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Abstract

Pre-trained language models have been widely
applied in various natural language processing
tasks. But when it comes to neural machine
translation, things are a little different. The dif-
ferences between the embedding spaces created
by BERT and NMT encoder may be one of the
main reasons for the difficulty of integrating
pre-trained LMs into NMT models. Previous
studies illustrate the best way of integration is
introducing the output of BERT into the en-
coder with some extra modules. Nevertheless,
it is still unrevealed whether these additional
modules will affect the embedding spaces cre-
ated by the NMT encoder or not and what kind
of information the NMT encoder takes advan-
tage of from the output of BERT. In this pa-
per, we start by comparing the changes of em-
bedding spaces after introducing BERT into
the NMT encoder trained on different machine
translation tasks. Although the changing trends
of these embedding spaces vary, introducing
BERT into the NMT encoder will not affect the
space of the last layer significantly. Subsequent
evaluation on several semantic and syntactic
tasks proves the NMT encoder is facilitated by
the rich syntactic information contained in the
output of BERT to boost the translation quality.

1 Introduction

Contextualized representations generated by pre-
trained language models (LMs), e.g. ELMo (Peters
etal., 2018), GPT-2 (Radford et al.), and BERT (De-
vlin et al., 2019), have proven their effectiveness
on an array of downstream tasks, which is largely
attributed to the richer information contained in the
representations. However, Clinchant et al. (2019)
and Zhu et al. (2020) demonstrated that simply
utilizing BERT as the encoder of neural machine
translation (NMT) model or initializing the NMT
encoder with BERT yields relatively poor transla-
tion results. The explanation about the difficulty of
utilizing pre-trained LMs in NMT is still an open
question. Vézquez et al. (2021) proposed that the

discrepancy between embedding spaces created by
BERT and vanilla NMT encoder may explain the
difficulty of applying BERT to the NMT model.

Recently, several effective methods of integrat-
ing BERT into the NMT encoder have been put
forward (Clinchant et al., 2019; Rothe et al., 2020;
Yang et al., 2020). Xu et al. (2021) utilized a tai-
lored language model trained with bilingual texts
to produce embeddings as the input to the Trans-
former (Vaswani et al., 2017). Despite its good
performance, a great amount of bilingual corpus is
not always available, not to mention that training
another bilingual language model is a cost of time
and money as well.

Therefore, we pay more attention to analyzing
the approaches integrating widely-used pre-trained
LMs, BERT (Devlin et al., 2019) for example, into
NMT model. Typically, these methods compute
a weighted sum based on the outputs of various
attention modules using the representations gener-
ated by BERT and each NMT encoder layer (Zhu
et al., 2020; Weng et al., 2020; Zhang et al., 2020,
2021). The success of these approaches makes
us curious about the changes occurring in encoder
embedding spaces after interacting with BERT. In
addition, it also attracts us to considering what kind
of information provided by BERT may boost the
translation quality, semantic or syntactic? The an-
swers to these questions may provide some hints on
better utilizing pre-trained LMs in the NMT task.

To this end, we take a complementary compari-
son between the embedding spaces created by the
vanilla Transformer encoders (Vaswani et al., 2017)
and the BERT-fused (Zhu et al., 2020) encoders
trained with IWSLT14 EN—DE dataset, WMT14
EN—DE dataset, and WMT17 EN—ZH dataset,
respectively. We contrast the random cosine sim-
ilarity (Vazquez et al., 2021), the SelfSim, and In-
traSim proposed by Ethayarajh (2019) between the
word representations generated by each of the en-
coders. Subsequently, we adopt the tasks proposed



by Conneau and Kiela (2018) and Hewitt and Man-
ning (2019) to examine the semantic and syntactic
information contained in these contextualized rep-
resentations.

Our experiments demonstrate that compared to
keeping the characteristics of BERT embedding
spaces (Véazquez et al., 2021), the additional BERT-
encoder attention module can ensure the encoder
keep its space characteristics, making it easier for
the decoder to converge after integrating BERT.
Besides, Introducing the output of BERT into the
NMT encoder can provide richer syntactic informa-
tion to boost the translation quality.

Our contribution can be summarized as follows:

* We analyze the differences of embedding
spaces between the vanilla Transformer en-
coder and the encoder integrated BERT, i.e.
BERT-fused encoder in this case. To the best
of our knowledge, this is the first effort to in-
vestigate the discrepancy between the spaces
of encoder before and after introducing pre-
trained LMs.

* We find that the NMT encoder can benefit a lot
from the syntactic information provided by the
BERT, which may result in the improvements
on the translation quality.

2 Related Work

2.1 Analysis of Contextual Representations

An increasing number of studies have been con-
ducted to analyze the information contained in the
contextual embeddings generated by pre-trained
LMs. These methods can be roughly divided into
two categories:

Probing Tasks. These approaches design simple
neuron networks as probes to predict some proper-
ties we care about (Shi et al., 2016; McCann et al.,
2017; Conneau and Kiela, 2018; Conneau et al.,
2018). Hewitt and Manning (2019) designed a
structural probe and find that BERT (Devlin et al.,
2019) can encode some structural information of
words, such as their depth in the dependency parse
trees, into word representations. Merchant et al.
(2020) not only utilized probing tasks but also
adopted the similarity analysis methods to explore
the effects of fine-tuning on the representations
generated by BERT.

Quantitatively Analysis. Ethayarajh (2019) pro-
posed two metrics, SelfSim and IntraSim, to com-
pare the word level differences between represen-

tations generated by ELMo (Peters et al., 2018),
GPT-2 (Radford et al.), and BERT (Devlin et al.,
2019). Voita et al. (2019a) utilized Canonical Cor-
relation Analysis (CCA) and mutual information to
contrast the contextualized representations trained
with various objectives in NMT and LM models.
Viazquez et al. (2021) compared the representations
spaces between NMT encoder and BERT by the
means of SelfSim and IntraSim as well.

Our work is inspired by the research of Etha-
yarajh (2019) and Vazquez et al. (2021). We an-
alyze the differences before and after integrating
BERT into the NMT encoder with an additional
module, attempting to find out how BERT affects
the characteristics of embedding spaces created by
the NMT encoder and what kind of information
provided by BERT boosts the translation perfor-
mance.

2.2 Pre-trained LMs in NMT

After BERT (Devlin et al., 2019) was proposed,
several simple methods of integrating BERT into
NMT models have been presented, including uti-
lizing the outputs of pre-trained LMs as the input
embeddings (Clinchant et al., 2019) or initializ-
ing parameters of the NMT encoder by pre-trained
LMs (Rothe et al., 2020).

Zhu et al. (2020) designed additional BERT-
encoder and BERT-decoder attention modules and
fused the representations from different attention
modules in each layer of the NMT model. Simi-
larly, APT framework utilized a layer-aware atten-
tion mechanism to fuse the output of each layer
in BERT dynamically (Weng et al., 2020). Zhang
et al. (2021) integrated the self attention and BERT-
encoder attention into a joint attention module,
proposing a three-phrase optimization strategy to
train the model.

Besides, some efforts have been made to make
use of different pre-trained LMs, such as mBERT
(Devlin et al., 2019), XLM-R (Conneau et al.,
2020), and GottBERT (Scheible et al., 2020), as
the embedding layer of the NMT model. Xu et al.
(2021) trained a tailored bilingual language model,
BIBERT, with 146GB English texts and 145GB
German texts, and achieve state-of-the-art transla-
tion performance.



3 Preliminary

3.1 Notations

Let & and Y be the source language domain and
target language domain respectively, which are the
sets of sentences corresponding to the languages.
For any sentence x € X' andy € ), lx and [y
represent the lengths of x and y. Let V indicate
the set of words: W = {w1, -+ ,w;, -+ ,wy}.
We denote the encoder and decoder of Trans-
former and BERT as Enc, Dec, and BERT respec-
tively, assuming the Enc consists of L layers, while
BERT contains Lpggrr layers. The output of the
{-th Enc layer is denoted by HL,E , which consists of
a sequence of vectors Hf = [hfl, hgz, - hfn},
where hfj € R . Analogously, the output of

the /-th BERT layer is written as Hf. It is worth
noting that HOE and HOB represent the output of
embedding layer in Enc and BERT, respectively.

Let Attn (Q, K, V) denote the attention model,
where Q, K,V € R!dmodel gre the query, key,
and value matrix, respectively. The computation of
attention module can be written as:

Attn (Q, K, V) =
QY.
softmax <(QW )\/C%{WK)T> \AVAS )

where Wq € Rmodet Xk W - € RbmoderXdk
and Wy, € RmodetXdv are the parameters to be
learned. Attn (Q,K,V) is implemented as a
multi-head attention model, whose details can be
referred to Vaswani et al. (2017).

Define FFN(-) as Vaswani et al. (2017) did:

FFN(h) = ReLU (hW; + by) W5 + by, (2)

where Wi, Wy € RmoderXdmodel and by, by €
Rmodel are trainable parameters.

We denote the cosine similarity between two
vectors h; and h; by cos (h;, h;) . The Euclidean
norm of vector h; is denoted by |/h;||o.

3.2 Transformer

Transformer model (Vaswani et al., 2017) is one of
the most effective models in a wide range of NLP
tasks. The overview of its structure is shown in
Figure 1.

In the /-th Enc layer, H€E is computed as fol-
lows:

R =LN (H{ | + Attn (Hf ,HY |, Hf ),
H/ = LN (R/ + FFN (R})).
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Figure 1: Overview of the structure of the vanilla Trans-
former.

where LN(+) is layer normalization. The compu-
tation of Attn(-) and FFN(-) follows Eqn.(1) and
Eqn.(2) respectively.

The computation of the output of /-th Dec layer,
Hf) , 1s shown below:

RED = LN(HED—I + Attn(HéD—l’ HfD—la HﬁD—l))a

3)
TP = LN(R? + Atm(RP, HY HY)), @
HP = LN(T? + FFN(T?)). (5)

3.3 BERT-fused encoder

Up to now, there are several methods of integrating
BERT into Transformer model. Among all of these
approaches, BERT-Enc Attn and BERT-Dec
Attn adopted by BERT-fused (Zhu et al., 2020)
and BERT-JAM (Zhang et al., 2021) can signifi-
cantly boost the translation quality of Transformer
model. We will briefly describe the structure of the
BERT-fused encoder, which is shown in Figure 2.
In the (-th layer in the BERT-fused encoder, HY
is computed as follows:
R} = LN(H | + yAttn(H/ |, Hf |, H ;)
+ (1 - ’VZ)Attn(HZE—lv HfBERTa HgBERT))v

HE = LN(RF + FFN(R))),

where v, = 0.5 in the BERT-fused model (Zhu
et al., 2020).
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Figure 2: Overview of the structure of the BERT-fused
encoder.

4 Methodology

In this section, we will introduce several metrics
to evaluate the isotropy and contextuality of the
embedding space. Besides, we take a brief intro-
duction to a number of tasks which are useful for
determining how much semantic information and
syntactic information contained in the word repre-
sentations and sentence embeddings.

4.1 Characteristics of Embedding Spaces
4.1.1 The Isotropy of Spaces

It is essential to take the characteristics of embed-
ding spaces into consideration before comparing
the similarity between word representations in dif-
ferent spaces. Suppose that all vectors are dis-
tributed in a narrow space, the cosine value of any
two word representations will naturally approach
1, but this does not guarantee that the two words
are similar to each other. Therefore, the concept
of isotropy is introduced: an embedding space is
described as isotropic if vectors in it are directional
uniformity. Otherwise, it is called an anisotropic
space.

In this paper, we estimate the level of isotropy of
the embedding space by the cosine similarity and
Eucliean distance between the representations of
uniformly randomly sampled words (Ethayarajh,
2019; Vazquez et al., 2021), denoted by CosSim
and EucDis. For any two words w;, w; € W, sup-
pose their corresponding word representations in
(-th layer are hfp 0s, and h’ E The computa-

£,pos;*
tions of CosSimy and EucDisy can be written as:

E
/K,posj)a

) E
EuCDng(’U)Z‘,'lUj) = thposi - hlé,posj ”2

CosSimy(w;, w;) = COS(hgposw h

If the average value of CosSim is concentrated
around 0, vectors in the space are almost orthogo-

nal to each other, indicating the space is more likely
to be isotropic. Otherwise, the space is anisotropic.
In addition, if the value of EucDis is relatively
small on average, the embedding space is probably
narrow.

4.1.2 The Contextuality of Spaces

Apart from the CosSim and EucDis, we also adopt
two contextuality metrics presented in Ethayarajh
(2019) and Vézquez et al. (2021).

SelfSim: The averaged cosine similarity be-
tween the same word in different sentences, namely
different contexts. If the average value of SelfSim
is relatively small, different contexts will make the
embeddings of the same word vary. In such a space,
the word representations are much more contextual.

IntraSim: The average cosine similarity be-
tween representations of words in a sentence and
the mean pooled sentence embedding. The In-
traSim reflects how context-specificity manifests in
the embedding space. If IntraSim(x) is high while
the SelfSim(w), Yw € x is low, it indicates that
the encoder tends to make the word representation
to be contextual by gathering the representations of
words in the same sentence together and keeping
the word representations in different contexts away
from each other.

It is worth noting that both of these two metrics
need to subtract the average value of CosSim of the
corresponding layer, ensuring the characteristics
are corrected for deviation (Vazquez et al., 2021).

4.2 Semantic Information

We adopt the Sentence Textual Similarity (STS)
tasks provided by SentEval' (Conneau and Kiela,
2018) to evaluate the information contained in the
sentence embeddings generated by different en-
coders. Note that we use the average of embed-
dings of words contained in the sentence as the
sentence embedding.

The STS task is first presented by Agirre et al.
(2012). Given a sentence pair {x,y}, its object
is to predict how similar the meanings of these
sentences are by giving a continuous-valued score
between 0 and 5.

4.3 Syntactic Information

We employ the structural probes proposed by He-
witt and Manning (2019) to evaluate the syntax
information encoded by the word representations.

"https://github.com/facebookresearch/SentEval



More specifically, we generate the dependency
parse tree of data in the SentEval (Agirre et al.,
2012, 2013, 2014, 2015, 2016) using stanza (Qi
et al., 2020). The probing tasks are as follows:

Distance. Predict the distance between any two
words in the dependency parse tree.

Depth. Predict the depth of each word in the
dependency parse tree.

We train a positive semi-determined matrix B €
R¥moder XTank for each task. We set rank = 64 in
the experiments. The Spearman correlation coeffi-
cient p is reported as the experiment result.

Besides, we adopt three tasks provided by Sen-
tEval (Conneau and Kiela, 2018) to evaluate the
syntactic information contained in the sentence em-
bedding:

BShift. Predict whether two consecutive tokens
within the sentence have been inverted.

TreeDepth. Predict the maximum depth of the
syntactic tree of the sentence. It can be viewed as
a simplified version of probing tasks proposed by
Hewitt and Manning (2019).

TopConst. Predict the top-level constituents of
constituency parse tree from 20 classes.

We train a Multi-Layer Perceptron classifier with
a single hidden layer containing 50 neurons based
on the sentence embeddings for each of the task
and report the accuracy as the final result.

4.4 Models

The models we adopted in the comparison exper-
iments are shown as follows”. In order to ensure
the universality of discrepancy between these en-
coders, we utilize three different datasets to train
the NMT models: IWSLT14 EN—DE dataset®,
WMT14 EN—DE dataset* and WMT17 EN—ZH
dataset’ respectively. The details of datasets, the
proprocessing methods, and training settings can
be referred to the Appendix A.

vanilla Transformer encoder: the encoder of
a traditional Transformer model. We train a Trans-
former model based on Fairseq®, a popular se-
quence modeling toolKkit.

BERT-fused encoder: the encoder of the BERT-
fused model. Note that we use the standard
decoder following Eqn.(3-5) to avoid introduc-

2We only compare two models because of there is no
published source code for other models
*https://workshop2014.iwslt.org/
*https://www.statmt.org/wmt14/translation-task.html
>https://www.statmt.org/WMT17/translation-task.html
®https://github.com/pytorch/fairseq

ing other new variables. This model is imple-
mented with Fairseq toolkit and trained along with
the bert-base-uncase’ provided by the Hug-
gingFace library (Wolf et al., 2019).

BERT. We also utilize the pretrained
bert-base-uncased model from the
HuggingFace library (Wolf et al., 2019) as an
auxiliary for subsequent analysis.

The BLEU scores of these two models on dif-
ferent test sets® are shown in Table 1, which are
consistent with previous studies.

Models IWSLT14 WMTI14 WMTI17
EN—DE EN—DE EN—ZH

Transformer 28.19 28.88 33.11

BERT-fused* 30.10 30.07 34.39

Table 1: BLEU scores trained with different datasets.
Note that we change the decoder of BERT-fused model
to the standard Transformer decoder.

According to the results shown in Table 1,
the NMT model integrated with BERT obtains
a significant boost on translation quality on the
smaller size dataset. Therefore, we mainly present
the comparison between models trained with
IWSLT14 EN—DE dataset in the following sec-
tions. The corresponding experiment results of
models trained with WMT14 EN—DE dataset and
WMT17 EN—ZH dataset are displayed in Ap-
pendix B.

5 Characteristics of Embedding Spaces

Following the research of Ethayarajh (2019) and
Vazquez et al. (2021), we analyze the embeddings
spaces based on the data gathered from the Se-
mEval Semantic Textual Similarity tasks from 2012
to 2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016).

5.1 The Isotropy of Spaces

We first take a comparison of CosSim distribution,
which is the indicator of the isotropy of spaces. The
results are shown in Figure 3.

According to Figure 3a, the mean value of the
CosSim generated by vanilla Transformer encoder
increases slightly towards higher layers, with the

"https://huggingface.co/bert-base-uncased/tree/main

8We use the concatenation of IWSLT14.TED.dev2010,
IWSLT14.TEDX.dev2012, IWSLT14.TED.tst2010,
IWSLT14.TED.tst2011, and IWSLT14.TED.tst2012 as
the test set for IWSLT14 EN—DE; newstest2014 and
newstest2017 are used as the test set for WMT14 EN—DE
and WMT17 EN—ZH respectively.



0.8

0.6

0.2\ N
0.0 > S i

024"

60
501N

40

20/

10

(a) CosSim Distribution

1
Vanilla Transformer Encoder

BERT-fused Encoder

Vanilla Transformer Encoder

BERT-fused Encoder

L4 L5 L6

(b) EucDis Distribution

Figure 3: CosSim (top) and EucDis (bottom) distributions of uniform-sampled word. Both of the vanilla Transformer
encoder and BERT-fused encoder are trained with IWSLT14 EN—DE dataset. From left to right is layer O to layer

6.

exception of a drop at the last layer (L6). On the
other hand, the CosSim of embeddings produced
by BERT-fused encoder concentrates around 0.5 at
the embedding layer (LO) and suddenly declines to
0.0 at the first encoder layer (L1), indicating the
level of isotropy surges. From the first encoder
layer to the last encoder layer (L6), this embedding
space maintains an isotropic state except a minor
fluctuation. It is worth mentioning that these two
embedding spaces achieve isotropic stage in the L6
in spite of the different variation trends in previous
layers.

As for the EucDis distribution displayed in Fig-
ure 3b, the overall changing tendency of these two
embedding spaces are the same. The falling of
EucDis value indicates the beginning wide space
gradually shrinks to a relatively narrow one. Nev-
ertheless, the space of vanilla Transformer encoder
undergoes contractions twice, at the first encoder
layer (L.1) and the last encoder layer (L6) respec-
tively; while the space created by BERT-fused en-
coder only contracts once at the last layer.

Combined the tendency of CosSim and EucDis,
the NMT encoder tends to make the embeddings
distributed randomly and gradually shrink the size
of the effective space. The changing tendency of
the size of space provides an explanation from an-
other perspective for the feasibility of pruning the
Transformer model (Voita et al., 2019b).

5.2 The Contextuality of Spaces

Afterwards, we compare the values of SelfSim and
IntraSim between the vanilla Transformer encoder
and BERT-fused encoder layer by layer. According

to the Figure 4, these two encoder display remark-
ably different trends.

1.0

SelfSim BERT

SelfSim Vanilla Transformer Encoder

SelfSim BERT-fused Encoder

o8 A-- IntraSim BERT

~~A-- IntraSim Vanilla Transformer Encoder
IntraSim BERT-fused Encoder

0.6

04 *
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Figure 4: The SelfSim and IntraSim results of BERT,
vanilla Transformer encoder, and the BERT-fused en-
coder. Note that layer O correspond to the embedding
layer.

The vanilla Transformer encoder gets a relatively
high SelfSim score in the layer 0O, illustrating the em-
bedding layer produces a less contextual representa-
tions for each word. The value of SelfSim declines
constantly until the penultimate layer and increases
suddenly in the last layer. This tendency indicates
that the vanilla Transformer encoder learns to add
more contextual information into word representa-
tions as the layer increases. However, vectors cor-
responding to the same word become much more
similar in the last layer. It seems that the decoder
may not need the word representation to contain
too much context information.

On the contrary, the value of SelfSim of BERT-
fused encoder rises rapidly at the first encoder layer
and fluctuate slightly in the following layers. This



tendency demonstrates the representations of the
same words are becoming more and more similar
to each other.

IntraSim value of the vanilla Transformer en-
coder raises slightly and then declines. Taking the
declining of the value of SelfSim into consideration,
the model generates contextual representations by
gathering the words in the same sentence together.
In the last layer, the value of SelfSim is high while
the IntraSim value is relatively low, demonstrating
that representations of the same word gather to-
gether while the representations of different words
are pushed away.

In addition, the IntraSim value of the BERT-
fused encoder increases gradually, revealing the
words belong to the same sentence become sim-
ilar as well. Considering its upward trend is not
as steep as SelfSim, the information related to the
word itself still dominates the change of word rep-
resentation.

Based on the tendency shown in the Figure 4,
we summarize two interesting findings:

* SelfSim and IntraSim scores of these two en-
coders are significantly close to each other in
the last layer.

 Rather then imitating the characteristics of em-
bedding space created by BERT, the represen-
tations generated by the BERT-fused encoder
are still less contextual.

We hypothesize that the characteristics of en-
coder embedding space is shaped by the decoder at
the same time. This less contextual representations
maybe exactly what the decoder needs when execut-
ing decoding operations. Besides, considering the
parameters introduced by the BERT-Enc Attn
modules only occupy a small part of the number
of parameters compared to the traditional Trans-
former model (14.4% to be specific), the encoder
spaces may not change a lot.

Nevertheless, it is natural to consider how BERT
works in the NMT encoder under this assumption.
We attempt to answer this question by evaluating
the outputs of encoders with different tasks in Sec-
tion 5.3.

5.3 Semantic and Syntactic Tasks

In order to better handle what kind of informa-
tion are utilized by the BERT-fused encoder, we
not only present the experiments results on the

vanilla Transformer encoder and BERT-fused en-
coder, but also check the outputs of Self Attn
and BERT-Enc Attn module in the BERT-fused
encoder, respectively. More specifically, Self Attn
denotes the output of the BERT-fused encoder
when 'yf = 1.0, V¢ € L; BERT-Enc Attn de-
notes the output of the BERT-fused encoder when
vF =0.0, V¢ € L.

5.3.1 Semantic Information

The experiment results of tasks related to the se-
mantic information are shown in Table 2. The most
notable point is that the BERT-fused model obtains
a remarkably higher Spearman correlation coeffi-
cient than the mean pooled BERT embeddings with
a margin of 14.56 after introducing the BERT-Enc
Attn module.

In addition, even the Self Attn outperforms the
vanilla Transformer encoder. Because of the exis-
tence of additional module, the Self Attn can
focus on the semantic information. The BERT-Enc
Attn performs better compared to Self Artn. We
hypothesize that BERT-Enc Attn module focus
on parsing the semantics of sentences from the con-
textual representations generated by BERT.

Besides, the Spearman p of BERT-fused model
is higher than the results of utilizing Self Attn
module and BERT-Enc Attn module alone. It
seems that these two modules have their own em-
phasis, and the BERT-fused encoder finds a way to
balance them.

5.3.2 Syntactic Information

As Table 3 indicates, BERT encodes rich syntax
information in the word representations. There-
fore, it achieves good results in probing tasks re-
lated to both word representations and sentence
embeddings, especially on predicting word order
and top-level constituents. On the contrary, the
vanilla Transformer encoder performs poorly on
these two tasks. However, it performs well on the
tasks related to word representations, indicating
that this encoder pays more attention to encoding
structural information into word representations
but neglects the overall structure of sentences.
Among all of these models, Self Attn performs
worst on all of the tasks. Compared to its good per-
formance on the semantic tasks, we can conclude
that the Self Attn module prefers to focusing
on extracting semantics from representations. Fur-
thermore, the BERT-Enc Attn obtains a comparable
score to the BERT, illustrating that outputs of BERT



Encoder STS12 STS13 STS14 STS15 STS16 STS-B  Avg.

BERT 30.87 59.90 47.73 60.29 63.73 47.29 51.63
vanilla Transformer encoder | 50.44  63.87 58.25 70.17 6891 64.65 62.71
Self Attn 52.28 64.27 58.82 71.34 69.84 66.71 63.68
BERT-Enc Attn 51.30 69.02 58.71 71.23 73.46 66.02 65.09
BERT-fused encoder 53.55 69.19 60.29 7254 73.26 6828 66.19

Table 2: Spearman correlation coefficient p between cosine similarity of sentence embeddings and gold labels on
STS tasks from 2012 to 2016 and STS Benchmark test set. Self Attn means only using the output of Self Attn
modules in each layer of the BERT-fused encoder; BERT-ENC Attn represents only using the output of BERT-ENC
Attn modules in each layer of the BERT-fused encoder.

Encoder Distance Depth BShift TreeDepth TopConst
BERT 74.16  78.79 88.77 36.21 72.62
vanilla Transformer encoder | 77.36 78.06 64.11 37.32 67.91
Self Attn 71.77 64.31 60.14 36.34 67.03
BERT-Enc Attn 71.73 7435  85.47 37.50 72.19
BERT-fused encoder 71.85 7234 84.31 38.72 71.46

Table 3: Results of syntactic probing tasks related to the word representations and sentence embeddings. Note
that we use the mean pooled word representations as the sentence embeddings for the last three tasks. The higher
Spearman correlation coefficient p for Distance and Depth tasks indicates the word representations encode richer
structural information; while the lower accuracy on Bshift, TreeDepth, and TopConst tasks indicates that the

sentence embeddings contain less syntactic information.

can indeed provide more syntactic information.

Combining the Self Attn and BERT-Enc
Attn modules, the BERT-fused encoder obtains a
significantly higher accuracy than the vanilla Trans-
former encoder on the BShift and TopConst tasks,
proving that the BERT assists the model by pro-
viding much more information about the syntax of
sentences.

This finding provides an explanation for the suc-
cess of utilizing BIBERT (Xu et al., 2021). Ac-
cording to the results of our experiment, BIBERT
performs well on the syntactic tasks, getting 82.22,
84.05, 89.96, 43.43, and 79.22 for each task. Com-
pared to the significantly poor performance on the
semantic tasks (39.56 on average), the syntax infor-
mation provided by the pre-trained LMs plays an
important role in boosting the translation quality.

6 Conclusion

Although pre-trained language models have been
widely applied in various natural language process-
ing tasks, it takes great efforts to introduce these
models into neural machine translation model. This
paper provides an analysis of the differences be-
tween the spaces created by the vanilla Transformer
encoder and the encoder integrated with BERT. We
find that introducing BERT through BERT-encoder
attention module will not make the characteristics

of original space change a lot, which may be one of
the reasons for its success. Subsequent experiments
concern with the semantic and syntactic informa-
tion reveal that the outputs of BERT provides rich
syntactic information to boost the translation qual-
ity of the NMT model.
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A Experimental Setup

A.1 Data Preprocessing

Sentences in all datasets were encoded using byte-
pair encoding (BPE) (Sennrich et al., 2016) with
subword-nmt®. FOr the IWSLT14 EN—DE and
WMT14 EN—DE datasets, we adopted 10k and
40k merge operations respectively to build a shared

®https://github.com/rsennrich/subword-nmt
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dictionary. As for the WMT18 EN—ZH dataset,
the merge operation is set as 32k.

Translation pairs were batched together by ap-
proximate sequence length. Each training batch
contained a set of translation pairs containing ap-
proximately 4% source tokens.

A.2 Model Paramters

We follow the setup of Transformer base model
(Vaswani et al., 2017). More precisely, the num-
ber of layers in the encoder and in the decoder
is L = 6. We employ h = 4 attention heads
for the IWSLT14 EN—DE dataset and h = 8
for the WMT14 EN—DE and WMT18 EN—ZH
datasets. The dimensionality of input and output is
dimoder = 512, and the inner-layer of a feedforward
networks has dimensionality d s = 2048.

We set dropout rate as 0.1, 0.1 and 0.25
for IWSLT14 EN—DE, WMT14 EN—DE, and
WMT18 EN—ZH, respectively.

A.3 Optimizer

Adam optimizer (Kingma and Ba, 2015) is adopted
with 81 = 0.9, B2 = 0.98. We vary the learning
rate over the course of training according to the
formula:

step

Irinit + * (lT‘ — lT‘imt),

warmup

if step < warmup,

Jwarmup
step

if step > warmup.

lrstep =
Ir =

We set warmup = 4000 and Irjp;; = 1 x 1077
in the all training procedure. we employ Ir
5x 1074, Ir = 7x 1074, and Ir = 5 x 10~* for
each of the dataset.

B Other Experiment Results
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Figure 5: The SelfSim and IntraSim results of BERT,
vanilla Transformer encoder, and the BERT-fused en-
coder. Both of the vanilla Transformer encoder and
BERT-fused encoder are trained with WMT14 EN—DE
dataset. Note that layer O correspond to the embedding
layer.
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Figure 6: The SelfSim and IntraSim results of BERT,
vanilla Transformer encoder, and the BERT-fused en-
coder. Both of the vanilla Transformer encoder and
BERT-fused encoder are trained with WMT17 EN—ZH
dataset. Note that layer O correspond to the embedding
layer.
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Figure 7: CosSim (top) and EucDis (bottom) distributions of uniform-sampled word. Both of the vanilla Transformer
encoder and BERT-fused encoder are trained with WMT14 EN—DE dataset. From left to right is layer O to layer 6.
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Figure 8: CosSim (top) and EucDis (bottom) distributions of uniform-sampled word. Both of the vanilla Transformer
encoder and BERT-fused encoder are trained with WMT17 EN—ZH dataset. From left to right is layer O to layer 6.

12



