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Abstract
Pre-trained language models have been widely001
applied in various natural language processing002
tasks. But when it comes to neural machine003
translation, things are a little different. The dif-004
ferences between the embedding spaces created005
by BERT and NMT encoder may be one of the006
main reasons for the difficulty of integrating007
pre-trained LMs into NMT models. Previous008
studies illustrate the best way of integration is009
introducing the output of BERT into the en-010
coder with some extra modules. Nevertheless,011
it is still unrevealed whether these additional012
modules will affect the embedding spaces cre-013
ated by the NMT encoder or not and what kind014
of information the NMT encoder takes advan-015
tage of from the output of BERT. In this pa-016
per, we start by comparing the changes of em-017
bedding spaces after introducing BERT into018
the NMT encoder trained on different machine019
translation tasks. Although the changing trends020
of these embedding spaces vary, introducing021
BERT into the NMT encoder will not affect the022
space of the last layer significantly. Subsequent023
evaluation on several semantic and syntactic024
tasks proves the NMT encoder is facilitated by025
the rich syntactic information contained in the026
output of BERT to boost the translation quality.027

1 Introduction028

Contextualized representations generated by pre-029

trained language models (LMs), e.g. ELMo (Peters030

et al., 2018), GPT-2 (Radford et al.), and BERT (De-031

vlin et al., 2019), have proven their effectiveness032

on an array of downstream tasks, which is largely033

attributed to the richer information contained in the034

representations. However, Clinchant et al. (2019)035

and Zhu et al. (2020) demonstrated that simply036

utilizing BERT as the encoder of neural machine037

translation (NMT) model or initializing the NMT038

encoder with BERT yields relatively poor transla-039

tion results. The explanation about the difficulty of040

utilizing pre-trained LMs in NMT is still an open041

question. Vázquez et al. (2021) proposed that the042

discrepancy between embedding spaces created by 043

BERT and vanilla NMT encoder may explain the 044

difficulty of applying BERT to the NMT model. 045

Recently, several effective methods of integrat- 046

ing BERT into the NMT encoder have been put 047

forward (Clinchant et al., 2019; Rothe et al., 2020; 048

Yang et al., 2020). Xu et al. (2021) utilized a tai- 049

lored language model trained with bilingual texts 050

to produce embeddings as the input to the Trans- 051

former (Vaswani et al., 2017). Despite its good 052

performance, a great amount of bilingual corpus is 053

not always available, not to mention that training 054

another bilingual language model is a cost of time 055

and money as well. 056

Therefore, we pay more attention to analyzing 057

the approaches integrating widely-used pre-trained 058

LMs, BERT (Devlin et al., 2019) for example, into 059

NMT model. Typically, these methods compute 060

a weighted sum based on the outputs of various 061

attention modules using the representations gener- 062

ated by BERT and each NMT encoder layer (Zhu 063

et al., 2020; Weng et al., 2020; Zhang et al., 2020, 064

2021). The success of these approaches makes 065

us curious about the changes occurring in encoder 066

embedding spaces after interacting with BERT. In 067

addition, it also attracts us to considering what kind 068

of information provided by BERT may boost the 069

translation quality, semantic or syntactic? The an- 070

swers to these questions may provide some hints on 071

better utilizing pre-trained LMs in the NMT task. 072

To this end, we take a complementary compari- 073

son between the embedding spaces created by the 074

vanilla Transformer encoders (Vaswani et al., 2017) 075

and the BERT-fused (Zhu et al., 2020) encoders 076

trained with IWSLT14 EN→DE dataset, WMT14 077

EN→DE dataset, and WMT17 EN→ZH dataset, 078

respectively. We contrast the random cosine sim- 079

ilarity (Vázquez et al., 2021), the SelfSim, and In- 080

traSim proposed by Ethayarajh (2019) between the 081

word representations generated by each of the en- 082

coders. Subsequently, we adopt the tasks proposed 083
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by Conneau and Kiela (2018) and Hewitt and Man-084

ning (2019) to examine the semantic and syntactic085

information contained in these contextualized rep-086

resentations.087

Our experiments demonstrate that compared to088

keeping the characteristics of BERT embedding089

spaces (Vázquez et al., 2021), the additional BERT-090

encoder attention module can ensure the encoder091

keep its space characteristics, making it easier for092

the decoder to converge after integrating BERT.093

Besides, Introducing the output of BERT into the094

NMT encoder can provide richer syntactic informa-095

tion to boost the translation quality.096

Our contribution can be summarized as follows:097

• We analyze the differences of embedding098

spaces between the vanilla Transformer en-099

coder and the encoder integrated BERT, i.e.100

BERT-fused encoder in this case. To the best101

of our knowledge, this is the first effort to in-102

vestigate the discrepancy between the spaces103

of encoder before and after introducing pre-104

trained LMs.105

• We find that the NMT encoder can benefit a lot106

from the syntactic information provided by the107

BERT, which may result in the improvements108

on the translation quality.109

2 Related Work110

2.1 Analysis of Contextual Representations111

An increasing number of studies have been con-112

ducted to analyze the information contained in the113

contextual embeddings generated by pre-trained114

LMs. These methods can be roughly divided into115

two categories:116

Probing Tasks. These approaches design simple117

neuron networks as probes to predict some proper-118

ties we care about (Shi et al., 2016; McCann et al.,119

2017; Conneau and Kiela, 2018; Conneau et al.,120

2018). Hewitt and Manning (2019) designed a121

structural probe and find that BERT (Devlin et al.,122

2019) can encode some structural information of123

words, such as their depth in the dependency parse124

trees, into word representations. Merchant et al.125

(2020) not only utilized probing tasks but also126

adopted the similarity analysis methods to explore127

the effects of fine-tuning on the representations128

generated by BERT.129

Quantitatively Analysis. Ethayarajh (2019) pro-130

posed two metrics, SelfSim and IntraSim, to com-131

pare the word level differences between represen-132

tations generated by ELMo (Peters et al., 2018), 133

GPT-2 (Radford et al.), and BERT (Devlin et al., 134

2019). Voita et al. (2019a) utilized Canonical Cor- 135

relation Analysis (CCA) and mutual information to 136

contrast the contextualized representations trained 137

with various objectives in NMT and LM models. 138

Vázquez et al. (2021) compared the representations 139

spaces between NMT encoder and BERT by the 140

means of SelfSim and IntraSim as well. 141

Our work is inspired by the research of Etha- 142

yarajh (2019) and Vázquez et al. (2021). We an- 143

alyze the differences before and after integrating 144

BERT into the NMT encoder with an additional 145

module, attempting to find out how BERT affects 146

the characteristics of embedding spaces created by 147

the NMT encoder and what kind of information 148

provided by BERT boosts the translation perfor- 149

mance. 150

2.2 Pre-trained LMs in NMT 151

After BERT (Devlin et al., 2019) was proposed, 152

several simple methods of integrating BERT into 153

NMT models have been presented, including uti- 154

lizing the outputs of pre-trained LMs as the input 155

embeddings (Clinchant et al., 2019) or initializ- 156

ing parameters of the NMT encoder by pre-trained 157

LMs (Rothe et al., 2020). 158

Zhu et al. (2020) designed additional BERT- 159

encoder and BERT-decoder attention modules and 160

fused the representations from different attention 161

modules in each layer of the NMT model. Simi- 162

larly, APT framework utilized a layer-aware atten- 163

tion mechanism to fuse the output of each layer 164

in BERT dynamically (Weng et al., 2020). Zhang 165

et al. (2021) integrated the self attention and BERT- 166

encoder attention into a joint attention module, 167

proposing a three-phrase optimization strategy to 168

train the model. 169

Besides, some efforts have been made to make 170

use of different pre-trained LMs, such as mBERT 171

(Devlin et al., 2019), XLM-R (Conneau et al., 172

2020), and GottBERT (Scheible et al., 2020), as 173

the embedding layer of the NMT model. Xu et al. 174

(2021) trained a tailored bilingual language model, 175

BIBERT, with 146GB English texts and 145GB 176

German texts, and achieve state-of-the-art transla- 177

tion performance. 178
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3 Preliminary179

3.1 Notations180

Let X and Y be the source language domain and181

target language domain respectively, which are the182

sets of sentences corresponding to the languages.183

For any sentence x ∈ X and y ∈ Y , lx and ly184

represent the lengths of x and y. Let W indicate185

the set of words: W = {w1, · · · , wi, · · · , wn}.186

We denote the encoder and decoder of Trans-187

former and BERT as Enc, Dec, and BERT respec-188

tively, assuming the Enc consists of L layers, while189

BERT contains LBERT layers. The output of the190

ℓ-th Enc layer is denoted by HE
ℓ , which consists of191

a sequence of vectors HE
ℓ = [hE

ℓ,1,h
E
ℓ,2, ...,h

E
ℓ,n],192

where hE
ℓ,j ∈ RdE . Analogously, the output of193

the ℓ-th BERT layer is written as HB
ℓ . It is worth194

noting that HE
0 and HB

0 represent the output of195

embedding layer in Enc and BERT, respectively.196

Let Attn (Q,K,V) denote the attention model,197

where Q,K,V ∈ Rl×dmodel are the query, key,198

and value matrix, respectively. The computation of199

attention module can be written as:200

Attn (Q,K,V) =

softmax

(
(QWQ) · (KWK)T√

dk

)
VWV ,

(1)201

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk ,202

and WV ∈ Rdmodel×dv are the parameters to be203

learned. Attn (Q,K,V) is implemented as a204

multi-head attention model, whose details can be205

referred to Vaswani et al. (2017).206

Define FFN(·) as Vaswani et al. (2017) did:207

FFN(h) = ReLU (hW1 + b1)W2 + b2, (2)208

where W1,W2 ∈ Rdmodel×dmodel and b1,b2 ∈209

Rdmodel are trainable parameters.210

We denote the cosine similarity between two211

vectors hi and hj by cos (hi,hj) . The Euclidean212

norm of vector hi is denoted by ∥hi∥2.213

3.2 Transformer214

Transformer model (Vaswani et al., 2017) is one of215

the most effective models in a wide range of NLP216

tasks. The overview of its structure is shown in217

Figure 1.218

In the ℓ-th Enc layer, HE
ℓ is computed as fol-219

lows:220

RE
ℓ = LN

(
HE

ℓ−1 +Attn
(
HE

ℓ−1,H
E
ℓ−1,H

E
ℓ−1

))
,221

HE
ℓ = LN

(
RE

ℓ + FFN
(
RE

ℓ

))
.222

Add & Norm

Add & Norm

Feed Forward

Masked
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Attention

Multi-head
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Figure 1: Overview of the structure of the vanilla Trans-
former.

where LN(·) is layer normalization. The compu- 223

tation of Attn(·) and FFN(·) follows Eqn.(1) and 224

Eqn.(2) respectively. 225

The computation of the output of ℓ-th Dec layer, 226

HD
ℓ , is shown below: 227

RD
ℓ = LN(HD

ℓ−1 +Attn(HD
ℓ−1,H

D
ℓ−1,H

D
ℓ−1)),

(3)
228

TD
ℓ = LN(RD

ℓ +Attn(RD
ℓ ,H

E
L ,H

E
L )), (4) 229

HD
ℓ = LN(TD

ℓ + FFN(TD
ℓ )). (5) 230

3.3 BERT-fused encoder 231

Up to now, there are several methods of integrating 232

BERT into Transformer model. Among all of these 233

approaches, BERT-Enc Attn and BERT-Dec 234

Attn adopted by BERT-fused (Zhu et al., 2020) 235

and BERT-JAM (Zhang et al., 2021) can signifi- 236

cantly boost the translation quality of Transformer 237

model. We will briefly describe the structure of the 238

BERT-fused encoder, which is shown in Figure 2. 239

In the ℓ-th layer in the BERT-fused encoder, HE
ℓ 240

is computed as follows: 241

RE
ℓ = LN(HE

ℓ−1 + γℓAttn(H
E
ℓ−1,H

E
ℓ−1,H

E
ℓ−1) 242

+ (1− γℓ)Attn(H
E
ℓ−1,H

B
LBERT

,HB
LBERT

)), 243

HE
ℓ = LN(RE

ℓ + FFN(RE
ℓ )), 244

where γℓ = 0.5 in the BERT-fused model (Zhu 245

et al., 2020). 246
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Figure 2: Overview of the structure of the BERT-fused
encoder.

4 Methodology247

In this section, we will introduce several metrics248

to evaluate the isotropy and contextuality of the249

embedding space. Besides, we take a brief intro-250

duction to a number of tasks which are useful for251

determining how much semantic information and252

syntactic information contained in the word repre-253

sentations and sentence embeddings.254

4.1 Characteristics of Embedding Spaces255

4.1.1 The Isotropy of Spaces256

It is essential to take the characteristics of embed-257

ding spaces into consideration before comparing258

the similarity between word representations in dif-259

ferent spaces. Suppose that all vectors are dis-260

tributed in a narrow space, the cosine value of any261

two word representations will naturally approach262

1, but this does not guarantee that the two words263

are similar to each other. Therefore, the concept264

of isotropy is introduced: an embedding space is265

described as isotropic if vectors in it are directional266

uniformity. Otherwise, it is called an anisotropic267

space.268

In this paper, we estimate the level of isotropy of269

the embedding space by the cosine similarity and270

Eucliean distance between the representations of271

uniformly randomly sampled words (Ethayarajh,272

2019; Vázquez et al., 2021), denoted by CosSim273

and EucDis. For any two words wi, wj ∈ W , sup-274

pose their corresponding word representations in275

ℓ-th layer are hE
ℓ,posi

and h′E
ℓ,posj . The computa-276

tions of CosSimℓ and EucDisℓ can be written as:277

CosSimℓ(wi, wj) = cos(hE
ℓ,posi

,h′E
ℓ,posj ),278

EucDisℓ(wi, wj) = ∥hE
ℓ,posi

− h′E
ℓ,posj∥2.279

If the average value of CosSim is concentrated280

around 0, vectors in the space are almost orthogo-281

nal to each other, indicating the space is more likely 282

to be isotropic. Otherwise, the space is anisotropic. 283

In addition, if the value of EucDis is relatively 284

small on average, the embedding space is probably 285

narrow. 286

4.1.2 The Contextuality of Spaces 287

Apart from the CosSim and EucDis, we also adopt 288

two contextuality metrics presented in Ethayarajh 289

(2019) and Vázquez et al. (2021). 290

SelfSim: The averaged cosine similarity be- 291

tween the same word in different sentences, namely 292

different contexts. If the average value of SelfSim 293

is relatively small, different contexts will make the 294

embeddings of the same word vary. In such a space, 295

the word representations are much more contextual. 296

IntraSim: The average cosine similarity be- 297

tween representations of words in a sentence and 298

the mean pooled sentence embedding. The In- 299

traSim reflects how context-specificity manifests in 300

the embedding space. If IntraSim(x) is high while 301

the SelfSim(w), ∀w ∈ x is low, it indicates that 302

the encoder tends to make the word representation 303

to be contextual by gathering the representations of 304

words in the same sentence together and keeping 305

the word representations in different contexts away 306

from each other. 307

It is worth noting that both of these two metrics 308

need to subtract the average value of CosSim of the 309

corresponding layer, ensuring the characteristics 310

are corrected for deviation (Vázquez et al., 2021). 311

4.2 Semantic Information 312

We adopt the Sentence Textual Similarity (STS) 313

tasks provided by SentEval1 (Conneau and Kiela, 314

2018) to evaluate the information contained in the 315

sentence embeddings generated by different en- 316

coders. Note that we use the average of embed- 317

dings of words contained in the sentence as the 318

sentence embedding. 319

The STS task is first presented by Agirre et al. 320

(2012). Given a sentence pair {x,y}, its object 321

is to predict how similar the meanings of these 322

sentences are by giving a continuous-valued score 323

between 0 and 5. 324

4.3 Syntactic Information 325

We employ the structural probes proposed by He- 326

witt and Manning (2019) to evaluate the syntax 327

information encoded by the word representations. 328

1https://github.com/facebookresearch/SentEval
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More specifically, we generate the dependency329

parse tree of data in the SentEval (Agirre et al.,330

2012, 2013, 2014, 2015, 2016) using stanza (Qi331

et al., 2020). The probing tasks are as follows:332

Distance. Predict the distance between any two333

words in the dependency parse tree.334

Depth. Predict the depth of each word in the335

dependency parse tree.336

We train a positive semi-determined matrix B ∈337

Rdmodel×rank for each task. We set rank = 64 in338

the experiments. The Spearman correlation coeffi-339

cient ρ is reported as the experiment result.340

Besides, we adopt three tasks provided by Sen-341

tEval (Conneau and Kiela, 2018) to evaluate the342

syntactic information contained in the sentence em-343

bedding:344

BShift. Predict whether two consecutive tokens345

within the sentence have been inverted.346

TreeDepth. Predict the maximum depth of the347

syntactic tree of the sentence. It can be viewed as348

a simplified version of probing tasks proposed by349

Hewitt and Manning (2019).350

TopConst. Predict the top-level constituents of351

constituency parse tree from 20 classes.352

We train a Multi-Layer Perceptron classifier with353

a single hidden layer containing 50 neurons based354

on the sentence embeddings for each of the task355

and report the accuracy as the final result.356

4.4 Models357

The models we adopted in the comparison exper-358

iments are shown as follows2. In order to ensure359

the universality of discrepancy between these en-360

coders, we utilize three different datasets to train361

the NMT models: IWSLT14 EN→DE dataset3,362

WMT14 EN→DE dataset4 and WMT17 EN→ZH363

dataset5 respectively. The details of datasets, the364

proprocessing methods, and training settings can365

be referred to the Appendix A.366

vanilla Transformer encoder: the encoder of367

a traditional Transformer model. We train a Trans-368

former model based on Fairseq6, a popular se-369

quence modeling toolkit.370

BERT-fused encoder: the encoder of the BERT-371

fused model. Note that we use the standard372

decoder following Eqn.(3-5) to avoid introduc-373

2We only compare two models because of there is no
published source code for other models

3https://workshop2014.iwslt.org/
4https://www.statmt.org/wmt14/translation-task.html
5https://www.statmt.org/WMT17/translation-task.html
6https://github.com/pytorch/fairseq

ing other new variables. This model is imple- 374

mented with Fairseq toolkit and trained along with 375

the bert-base-uncase7 provided by the Hug- 376

gingFace library (Wolf et al., 2019). 377

BERT. We also utilize the pretrained 378

bert-base-uncased model from the 379

HuggingFace library (Wolf et al., 2019) as an 380

auxiliary for subsequent analysis. 381

The BLEU scores of these two models on dif- 382

ferent test sets8 are shown in Table 1, which are 383

consistent with previous studies. 384

Models
IWSLT14
EN→DE

WMT14
EN→DE

WMT17
EN→ZH

Transformer 28.19 28.88 33.11
BERT-fused∗ 30.10 30.07 34.39

Table 1: BLEU scores trained with different datasets.
Note that we change the decoder of BERT-fused model
to the standard Transformer decoder.

According to the results shown in Table 1, 385

the NMT model integrated with BERT obtains 386

a significant boost on translation quality on the 387

smaller size dataset. Therefore, we mainly present 388

the comparison between models trained with 389

IWSLT14 EN→DE dataset in the following sec- 390

tions. The corresponding experiment results of 391

models trained with WMT14 EN→DE dataset and 392

WMT17 EN→ZH dataset are displayed in Ap- 393

pendix B. 394

5 Characteristics of Embedding Spaces 395

Following the research of Ethayarajh (2019) and 396

Vázquez et al. (2021), we analyze the embeddings 397

spaces based on the data gathered from the Se- 398

mEval Semantic Textual Similarity tasks from 2012 399

to 2016 (Agirre et al., 2012, 2013, 2014, 2015, 400

2016). 401

5.1 The Isotropy of Spaces 402

We first take a comparison of CosSim distribution, 403

which is the indicator of the isotropy of spaces. The 404

results are shown in Figure 3. 405

According to Figure 3a, the mean value of the 406

CosSim generated by vanilla Transformer encoder 407

increases slightly towards higher layers, with the 408

7https://huggingface.co/bert-base-uncased/tree/main
8We use the concatenation of IWSLT14.TED.dev2010,

IWSLT14.TEDX.dev2012, IWSLT14.TED.tst2010,
IWSLT14.TED.tst2011, and IWSLT14.TED.tst2012 as
the test set for IWSLT14 EN→DE; newstest2014 and
newstest2017 are used as the test set for WMT14 EN→DE
and WMT17 EN→ZH respectively.
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Figure 3: CosSim (top) and EucDis (bottom) distributions of uniform-sampled word. Both of the vanilla Transformer
encoder and BERT-fused encoder are trained with IWSLT14 EN→DE dataset. From left to right is layer 0 to layer
6.

exception of a drop at the last layer (L6). On the409

other hand, the CosSim of embeddings produced410

by BERT-fused encoder concentrates around 0.5 at411

the embedding layer (L0) and suddenly declines to412

0.0 at the first encoder layer (L1), indicating the413

level of isotropy surges. From the first encoder414

layer to the last encoder layer (L6), this embedding415

space maintains an isotropic state except a minor416

fluctuation. It is worth mentioning that these two417

embedding spaces achieve isotropic stage in the L6418

in spite of the different variation trends in previous419

layers.420

As for the EucDis distribution displayed in Fig-421

ure 3b, the overall changing tendency of these two422

embedding spaces are the same. The falling of423

EucDis value indicates the beginning wide space424

gradually shrinks to a relatively narrow one. Nev-425

ertheless, the space of vanilla Transformer encoder426

undergoes contractions twice, at the first encoder427

layer (L1) and the last encoder layer (L6) respec-428

tively; while the space created by BERT-fused en-429

coder only contracts once at the last layer.430

Combined the tendency of CosSim and EucDis,431

the NMT encoder tends to make the embeddings432

distributed randomly and gradually shrink the size433

of the effective space. The changing tendency of434

the size of space provides an explanation from an-435

other perspective for the feasibility of pruning the436

Transformer model (Voita et al., 2019b).437

5.2 The Contextuality of Spaces438

Afterwards, we compare the values of SelfSim and439

IntraSim between the vanilla Transformer encoder440

and BERT-fused encoder layer by layer. According441

to the Figure 4, these two encoder display remark- 442

ably different trends. 443

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer

0.0

0.2

0.4

0.6

0.8

1.0
SelfSim BERT
SelfSim Vanilla Transformer Encoder
SelfSim BERT-fused Encoder
IntraSim BERT
IntraSim Vanilla Transformer Encoder
IntraSim BERT-fused Encoder

Figure 4: The SelfSim and IntraSim results of BERT,
vanilla Transformer encoder, and the BERT-fused en-
coder. Note that layer 0 correspond to the embedding
layer.

The vanilla Transformer encoder gets a relatively 444

high SelfSim score in the layer 0, illustrating the em- 445

bedding layer produces a less contextual representa- 446

tions for each word. The value of SelfSim declines 447

constantly until the penultimate layer and increases 448

suddenly in the last layer. This tendency indicates 449

that the vanilla Transformer encoder learns to add 450

more contextual information into word representa- 451

tions as the layer increases. However, vectors cor- 452

responding to the same word become much more 453

similar in the last layer. It seems that the decoder 454

may not need the word representation to contain 455

too much context information. 456

On the contrary, the value of SelfSim of BERT- 457

fused encoder rises rapidly at the first encoder layer 458

and fluctuate slightly in the following layers. This 459
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tendency demonstrates the representations of the460

same words are becoming more and more similar461

to each other.462

IntraSim value of the vanilla Transformer en-463

coder raises slightly and then declines. Taking the464

declining of the value of SelfSim into consideration,465

the model generates contextual representations by466

gathering the words in the same sentence together.467

In the last layer, the value of SelfSim is high while468

the IntraSim value is relatively low, demonstrating469

that representations of the same word gather to-470

gether while the representations of different words471

are pushed away.472

In addition, the IntraSim value of the BERT-473

fused encoder increases gradually, revealing the474

words belong to the same sentence become sim-475

ilar as well. Considering its upward trend is not476

as steep as SelfSim, the information related to the477

word itself still dominates the change of word rep-478

resentation.479

Based on the tendency shown in the Figure 4,480

we summarize two interesting findings:481

• SelfSim and IntraSim scores of these two en-482

coders are significantly close to each other in483

the last layer.484

• Rather then imitating the characteristics of em-485

bedding space created by BERT, the represen-486

tations generated by the BERT-fused encoder487

are still less contextual.488

We hypothesize that the characteristics of en-489

coder embedding space is shaped by the decoder at490

the same time. This less contextual representations491

maybe exactly what the decoder needs when execut-492

ing decoding operations. Besides, considering the493

parameters introduced by the BERT-Enc Attn494

modules only occupy a small part of the number495

of parameters compared to the traditional Trans-496

former model (14.4% to be specific), the encoder497

spaces may not change a lot.498

Nevertheless, it is natural to consider how BERT499

works in the NMT encoder under this assumption.500

We attempt to answer this question by evaluating501

the outputs of encoders with different tasks in Sec-502

tion 5.3.503

5.3 Semantic and Syntactic Tasks504

In order to better handle what kind of informa-505

tion are utilized by the BERT-fused encoder, we506

not only present the experiments results on the507

vanilla Transformer encoder and BERT-fused en- 508

coder, but also check the outputs of Self Attn 509

and BERT-Enc Attn module in the BERT-fused 510

encoder, respectively. More specifically, Self Attn 511

denotes the output of the BERT-fused encoder 512

when γEℓ = 1.0, ∀ℓ ∈ L; BERT-Enc Attn de- 513

notes the output of the BERT-fused encoder when 514

γEℓ = 0.0, ∀ℓ ∈ L. 515

5.3.1 Semantic Information 516

The experiment results of tasks related to the se- 517

mantic information are shown in Table 2. The most 518

notable point is that the BERT-fused model obtains 519

a remarkably higher Spearman correlation coeffi- 520

cient than the mean pooled BERT embeddings with 521

a margin of 14.56 after introducing the BERT-Enc 522

Attn module. 523

In addition, even the Self Attn outperforms the 524

vanilla Transformer encoder. Because of the exis- 525

tence of additional module, the Self Attn can 526

focus on the semantic information. The BERT-Enc 527

Attn performs better compared to Self Attn. We 528

hypothesize that BERT-Enc Attn module focus 529

on parsing the semantics of sentences from the con- 530

textual representations generated by BERT. 531

Besides, the Spearman ρ of BERT-fused model 532

is higher than the results of utilizing Self Attn 533

module and BERT-Enc Attn module alone. It 534

seems that these two modules have their own em- 535

phasis, and the BERT-fused encoder finds a way to 536

balance them. 537

5.3.2 Syntactic Information 538

As Table 3 indicates, BERT encodes rich syntax 539

information in the word representations. There- 540

fore, it achieves good results in probing tasks re- 541

lated to both word representations and sentence 542

embeddings, especially on predicting word order 543

and top-level constituents. On the contrary, the 544

vanilla Transformer encoder performs poorly on 545

these two tasks. However, it performs well on the 546

tasks related to word representations, indicating 547

that this encoder pays more attention to encoding 548

structural information into word representations 549

but neglects the overall structure of sentences. 550

Among all of these models, Self Attn performs 551

worst on all of the tasks. Compared to its good per- 552

formance on the semantic tasks, we can conclude 553

that the Self Attn module prefers to focusing 554

on extracting semantics from representations. Fur- 555

thermore, the BERT-Enc Attn obtains a comparable 556

score to the BERT, illustrating that outputs of BERT 557
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Encoder STS12 STS13 STS14 STS15 STS16 STS-B Avg.
BERT 30.87 59.90 47.73 60.29 63.73 47.29 51.63
vanilla Transformer encoder 50.44 63.87 58.25 70.17 68.91 64.65 62.71
Self Attn 52.28 64.27 58.82 71.34 69.84 66.71 63.68
BERT-Enc Attn 51.30 69.02 58.71 71.23 73.46 66.02 65.09
BERT-fused encoder 53.55 69.19 60.29 72.54 73.26 68.28 66.19

Table 2: Spearman correlation coefficient ρ between cosine similarity of sentence embeddings and gold labels on
STS tasks from 2012 to 2016 and STS Benchmark test set. Self Attn means only using the output of Self Attn
modules in each layer of the BERT-fused encoder; BERT-ENC Attn represents only using the output of BERT-ENC
Attn modules in each layer of the BERT-fused encoder.

Encoder Distance Depth BShift TreeDepth TopConst
BERT 74.16 78.79 88.77 36.21 72.62
vanilla Transformer encoder 77.36 78.06 64.11 37.32 67.91
Self Attn 71.77 64.31 60.14 36.34 67.03
BERT-Enc Attn 71.73 74.35 85.47 37.50 72.19
BERT-fused encoder 71.85 72.34 84.31 38.72 71.46

Table 3: Results of syntactic probing tasks related to the word representations and sentence embeddings. Note
that we use the mean pooled word representations as the sentence embeddings for the last three tasks. The higher
Spearman correlation coefficient ρ for Distance and Depth tasks indicates the word representations encode richer
structural information; while the lower accuracy on Bshift, TreeDepth, and TopConst tasks indicates that the
sentence embeddings contain less syntactic information.

can indeed provide more syntactic information.558

Combining the Self Attn and BERT-Enc559

Attn modules, the BERT-fused encoder obtains a560

significantly higher accuracy than the vanilla Trans-561

former encoder on the BShift and TopConst tasks,562

proving that the BERT assists the model by pro-563

viding much more information about the syntax of564

sentences.565

This finding provides an explanation for the suc-566

cess of utilizing BIBERT (Xu et al., 2021). Ac-567

cording to the results of our experiment, BIBERT568

performs well on the syntactic tasks, getting 82.22,569

84.05, 89.96, 43.43, and 79.22 for each task. Com-570

pared to the significantly poor performance on the571

semantic tasks (39.56 on average), the syntax infor-572

mation provided by the pre-trained LMs plays an573

important role in boosting the translation quality.574

6 Conclusion575

Although pre-trained language models have been576

widely applied in various natural language process-577

ing tasks, it takes great efforts to introduce these578

models into neural machine translation model. This579

paper provides an analysis of the differences be-580

tween the spaces created by the vanilla Transformer581

encoder and the encoder integrated with BERT. We582

find that introducing BERT through BERT-encoder583

attention module will not make the characteristics584

of original space change a lot, which may be one of 585

the reasons for its success. Subsequent experiments 586

concern with the semantic and syntactic informa- 587

tion reveal that the outputs of BERT provides rich 588

syntactic information to boost the translation qual- 589

ity of the NMT model. 590
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dictionary. As for the WMT18 EN→ZH dataset,838

the merge operation is set as 32k.839

Translation pairs were batched together by ap-840

proximate sequence length. Each training batch841

contained a set of translation pairs containing ap-842

proximately 4k source tokens.843

A.2 Model Paramters844

We follow the setup of Transformer base model845

(Vaswani et al., 2017). More precisely, the num-846

ber of layers in the encoder and in the decoder847

is L = 6. We employ h = 4 attention heads848

for the IWSLT14 EN→DE dataset and h = 8849

for the WMT14 EN→DE and WMT18 EN→ZH850

datasets. The dimensionality of input and output is851

dmodel = 512, and the inner-layer of a feedforward852

networks has dimensionality dff = 2048.853

We set dropout rate as 0.1, 0.1 and 0.25854

for IWSLT14 EN→DE, WMT14 EN→DE, and855

WMT18 EN→ZH, respectively.856

A.3 Optimizer857

Adam optimizer (Kingma and Ba, 2015) is adopted858

with β1 = 0.9, β2 = 0.98. We vary the learning859

rate over the course of training according to the860

formula:861

lrstep =



lrinit +
step

warmup
∗ (lr − lrinit),

if step < warmup,

lr ∗
√
warmup
√
step

,

if step ≥ warmup.

862

We set warmup = 4000 and lrinit = 1 × 10−7863

in the all training procedure. we employ lr =864

5 × 10−4, lr = 7 × 10−4, and lr = 5 × 10−4 for865

each of the dataset.866

B Other Experiment Results867
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Figure 5: The SelfSim and IntraSim results of BERT,
vanilla Transformer encoder, and the BERT-fused en-
coder. Both of the vanilla Transformer encoder and
BERT-fused encoder are trained with WMT14 EN→DE
dataset. Note that layer 0 correspond to the embedding
layer.
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Figure 6: The SelfSim and IntraSim results of BERT,
vanilla Transformer encoder, and the BERT-fused en-
coder. Both of the vanilla Transformer encoder and
BERT-fused encoder are trained with WMT17 EN→ZH
dataset. Note that layer 0 correspond to the embedding
layer.
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Figure 7: CosSim (top) and EucDis (bottom) distributions of uniform-sampled word. Both of the vanilla Transformer
encoder and BERT-fused encoder are trained with WMT14 EN→DE dataset. From left to right is layer 0 to layer 6.
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Figure 8: CosSim (top) and EucDis (bottom) distributions of uniform-sampled word. Both of the vanilla Transformer
encoder and BERT-fused encoder are trained with WMT17 EN→ZH dataset. From left to right is layer 0 to layer 6.
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