning Scenario

In our main experiments, existing unlearning benchmarks typically assume the forget
subset (D f ) differs significantly from the retain subset. However, the general definition
of unlearning does not inherently impose this assumption, implying the forget set could,
in theory, be arbitrarily selected from the same distribution as the entire dataset. Thus,
we conduct additional experiments explicitly designed to examine an in-domain unlearning
scenario, where the distribution of the forget set closely matches that of the overall dataset.

In practice, exactly reproducing an arbitrary forget subset scenario would require access
to the entire pretraining corpus of the language model, which is typically unavailable.
Therefore, we approximate the in-domain setting by randomly selecting 10% of the question-
answer pairs from the TOFU dataset as the forget set, ensuring its distribution aligns closely
with the full dataset.

Because our forget set is randomly sampled, many forgotten Q&A pairs lack perturbed
answers, preventing direct computation of metrics such as the Truth Ratio. To overcome
this limitation, we evaluate both Model Utility (MU) and Forget Quality (FQ) using ROUGE
scores and probability-based metrics derived from model outputs. Model selection is based
on evaluating MU and FQ through the harmonic mean of ROUGE and probability scores. We
perform hyperparameter tuning over 15 trials and select the configuration that minimizes
FQ while maintaining at least 95% of the original MU. To ensure a fair comparison between
FILA and our proposed method (VILA), we compute the importance map without the
LoRA approximation, applying only the Fisher Information correction. Models used in this
experiment include Phi-1.5B and Llama2-7B.

Method Llama2-7B MU ↑ Llama2-7B FQ ↓ Phi-1.5B MU ↑ Phi-1.5B FQ ↓
IHL (Baseline) 0.95 0.65 0.88 0.69
IHL + FILA 0.93 0.50 0.89 0.55
IHL + Ours 0.94 0.52 0.88 0.57

Table 7: In-domain unlearning performance on the TOFU dataset. MU: Model Utility (higher
is better), FQ: Forget Quality (lower is better).

Table 7 summarizes our experimental results for the in-domain scenario under the IHL loss
setting. The experimental results indicate that under the in-domain scenario, FILA and our
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Loss Method Forget 1% Forget 5% Forget 10% AVG Gain (↑)

GD

FILA -3.30 -12.53 -17.27 –
ExpILA -2.90 -12.18 -6.84 2.64
AbsILA -2.90 -9.02 -9.06 2.95
VILA -2.17 -1.40 -1.18 8.36

NPO

FILA -3.30 -11.18 -11.06 –
ExpILA -1.27 -12.18 -5.48 4.72
AbsILA -2.52 -12.18 -4.26 3.92
VILA -1.54 -4.32 -4.59 5.74

IHL

FILA -3.30 -0.95 -0.47 –
ExpILA -1.27 -0.10 -0.34 7.27
AbsILA -0.78 -0.01 -0.23 7.50
VILA -1.27 -0.20 -0.40 7.22

Table 8: Validity of the Expectation as an Importance Score. Results using Llama2-7B
model.

method (VILA) exhibit relatively similar performance, with only minor differences. This
aligns with theoretical expectations: the primary advantage of VILA arises when there is a
significant distribution mismatch between the forget set and the overall dataset. When the
forget set closely mirrors the overall dataset, the benefit of Fisher Information correction
naturally diminishes, leading to comparable performance between FILA and VILA.

We further emphasize that, in realistic applications, the forget set typically does not represent
the full data distribution and often significantly differs from it. Therefore, methods explicitly
accounting for distributional differences between the forget set and the entire dataset, such
as VILA, can provide substantial practical advantages.

C Validity of the Expectation as an Importance Score for Llama2-7B

We conduct the same experiment described in Section 5.4 on Llama2-7B. Table 8 presents
the results. EXPILA and ABSILA generally achieve comparable or better performance
compared to FILA, particularly when the forget set size is small (Forget 1%). As the forget
set size grows (Forget 5% and 10%), VILA generally demonstrates better or competitive
performance compared to EXPILA and ABSILA. Importantly, these results empirically
confirm our claim: when the distribution of the forget set differs from that of the entire data,
the expectation values of the score function become different from zero. Thus, correcting
the original Fisher Information estimation, as done in VILA, becomes essential for robust
and accurate importance estimation.

D LoRA Initialization Sensitivity (Sigma Ablation)

Purely zero-initialized LoRA parameters (A = 0, B = 0) yield zero gradients, making
meaningful importance estimation impossible. Thus, appropriate initialization of LoRA pa-
rameters is critical. To empirically investigate the impact of initialization, we systematically
evaluate various initialization strategies by varying the standard deviation (σ) from 0.01 to
0.50.

Table 9 summarizes our experimental results for the Phi-1.5B model across three unlearning
loss functions: GD, NPO, and IHL. We observe that overly small initialization values (e.g.,
σ = 0.01) led to unstable gradients, causing either suboptimal or failed unlearning perfor-
mance (marked as “X”). Similarly, overly large initialization values (σ ≥ 0.40) introduce
excessive noise, violating Assumption A.1 (negligible magnitude of initial matrices) and
resulting in unstable training or divergence.
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Method σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.20 σ = 0.30 σ = 0.40 σ = 0.50

GD −13.54 −12.41 −8.59 −12.13 −10.29 X X
NPO X −10.80 −11.32 −9.30 −9.79 X X
IHL X −2.02 −9.54 −11.06 −10.54 X X

Table 9: Sensitivity of unlearning performance to LoRA initialization standard deviation
(σ). Results show Forget Quality scores (lower is better) for Phi-1.5B model. “X” indicates
unstable training or divergence. Best results per loss function are in bold.

We treat LoRA initialization as a hyperparameter and tune it equally across all methods
using 15 validation trials. We confirm that effective and stable initialization values (e.g.,
σ = 0.05) are easily identifiable, ensuring consistent and reliable importance estimation
across experiments.

E Sensitivity to the Extent of Importance Map Usage

To investigate how the performance of VILA is affected by the extent to which the importance
map is applied, we vary the proportion of layers that receive the calculated importance
map. We first compute the average importance score per layer, then selectively apply
the importance map to the top n% layers (n ∈ {25, 50, 75}) ranked by these scores. The
remaining layers are uniformly updated without importance weighting.

Method 0% (Baseline) 25% Layers 50% Layers 75% Layers 100% (VILA)

GD + VILA -16.61 -0.23 -0.83 -0.47 -1.18
IHL + VILA -7.70 -0.01 -0.03 -0.29 -0.40
NPO + VILA -13.84 -3.94 -4.76 -5.29 -4.59

Table 10: Ablation study on the sensitivity of VILA to the extent of importance map applica-
tion. Results show Forget Quality scores (lower is better). Best performance per method is
shown in bold.

Table 10 summarizes the experimental results obtained using the TOFU benchmark with
the Forget 10% setting and Llama2-7B model. From these results, we make the following
key observations:

• Applying the importance map selectively to only the top 25% of layers yields better
unlearning performance compared to applying it to all layers (100%).

• This suggests that VILA effectively identifies a subset of layers most critical to the
unlearning process, resulting in improved forgetting performance when updates
are focused on fewer, more relevant layers.

• Restricting updates to this smaller set of layers potentially reduces unnecessary
parameter changes, thereby preserving model utility and achieving more targeted
and efficient unlearning.

F Qualitative Analysis

Figure 4 shows response examples of each method on the MUSE forget set. Among the
tested loss functions, NPO consistently demonstrates superior performance on the MUSE
benchmark. Therefore, we conduct this qualitative analysis based on NPO and the cases
where FILA and Ours are applied to NPO.

Our analysis reveals that although NPO successfully removes target information, its out-
puts often lack meaningful content. In many cases, the responses consist of blank spaces,
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Q	(forget	set):	Which	shop	did	Harry	and	Hagrid	visit	to	
buy	Harry's	school	books?

GT:	Flourish	and	Blotts
NPO:	“”
NPO+FILA:	Flourish	and	Blotts
NPO+VILA:	The	Hog's	Head

Q	(forget	set):	Who	suggested	that	the	group	should	have	a	
name	to	promote	team	spirit	and	unity	during	the	meeting?

GT	:	Hermione
NPO:	“”
NPO+FILA:	Hermione
NPO+VILA:	Harry

Q	(forget	set):	In	which	city	did	Aunt	Petunia	take	Dudley	
to	buy	his	Smeltings uniform?

GT	:	London
NPO:	W
NPO+FILA:	London
NPO+VILA:	12	Grimmauld Place

Qualitative	Results

Q	(forget	set):	Who	was	standing	rigidly	beside	
Dumbledore	with	an	extremely	tense	face?

GT	:	Professor	McGonagall
NPO:	“”
NPO+FILA:	111
NPO+VILA:	Professor	Snape

Figure 4: Qualitative examples from the MUSE Forget Knowledge benchmark. Red indicates
responses that are either linguistically inconsistent or include the ground truth. Green
denotes plausible answers to the question that differ from the ground truth.

punctuation, or other non-informative symbols. While this technically satisfies the objective
of removing correct answers, it fails to generate linguistically coherent or contextually
appropriate text, limiting its practical utility. Furthermore, combining NPO with FILA
frequently results in the reproduction of correct answers, indicating ineffective unlearning.
In contrast, our method not only avoids the target information but also maintains fluency
and semantic coherence, demonstrating both high benchmark performance and practical
unlearning effectiveness.

G Forget Performance Trajectory

Reporting the trajectories of forgetting performance throughout the unlearning process
provides valuable insights into the effectiveness and stability of unlearning methods. To
comprehensively evaluate our method (VILA), we conduct additional experiments on the
TOFU benchmark, explicitly tracking the forget quality and model utility at each step of the
unlearning training process.

The experimental results demonstrate that VILA consistently achieves comparable or im-
proved forgetting performance compared to FILA while notably preserving higher model
utility. Notably, FILA achieves similar forget performance to VILA when paired with the
IHL loss; however, VILA shows a consistent advantage in balancing forget performance with
minimal degradation of model utility across various settings. Thus, rather than demonstrat-
ing absolute superiority in forget quality alone, VILA effectively provides a more favorable
and stable trade-off throughout the entire unlearning trajectory.

H Benchmarks

TOFU (Maini et al., 2024) is a synthetic dataset consisting of 20 question–answer pairs
for each of 200 fictional authors. The primary task is to effectively unlearn information
corresponding to 1%, 5%, or 10% of the total authors. The reference model is trained solely
on the retain set (i.e., the remaining 99%, 95%, or 90% of authors, respectively), serving as the
oracle model that represents the ideal outcome of successful unlearning. Unlearning quality
is measured by Forget Quality, defined as the p-value from the Kolmogorov–Smirnov test
comparing the output distributions of the unlearned model and the reference model. A
higher p-value indicates greater similarity between the two models’ outputs, suggesting
more effective unlearning. Meanwhile, Model Utility evaluates how well the unlearned
model preserves its performance on data excluding the forget set, assessing both accuracy
on the retain set and general knowledge including factual information about real-world
authors and commonsense reasoning. In our experiments, we follow the original TOFU
setup and evaluate our method using both the Phi-1.5B and Llama2-7B backbone models.
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Figure 5: Llama2-7B Unlearning Trajectories.
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WMDP (Li et al., 2024) is a multiple-choice benchmark designed to evaluate a model’s
ability to unlearn knowledge related to hazardous domains such as biosecurity and cy-
bersecurity. The forget set consists of scientific papers related to biosecurity and GitHub
passages related to cybersecurity, while the retain set is composed of passages from Wikitext.
Unlearning performance is assessed based on two criteria: lower accuracy on WMDP QA
tasks indicates more effective forgetting of hazardous knowledge, while higher accuracy
on general evaluation benchmarks such as MMLU (Hendrycks et al., 2021) indicates better
preservation of the model’s general capabilities. Following the original WMDP paper, we
conduct experiments using the Zephyr-7B-β (Tunstall et al., 2024) model.

MUSE Books (Shi et al., 2025) is an unlearning benchmark constructed from the Harry
Potter book series (Rowling, 1997–2007). It evaluates unlearning performance through
two complementary metrics: verbatim memorization (VerbMem) and knowledge-based
generation (KnowMem). VerbMem measures whether the model has successfully forgotten
specific content from the forget set by calculating the ROUGE-L F1 score (Lin, 2004) between
the model’s output and the original data. On the other hand, KnowMem evaluates whether
the model can still generate correct answers when given question–answer pairs from the
dataset. It is computed as the average ROUGE score (Lin, 2004) between the model’s output
and the ground-truth answer, and is used to assess performance on both the forget and
retain sets. Following the original MUSE paper, we use ICLM-7B (Shi et al., 2024) as the
backbone language model. According to the original MUSE setup, lower VerbMem and
KnowMem scores on the forget set indicate better unlearning, while higher KnowMem
scores on the retain set indicate better preservation of relevant knowledge. However, we
argue that this setting is unrealistic for practical applications, and we discuss our rationale
in detail in Section J.

I Compared Methods

Gradient Difference (GD) (Liu et al., 2022a) applies the Gradient Ascent (GA) loss to the
forget set D f and the standard negative log-likelihood loss to the retain set, as follows:

LGD(θ) = −E(x,y)∼D f
[− log (p(y | x; θ))] + E(x,y)∼Dr [− log (p(y | x; θ))] . (15)

GA intentionally maximizes the prediction loss on the forget data which lowers the gen-
eration probability of the forget tokens and consequently discourages the model from
producing them.

Negative Preference Optimization (NPO) (Zhang et al., 2024) extends the concept of
preference optimization—originally designed to train models to favor more desirable re-
sponses—to the unlearning setting. Specifically, NPO treats the responses in the forget
set D f as negative examples and adjusts the model to minimize their selection probability,
while applying the standard negative log-likelihood loss to the retain set Dr, as follows:

LNPO(θ) = −
2
β

E(x,y)∼D f

[
log σ

(
−β log

p(y | x; θ)

p(y | x; θref)

)]
+ E(x,y)∼Dr [− log (p(y | x; θ))] .

(16)
Compared to GA, NPO provides a more stable gradient magnitude and mitigates the risk
of catastrophic degradation in overall model performance caused by excessive loss on the
forget set. This allows the model to better balance forget quality and overall utility.

Inverted Hinge Loss (IHL) (Cha et al., 2025) is a loss function designed to address the limita-
tions of GA. It decreases the predicted probability of the forget token while simultaneously
identifying the most probable alternative token—excluding the forget token—and guides
the model to increase the predicted probability of that token, as follows:

LIHL(θ) = −E(x,y)∼D f

[
1 + pθ(y | x; θ)−max

v ̸=y
(pθ(v | x; θ))

]
+E(x,y)∼Dr [− log (p(y | x; θ))] .

(17)
For the retain set Dr, the standard negative log-likelihood loss is applied. This formulation
suppresses undesirable tokens while reinforcing plausible replacements, thereby preserving
the fluency of the language model.
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J Comprehensive Experimental Designs

To ensure a fair comparison, we conduct the same number of hyperparameter searches for
every combination of unlearning loss and initialization strategy. When defining the search
space, we exclude extreme learning rates—those that are too small to cause any learning
progress, or too large, resulting in immediate collapse of model performance. Specifically,
we consider a model to have collapsed if its accuracy drops to the level of random guessing:
0.0 for MUSE (a generation task) and 0.25 for WMDP (a four-choice multiple-choice task).

For TOFU, we perform 15 random search trials with the following hyperparameter ranges:
learning rate in [1e−6, 2e−4], retain coefficient λ in [0.5, 2.0], and NPO-specific β in [0.01, 1.0].
All methods are trained for five epochs, and evaluations are performed at every epoch, as
the optimal stopping point may vary by method. For WMDP, we apply random search with
learning rate in [1e−7, 2e−4]. Additionally, we search the retain coefficient λ over [0.5, 2.0]
in increments of 0.1, and β over [0.01, 0.05] in increments of 0.01. All models are trained
for up to 125 steps, and evaluation is performed every 25 steps. For MUSE, we conduct 10
random search trials with learning rate in [1e−7, 1e−4], λ in [1, 10], and β in [0.05, 2.0]. The
performance of the original MUSE Books model was obtained from the results reported in
the original MUSE paper. Experiments are conducted over two epochs, with evaluation
performed after each epoch, similar to TOFU.

Although prior work reports training MUSE models for up to 10 epochs (Shi et al., 2025),
we find this setting unrealistic. MUSE Books dataset comprises approximately 1.1M tokens
in the forget set and 0.5M tokens in the retain set. As noted in Shi et al. (2025), the retrain
model is trained for five epochs, totaling 2.5M tokens. We argue that any unlearning method
that requires more training than retraining contradicts the practical goal of unlearning.
To ensure the practical efficiency of unlearning, we restrict the total training budget to
two epochs. Furthermore, unlike the original benchmark, which measures unlearning
performance by how close the model’s performance is to zero, we instead assess the gap
between the unlearned and retrain models. This is motivated by our observation that
minimizing the VerbMem score on the forget set often leads to significant degradation of
the model’s language capabilities. Specifically, we find that when the VerbMem score on the
forget set approaches zero, the model tends to produce abnormal behavior, such as failing to
generate any response to a query or returning only meaningless tokens such as punctuation
marks. Notably, even the retrain model achieve zero VerbMem score due to generalization
effects. These observations suggest that using zero performance on the forget set as the
sole target is neither realistic nor desirable. Therefore, similar to the TOFU benchmark, we
evaluate unlearning effectiveness by measuring how closely the outputs of the unlearned
model align with those of the retrain model.

Finally, for each method we compare the unlearned model that achieves the best forgetting
score while preserving the utility of the original language model. In contrast to some prior
work, we argue that comparing unlearning performance without controlling for utility can
be misleading. A model may appear to perform well on the forget set, but if its language
modeling ability is severely degraded, such comparison becomes meaningless. To address
this, we select the model that achieves the best forgetting score while maintaining at least
95% of the original model’s utility, following the evaluation protocol proposed in Task
Arithmetic (Ilharco et al., 2023). When multiple forgetting metrics are involved, we use the
average score to select the best model. Under this evaluation setting, model utility does not
vary significantly across methods. Therefore, we report only forget set performance in all
tables.

K Limitations and Future works

Despite its strong empirical performance, our VILA has a limitation in that it requires
both the forget set and the retain set for unlearning, which may restrict its applicability
in real-world scenarios. As future work, we plan to develop methods that can perform
unlearning without explicitly relying on a retain set.
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