

000 TERM2NOTE: SYNTHESISING DIFFERENTIALLY PRI- 001 002 VATE CLINICAL NOTES FROM MEDICAL TERMS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Training data is fundamental to the success of modern machine learning models,
011 yet in high-stakes domains such as healthcare, the use of real-world training data
012 is severely constrained by concerns over privacy leakage. A promising solution to
013 this challenge is the use of differentially private (DP) synthetic data, which offers
014 formal privacy guarantees while maintaining data utility. However, striking the
015 right balance between privacy protection and utility remains challenging in clin-
016 ical note synthesis, given its domain specificity and the complexity of long-form
017 text generation. In this paper, we present **Term2Note**, a methodology to synthe-
018 sise full-length clinical notes under strong DP constraints. By structurally separat-
019 ing content and form, Term2Note generates section-wise note content conditioned
020 on medical terms, with terms and notes privatised under separate DP constraints.
021 A DP quality maximiser further enhances synthetic notes by selecting high-quality
022 outputs. Experimental results show that Term2Note produces synthetic notes with
023 statistical properties closely aligned with real clinical notes, demonstrating strong
024 fidelity. In addition, multi-label classification models trained on these synthetic
025 notes perform comparably to those trained on real data, confirming their high util-
026 ity. Compared to existing DP text generation baselines, Term2Note achieves sub-
027 stantial improvements in both fidelity and utility, while avoiding reliance on label
028 distribution assumptions, suggesting its potential as a viable privacy-preserving
029 alternative to using sensitive clinical notes.

030 1 INTRODUCTION

031 The scaling law of neural language models (Kaplan et al., 2020) suggests that model performance
032 improves substantially with increased dataset size, i.e., larger training corpora generally lead to lower
033 test loss. As large language models (LLMs) continue to scale in size, with models such as Llama
034 3 (Meta, 2024), Gemma 3 (Google, 2025), and Qwen3 (Yang et al., 2025) ranging from 0.6B to
035 over 405B parameters, the demand for large-scale, high-quality training data has risen accordingly.
036 To meet this demand, synthetic data generation using LLMs has emerged as a promising direction.
037 Instruction-following synthetic datasets (Schick & Schütze, 2021; Taori et al., 2023; Li et al., 2025b)
038 have demonstrated impressive effectiveness for model pretraining and fine-tuning. This is especially
039 relevant for high-stakes domains such as healthcare (Li et al., 2025a), where real data is often siloed,
040 heavily regulated, and difficult to share (Schlegel et al., 2025). Although large amounts of clinical
041 data exist within healthcare institutions, access to these datasets remains extremely limited due to
042 their sensitive nature and the strict privacy regulations surrounding them. A practical and privacy-
043 conscious solution is to share synthetic versions of sensitive clinical data instead of the raw data
044 itself. However, to make such synthetic sharing viable, formal privacy guarantees are essential.

045 Differential privacy (DP) provides a principled framework for this purpose (Alzoubi & Mishra,
046 2025). By bounding the influence of any individual record on the synthesised dataset, DP offers
047 quantifiable privacy guarantees. Prior work on DP-based text generation has focused mainly on
048 short-form texts in low-risk domains such as reviews (Yue et al., 2023; Kurakin et al., 2023; Mattern
049 et al., 2022; Flemings & Annabaram, 2024). In biomedical settings, efforts have been restricted to
050 synthesising (public) PubMed abstracts (Xie et al., 2024) and relatively short clinical passages (Aziz
051 et al., 2022; Ramesh et al., 2024), with no prior work addressing the more complex task of generating
052 full-length clinical notes under DP constraints. Synthesising clinical notes with DP presents two
053 key challenges. First, *generation complexity* (Kweon et al., 2024a; Weetman et al., 2021): clinical

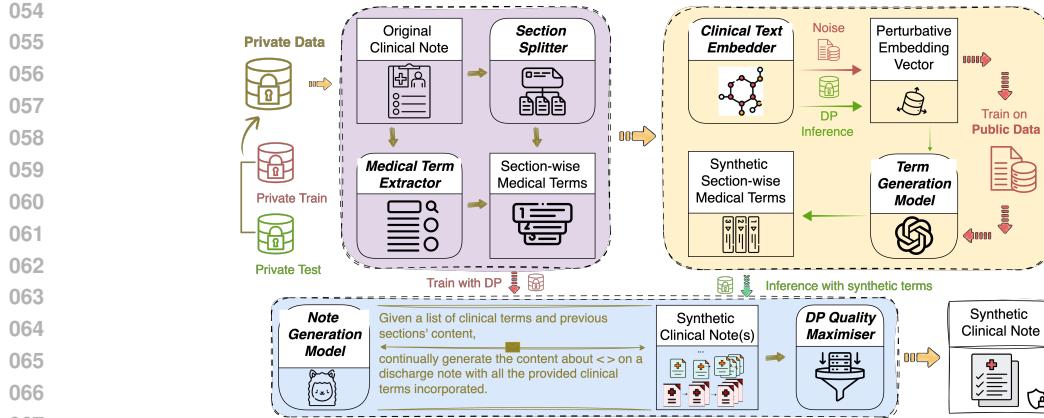


Figure 1: Overview of **Term2Note**. An original clinical note is split into sections and associated medical terms, which are embedded and optionally privatised via DP perturbation. A term generation model produces synthetic terms from these embeddings, and a DP-trained note generation model synthesises section-wise notes conditioned on them. A DP quality maximiser then selects the final synthetic note. [Appendix K](#) illustrates the whole process with a concrete example.

notes are long and exhibit diverse structures and free-form content, making it more difficult for generative models to maintain coherence and quality, particularly under privacy constraints. Second, *domain specificity* (Adnan et al., 2010): clinical notes typically contain extensive domain-specific terminologies, which require expert knowledge to understand and reproduce accurately.

In this paper, we tackle this underexplored and challenging task by proposing Term2Note, a novel methodology for DP synthetic clinical note generation. As illustrated in Figure 1, Term2Note addresses the challenge of long-form generation by leveraging domain-specific document structures to decompose the task into smaller, section-wise subtasks. To handle domain specificity, it conditions generation not on generic metadata (e.g., class labels or diagnosis codes such as *Enterocolitis due to Clostridium difficile*), but on salient clinical terms (e.g., *diarrhea*, *Clostridium difficile colitis*, *Vancomycin*), which are subjected to an additional layer of DP protection. This term-based conditioning strategy allows the model to generate text that is both clinically meaningful and structurally coherent, while also enabling more fine-grained privacy control. Our experimental results show that Term2Note: (1) produces synthetic notes with high structural and semantic fidelity to real clinical data; (2) enables strong utility in the downstream task, such as ICD code prediction; (3) satisfies formal DP guarantees that make it suitable for safe data sharing. Moreover, Term2Note consistently outperforms baseline methods across all evaluation metrics, often by a large margin. In summary, Term2Note offers a promising solution for privacy-preserved clinical notes sharing.

2 BACKGROUND & RELATED WORK

Definition 1. (Dwork et al., 2006) A randomised algorithm $\mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \rightarrow \mathcal{R}$ is said to be (ϵ, δ) -differentially private (DP), if, for any two neighboring datasets D and D' differing in one single instance, and for all subsets S of the output space of \mathcal{M} , it has $\mathbb{P}[\mathcal{M}(D) \in S] \leq e^\epsilon \mathbb{P}[\mathcal{M}(D') \in S] + \delta$.

The definition implies the probability distributions induced by \mathcal{M} on neighboring datasets must be close, with their likelihood ratios bounded by a multiplicative factor of e^ϵ and an additive slack of δ . Smaller ϵ values indicate stronger privacy, while δ denotes the (typically negligible) probability of a privacy breach exceeding the e^ϵ bound.

Theorem 1. (Post-Processing) (Dwork & Roth, 2014) Let $\mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \rightarrow \mathcal{R}$ be a randomised algorithm that is (ϵ, δ) -DP. Let $f : \mathcal{R} \rightarrow \mathcal{R}'$ be an arbitrary randomised function. Then $f \circ \mathcal{M} : \mathbb{N}^{|\mathcal{X}|} \rightarrow \mathcal{R}'$ is also (ϵ, δ) -DP.

Theorem 2. (Parallel Composition) (McSherry, 2009) Let dataset $D = D_1 \cup \dots \cup D_k$, and $D_i \cap D_j = \emptyset$ for $i \neq j$. Let $\mathcal{M}_i : \mathbb{N}^{|\mathcal{X}_i|} \rightarrow \mathcal{R}_i$ be a randomised algorithm that is (ϵ_i, δ_i) -DP, for $i \in [k]$. Then $\mathcal{M}(D) = (\mathcal{M}_1(D_1), \dots, \mathcal{M}_k(D_k))$ is $(\max_i \epsilon_i, \max_i \delta_i)$ -DP.

108 The post-processing property ensures that once a randomised algorithm \mathcal{M} satisfies (ϵ, δ) -DP, any
 109 deterministic or randomised function applied to its output cannot weaken its privacy guarantee.
 110 Thus, a generative model trained under DP retains its privacy during downstream use, e.g., generating
 111 synthetic data, applying further transformations, or training downstream models. The parallel
 112 composition property states that applying DP mechanisms to disjoint data subsets yields an overall
 113 privacy loss bounded by the maximum individual (ϵ, δ) values—a key feature in our method, where
 114 clinical terms and notes can be privatised independently.

115 **DP in Deep Learning** can be achieved by injecting random noise into the input data, where the
 116 noise is typically sampled from a pre-determined distribution, such as the Gaussian distribution. In
 117 the context of deep learning, the DP-SGD algorithm (Abadi et al., 2016) introduces a principled
 118 way to achieve this by clipping per-sample gradients and adding noise at each optimisation step.
 119 This approach ensures that the influence of any single training example on the model’s parameters
 120 remains bounded, thereby enforcing DP guarantees throughout training. Some subsequent research
 121 (Bu et al., 2023; Yousefpour et al., 2021; Lee & Kifer, 2020) has focused on improving the com-
 122 putational efficiency of DP-SGD, aiming to reduce the time and memory overhead associated with
 123 per-example gradient computation. Unless otherwise specified, we adopt the FastDP algorithm (Bu
 124 et al., 2023) to fully fine-tune the model under DP constraints throughout this paper.

125 **Synthetic text generation** has progressed rapidly with the rise of LLMs, especially through
 126 instruction-following datasets that enhance downstream performance (Taori et al., 2023; Peng et al.,
 127 2023; Schick & Schütze, 2021). Generating synthetic clinical text, however, is substantially more
 128 challenging due to the domain’s complexity, reliance on expert knowledge, and lack of easily tem-
 129 plated instructions. Prior attempts have often produced datasets with limited downstream utility (Li
 130 et al., 2023a; Schlegel et al., 2023). Recent work has sought to improve realism by prompting LLMs
 131 with control code (e.g., ICD codes) (Falis et al., 2024) or transforming biomedical abstracts (e.g.,
 132 PubMed content) into clinical-style text (Kweon et al., 2024b). While promising, these methods do
 133 not address privacy, a central concern in clinical settings. A straightforward strategy is de-identifying
 134 private information and prompting LLMs to fill in the gaps (Sarkar et al., 2025), but a more prin-
 135 cipled approach is to fine-tune or instruction-tune generative models with DP for formal protection
 136 (Aziz et al., 2022; Ramesh et al., 2024; Baumel et al., 2024). However, prior studies operate on
 137 relatively short clinical texts, either naturally brief or deliberately truncated, making generation con-
 138 siderably easier. In contrast, DP-constrained generation of full-length clinical notes, as addressed in
 139 this paper, is more challenging due to their length, unstructured format, and high variability.

140 3 METHODOLOGY

142 3.1 PROBLEM STATEMENT

144 Given a private dataset D^{src} consisting of clinical notes, our goal is to develop a mechanism \mathcal{M} that
 145 satisfies (ϵ, δ) -DP and produces a synthetic dataset D^{syn} as its output. Let $X^{\text{src}} \in D^{\text{src}}$ denote an
 146 original clinical note and $X^{\text{syn}} \in D^{\text{syn}}$ its corresponding synthetic version. To support the develop-
 147 ment and evaluation of the mechanism, we partition the private dataset into a training set $D_{\text{train}}^{\text{src}}$ and
 148 a test set $D_{\text{test}}^{\text{src}}$. The training set is used to develop \mathcal{M} , while the test set remains completely unseen
 149 by \mathcal{M} to provide an unbiased evaluation. Additionally, we assume access to a public dataset of clin-
 150 ical terms, denoted as D_{public} , which can be automatically derived from publicly available medical
 151 resources and therefore used freely without privacy constraints.

152 We introduce **Term2Note**, a section-wise DP generation framework for clinical notes. An overview
 153 is illustrated in Figure 1, with the detailed procedure in Algorithm 1. In the following, we first
 154 elaborate on Term2Note alongside the algorithm, and then present the implementation details.

156 3.2 FORMAT AND TERM IDENTIFICATION

158 Since our framework synthesises clinical notes via section-wise generation conditioned on medical
 159 terms, we first standardise the structure of the notes and identify salient clinical terms. Let SECSPLIT
 160 denote an automatic section segmentation module. Given an original clinical note X^{src} , SECSPLIT
 161 outputs a list of m segmented sections: $[\text{SEC}_1^{\text{src}}, \dots, \text{SEC}_m^{\text{src}}] = \text{SECSPLIT}(X^{\text{src}})$, where $\text{SEC}_i^{\text{src}} =$
 162 “” if the i -th section is absent. Next, we apply an automatic term extraction module, denoted as

162 **Algorithm 1** Term2Note

163 **Input:** Private note X^{src} , public term lists D_{public} , privacy parameters for term generation (ϵ_t, δ_t)
 164 and note generation (ϵ_n, δ_n) , #sections m , instruction I , noise variance σ_{emb} , #candidates k

165 **Output:** Synthetic note X^{syn} with (ϵ, δ) -DP guarantee

166 1: $\text{SEC}_{1:m}^{\text{src}} \leftarrow \text{SEC_SPLIT}(X^{\text{src}})$ **// 3.2 Format and Term Identification**

167 2: $T_{1:m}^{\text{src}} \leftarrow \text{TERMEXT}(\text{SEC}_{1:m}^{\text{src}})$ **// 3.3 Clinical Terms Generation**

168 3: $E_{1:m}^{\text{src}}, E_{\text{public}} \leftarrow \text{EMB}(T_{1:m}^{\text{src}}), \text{EMB}(D_{\text{public}})$ **// 3.3 Clinical Terms Generation**

169 4: **if** train **then**

170 5: $\theta_t, \theta_p \leftarrow \mathcal{L}(\text{TERMGEN}_{\theta_t}(\text{PROJ}_{\theta_p}(E_{\text{public}} + \mathcal{N}(0, \sigma_{\text{emb}}))), D_{\text{public}})$ **// Train on D_{public}**

171 6: **else**

172 7: $T_{1:m}^{\text{syn}} \sim \text{TERMGEN}_{\theta_t}(\text{PROJ}_{\theta_p}(\text{DPRP}^*(E_{1:m}^{\text{src}}, \frac{\epsilon_t}{m}, \frac{\delta_t}{m})))$ **// Infer for X^{src}**

173 8: **end if**

174 9: **if** train **then**

175 10: $\theta_n \leftarrow \text{FastDP}(\mathcal{L}(\text{NOTEGEN}_{\theta_n}(I, \text{SEC}_{<i}^{\text{src}}, T_i^{\text{src}}), X^{\text{src}}), \epsilon_n, \delta_n)$ **// 3.4 Clinical Note Generation**

176 11: **end if**

177 12: $\text{SEC}_j^{\text{syn}}[i] \sim \text{NOTEGEN}_{\theta_n}(I, \text{SEC}_{<j}^{\text{syn}}[i], T_j^{\text{src/syn}})$ **for** $i = 1, \dots, k; j = 1, \dots, m$

178 13: $X^{\text{syn}} \leftarrow \arg \min_{i \in [k]} \text{PPL}(\text{SEC}_{1:m}^{\text{syn}}[i])$ **// 3.5 DP Quality Maximiser**

179 14: **return** X^{syn}

180

181 TERMEXT, to each section to identify clinically salient terms, resulting in a list of section-specific
 182 medical terms: $[T_1^{\text{src}}, \dots, T_m^{\text{src}}] = [\text{TERMEXT}(\text{SEC}_1^{\text{src}}), \dots, \text{TERMEXT}(\text{SEC}_m^{\text{src}})]$.

183

184 3.3 CLINICAL TERMS GENERATION

185

186 Clinical terms from private notes may still contain sensitive information. For example, unique com-
 187 binations of diagnoses and procedures could re-identify patients. To mitigate this, we introduce an
 188 optional DP step for term generation. We formulate it as a reconstruction task, fine-tuning a gen-
 189 erative model on the public term dataset D_{public} to recover term lists from embeddings, and then
 190 applying it to private data under DP constraints. Specifically, any given (section-wise) term list is
 191 first embedded using a clinical text embedder, denoted EMB. A projection layer PROJ, parameterised
 192 by θ_p , maps the embeddings to the hidden dimensionality required by the generative model TER-
 193 MGEN, parameterised by θ_t . The model then reconstructs the original term list from the projected
 194 embeddings.

195 To protect privacy [when applying on private data](#), we adapt the DPRP schema (Gondara & Wang,
 196 2020), a model-agnostic DP mechanism originally proposed for tabular data, to term embeddings
 197 derived from private notes, denoted as DPRP*. The procedure perturbs private embeddings in
 198 four steps: (1) add dimension-wise random noise to input embeddings; (2) compute the covariance
 199 matrix of the input embeddings and add random noise; (3) perform singular value decomposi-
 200 tion (SVD) on the noisy covariance matrix; (4) reconstruct the inputs from the noisy embeddings and
 201 the right singular vectors. The pseudocode of DPRP* is provided in Appendix B. To minimise the
 202 distribution difference between embeddings used in training and those perturbed during inference,
 203 we additionally add Gaussian noise to the embeddings during training. Formally, the process is
 204 defined as follows:

$$E' = \begin{cases} \text{EMB}(D_{\text{public}}) + \mathcal{N}(0, \sigma_{\text{emb}}), & \text{if training,} \\ \text{DPRP}^*(\text{EMB}(T^{\text{src}}), \frac{\epsilon_t}{m}, \frac{\sigma_t}{m}), & \text{otherwise.} \end{cases} \quad (1)$$

$$T^{\text{syn}} \sim \text{TERMGEN}_{\theta_t}(\text{PROJ}_{\theta_p}(E')) \quad (2)$$

205 Here, ϵ_t and σ_t denote the privacy parameters of DPRP*, and m is the number of sections in a
 206 single note. Since E' is computed at the section level, the overall privacy cost for an entire note
 207 accumulates across sections. To account for this, we distribute the privacy budget evenly by scaling
 208 the cost for each section to $\frac{1}{m}$ of the total budget.

209

210 3.4 CLINICAL NOTE GENERATION

211 We define section-wise clinical note generation as a conditional text generation task. Given the
 212 task instruction I , the content of the previous (generated) sections $[\text{SEC}_1, \dots, \text{SEC}_{i-1}]$, and a list

216 of clinical terms T_i for the current section, a generative model NOTEGEN, parameterised by θ_n , is
 217 trained to produce the i -th section of the note under (ϵ_n, δ_n) -DP. During inference, each section is
 218 sampled sequentially as:

$$219 \quad 220 \quad \text{SEC}_i^{\text{syn}} \sim \text{NOTEGEN}_{\theta_n}(I, [\text{SEC}_1^{\text{syn}}, \dots, \text{SEC}_{i-1}^{\text{syn}}], T_i) \quad (3)$$

221 Here, T_i can be the original extracted terms T_i^{src} or the synthetic privatised terms T_i^{syn} , depending
 222 on the privacy configuration. With the section group named provided, the instruction I is defined as
 223 shown in Figure 1. Finally, a synthetic full note is obtained by concatenating the generated sections:
 224 $X^{\text{syn}} = [\text{SEC}_1^{\text{syn}}, \dots, \text{SEC}_m^{\text{syn}}]$.
 225

226 3.5 DP QUALITY MAXIMISER

227 To improve the quality of the synthetic data, we introduce a quality maximisation strategy during
 228 inference by leveraging the generative capabilities of LLMs. Specifically, instead of generating
 229 a single synthetic note, we [perform](#) preference sampling on k candidate notes for X^{src} , denoted
 230 $X^{\text{syn}}[1 : k]$. Notably, this sampling procedure preserves the DP guarantee due to the post-processing
 231 property of DP. To select the most fluent and coherent output among the candidates, we use per-
 232 perplexity as the preference model. Perplexity reflects the likelihood of a sequence under an LLM,
 233 computed as the exponentiated average negative log-likelihood of the tokens. Lower perplexity in-
 234 dicates higher linguistic plausibility. To avoid bias from the generator itself, we compute perplexity
 235 scores using a reference domain-specialised LLM, denoted LLM_{ppl} . This ensures a more objec-
 236 tive assessment of sequence quality. Formally, the perplexity of a candidate note $X^{\text{syn}}[i]$ is given
 237 by $\text{PPL}(X^{\text{syn}}[i]) = \exp\left(-\frac{1}{t} \sum_{i=1}^t \log \text{LLM}_{\text{ppl}}(d_i | d_{<i})\right)$, where $d_{1, \dots, t}$ are tokens in $X^{\text{syn}}[i]$. The
 238 synthetic note with the lowest perplexity score is selected.
 239

240 3.6 PRIVACY ANALYSIS

241 The overall privacy guarantee of Term2Note depends on the composition of its two DP components:
 242 TERMGEN and NOTEGEN. Specifically, TERMGEN is trained on D_{public} and can optionally be
 243 applied to privatised terms for $D_{\text{test}}^{\text{src}}$, while NOTEGEN is trained on $D_{\text{train}}^{\text{src}}$ under DP. Since TERMGEN
 244 and NOTEGEN operate on disjoint subsets of private data, the overall privacy loss can be computed
 245 using parallel composition. Formally, the total privacy guarantee (ϵ, δ) is defined as below, and the
 246 proof is provided in Appendix C.

$$247 \quad (\epsilon, \delta) = \begin{cases} (\epsilon_n, \delta_n), & \text{if } T_i = T_i^{\text{src}}, \\ (248 \quad 249 \quad (\max(\epsilon_n, \epsilon_t), \max(\delta_n, \delta_t)), & \text{if } T_i = T_i^{\text{syn}}. \end{cases} \quad (4)$$

252 3.7 IMPLEMENTATION DETAILS

253 **SECSPLIT** To segment clinical notes into meaningful sections, we begin by considering the for-
 254 matting conventions commonly found in clinical documentation. Although the SOAP format is
 255 widely adopted, it often requires manual annotation for accurate segmentation (Gao et al., 2022),
 256 limiting its applicability in automated processing. Moreover, there is no universally standardised
 257 format applicable across healthcare systems or institutions globally. To address this, we perform a
 258 preliminary analysis of the original clinical notes and develop a rule-based segmentation strategy
 259 using regular expression (regex) to automatically identify section titles. The span of each section
 260 is determined greedily, based on the position of a detected title and the nearest subsequent section
 261 title. A list of commonly occurring section titles is automatically curated, and we further group
 262 them into six broader semantic categories: “*Patient Information*”, “*Clinical Course & History*”,
 263 “*Examinations & Findings*”, “*Laboratory & Imaging Results*”, “*Hospital Stay & Treatment*”, and
 264 “*Medications & Discharge Plan*”. This taxonomy forms the basis for SECSPLIT, which splits each
 265 clinical note into at most six standardised sections corresponding to these categories. The complete
 266 list of extracted section titles and their groupings is provided in Appendix D.

267 **TERMEXT** Various biomedical terminology vocabularies exist, depending on the taxonomy
 268 adopted. In this work, we focus exclusively on terms from SNOMED CT, a comprehensive clin-
 269 ical vocabulary widely used in electronic health records (EHRs). Notably, SNOMED CT is also

270 included within the Unified Medical Language System (UMLS) (U.S. NLM, 2025), a metathesaurus
 271 that integrates multiple biomedical vocabularies. To extract medical terms from clinical text, we use
 272 QuickUMLS (Soldaini, 2016), an unsupervised tool for fast, approximate string matching against
 273 UMLS concepts. Following extraction, we retain only the SNOMED CT concepts.
 274

275 **Backbone Models** For clinical term embedding, we use MedEmbed-large (Balachandran, 2024)
 276 as our embedder **EMB**. This encoder-only model is specifically fine-tuned for medical and clinical
 277 texts, making it well-suited for embedding domain-specific terms. For the two generative modules
 278 in Term2Note, we adopt lightweight yet effective language models: GPT2-Large (Radford et al.,
 279 2019) for the term generation model **TERMGEN**, and Llama-3.2-1B (Meta, 2024) or Gemma-3-1B
 280 (Google, 2025) for the note generation model **NOTEGEN**. Both Llama and Gemma are the most
 281 widely adopted open-source LLMs, enabling reproducible evaluation under well-supported archi-
 282 tectures. Furthermore, to increase architectural diversity and reduce the risk of model-specific bias,
 283 we include these two distinct model families. To compute the perplexity of generated notes, we use
 284 Asclepius-Llama3-8B (Kweon et al., 2024b) as our reference model **LLM_{ppl}**. This model is also
 285 pre-trained on clinical text, mitigating domain mismatch and providing reliable fluency estimates.
 286 Additionally, it supports a maximum input length of 8192 tokens, which is sufficient to accommo-
 287 date the full length of most generated clinical notes.
 288

289 4 EXPERIMENTAL SETTING

290 **Datasets** The MIMIC dataset series is one of the most widely used resources for clinical NLP.
 291 In this work, we use discharge notes from two MIMIC datasets for different purposes. MIMIC-III
 292 (Johnson et al., 2016) is used as the *public* dataset to train the term generation model TERMGEN,
 293 and MIMIC-IV notes (Johnson et al., 2023) serve as our *private* dataset for training the note genera-
 294 tion model NOTEGEN under DP constraints. For both datasets, we apply a filtering step to exclude
 295 discharge notes that do not have any associated ICD codes. In addition, we exclude all notes anno-
 296 tated in the SNOMED CT Entity Linking Challenge (Hardman et al., 2025) from MIMIC-IV notes,
 297 as we reserve this subset as our test set. As a result, we construct the following three datasets for
 298 our experiments and summarises their statistics in Appendix E: D_{public} contains around 52.7k notes
 299 derived from MIMIC-III where 500 notes are held out to assist with model development and vali-
 300 dation; $D_{\text{train}}^{\text{src}}$ consists of around 122k notes derived from MIMIC-IV (excluding SNOMED notes);
 301 $D_{\text{test}}^{\text{src}}$ composes of 204 SNOMED notes.
 302

303 **Hyperparameters** Following common practice in previous work (Yu et al., 2021; De et al., 2022;
 304 Baumel et al., 2024), we experiment with different privacy budgets by varying the overall $\epsilon \in$
 305 $[2, 5, 8]$. Accordingly, the privacy budget for term generation (ϵ_t) or note generation (ϵ_n) is set to
 306 one of these values. Following previous work, the corresponding δ value is set as $\frac{1}{N \log N}$ where N
 307 denotes the size of the private dataset. All experiments are conducted on up to two Nvidia A100
 308 80GB GPUs. More training details, including learning rate, number of epochs, batch size, etc., are
 309 provided in Appendix F.
 310

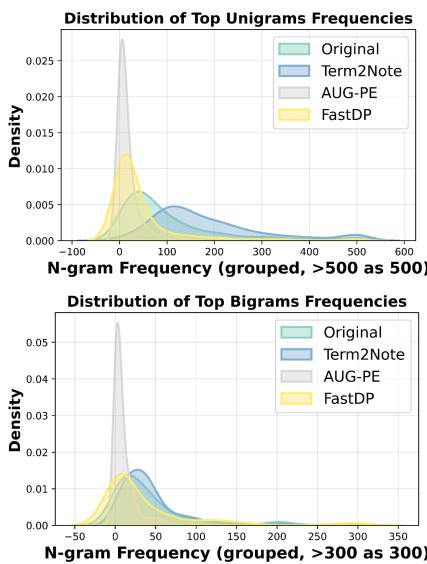
311 **Baselines** We compare our proposed method against existing DP approaches for synthetic text
 312 generation. Specifically, we consider the following baselines: (1) DP-SGD with control codes (Yue
 313 et al., 2023): fine-tuning a language model under DP constraints using DP-SGD, where task-relevant
 314 control codes are prepended to the input. To ensure consistency with the DP training setup used in
 315 Term2Note, we adapt this method to use the FastDP algorithm. (2) AUG-PE (Xie et al., 2024): a
 316 recent method based on private evaluation (PE), designed to generate synthetic text without requir-
 317 ing model training. It leverages a pretrained LLM to produce an initial pool of candidate synthetic
 318 texts. These candidates are then evaluated under the PE mechanism, which privately measures their
 319 semantic proximity to the real private texts using a DP distance function. Only candidates that fall
 320 within a DP-valid similarity threshold are retained. The model is subsequently prompted to produce
 321 additional samples conditioned on these retained examples, iteratively enlarging the synthetic cor-
 322 pus while maintaining differential privacy. For a fair comparison with Term2Note, we adapt both
 323 baselines to the clinical note generation task. Specifically, we prepend ICD codes associated with
 324 each note as control codes to guide the generation process, aligning with the conditioning setup used
 325 in our framework.
 326

324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	Fidelity			Utility																		
																		Method		Length	Unary/Binary Term	Semantic	F1		AUC		Precision@k																
																					KL Div. \downarrow	Jaccard \uparrow	KL Div. \downarrow	MAUVE \uparrow	Micro	Macro	Micro	Macro	$k = 3$	$k = 5$													
Original Data																		57.03			30.80		82.01		58.88		68.93		62.14														
$\epsilon = \infty$																																											
AUG-PE			11.96			0.14/0.02			7.59/16.34			0.01			45.82			14.84			79.52		54.35		68.48		61.77																
FastDP			1.04			0.53/0.28			0.32/ 0.84			0.12			53.02			25.51			79.35		51.05		69.77		60.39																
Term2Note ($\epsilon_n = \infty$)			0.25			0.52/0.20			0.22/1.08			0.59			49.95			21.89			81.40		55.43		69.77		61.96																
$(\epsilon_n = \infty, \epsilon_t = \infty)$			0.68			0.43/0.14			0.45/1.95			0.46			49.24			21.90			80.24		51.54		67.81		61.08																
$(\epsilon_n = 8, \epsilon_t = \infty)$			0.26			0.39/0.13			0.50/1.19			0.35			48.16			20.63			78.72		50.01		65.35		58.72																
$(\epsilon_n = 5, \epsilon_t = \infty)$			0.28			0.38/0.13			0.53/1.23			0.27			51.00			22.73			78.80		50.37		67.15		59.91																
$(\epsilon_n = 2, \epsilon_t = \infty)$			0.43			0.37/0.12			0.60/1.35			0.36			48.57			20.31			79.56		51.75		68.64		60.41																
$\epsilon = 8$																																											
AUG-PE			11.71			0.19/0.03			5.03/12.18			0.01			40.73			13.28			78.13		53.49		63.24		59.03																
FastDP			4.51			0.31/0.10			2.88/5.88			0.02			48.58			16.40			80.74		51.57		69.79		61.59																
Term2Note ($\epsilon_n = 8$)			0.39			0.40/0.13			0.47/1.14			0.53			49.71			21.28			80.03		52.80		67.49		61.48																
$(\epsilon_n = 8, \epsilon_t = 8)$			0.16			0.38/0.13			0.62/1.15			0.37			52.31			26.50			78.19		50.17		67.81		57.36																
$(\epsilon_n = 8, \epsilon_t = 5)$			0.15			0.39/0.13			0.64/1.16			0.46			49.52			21.36			79.08		50.11		68.29		60.68																
$(\epsilon_n = 8, \epsilon_t = 2)$			0.19			0.38/0.12			0.61/1.18			0.38			53.25			24.66			78.85		49.41		68.31		59.91																
$\epsilon = 5$																																											
AUG-PE			11.70			0.11/0.01			7.75/13.58			0.01			48.10			17.44			77.78		53.33		63.01		56.94																
FastDP			3.40			0.29/0.09			2.97/5.67			0.04			49.30			16.23			80.54		54.22		67.31		61.98																
Term2Note ($\epsilon_n = 5$)			0.20			0.41/0.14			0.42/1.17			0.39			47.94			20.31			79.29		51.19		66.04		61.69																
$(\epsilon_n = 5, \epsilon_t = 5)$			0.20			0.38/0.13			0.63/1.19			0.43			54.83			28.96			78.20		50.32		64.56		57.18																
$(\epsilon_n = 5, \epsilon_t = 2)$			0.36			0.38/0.12			0.64/1.32			0.36			51.26			21.45			79.05		50.44		66.36		60.49																
$\epsilon = 2$																																											
AUG-PE			12.11			0.19/0.03			5.42/11.85			0.01			40.90			13.57			78.29		53.38		63.74		60.10																
FastDP			9.67			0.14/0.03			5.79/10.89			0.01			51.06			20.04			79.98		51.31		66.32		59.99																
Term2Note ($\epsilon_n = 2$)			0.43			0.39/0.12			0.48/1.17			0.31			51.78			23.36			79.00		50.60		67.00		59.52																
$(\epsilon_n = 2, \epsilon_t = 2)$																																											

378 trained and tested on the original dataset; (2) Train-Synthetic-Test-Real, where the model is trained
 379 on the synthetic dataset and tested on the original dataset. We report standard multi-label classifi-
 380 cation metrics, including the micro and macro average of F1 score and AUC, and Precision@ k . To
 381 handle the long input sequences, we adopt Clinical-Longformer (Li et al., 2023b) as our classifier.
 382 This model supports input lengths exceeding 4k tokens and is pre-trained on clinical corpora, mak-
 383 ing it well-suited for our task. For evaluation, we use the private test set $D_{\text{test}}^{\text{src}}$, which contains 204
 384 notes in total. We further split it into a training subset $D_{\text{test-train}}^{\text{src}}$ and a testing subset $D_{\text{test-test}}^{\text{src}}$. The
 385 classifier is trained on $D_{\text{test-train}}^{\text{src/syn}}$ and evaluated on $D_{\text{test-test}}^{\text{src}}$. Due to the limited dataset size, we employ
 386 80:20 train-test 5-fold cross-validation.

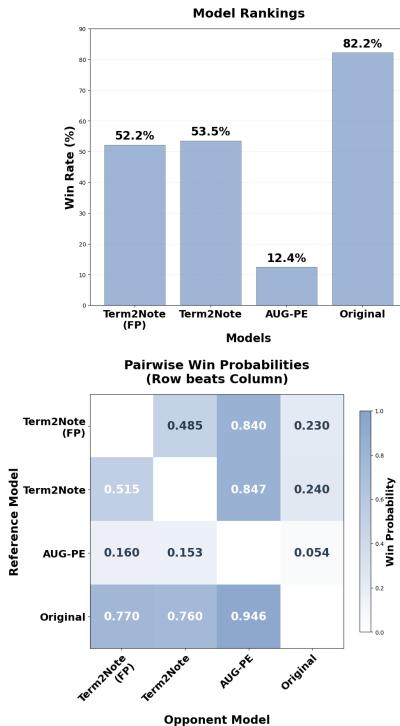
387 **Human Evaluation** is additionally conducted with three licensed physicians to assess the clinical
 388 quality of the generated notes. The evaluation follows a pairwise comparison protocol, where each
 389 physician is presented with a randomly selected pair of notes and asked to indicate which one is
 390 clinically better. The pairs are sampled from outputs generated by three different models under
 391 $\epsilon = 8$, as well as from the original (real) notes. Each physician evaluates a minimum of 100 pairs,
 392 resulting in a total of 412 pairwise comparisons across all annotators. Based on these annotations,
 393 we estimate pairwise model preferences and infer a global ranking using the Bradley-Terry (BT)
 394 (Bradley & Terry, 1952) model. The BT model also allows us to estimate the probability that one
 395 model \mathcal{M}_1 is preferred over another model \mathcal{M}_2 , based on the aggregated comparison outcomes.

397 5 RESULTS



400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 Figure 2: Distribution of n-gram frequencies in
 clinical notes generated by different DP meth-
 ods under $\epsilon = 8$. Note: density estimates may
 extend below zero due to smoothing; all ob-
 served frequencies are positive integers.

Term2Note consistently achieves better structural, syntactic, and semantic similarity to the original data, despite operating under stronger privacy constraints and fewer assumptions. In terms of *structural similarity*, Term2Note achieves the lowest KL divergence in text length distribution (as low as 0.15), indicating faithful preservation of note structure. For *syntactic similarity*, it obtains the (almost) highest Jaccard scores for both unary and binary clinical terms, alongside the lowest KL divergence in term frequency distribution, suggesting close alignment with real clinical



420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 Figure 3: Human evaluation results summarised
 using the BT model. Term2Note (FP) denotes the
full privacy setting, where both terms and
 notes are synthesised under DP constraints.

432	Term2Note	Original	FastDP
433	<p>Medications on Admission: The Preadmission Medication List is accurate and complete. 1. ibuprofen 600 mg PO Q6H 2. acetaminophen 650 mg PO Q8H 3. furosemide 40 mg DAILY 4. capsaicin extended-release 50 (...) 5. albuterol inhaler 1 inhaler q4h 6. metoprolol succinate XL (...)</p> <p>Discharge Medications: 1. Albuterol Inhaler 1 inhaler q4h 2. Capsaicin Extended-Release Tablets 50 mg PO BID 3. Metoprolol Succinate XL Tablet Oral Q24 4. Acetaminophen 325 (...) 4. Amoxicillin CLINICALLY CONFIRMED (PRN)(...) RX "furosemide sodium hydrochloride" mg PO DAILY Disp #60 (...)</p> <p>Discharge Disposition: Home With Service: Service: Primary Care/Family Practice Disposition Code: ERX Facilities: —</p>	<p>Medications on Admission: Aspirin X mg daily; Omeprazole X mg daily Saline Nasal spray daily; (...)</p> <p>Discharge Medications: Patient expired</p> <p>Discharge Disposition: Expired</p> <p>Discharge Diagnosis: Progressive multiorgan failure; Anuric renal failure Acute fibrillation with RVR; Delirium</p> <p>Discharge Condition: Patient expired after having been transitioned to CMO after progressive multiorgan system failure prompted discharge with his family and HCP.</p> <p>Discharge Instructions: Patient expired.</p> <p>Followup Instructions: —</p>	<p>Medications That Need To Be Taken After Hospitalization: [list specific medication names and dosages]</p> <p>Instructions for Care: [insert instructions on care after hospitalization]</p> <p>Follow-up Schedule: [Insert follow-up schedule]</p> <p>Special Instructions: [Insert special instructions]</p> <p>Other Notes: [Any other important information you want included in this document.]</p>

Figure 4: Examples of the last section in clinical notes generated by different models. For illustration purposes, some content is redacted with “(...)”, and numeric values in the original note are de-identified. No other modifications were made.

content. In *semantic space*, Term2Note substantially outperforms both baseline methods in MAUVE score, confirming that its generated text is significantly more aligned with the original notes in the semantic space. These advantages remain even under a strict privacy budget of $\epsilon = 2$ and when further enforcing DP on clinical term generation (i.e., $\epsilon_t = 2$), underscoring the robustness of the approach. Additionally, Figure 2 shows the distribution of n-gram frequencies, where Term2Note exhibits a distribution more closely aligned with the original notes compared to the baseline methods. More results are presented in Appendix I.

Regarding utility, Term2Note demonstrates strong overall performance and consistently preserves clinical utility across varying privacy budgets, even under stricter constraints on both term and note generation. Across all privacy levels, Term2Note achieves the highest F1 scores, outperforming both AUG-PE and FastDP, and showing the closest performance to the original data. While AUC and Precision@k scores are comparable, rather than uniformly superior, to those of AUG-PE and FastDP, this variation reflects the different aspects of model behaviour captured by each metric. Notably, even when the privacy budget for note generation is reduced to $\epsilon_n = 2$ and additional constraints are applied to privatise clinical terms (with $\epsilon_t = 2$), Term2Note maintains strong utility, with F1 and AUC scores comparable to or better than the baselines operating under looser privacy conditions.

Term2Note is consistently preferred by human experts over AUG-PE, with minimal quality loss under full privacy. As shown in Figure 3, Term2Note achieves a win rate of 52.2%–53.5% across DP settings, substantially outperforming AUG-PE (12.4%). The pairwise win probabilities (lower panel) further demonstrate that Term2Note reliably outperforms AUG-PE across all conditions. Importantly, introducing full privacy constraints, where both clinical terms and notes are protected, has only a marginal effect on human preference. These results suggest that Term2Note maintains high perceived quality while offering stronger privacy guarantees.

Term privatisation maintains a good level of semantic coherence while effectively abstracting away from potentially privacy-leaking details. We evaluate the semantic alignment of the term generation model TERMGEN on D_{test}^{src} by computing the cosine similarity between the embeddings of original and generated term lists, using the clinical term encoder EMB. Without the DP mechanism DPRP*, the mean cosine similarity is high (0.82), indicating strong recovery of original terms. When DPRP* is applied, the mean similarity drops to 0.61, reflecting the expected privacy-induced noise. This drop indicates that the generated terms stay semantically coherent without closely matching the originals, reducing the risk of revealing sensitive information (see Appendix J for case studies).

Qualitative Analysis To further assess the quality of synthetic notes, two physicians each reviewed 20 samples generated by Term2Note, covering both standard and full privacy settings with $\epsilon = 5$. As intended by the design of the evaluation, where physicians were explicitly asked to identify any potential clinical issues, the feedback focuses on shortcomings rather than general plausibility. Importantly, not all notes contained identifiable issues. In one physician’s review, 45% were

486 judged to have no clinical problems, indicating that a substantial proportion of generations were
 487 considered clinically plausible. Both physicians agreed that many synthetic notes were plausible as
 488 discharge summaries and generally exhibited sound structural organisation. However, recurring is-
 489 sues emerged around clinical accuracy and coherence. The first physician highlighted problems such
 490 as missing or misordered sections, internal inconsistencies (e.g., conflicting medications), and vague
 491 or overly generic phrasing; under full privacy constraints, repetition was more common. The second
 492 physician, who reviewed a different set of examples, reported more content-level issues, including
 493 medication misclassifications (e.g., labelling omeprazole as an antibiotic), illogical or irrelevant nar-
 494 rative insertions, and errors in clinical reasoning. These observations suggest that while Term2Note
 495 performs well in preserving structural fidelity, improvements are needed in clinical fact consistency
 496 and terminology use. Figure 4 illustrates examples of final note sections, demonstrating the model’s
 497 ability to maintain coherence in longer contexts. Although Term2Note occasionally omits sections,
 498 its outputs more closely align with the structure of the original note compared to the baseline model.
 499

500 The qualitative feedback highlights important areas where clinical reliability can be further strength-
 501 ened. A key challenge lies in ensuring factual accuracy and preventing clinical inconsistencies (e.g.,
 502 incorrect medication classes or contradictory clinical states). One promising direction is to integrate
 503 clinical fact-checking mechanisms into the generation process. Another complementary approach
 504 is to incorporate structured consistency checks, such as verifying that medications align with listed
 505 conditions, either as part of the decoding process or through post-generation filtering. Finally, incor-
 506 porating lightweight clinical reasoning or rule-based validators could help detect illogical narrative
 507 transitions and prevent contractions across sections. We view these techniques as natural extension
 508 of Term2Note and plan to explore them in future work to further enhance clinical usefulness and
 509 safety.

510 6 CONCLUSIONS

511 In this paper, we introduce Term2Note, a novel framework for DP clinical note generation by syn-
 512 thesising section-wise clinical content conditioned on medical terms while providing formal privacy
 513 guarantees. Experimental results demonstrate that Term2Note consistently outperforms existing
 514 baselines by a substantial margin. It achieves the highest fidelity, closely matching original notes
 515 in terms of structure, semantics, and medical term distribution. Furthermore, Term2Note attains
 516 comparable utility to real notes on a downstream ICD coding task, confirming the practical effec-
 517 tiveness of the synthetic data. Human evaluation further supports the superiority of Term2Note,
 518 showing that clinical experts consistently prefer its outputs over those of baseline models. Overall,
 519 Term2Note provides a promising and principled solution to the data scarcity problem in healthcare
 520 NLP, enabling generating of high-quality, privacy-preserving synthetic clinical notes, facilitating
 521 privacy-conscious data sharing.

522 REPRODUCIBILITY STATEMENT

523 To ensure reproducibility, we have taken several steps across the main text, appendix, and supple-
 524 mentary materials. First, we provide pseudocode for Term2Note in Algorithm 1, which outlines the
 525 core components of our method in a concise and implementation-ready format. Second, Section 4
 526 offers a detailed description of the dataset preprocessing pipeline, including normalisation pro-
 527 cedures, filtering criteria, and the grouping of sections (with additional details in Appendix D). This
 528 section (along with Appendix F) also specifies all hyperparameters used in training and evaluation,
 529 as well as the computational resources required to reproduce our experiments. Third, we report the
 530 evaluation protocol in detail, including the choice of evaluation model, metrics, and sampling strate-
 531 gies, to make our experimental setup transparent. Fourth, Appendix C provides a complete proof
 532 of our privacy guarantees, with all assumptions and derivations made explicit. Finally, we include
 533 the full source code and experiment scripts as supplementary materials to facilitate direct replication
 534 and extension of our results.

535 REFERENCES

536 Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
 537 and Li Zhang. Deep learning with differential privacy. In *CCS*, pp. 308–318. ACM, 2016.

540 Mehnaz Adnan, Jim Warren, and Martin Orr. Assessing text characteristics of electronic discharge
 541 summaries and their implications for patient readability. In *Proceedings of the Fourth Aus-*
 542 *tralasian Workshop on Health Informatics and Knowledge Management*, volume 108, pp. 77–84,
 543 2010.

544 Yehia Ibrahim Alzoubi and Alok Mishra. Differential privacy and artificial intelligence: potentials,
 545 challenges, and future avenues. *EURASIP J. Inf. Secur.*, 2025(1):18, 2025.

547 Md Momin Al Aziz, Tanbir Ahmed, Tasnia Faequa, Xiaoqian Jiang, Yiyu Yao, and Noman Mo-
 548 hammed. Differentially private medical texts generation using generative neural networks. *ACM*
 549 *Trans. Comput. Heal.*, 3(1):5:1–5:27, 2022.

550 Abhinand Balachandran. Medembed: Medical-focused embedding models, 2024. URL <https://github.com/abhinand5/MedEmbed>.

552

553 Tal Baumel, Andre Manoel, Daniel Jones, Shize Su, Huseyin A. Inan, Aaron Bornstein, and
 554 Robert Sim. Controllable synthetic clinical note generation with privacy guarantees. *CoRR*,
 555 abs/2409.07809, 2024.

556 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 557 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

558

559 Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
 560 large model at small cost. In *ICML*, volume 202 of *Proceedings of Machine Learning Research*,
 561 pp. 3192–3218. PMLR, 2023.

562 Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Unlocking
 563 high-accuracy differentially private image classification through scale, 2022. URL <https://arxiv.org/abs/2204.13650>.

564

565 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Found. Trends*
 566 *Theor. Comput. Sci.*, 9(3-4):211–407, 2014.

567

568 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensi-
 569 tivity in private data analysis. In *TCC*, volume 3876 of *Lecture Notes in Computer Science*, pp.
 570 265–284. Springer, 2006.

571

572 Matús Falis, Aryo Pradipta Gema, Hang Dong, Luke Daines, Siddharth Basetti, Michael Holder,
 573 Rose S. Penfold, Alexandra Birch, and Beatrice Alex. Can GPT-3.5 generate and code discharge
 574 summaries? *J. Am. Medical Informatics Assoc.*, 31(10):2284–2293, 2024.

575

576 James Flemings and Murali Annavararam. Differentially private knowledge distillation via synthetic
 577 text generation. In *ACL (Findings)*, pp. 12957–12968. Association for Computational Linguistics,
 578 2024.

579

580 Yanjun Gao, Dmitriy Dligach, Timothy Miller, Dongfang Xu, Matthew M. Churpek, and Majid
 581 Afshar. Summarizing patients’ problems from hospital progress notes using pre-trained sequence-
 582 to-sequence models. In *COLING*, pp. 2979–2991. International Committee on Computational
 583 Linguistics, 2022.

584

585 Lovedeep Gondara and Ke Wang. Differentially private small dataset release using random projec-
 586 tions. In *UAI*, volume 124 of *Proceedings of Machine Learning Research*, pp. 639–648. AUAI
 587 Press, 2020.

588

589 Google. Gemma 3, 2025. URL <https://ai.google.dev/gemma/docs/core>.

590

591 William Hardman, Max Banks, Richard Davidson, Daniel Truran, Nadya Wulansari Ayun-
 592 ingtyas, Huy Ngo, Alistair Johnson, and Tom Pollard. SNOMED CT Entity Linking Chal-
 593 lenge (version 1.1.0). <https://doi.org/10.13026/qn8t-6e19>, 2025. PhysioNet.
 594 RRID:SCR_007345.

595

596 Alistair Johnson, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger Mark. MIMIC-IV-
 597 Note: Deidentified free-text clinical notes (version 2.2). <https://doi.org/10.13026/1n74-ne17>, 2023. PhysioNet. RRID:SCR_007345.

594 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 595 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
 596 a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.

597

598 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 599 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 600 models. *CoRR*, abs/2001.08361, 2020.

601 Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam MacDermed, and Andreas Terzis. Har-
 602 nessing large-language models to generate private synthetic text. *CoRR*, abs/2306.01684, 2023.

603

604 Sunjun Kweon, Jiyoun Kim, Heeyoung Kwak, Dongchul Cha, Hangyul Yoon, Kwang Kim, Jeewon
 605 Yang, Seunghyun Won, and Edward Choi. Ehrnoteqa: An LLM benchmark for real-world clinical
 606 practice using discharge summaries. In *NeurIPS*, 2024a.

607 Sunjun Kweon, Junu Kim, Jiyoun Kim, Sujeong Im, Eunbyeol Cho, Seongsu Bae, Jungwoo Oh,
 608 Gyubok Lee, Jong Hak Moon, Seng Chan You, Seungjin Baek, Chang Hoon Han, Yoon Bin Jung,
 609 Yohan Jo, and Edward Choi. Publicly shareable clinical large language model built on synthetic
 610 clinical notes. In *ACL (Findings)*, pp. 5148–5168. Association for Computational Linguistics,
 611 2024b.

612

613 Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier, and
 614 Richard Dufour. Biomistrail: A collection of open-source pretrained large language models for
 615 medical domains, 2024.

616 Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
 617 gradient clipping. *CoRR*, abs/2009.03106, 2020. URL <https://arxiv.org/abs/2009.03106>.

618

619 Hao Li, Yuping Wu, Viktor Schlegel, Riza Batista-Navarro, Thanh-Tung Nguyen, Abhinav Ramesh
 620 Kashyap, Xiao-Jun Zeng, Daniel Beck, Stefan Winkler, and Goran Nenadic. Team: PULSAR at
 621 probsum 2023: PULSAR: pre-training with extracted healthcare terms for summarising patients’
 622 problems and data augmentation with black-box large language models. In *BioNLP@ACL*, pp.
 623 503–509. Association for Computational Linguistics, 2023a.

624

625 Hao Li, Bowen Deng, Chang Xu, Zhiyuan Feng, Viktor Schlegel, Yu-Hao Huang, Yizheng Sun,
 626 Jingyuan Sun, Kailai Yang, Yiyao Yu, and Jiang Bian. MIRA: medical time series foundation
 627 model for real-world health data. *CoRR*, abs/2506.07584, 2025a.

628

629 Hao Li, Yu-Hao Huang, Chang Xu, Viktor Schlegel, Ren-He Jiang, Riza Batista-Navarro, Goran
 630 Nenadic, and Jiang Bian. BRIDGE: bootstrapping text to control time-series generation via multi-
 631 agent iterative optimization and diffusion modelling. *CoRR*, abs/2503.02445, 2025b.

632

633 Yikuan Li, Ramsey M Wehbe, Faraz S Ahmad, Hanyin Wang, and Yuan Luo. A comparative study
 634 of pretrained language models for long clinical text. *Journal of the American Medical Informatics
 Association*, 30(2):340–347, 2023b.

635

636 Justus Mattern, Zhijing Jin, Benjamin Weggenmann, Bernhard Schölkopf, and Mrinmaya Sachan.
 637 Differentially private language models for secure data sharing. In *EMNLP*, pp. 4860–4873. As-
 638 sociation for Computational Linguistics, 2022.

639

640 Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
 641 analysis. In *SIGMOD Conference*, pp. 19–30. ACM, 2009.

642

643 Meta. Llama 3, 2024. URL <https://ai.meta.com/blog/meta-llama-3/>.

644

645 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
 646 with GPT-4. *CoRR*, abs/2304.03277, 2023.

647

648 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 649 and Zaïd Harchaoui. MAUVE: measuring the gap between neural text and human text using
 650 divergence frontiers. In *NeurIPS*, pp. 4816–4828, 2021.

648 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 649 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 650

651 Krithika Ramesh, Nupoor Gandhi, Pulkit Madaan, Lisa Bauer, Charith Peris, and Anjalie Field.
 652 Evaluating differentially private synthetic data generation in high-stakes domains. In *EMNLP
 653 (Findings)*, pp. 15254–15269. Association for Computational Linguistics, 2024.

654 Atiquer Rahman Sarkar, Yao-Shun Chuang, Xiaoqian Jiang, and Noman Mohammed. Not fully
 655 synthetic: Llm-based hybrid approaches towards privacy-preserving clinical note sharing. *AMIA
 656 Summits on Translational Science Proceedings*, 2025:441, 2025.
 657

658 Timo Schick and Hinrich Schütze. Generating datasets with pretrained language models. In *EMNLP
 659 (1)*, pp. 6943–6951. Association for Computational Linguistics, 2021.

660 Viktor Schlegel, Hao Li, Yuping Wu, Anand Subramanian, Thanh-Tung Nguyen, Abhinav Ramesh
 661 Kashyap, Daniel Beck, Xiao-Jun Zeng, Riza Theresa Batista-Navarro, Stefan Winkler, and Goran
 662 Nenadic. PULSAR at mediq-a-sum 2023: Large language models augmented by synthetic dia-
 663 logue convert patient dialogues to medical records. In *CLEF (Working Notes)*, volume 3497 of
 664 *CEUR Workshop Proceedings*, pp. 1668–1679. CEUR-WS.org, 2023.
 665

666 Viktor Schlegel, Anil A. Bharath, Zilong Zhao, and Kevin Yee. Generating synthetic data with
 667 formal privacy guarantees: State of the art and the road ahead. *CoRR*, abs/2503.20846, 2025.

668 Luca Soldaini. Quickumls: a fast, unsupervised approach for medical concept extraction. 2016.
 669 URL <https://api.semanticscholar.org/CorpusID:2990304>.
 670

671 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 672 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 673 https://github.com/tatsu-lab/stanford_alpaca, 2023.

674 U.S. NLM. UMLS Knowledge Sources [dataset on the internet]. <http://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html>, 2025. Re-
 675 lease 2024AA. Bethesda (MD): National Library of Medicine (US); 2024 May 6 [cited 2024
 676 Jul 15].
 677

678 Katharine Weetman, Rachel Spencer, Jeremy Dale, Emma Scott, and Stephanie Schnurr. What
 679 makes a “successful” or “unsuccessful” discharge letter? hospital clinician and general practi-
 680 tioner assessments of the quality of discharge letters. *BMC health services research*, 21(1):349,
 681 2021.
 682

683 Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A. Inan, Harsha Nori,
 684 Haotian Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, and Sergey Yekhanin. Differentially private
 685 synthetic data via foundation model apis 2: Text. In *ICML*. OpenReview.net, 2024.

686 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 687 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 688 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jian Yang,
 689 Jiaxi Yang, Jingren Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 690 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 691 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 692 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yingqi Zhang,
 693 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 694 Qwen3 technical report. *CoRR*, abs/2505.09388, 2025.
 695

696 Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
 697 Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya
 698 Mironov. Opacus: User-friendly differential privacy library in pytorch. *CoRR*, abs/2109.12298,
 699 2021. URL <https://arxiv.org/abs/2109.12298>.

700 Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Do not let privacy overbill utility: Gradient
 701 embedding perturbation for private learning. In *International Conference on Learning Representa-
 702 tions*, 2021. URL https://openreview.net/forum?id=7aog0j_VY00.

702 Xiang Yue, Huseyin A. Inan, Xuechen Li, Girish Kumar, Julia McAnallen, Hoda Shajari, Huan Sun,
 703 David Levitan, and Robert Sim. Synthetic text generation with differential privacy: A simple and
 704 practical recipe. In *ACL (1)*, pp. 1321–1342. Association for Computational Linguistics, 2023.
 705
 706

707 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

709 LLMs were used solely as a general-purpose writing aid. The initial drafts were written by the
 710 authors, and LLMs were employed to polish grammar and improve coherence. All suggested edits
 711 were manually reviewed and selectively incorporated by the authors. LLMs did not contribute to
 712 research ideation, experimental design, implementation, or original writing beyond this assistive
 713 role.

715 B DPRP* ALGORITHM

717 Algorithm 2 presents the pseudocode for DPRP*.

719 Algorithm 2 DPRP*

721 **Input:** Embeddings E , privacy parameters (ϵ, δ) , privacy allocation $b = 0.85$

722 **Output:** Privatised Embeddings E_{DP} with (ϵ, δ) -DP

723 1: $(\epsilon_1, \delta_1), (\epsilon_2, \delta_2) \leftarrow 0.85 * (\epsilon, \delta), 0.15 * (\epsilon, \delta)$
 724 2: Derive σ_i from $(\epsilon_{1i}, \delta_{1i})$; $i \in [1, 2]$
 725 3: $E' = E + \mathcal{N}(0, \sigma_1^2)$
 726 4: $E'_C = E^T E + \mathcal{N}(0, \sigma_2^2)$
 727 5: $V' \Sigma' V'^T = \text{SVD}(E'_C)$
 728 6: $V'_k = V'[1, \dots, k]$; $k = 0.6 * E_{\text{hdim}}$
 729 7: $E_{\text{DP}} = E' V'_k'^T + V'_k$ // + refers to the Moore-Penrose pseudoinverse
 730 8: **return** E_{DP}

733 C PRIVACY PROOF

735 Recall our privacy analysis,

$$737 \quad (\epsilon, \delta) = \begin{cases} (\epsilon_n, \delta_n), & \text{if } T_i = T_i^{\text{src}}, \\ (\max(\epsilon_n, \epsilon_t), \max(\delta_n, \delta_t)), & \text{if } T_i = T_i^{\text{syn}}. \end{cases}$$

740 When $T_i = T_i^{\text{src}}$, there is only one DP component, i.e., NOTEGEN which satisfies (ϵ_n, δ_n) -DP,
 741 therefore, the $(\epsilon, \delta) = (\epsilon_n, \delta_n)$, i.e., Term2Note satisfies (ϵ_n, δ_n) -DP.

743 *Proof.* We prove that for the full privatisation setting ($T_i = T_i^{\text{syn}}$), Term2Note achieves
 744 $(\max(\epsilon_n, \epsilon_t), \max(\delta_n, \delta_t))$ -DP by applying the parallel composition theorem.

746 Step 1: Parallel Composition Lemma

747 First, we establish the parallel composition property.

749 **Lemma 3** (Parallel Composition). Let dataset $D = D_1 \cup D_2$, and $D_1 \cap D_2 = \emptyset$. Let $\mathcal{M}_1 : \mathbb{N}^{|X_1|} \rightarrow$
 750 R_1 be (ϵ_1, δ_1) -DP and $\mathcal{M}_2 : \mathbb{N}^{|X_2|} \rightarrow R_2$ be (ϵ_2, δ_2) -DP. Then $\mathcal{M}(D) = (\mathcal{M}_1(D_1), \mathcal{M}_2(D_2))$ is
 751 $(\max(\epsilon_1, \epsilon_2), \max(\delta_1, \delta_2))$ -DP.

753 *Proof of Lemma.* Let D and D' be neighboring datasets differing by one record. Since $D_1 \cap D_2 = \emptyset$,
 754 the differing record is in either D_1 or D_2 , but not both.

755 **Case 1:** The differing record is in D_1 , so $D_1 \neq D'_1$ but $D_2 = D'_2$.

756 For any measurable sets $B_1 \subseteq R_1, B_2 \subseteq R_2$:

$$\begin{aligned}
 758 \quad & P[\mathcal{M}(D) \in B_1 \times B_2] \\
 759 \quad & = P[\mathcal{M}_1(D_1) \in B_1] \cdot P[\mathcal{M}_2(D_2) \in B_2] \\
 760 \quad & \leq (e^{\epsilon_1} P[\mathcal{M}_1(D'_1) \in B_1] + \delta_1) \cdot P[\mathcal{M}_2(D_2) \in B_2] \\
 761 \quad & = (e^{\epsilon_1} P[\mathcal{M}_1(D'_1) \in B_1] + \delta_1) \cdot P[\mathcal{M}_2(D'_2) \in B_2] \\
 762 \quad & = e^{\epsilon_1} P[\mathcal{M}(D') \in B_1 \times B_2] + \delta_1 P[\mathcal{M}_2(D'_2) \in B_2] \\
 763 \quad & \leq e^{\epsilon_1} P[\mathcal{M}(D') \in B_1 \times B_2] + \delta_1
 \end{aligned}$$

764 **Case 2:** The differing record is in D_2 , so $D_1 = D'_1$ but $D_2 \neq D'_2$. Similarly:

$$765 \quad P[\mathcal{M}(D) \in B_1 \times B_2] \leq e^{\epsilon_2} P[\mathcal{M}(D') \in B_1 \times B_2] + \delta_2$$

771 **Combining cases:** For arbitrary neighbouring datasets, we have:

$$\begin{aligned}
 772 \quad & P[\mathcal{M}(D) \in B_1 \times B_2] \\
 773 \quad & \leq e^{\max(\epsilon_1, \epsilon_2)} P[\mathcal{M}(D') \in B_1 \times B_2] + \max(\delta_1, \delta_2)
 \end{aligned}$$

777 Therefore, \mathcal{M} is $(\max(\epsilon_1, \epsilon_2), \max(\delta_1, \delta_2))$ -DP. \square

779 Step 2: Application to Term2Note

781 Now we apply the parallel composition lemma to Term2Note.

782 We have:

- 784 • \mathcal{M}_1 = NOTEGEN training on D_{train} , which is (ϵ_n, δ_n) -DP
- 785 • \mathcal{M}_2 = TERMGEN processing on D_{test} , which is (ϵ_t, δ_t) -DP
- 786 • $D_{\text{train}} \cap D_{\text{test}} = \emptyset$

789 Term2Note can be written as:

$$791 \quad \text{Term2Note}(D) = f(\mathcal{M}_1(D_{\text{train}}), \mathcal{M}_2(D_{\text{test}}))$$

793 where f is a deterministic function that applies the trained NOTESEN model to the synthetic terms
794 from TERMGEN.

795 Since f is a post-processing function applied to the outputs of the parallel composition, and post-
796 processing preserves differential privacy, we have:

$$798 \quad \text{Term2Note}(D) \text{ is } (\max(\epsilon_n, \epsilon_t), \max(\delta_n, \delta_t))\text{-DP}$$

800 \square

802 D SECTION GROUPING

804 Table 2 presents the section grouping taxonomy for our SEC\$PLIT.

806 E DATASET STATISTICS

808 Table 3 summarises key statistics of the three datasets used in this study, including the number of
809 clinical notes, and average note length, among other relevant attributes.

Group Name	Sections
Patient Information	“Name”, “Unit No”, “Admission Date”, “Discharge Date”, “Date of Birth”, “Sex”, “Service”, “Allergies”, “Attending”
Clinical Course & History	“Chief Complaint”, “Major Surgical or Invasive Procedure”, “History of Present Illness”, “Review of Systems”, “Past Medical History”, “Social History”, “Family History”
Examinations & Findings	“Physical Exam”
Laboratory & Imaging Results	“Pertinent Results”
Hospital Stay & Treatment	“Brief Hospital Course”
Medications & Discharge Plan	“Medications on Admission”, “Discharge Medications”, “Discharge Disposition”, “Discharge Diagnosis”, “Discharge Condition”, “Discharge Instructions”, “Followup Instructions”

Table 2: The grouped section titles.

Dataset	MIMIC-III	MIMIC-IV	
	D_{public}	$D_{\text{train}}^{\text{src}}$	$D_{\text{test}}^{\text{src}}$
# notes	52,722	122,202	204
avg. # tokens	3327.93	3360.60	2818.63
avg. # sections	4.59	5.77	5.79
avg. # terms	176.26	203.20	173.33
avg. # ICD codes	-	-	6.73

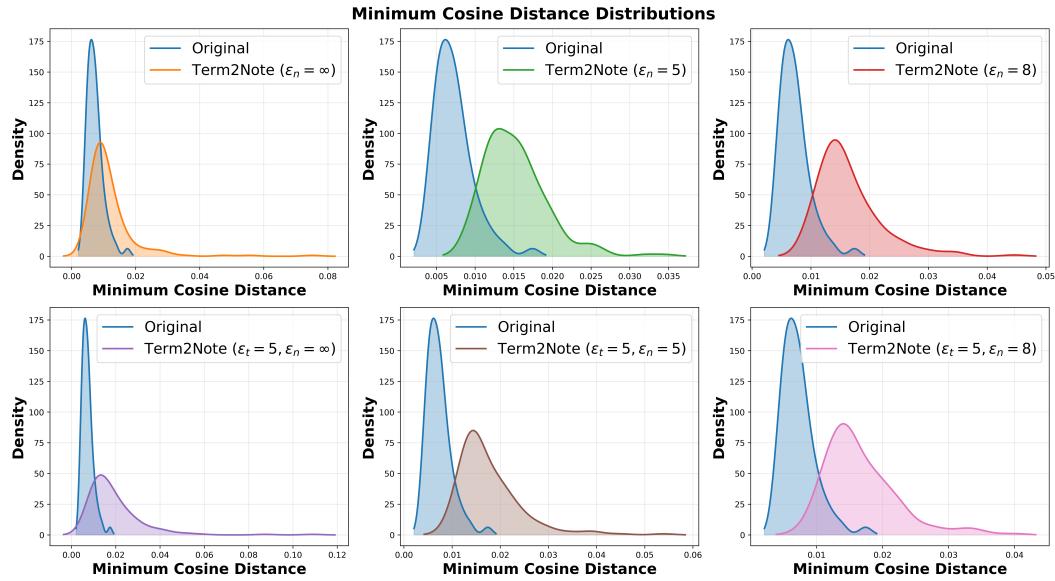
Table 3: Dataset statistics. avg. refers to the average of. # tokens is calculated by taking the average of tokens in each note, tokenised by Llama-3.2-1B-Instruct.

F HYPERPARAMETERS

TERMGEN We fine-tune GPT-2-large on section-wise clinical terms extracted from D_{public} for up to 5 epochs. The final model is selected based on the checkpoint with the highest F1 score, evaluated on a held-out set of 500 notes. During training, we set the embedding perturbation scale $\sigma_{\text{emb}} = 0.05$, with a batch size of 8 and a learning rate of $2e-5$. At inference, we use a batch size of 16 and a maximum generation length of 512 tokens. To ensure reproducibility, decoding is performed with a temperature of 0.1 and top- p set to 1.0.

NOTEGEN **Training:** We fine-tune Llama-3.2-1B-Instruct or Gemma-3-1B-IT on $D_{\text{train}}^{\text{src}}$ for up to 2 epochs using 2 GPUs. The batch size per device is 2, with a gradient accumulation step of 64 and a learning rate of $5e-5$. We enable DeepSpeed ZeRO Stage 3 to optimise memory usage. **Inference:** We adapt vLLM for faster generation, with decoding parameters set as temperature = 0.1, top- p = 1.0, repetition penalty = 1.2 and max tokens per section = 2048 across all experiments. Llama-3.2 tends to generate overly long outputs during section-wise generation, so we apply a logit bias on the EOS token to encourage early stopping. This bias is set between 0.5 and 6.0: for DP-enabled models, the value is 0.5 or 1.0; for the non-private setting ($\epsilon = \infty$), it is set to 6.0. Additionally, DP-enabled models use a frequency penalty of 0.4 to further discourage repetition.

For the FastDP baseline, which produces relatively short outputs, we apply only a repetition penalty during inference. Before applying the DP quality maximiser, we generate multiple candidates per input: 4 for Term2Note and FastDP, and 7 for AUG-PE, using the same decoding settings described above.

864 **G DISTANCE-BASED PRIVACY EVALUATION**
865885
886 Figure 5: Distribution of minimum cosine distances for all evaluated synthetic strategies compared
887 to the baseline of original test notes. Here, ϵ_t and ϵ_n are the privacy budgets for TERMGEN and
888 NOTEGEN, respectively.889
890 A preliminary privacy evaluation is conducted to assess the privacy-preserving properties of the
891 synthetic clinical notes using a membership inference attack (MIA) framework. We compare the
892 distribution of minimum cosine distances between the synthetic notes generated by Term2Note and
893 the original training data to a baseline of real, non-member test notes. As illustrated in Figure 5,
894 the synthetic notes are, on average, located significantly further from the training data than the test
895 notes. Notably, the setting with $\epsilon_n = \infty$, which is generated without DP, exhibited the most overlap
896 with the test set’s distribution. This expected outcome highlights the privacy benefits of the other
897 DP settings, and provides a clear baseline for comparison.898 In future work, we intend to expand our privacy evaluation using canary-based membership infe-
899 rence attacks. This approach involves injecting specially crafted canaries into the training data to
900 establish a worst-case lower bound on privacy risks.901 **H ICD CODES GROUPING**
902903 Table 4 shows the mapping between our combined ICD categories and the corresponding ICD-9 and
904 ICD-10 chapter headings. For fine-tuning Clinical-Longformer on this classification task, we train
905 for 30 epochs per setting (i.e., model and data fold), with a batch size of 8 and a learning rate of
906 2e-5.907 **I SUPPLEMENTARY EXPERIMENTAL RESULTS**
908910 **I.1 FIDELITY**
911912 Table 5 presents supplementary fidelity evaluation results, including an ablation analysis of the DP
913 Quality Maximiser. These results further support the effectiveness of our approach in preserving
914 structural and semantic fidelity under DP constraints.915 **Larger Model** We present preliminary results using a larger model, Llama-3.3-70B, evaluated
916 with two non-private methods: Retrieval-Augmented Generation (RAG) and LoRA-based fine-
917 tuning. In the RAG setup, we retrieve the top-5 most similar sections from the training set $D_{\text{train}}^{\text{src}}$

918	Combined ICD Category	ICD-9	ICD-10
919	Certain Infectious And Parasitic Diseases	Infectious And Parasitic Diseases	Certain Infectious And Parasitic Diseases
920	Neoplasms	Neoplasms	Neoplasms
921	Endocrine, Nutritional And Metabolic Diseases, And Immunity Disorders	Endocrine, Nutritional And Metabolic Diseases, And Immunity Disorders	Endocrine, Nutritional And Metabolic Diseases
922	Diseases Of The Blood And Blood-Forming Organs And Certain Disorders Involving The Immune Mechanism	Diseases Of The Blood And Blood-Forming Organs	Diseases Of The Blood And Blood-Forming Organs And Certain Disorders Involving The Immune Mechanism
923	Mental And Behavioural Disorders	Mental Disorders	Mental And Behavioural Disorders
924	Diseases Of The Nervous System And Sense Organs	Diseases Of The Nervous System And Sense Organs	Diseases Of The Nervous System
925	Diseases Of The Circulatory System	Diseases Of The Circulatory System	Diseases Of The Circulatory System
926	Diseases Of The Respiratory System	Diseases Of The Respiratory System	Diseases Of The Respiratory System
927	Diseases Of The Digestive System	Diseases Of The Digestive System	Diseases Of The Digestive System
928	Diseases Of The Genitourinary System	Diseases Of The Genitourinary System	Diseases Of The Genitourinary System
929	Complications Of Pregnancy, Childbirth, And The Puerperium	Complications Of Pregnancy, Childbirth, And The Puerperium	Complications Of Pregnancy, Childbirth, And The Puerperium
930	Diseases Of The Skin And Subcutaneous Tissue	Diseases Of The Skin And Subcutaneous Tissue	Diseases Of The Skin And Subcutaneous Tissue
931	Diseases Of The Musculoskeletal System And Connective Tissue	Diseases Of The Musculoskeletal System And Connective Tissue	Diseases Of The Musculoskeletal System And Connective Tissue
932	Congenital Malformations, Deformations And Chromosomal Abnormalities	Congenital Anomalies	Diseases Of The Musculoskeletal System And Connective Tissue
933	Congenital Malformations, Deformations And Chromosomal Abnormalities	-	Congenital Malformations, Deformations And Chromosomal Abnormalities
934	Certain Conditions Originating In The Perinatal Period	Certain Conditions Originating In The Perinatal Period	Certain Conditions Originating In The Perinatal Period
935	Symptoms, Signs And Abnormal Clinical And Laboratory Findings, Not Elsewhere Classified	Symptoms, Signs, And Ill-Defined Conditions	Symptoms, Signs And Abnormal Clinical And Laboratory Findings, Not Elsewhere Classified
936	Injury, Poisoning And Certain Other Consequences Of External Causes	Injury And Poisoning	Injury, Poisoning And Certain Other Consequences Of External Causes
937	External Causes Of Morbidity And Mortality, Injury And Poisoning	External Causes Of Injury And Poisoning	External Causes Of Morbidity And Mortality, Injury and Poisoning
938	Factors Influencing Health Status And Contact With Health Services	Factors Influencing Health Status And Contact With Health Services	Factors Influencing Health Status And Contact With Health Services
939	Diseases Of The Eye And Adnexa	-	Diseases Of The Eye And Adnexa
940	Diseases Of The Ear And Mastoid Process	-	Diseases Of The Ear And Mastoid Process
941	Codes For Special Purposes	-	Codes For Special Purposes

Table 4: The grouped ICD codes.

to assist section-wise generation. While neither approach offers privacy guarantees, they serve as reference points for performance with large-scale models. As shown in the results, fine-tuning significantly outperforms RAG, highlighting the importance of parameter adaptation for note synthesis. However, the high computational cost of fine-tuning such large models motivates our focus on efficient methods based on smaller models, such as the 1B-parameter version used in Term2Note.

DP Quality Maximiser We evaluate the effectiveness of our proposed DP quality maximiser on models trained with $\epsilon = 8$. As shown in the results, it consistently improves MAUVE scores for both Term2Note and FastDP. For FastDP, improvements extend across all fidelity metrics, highlighting the value of the maximiser in enhancing output quality under DP constraints.

Beyond perplexity, we investigate a range of reference-free (RF) metrics to guide the selection of high-quality generations, including maximum and mean sentence length (in words and characters), self-BLEU, and distinct- n variants. To evaluate these metrics, we manually annotate a small set of synthetic sections as “good” or “bad” based on readability, with approximately 12% labelled as “bad”. Metrics are evaluated on their ability to identify these poor-quality sections via scalar thresh-

		Length		Unary/Binary Term		Semantic MAUVE \uparrow
		mean	KL Div. \downarrow	Jaccard \uparrow	KL Div. \downarrow	
972	Original Data	2819	-	-	-	-
973		$\epsilon = \infty$				
974	AUG-PE	282	11.96	0.14/0.02	7.59/16.34	0.01
975	Term2Note	3552	<u>0.25</u>	0.52/0.20	0.22/1.08	0.59
976	Term2Note (Llama-3.3-70b 4-bit)	4115	0.87	<u>0.55/0.23</u>	<u>0.17/2.23</u>	0.38
977	RAG (Llama-3.3-70b)	3220	0.75	0.43/0.17	0.62/1.60	0.22
978		$\epsilon = 8$				
979	AUG-PE	203	11.71	0.19/0.03	5.03/12.18	0.01
980	FastDP	961	4.51	0.31/0.10	2.88/5.88	0.02
981		449.25 \pm 148.65	7.79 \pm 2.03	0.25 \pm .03/0.07 \pm .02	3.53 \pm .48/5.37 \pm 1.16	0.01 \pm .0
982	Term2Note	3768	<u>0.39</u>	<u>0.40/0.13</u>	<u>0.47/1.14</u>	<u>0.53</u>
983		3364.43 \pm 118.37	0.39 \pm .11	0.41 \pm .0/0.13 \pm .0	0.43 \pm .01/1.14 \pm .02	0.42 \pm .13
984						
985						

Table 5: Supplementary results for fidelity evaluation: text length, term distribution, and semantic similarity (MAUVE). The **best result** among all methods to generate synthetic datasets is shown in bold, and the best result at the same privacy cost is underlined. Values in gray are aggregated across multiple inferences without DP quality maximiser applied.

olds. We then assess how well each metric identifies poor-quality sections using scalar thresholds. Our results indicate that metrics based on sentence length—particularly maximum sentence character count—align most closely with human annotations. A rejection threshold of 2181 characters yields the strongest correspondence. Table 6 reports the KL divergence and MAUVE values of synthetic notes after integrating this metric into the inference process. Specifically, if a generated section exceeds the threshold, it is discarded and regenerated until acceptance. Incorporating this simple criterion yields measurable improvements, suggesting that lightweight, reference-free filters can enhance the realism of DP synthetic text. Future work may extend this approach by combining multiple RF metrics for greater robustness.

Dataset	KL Divergence \downarrow	MAUVE \uparrow
w/o RF metric	1.99 \pm 0.37	0.24 \pm 0.04
w/ RF metric	1.03 \pm 0.10	0.36 \pm 0.07

Table 6: Fidelity evaluation of synthetic notes generated with and without integrating the RF metric (maximum sentence character count) into the inference process.

Comparison under $\epsilon = 8$ Figure 6 shows the distribution of sequence lengths for clinical notes generated by different methods under a fixed privacy budget of $\epsilon = 8$. While all synthetic methods shift the length distribution away from the original data to some extent, Term2Note exhibits the closest alignment. Its distribution captures the broad length range and multi-modal structure of the original notes more faithfully than the baselines. In contrast, AUG-PE produces much shorter and more narrowly distributed sequences, indicating a loss of structural richness. FastDP also generates relatively short sequences, with a sharp peak around 500 tokens. These deviations suggest that Term2Note is better able to preserve the structural properties of real clinical notes, which is crucial for downstream utility and realism in synthetic data.

I.2 UTILITY

Table 7 presents the detailed precision and recall scores for the downstream task evaluation.

I.3 GEMMA

Experimental results for Gemma are reported in Table 8. Both fidelity and utility metrics are comparable to those of Llama in Table 1, although the MAUVE score for Gemma without DP (i.e., $\epsilon = \infty$) is higher than that of Llama. Overall, the same trend holds across both models: stricter privacy guarantees lead to reduced fidelity, while full privatisation still preserves strong fidelity and utility.

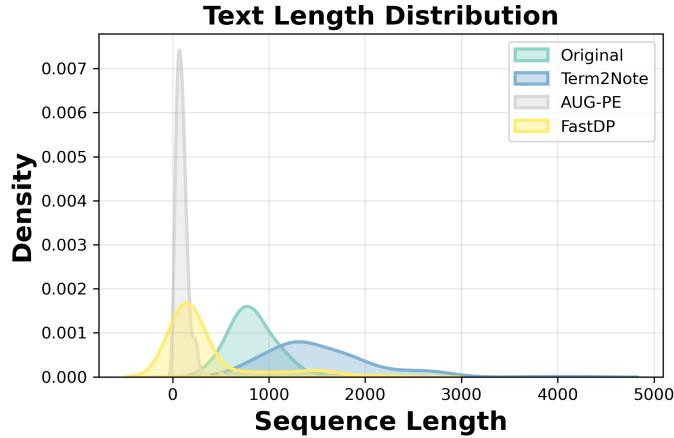


Figure 6: Text length distribution.

Method	F1		Precision		Recall		AUC		Precision@ k	
	Micro	Macro	Micro	Macro	Micro	Macro	Micro	Macro	$k = 3$	$k = 5$
	57.03 \pm 3.59	30.80 \pm 2.20	60.14 \pm 4.51	34.66 \pm 4.56	54.40 \pm 4.26	30.88 \pm 2.66	82.01 \pm 1.36	58.88 \pm 2.73	68.93 \pm 4.53	62.14 \pm 3.20
$\epsilon = \infty$										
AUG-PE	45.82 \pm 2.33	14.84 \pm 2.97	67.30 \pm 5.10	17.91 \pm 5.33	34.94 \pm 3.19	16.27 \pm 2.67	79.52 \pm 1.23	54.35 \pm 1.75	68.48 \pm 6.11	61.77 \pm 3.03
FastDP	53.02 \pm 3.03	25.51 \pm 1.92	56.19 \pm 5.62	26.83 \pm 2.31	50.99 \pm 6.67	27.27 \pm 4.23	79.35 \pm 1.55	51.05 \pm 2.48	69.77 \pm 4.99	60.39 \pm 4.44
Term2Note ($\epsilon_n = \infty$)	49.95 \pm 4.77	21.89 \pm 3.90	65.37 \pm 6.31	28.69 \pm 1.26	41.02 \pm 6.64	21.05 \pm 3.86	81.40 \pm 1.78	55.43 \pm 2.40	69.77 \pm 3.52	61.96 \pm 5.70
w. $\epsilon_t = \infty$	49.24 \pm 2.63	21.9 \pm 2.01	61.07 \pm 4.02	26.75 \pm 2.9	41.61 \pm 4.73	21.64 \pm 3.29	80.24 \pm 1.56	51.54 \pm 1.81	67.81 \pm 3.66	61.08 \pm 3.71
$\epsilon = 8$										
AUG-PE	40.73 \pm 9.22	13.28 \pm 4.71	60.68 \pm 4.70	15.14 \pm 4.77	31.43 \pm 9.80	16.01 \pm 5.81	78.13 \pm 1.85	53.49 \pm 3.08	63.24 \pm 4.65	59.03 \pm 4.59
FastDP	48.58 \pm 5.93	16.40 \pm 4.01	64.79 \pm 1.33	16.70 \pm 3.67	39.49 \pm 8.78	18.89 \pm 5.16	80.74 \pm 1.41	51.57 \pm 3.46	69.79 \pm 2.25	61.59 \pm 4.42
Term2Note ($\epsilon_n = \infty$)	49.71 \pm 1.90	21.28 \pm 1.28	61.37 \pm 4.28	25.17 \pm 1.55	41.96 \pm 2.98	21.31 \pm 1.63	80.03 \pm 1.44	52.80 \pm 1.15	67.49 \pm 4.42	61.48 \pm 4.45
w. $\epsilon_t = \infty$	48.16 \pm 4.39	20.63 \pm 3.18	59.07 \pm 4.04	26.64 \pm 5.14	40.84 \pm 5.3	20.68 \pm 3.41	78.72 \pm 0.85	50.01 \pm 4.19	65.35 \pm 5.21	58.72 \pm 3.9
w. $\epsilon_t = 8$	52.31 \pm 4.45	26.5 \pm 3.95	53.04 \pm 3.34	26.9 \pm 2.62	51.87 \pm 6.45	28.66 \pm 4.65	78.19 \pm 0.91	50.17 \pm 2.33	67.81 \pm 5.88	57.36 \pm 3.3
w. $\epsilon_t = 5$	49.52 \pm 4.44	21.36 \pm 3.11	58.74 \pm 6.32	24.59 \pm 5.36	43.23 \pm 6.58	22.04 \pm 3.52	79.08 \pm 1.34	50.11 \pm 4.08	68.29 \pm 5.36	60.68 \pm 4.65
w. $\epsilon_t = 2$	53.25 \pm 1.1	24.66 \pm 1.82	56.93 \pm 2.49	28.23 \pm 4.52	50.16 \pm 2.52	26.94 \pm 2.17	78.85 \pm 0.98	49.41 \pm 2.86	68.31 \pm 5.53	59.91 \pm 3.34
$\epsilon = 5$										
AUG-PE	48.10 \pm 2.08	17.44 \pm 2.70	60.59 \pm 8.29	18.28 \pm 3.69	40.73 \pm 5.59	21.02 \pm 4.88	77.78 \pm 3.11	53.33 \pm 2.60	63.01 \pm 12.42	56.94 \pm 5.20
FastDP	49.30 \pm 4.04	16.23 \pm 3.04	64.49 \pm 6.50	15.57 \pm 2.73	40.84 \pm 7.33	19.70 \pm 4.87	80.54 \pm 1.36	54.22 \pm 1.97	67.31 \pm 7.22	61.98 \pm 3.34
Term2Note ($\epsilon_n = \infty$)	47.94 \pm 4.47	20.31 \pm 3.40	60.88 \pm 4.95	25.76 \pm 4.44	40.15 \pm 6.22	20.20 \pm 3.71	79.29 \pm 1.49	51.19 \pm 3.40	66.04 \pm 5.73	61.69 \pm 4.86
w. $\epsilon_t = \infty$	51.0 \pm 1.41	22.73 \pm 2.22	56.74 \pm 4.95	24.89 \pm 4.24	46.79 \pm 3.93	24.62 \pm 3.03	78.8 \pm 1.78	50.37 \pm 1.78	67.15 \pm 5.88	59.91 \pm 3.12
w. $\epsilon_t = 5$	54.83 \pm 2.24	28.96 \pm 1.81	51.64 \pm 4.44	29.07 \pm 4.58	58.92 \pm 4.33	34.06 \pm 2.99	78.2 \pm 0.8	50.32 \pm 3.94	64.56 \pm 4.1	57.18 \pm 3.09
w. $\epsilon_t = 2$	51.26 \pm 1.97	21.45 \pm 1.88	58.92 \pm 4.45	25.08 \pm 3.48	45.63 \pm 3.55	23.28 \pm 1.99	79.05 \pm 1.37	50.44 \pm 3.5	66.36 \pm 5.89	60.49 \pm 4.89
$\epsilon = 2$										
AUG-PE	40.9 \pm 7.43	13.57 \pm 3.88	64.75 \pm 7.31	15.2 \pm 4.82	30.7 \pm 9.22	14.83 \pm 5.29	78.29 \pm 0.8	53.38 \pm 1.79	63.74 \pm 5.0	60.1 \pm 4.37
FastDP	51.06 \pm 5.7	20.04 \pm 4.34	58.78 \pm 5.13	19.77 \pm 4.27	45.94 \pm 8.57	23.72 \pm 5.52	79.98 \pm 1.95	51.31 \pm 3.32	66.32 \pm 6.66	59.99 \pm 5.35
Term2Note ($\epsilon_n = \infty$)	51.78 \pm 3.99	3.36 \pm 3.87	57.45 \pm 5.97	25.59 \pm 4.84	47.21 \pm 3.16	25.26 \pm 2.64	79.00 \pm 1.67	50.60 \pm 2.75	67.00 \pm 3.39	59.52 \pm 5.59
w. $\epsilon_t = \infty$	48.57 \pm 0.89	20.31 \pm 1.25	59.92 \pm 5.19	24.63 \pm 2.69	41.23 \pm 3.46	20.75 \pm 2.05	79.56 \pm 1.08	51.75 \pm 0.85	68.64 \pm 3.55	60.41 \pm 3.43
w. $\epsilon_t = 2$	51.87 \pm 2.73	23.06 \pm 2.51	57.77 \pm 6.18	26.58 \pm 5.04	47.37 \pm 2.88	24.77 \pm 2.01	79.43 \pm 1.41	51.3 \pm 2.96	69.45 \pm 4.73	60.31 \pm 3.39

Table 7: Supplementary results for utility evaluation: F1, Precision, Recall, AUC, and Precision@ k , with **mean \pm standard deviation** values reported.

J CASE STUDIES FOR TERM GENERATION

Table 9 presents examples of synthetic clinical terms generated with and without the application of DPRP*. The original list contains five salient terms extracted from a real clinical note. When no DP is applied, the generated list recovers only two of these terms (“air” and “discharge”), suggesting limited coverage despite the absence of privacy constraints. In contrast, the DP-enabled output does not directly replicate any of the original terms beyond “discharge”, but instead generates a substantially longer and more diverse list of medically plausible terms.

This illustrates a key trade-off: the DP mechanism introduces sufficient variability to obscure direct term recovery, thus enhancing privacy protection. At the same time, the generated list remains semantically coherent and clinically relevant, containing realistic phrases such as “hemodynamically stable,” “chronic low back pain,” and “pulmonary vein,” which contribute to the naturalness and

Method	Fidelity			Utility								
	Length	Unary/Binary Term	Semantic	F1		AUC		Precision@ k				
	KL Div. \downarrow	Jaccard \uparrow	KL Div. \downarrow	MAUVE \uparrow	Micro	Macro	Micro	Macro	$k = 3$			
Original Data							57.03	30.80	82.01	58.88	68.93	62.14
$\epsilon = \epsilon_n = \infty$												
Term2Note	0.18	0.61/0.34	0.23/1.55	0.80	52.56	25.32	80.81	55.09	67.30	60.78		
w. $\epsilon_t = \infty$	0.36	0.40/0.18	0.77/ 1.52	0.66	53.77	25.72	79.94	51.86	66.98	60.71		
$\epsilon = \epsilon_n = 8$												
Term2Note	0.40	0.39/0.13	0.53/1.66	0.48	48.41	20.89	78.55	48.89	67.50	59.31		
w. $\epsilon_t = \infty$	0.40	0.37/0.13	0.64/1.82	0.38	47.63	20.19	78.87	50.5	66.83	59.53		
w. $\epsilon_t = 8$	0.40	0.37/0.13	0.75/2.05	0.32	55.46	26.73	79.68	49.92	69.30	60.60		
w. $\epsilon_t = 5$	0.41	0.38/0.13	0.70/1.71	0.38	51.82	21.67	80.44	51.28	70.92	60.88		
w. $\epsilon_t = 2$	0.51	0.36/0.12	0.76/1.89	0.30	52.34	22.50	80.02	51.71	69.62	60.01		
$\epsilon = \epsilon_n = 5$												
Term2Note	0.36	0.38/0.13	0.56/ 1.52	0.31	51.20	21.18	80.03	53.10	67.65	61.38		
w. $\epsilon_t = \infty$	0.25	0.37/0.13	0.65/1.76	0.32	49.98	21.50	79.77	52.57	68.14	59.91		
w. $\epsilon_t = 5$	0.39	0.36/0.12	0.75/1.79	0.32	52.79	23.74	79.54	49.64	67.99	58.92		
w. $\epsilon_t = 2$	0.41	0.36/0.13	0.77/1.83	0.21	55.06	27.86	79.42	49.19	69.30	59.82		
$\epsilon = \epsilon_n = 2$												
Term2Note	0.49	0.36/0.12	0.60/1.65	0.27	49.26	21.17	79.21	50.33	67.16	59.24		
w. $\epsilon_t = \infty$	0.31	0.36/0.13	0.69/1.59	0.35	48.11	20.87	79.49	52.83	65.51	57.17		
w. $\epsilon_t = 2$	0.46	0.35/0.12	0.80/1.78	0.31	53.66	24.43	79.91	50.26	69.28	61.08		

Table 8: Fidelity and utility evaluation of synthetic datasets generated by Term2Note with Gemma-3-1B as the base model for NOTEGEN.

utility of the resulting synthetic note. These findings align with our earlier quantitative analysis, confirming that DPRP* balances semantic fidelity with privacy-preserving diversity.

Method	Terms
Original	["Physical", "Discharge", "Laparoscopic", "incisions", "air"]
No DP	["air", "discharge"]
DP	["brief", "discharge", "negative", "medications", "placement", "drainage", "hemodynamically stable", "therapy", "chronic low back pain", "symptoms", "right chest", "referred to cardiac surgery", "chest discomfort", "pulmonary vein", "hyperlipidemia: he", "hypertension-", "difficulty", "surgical service", "anticoagulation", "discontinued", "increased", "afebrile", "asymptomatic", "admission", "intervention", "hospitalization", "cardiac enzymes x3?"]

Table 9: Example of synthetic terms.

K EXAMPLE DEMONSTRATION

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

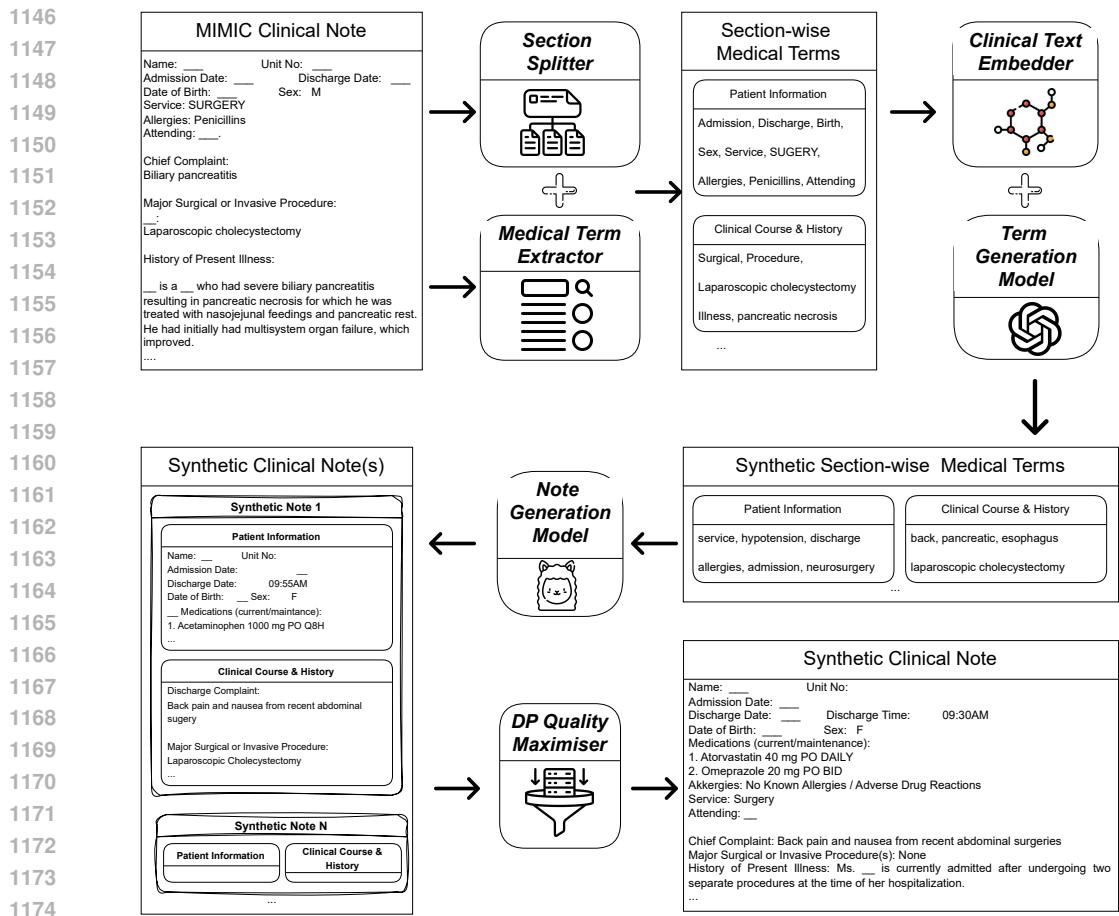


Figure 7: Example to demonstrate Term2Note.

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187