
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TERM2NOTE: SYNTHESISING DIFFERENTIALLY PRI-
VATE CLINICAL NOTES FROM MEDICAL TERMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training data is fundamental to the success of modern machine learning models,
yet in high-stakes domains such as healthcare, the use of real-world training data
is severely constrained by concerns over privacy leakage. A promising solution to
this challenge is the use of differentially private (DP) synthetic data, which offers
formal privacy guarantees while maintaining data utility. However, striking the
right balance between privacy protection and utility remains challenging in clin-
ical note synthesis, given its domain specificity and the complexity of long-form
text generation. In this paper, we present Term2Note, a methodology to synthe-
sise full-length clinical notes under strong DP constraints. By structurally separat-
ing content and form, Term2Note generates section-wise note content conditioned
on medical terms, with terms and notes privatised under separate DP constraints.
A DP quality maximiser further enhances synthetic notes by selecting high-quality
outputs. Experimental results show that Term2Note produces synthetic notes with
statistical properties closely aligned with real clinical notes, demonstrating strong
fidelity. In addition, multi-label classification models trained on these synthetic
notes perform comparably to those trained on real data, confirming their high util-
ity. Compared to existing DP text generation baselines, Term2Note achieves sub-
stantial improvements in both fidelity and utility, while avoiding reliance on label
distribution assumptions, suggesting its potential as a viable privacy-preserving
alternative to using sensitive clinical notes.

1 INTRODUCTION

The scaling law of neural language models (Kaplan et al., 2020) suggests that model performance
improves substantially with increased dataset size, i.e., larger training corpora generally lead to lower
test loss. As large language models (LLMs) continue to scale in size, with models such as Llama
3 (Meta, 2024), Gemma 3 (Google, 2025), and Qwen3 (Yang et al., 2025) ranging from 0.6B to
over 405B parameters, the demand for large-scale, high-quality training data has risen accordingly.
To meet this demand, synthetic data generation using LLMs has emerged as a promising direction.
Instruction-following synthetic datasets (Schick & Schütze, 2021; Taori et al., 2023; Li et al., 2025b)
have demonstrated impressive effectiveness for model pretraining and fine-tuning. This is especially
relevant for high-stakes domains such as healthcare (Li et al., 2025a), where real data is often siloed,
heavily regulated, and difficult to share (Schlegel et al., 2025). Although large amounts of clinical
data exist within healthcare institutions, access to these datasets remains extremely limited due to
their sensitive nature and the strict privacy regulations surrounding them. A practical and privacy-
conscious solution is to share synthetic versions of sensitive clinical data instead of the raw data
itself. However, to make such synthetic sharing viable, formal privacy guarantees are essential.

Differential privacy (DP) provides a principled framework for this purpose (Alzoubi & Mishra,
2025). By bounding the influence of any individual record on the synthesised dataset, DP offers
quantifiable privacy guarantees. Prior work on DP-based text generation has focused mainly on
short-form texts in low-risk domains such as reviews (Yue et al., 2023; Kurakin et al., 2023; Mattern
et al., 2022; Flemings & Annavaram, 2024). In biomedical settings, efforts have been restricted to
synthesising (public) PubMed abstracts (Xie et al., 2024) and relatively short clinical passages (Aziz
et al., 2022; Ramesh et al., 2024), with no prior work addressing the more complex task of generating
full-length clinical notes under DP constraints. Synthesising clinical notes with DP presents two
key challenges. First, generation complexity (Kweon et al., 2024a; Weetman et al., 2021): clinical
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Figure 1: Overview of Term2Note. An original clinical note is split into sections and associated
medical terms, which are embedded and optionally privatised via DP perturbation. A term gen-
eration model produces synthetic terms from these embeddings, and a DP-trained note generation
model synthesises section-wise notes conditioned on them. A DP quality maximiser then selects the
final synthetic note. Appendix K illustrates the whole process with a concrete example.

notes are long and exhibit diverse structures and free-form content, making it more difficult for
generative models to maintain coherence and quality, particularly under privacy constraints. Second,
domain specificity (Adnan et al., 2010): clinical notes typically contain extensive domain-specific
terminologies, which require expert knowledge to understand and reproduce accurately.

In this paper, we tackle this underexplored and challenging task by proposing Term2Note, a novel
methodology for DP synthetic clinical note generation. As illustrated in Figure 1, Term2Note ad-
dresses the challenge of long-form generation by leveraging domain-specific document structures to
decompose the task into smaller, section-wise subtasks. To handle domain specificity, it conditions
generation not on generic metadata (e.g., class labels or diagnosis codes such as Enterocolitis due
to Clostridium difficile), but on salient clinical terms (e.g., [diarrhea, Clostridium difficile colitis,
Vancomycin]), which are subjected to an additional layer of DP protection. This term-based condi-
tioning strategy allows the model to generate text that is both clinically meaningful and structurally
coherent, while also enabling more fine-grained privacy control. Our experimental results show that
Term2Note: (1) produces synthetic notes with high structural and semantic fidelity to real clinical
data; (2) enables strong utility in the downstream task, such as ICD code prediction; (3) satisfies
formal DP guarantees that make it suitable for safe data sharing. Moreover, Term2Note consistently
outperforms baseline methods across all evaluation metrics, often by a large margin. In summary,
Term2Note offers a promising solution for privacy-preserved clinical notes sharing.

2 BACKGROUND & RELATED WORK

Definition 1. (Dwork et al., 2006) A randomised algorithm M : N|X | → R is said
to be (ϵ, δ)-differentially private (DP), if, for any two neighboring datasets D and D′ dif-
fering in one single instance, and for all subsets S of the output space of M, it has
P[M(D) ∈ S] ≤ eϵP[M(D′) ∈ S] + δ.

The definition implies the probability distributions induced byM on neighboring datasets must be
close, with their likelihood ratios bounded by a multiplicative factor of eϵ and an additive slack of δ.
Smaller ϵ values indicate stronger privacy, while δ denotes the (typically negligible) probability of a
privacy breach exceeding the eϵ bound.

Theorem 1. (Post-Processing) (Dwork & Roth, 2014) Let M : N|X | → R be a randomised
algorithm that is (ϵ, δ)-DP. Let f : R → R′ be an arbitrary randomised function. Then
f ◦M : N|X | → R′ is also (ϵ, δ)-DP.
Theorem 2. (Parallel Composition) (McSherry, 2009) Let dataset D = D1 ∪ · · · ∪ Dk, and
Di ∩ Dj = ∅ for i ̸= j. LetMi : N|Xi| → Ri be a randomised algorithm that is (ϵi, δi)-DP, for
i ∈ [k]. ThenM(D) = (M1(D1), · · · ,Mk(Dk)) is (maxi ϵi,maxi δi)-DP.
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The post-processing property ensures that once a randomised algorithmM satisfies (ϵ, δ)-DP, any
deterministic or randomised function applied to its output cannot weaken its privacy guarantee.
Thus, a generative model trained under DP retains its privacy during downstream use, e.g., gener-
ating synthetic data, applying further transformations, or training downstream models. The parallel
composition property states that applying DP mechanisms to disjoint data subsets yields an overall
privacy loss bounded by the maximum individual (ϵ, δ) values—a key feature in our method, where
clinical terms and notes can be privatised independently.

DP in Deep Learning can be achieved by injecting random noise into the input data, where the
noise is typically sampled from a pre-determined distribution, such as the Gaussian distribution. In
the context of deep learning, the DP-SGD algorithm (Abadi et al., 2016) introduces a principled
way to achieve this by clipping per-sample gradients and adding noise at each optimisation step.
This approach ensures that the influence of any single training example on the model’s parameters
remains bounded, thereby enforcing DP guarantees throughout training. Some subsequent research
(Bu et al., 2023; Yousefpour et al., 2021; Lee & Kifer, 2020) has focused on improving the com-
putational efficiency of DP-SGD, aiming to reduce the time and memory overhead associated with
per-example gradient computation. Unless otherwise specified, we adopt the FastDP algorithm (Bu
et al., 2023) to fully fine-tune the model under DP constraints throughout this paper.

Synthetic text generation has progressed rapidly with the rise of LLMs, especially through
instruction-following datasets that enhance downstream performance (Taori et al., 2023; Peng et al.,
2023; Schick & Schütze, 2021). Generating synthetic clinical text, however, is substantially more
challenging due to the domain’s complexity, reliance on expert knowledge, and lack of easily tem-
plated instructions. Prior attempts have often produced datasets with limited downstream utlity (Li
et al., 2023a; Schlegel et al., 2023). Recent work has sought to improve realism by prompting LLMs
with control code (e.g., ICD codes) (Falis et al., 2024) or transforming biomedical abstracts (e.g.,
PubMed content) into clinical-style text (Kweon et al., 2024b). While promising, these methods do
not address privacy, a central concern in clinical settings. A straightforward strategy is de-identifying
private information and prompting LLMs to fill in the gaps (Sarkar et al., 2025), but a more prin-
cipled approach is to fine-tune or instruction-tune generative models with DP for formal protection
(Aziz et al., 2022; Ramesh et al., 2024; Baumel et al., 2024). However, prior studies operate on
relatively short clinical texts, either naturally brief or deliberately truncated, making generation con-
siderably easier. In contrast, DP-constrained generation of full-length clinical notes, as addressed in
this paper, is more challenging due to their length, unstructured format, and high variability.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Given a private dataset Dsrc consisting of clinical notes, our goal is to develop a mechanismM that
satisfies (ϵ, δ)-DP and produces a synthetic dataset Dsyn as its output. Let Xsrc ∈ Dsrc denote an
original clinical note and Xsyn ∈ Dsyn its corresponding synthetic version. To support the develop-
ment and evaluation of the mechanism, we partition the private dataset into a training set Dsrc

train and
a test set Dsrc

test. The training set is used to developM, while the test set remains completely unseen
byM to provide an unbiased evaluation. Additionally, we assume access to a public dataset of clin-
ical terms, denoted as Dpublic, which can be automatically derived from publicly available medical
resources and therefore used freely without privacy constraints.

We introduce Term2Note, a section-wise DP generation framework for clinical notes. An overview
is illustrated in Figure 1, with the detailed procedure in Algorithm 1. In the following, we first
elaborate on Term2Note alongside the algorithm, and then present the implementation details.

3.2 FORMAT AND TERM IDENTIFICATION

Since our framework synthesises clinical notes via section-wise generation conditioned on medical
terms, we first standardise the structure of the notes and identify salient clinical terms. Let SECSPLIT
denote an automatic section segmentation module. Given an original clinical note Xsrc, SECSPLIT
outputs a list of m segmented sections: [SECsrc

1 , ...,SECsrc
m ] = SECSPLIT(Xsrc), where SECsrc

i =
“” if the i-th section is absent. Next, we apply an automatic term extraction module, denoted as
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Algorithm 1 Term2Note
Input: Private note Xsrc, public term lists Dpublic, privacy parameters for term generation (ϵt, δt)
and note generation (ϵn, δn), #sections m, instruction I , noise variance σemb, #candidates k
Output: Synthetic note Xsyn with (ϵ, δ)-DP guarantee

1: SECsrc
1:m ← SECSPLIT(Xsrc) // 3.2 Format and Term Identification

2: T src
1:m ← TERMEXT(SECsrc

1:m)
3: Esrc

1:m, Epublic ← EMB(T src
1:m), EMB(Dpublic) // 3.3 Clinical Terms Generation

4: if train then
5: θt, θp ← L(TERMGENθt(PROJθp(Epublic +N (0, σemb))), Dpublic) // Train on Dpublic

6: else
7: T syn

1:m ∼ TERMGENθt(PROJθp(DPRP∗(Esrc
1:m, ϵt

m , δt
m ))) // Infer for X src

8: end if
9: if train then

10: θn ← FastDP(L(NOTEGENθn(I, SECsrc
<i, T

src
i ), Xsrc), ϵn, δn) // 3.4 Clinical Note Generation

11: end if
12: SECsyn

j [i] ∼ NOTEGENθn(I, SECsyn
<j [i], T

src / syn
j ) for i = 1, . . . , k; j = 1, . . . ,m

13: Xsyn ← argmini∈[k] PPL(SECsyn
1:m[i]) // 3.5 DP Quality Maximiser

14: return Xsyn

TERMEXT, to each section to identify clinically salient terms, resulting in a list of section-specific
medical terms: [T src

1 , ..., T src
m ] = [TERMEXT(SECsrc

1 ), ..., TERMEXT(SECsrc
m )].

3.3 CLINICAL TERMS GENERATION

Clinical terms from private notes may still contain sensitive information. For example, unique com-
binations of diagnoses and procedures could re-identify patients. To mitigate this, we introduce an
optional DP step for term generation. We formulate it as a reconstruction task, fine-tuning a gen-
erative model on the public term dataset Dpublic to recover term lists from embeddings, and then
applying it to private data under DP constraints. Specifically, any given (section-wise) term list is
first embedded using a clinical text embedder, denoted EMB. A projection layer PROJ, parameterised
by θp, maps the embeddings to the hidden dimensionality required by the generative model TER-
MGEN, parameterised by θt. The model then reconstructs the original term list from the projected
embeddings.

To protect privacy when applying on private data, we adapt the DPRP schema (Gondara & Wang,
2020), a model-agnostic DP mechanism originally proposed for tabular data, to term embeddings
derived from private notes, denoted as DPRP∗. The procedure perturbs private embeddings in
four steps: (1) add dimension-wise random noise to input embeddings; (2) compute the covariance
matrix of the input embeddings and add random noise; (3) perform singular value decomposition
(SVD) on the noisy covariance matrix; (4) reconstruct the inputs from the noisy embeddings and
the right singular vectors. The pseudocode of DPRP∗ is provided in Appendix B. To minimise the
distribution difference between embeddings used in training and those perturbed during inference,
we additionally add Gaussian noise to the embeddings during training. Formally, the process is
defined as follows:

E′ =

{
EMB(Dpublic) +N (0, σemb), if training,
DPRP∗(EMB(T src), ϵt

m , σt

m ), otherwise.
(1)

T syn ∼ TERMGENθt(PROJθp(E
′)) (2)

Here, ϵt and σt denote the privacy parameters of DPRP∗, and m is the number of sections in a
single note. Since E′ is computed at the section level, the overall privacy cost for an entire note
accumulates across sections. To account for this, we distribute the privacy budget evenly by scaling
the cost for each section to 1

m of the total budget.

3.4 CLINICAL NOTE GENERATION

We define section-wise clinical note generation as a conditional text generation task. Given the
task instruction I , the content of the previous (generated) sections [SEC1, ...,SECi−1], and a list
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of clinical terms Ti for the current section, a generative model NOTEGEN, parameterised by θn, is
trained to produce the i-th section of the note under (ϵn, δn)-DP. During inference, each section is
sampled sequentially as:

SECsyc
i ∼ NOTEGENθn(I, [SECsyn

1 , ...,SECsyn
i−1], Ti) (3)

Here, Ti can be the original extracted terms T src
i or the synthetic privatised terms T syn

i , depending
on the privacy configuration. With the section group named provided, the instruction I is defined as
shown in Figure 1. Finally, a synthetic full note is obtained by concatenating the generated sections:
Xsyn = [SECsyn

1 , ...,SECsyn
m ].

3.5 DP QUALITY MAXIMISER

To improve the quality of the synthetic data, we introduce a quality maximisation strategy during
inference by leveraging the generative capabilities of LLMs. Specifically, instead of generating
a single synthetic note, we perform preference sampling on k candidate notes for Xsrc, denoted
Xsyn[1 : k]. Notably, this sampling procedure preserves the DP guarantee due to the post-processing
property of DP. To select the most fluent and coherent output among the candidates, we use per-
plexity as the preference model. Perplexity reflects the likelihood of a sequence under an LLM,
computed as the exponentiated average negative log-likelihood of the tokens. Lower perplexity in-
dicates higher linguistic plausibility. To avoid bias from the generator itself, we compute perplexity
scores using a reference domain-specialised LLM, denoted LLMppl. This ensures a more objec-
tive assessment of sequence quality. Formally, the perplexity of a candidate note Xsyn[i] is given
by PPL(Xsyn[i]) = exp

(
− 1

t

∑t
i=1 log LLMppl(di|d<i)

)
, where d1,...,t are tokens in Xsyn[i]. The

synthetic note with the lowest perplexity score is selected.

3.6 PRIVACY ANALYSIS

The overall privacy guarantee of Term2Note depends on the composition of its two DP components:
TERMGEN and NOTEGEN. Specifically, TERMGEN is trained on Dpublic and can optionally be
applied to privatise terms for Dsrc

test, while NOTEGEN is trained on Dsrc
train under DP. Since TERMGEN

and NOTEGEN operate on disjoint subsets of private data, the overall privacy loss can be computed
using parallel composition. Formally, the total privacy guarantee (ϵ, δ) is defined as below, and the
proof is provided in Appendix C.

(ϵ, δ) =

{
(ϵn, δn), if Ti = T src

i ,

(max(ϵn, ϵt),max(δn, δt)), if Ti = T syn
i .

(4)

3.7 IMPLEMENTATION DETAILS

SECSPLIT To segment clinical notes into meaningful sections, we begin by considering the for-
matting conventions commonly found in clinical documentation. Although the SOAP format is
widely adopted, it often requires manual annotation for accurate segmentation (Gao et al., 2022),
limiting its applicability in automated processing. Moreover, there is no universally standardised
format applicable across healthcare systems or institutions globally. To address this, we perform a
preliminary analysis of the original clinical notes and develop a rule-based segmentation strategy
using regular expression (regex) to automatically identify section titles. The span of each section
is determined greedily, based on the position of a detected title and the nearest subsequent section
title. A list of commonly occurring section titles is automatically curated, and we further group
them into six broader semantic categories: “Patient Information”, “Clinical Course & History”,
“Examinations & Findings”, “Laboratory & Imaging Results”, “Hospital Stay & Treatment”, and
“Medications & Discharge Plan”. This taxonomy forms the basis for SECSPLIT, which splits each
clinical note into at most six standardised sections corresponding to these categories. The complete
list of extracted section titles and their groupings is provided in Appendix D.

TERMEXT Various biomedical terminology vocabularies exist, depending on the taxonomy
adopted. In this work, we focus exclusively on terms from SNOMED CT, a comprehensive clin-
ical vocabulary widely used in electronic health records (EHRs). Notably, SNOMED CT is also
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included within the Unified Medical Language System (UMLS) (U.S. NLM, 2025), a metathesaurus
that integrates multiple biomedical vocabularies. To extract medical terms from clinical text, we use
QuickUMLS (Soldaini, 2016), an unsupervised tool for fast, approximate string matching against
UMLS concepts. Following extraction, we retain only the SNOMED CT concepts.

Backbone Models For clinical term embedding, we use MedEmbed-large (Balachandran, 2024)
as our embedder EMB. This encoder-only model is specifically fine-tuned for medical and clinical
texts, making it well-suited for embedding domain-specific terms. For the two generative modules
in Term2Note, we adopt lightweight yet effective language models: GPT2-Large (Radford et al.,
2019) for the term generation model TERMGEN, and Llama-3.2-1B (Meta, 2024) or Gemma-3-1B
(Google, 2025) for the note generation model NOTEGEN. Both Llama and Gemma are the most
widely adpoted open-source LLMs, enabling reproducible evaluation under well-supported archi-
tectures. Furthermore, to increase architectural diversity and reduce the risk of model-specific bias,
we include these two distinct model families. To compute the perplexity of generated notes, we use
Asclepius-Llama3-8B (Kweon et al., 2024b) as our reference model LLMppl. This model is also
pre-trained on clinical text, mitigating domain mismatch and providing reliable fluency estimates.
Additionally, it supports a maximum input length of 8192 tokens, which is sufficient to accommo-
date the full length of most generated clinical notes.

4 EXPERIMENTAL SETTING

Datasets The MIMIC dataset series is one of the most widely used resources for clinical NLP.
In this work, we use discharge notes from two MIMIC datasets for different purposes. MIMIC-III
(Johnson et al., 2016) is used as the public dataset to train the term generation model TERMGEN,
and MIMIC-IV notes (Johnson et al., 2023) serve as our private dataset for training the note gener-
ation model NOTEGEN under DP constraints. For both datasets, we apply a filtering step to exclude
discharge notes that do not have any associated ICD codes. In addition, we exclude all notes anno-
tated in the SNOMED CT Entity Linking Challenge (Hardman et al., 2025) from MIMIC-IV notes,
as we reserve this subset as our test set. As a result, we construct the following three datasets for
our experiments and summarises their statistics in Appendix E: Dpublic contains around 52.7k notes
derived from MIMIC-III where 500 notes are held out to assist with model development and vali-
dation; Dsrc

train consists of around 122k notes derived from MIMIC-IV (excluding SNOMED notes);
Dsrc

test composes of 204 SNOMED notes.

Hyperparameters Following common practice in previous work (Yu et al., 2021; De et al., 2022;
Baumel et al., 2024), we experiment with different privacy budgets by varying the overall ϵ ∈
[2, 5, 8]. Accordingly, the privacy budget for term generation (ϵt) or note generation (ϵn) is set to
one of these values. Following previous work, the corresponding δ value is set as 1

NlogN where N

denotes the size of the private dataset. All experiments are conducted on up to two Nvidia A100
80GB GPUs. More training details, including learning rate, number of epochs, batch size, etc., are
provided in Appendix F.

Baselines We compare our proposed method against existing DP approaches for synthetic text
generation. Specifically, we consider the following baselines: (1) DP-SGD with control codes (Yue
et al., 2023): fine-tuning a language model under DP constraints using DP-SGD, where task-relevant
control codes are prepended to the input. To ensure consistency with the DP training setup used in
Term2Note, we adapt this method to use the FastDP algorithm. (2) AUG-PE (Xie et al., 2024): a
recent method based on private evaluation (PE), designed to generate synthetic text without requir-
ing model training. It leverages a pretrained LLM to produce an initial pool of candidate synthetic
texts. These candidates are then evaluated under the PE mechanism, which privately measures their
semantic proximity to the real private texts using a DP distance function. Only candidates that fall
within a DP-valid similarity threshold are retained. The model is subsequently prompted to produce
additional samples conditioned on these retained examples, iteratively enlarging the synthetic cor-
pus while maintaining differential privacy. For a fair comparison with Term2Note, we adapt both
baselines to the clinical note generation task. Specifically, we prepend ICD codes associated with
each note as control codes to guide the generation process, aligning with the conditioning setup used
in our framework.
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Method
Fidelity Utility

Length Unary/Binary Term Semantic F1 AUC Precision@k

KL Div.↓ Jaccard↑ KL Div.↓ MAUVE↑ Micro Macro Micro Macro k = 3 k = 5

Original Data 57.03 30.80 82.01 58.88 68.93 62.14
Sy

nt
he

tic
ϵ = ∞

AUG-PE 11.96 0.14/0.02 7.59/16.34 0.01 45.82 14.84 79.52 54.35 68.48 61.77
FastDP 1.04 0.53/0.28 0.32/0.84 0.12 53.02 25.51 79.35 51.05 69.77 60.39

Term2Note (ϵn = ∞) 0.25 0.52/0.20 0.22/1.08 0.59 49.95 21.89 81.40 55.43 69.77 61.96
(ϵn = ∞, ϵt = ∞) 0.68 0.43/0.14 0.45/1.95 0.46 49.24 21.90 80.24 51.54 67.81 61.08
(ϵn = 8, ϵt = ∞) 0.26 0.39/0.13 0.50/1.19 0.35 48.16 20.63 78.72 50.01 65.35 58.72
(ϵn = 5, ϵt = ∞) 0.28 0.38/0.13 0.53/1.23 0.27 51.00 22.73 78.80 50.37 67.15 59.91
(ϵn = 2, ϵt = ∞) 0.43 0.37/0.12 0.60/1.35 0.36 48.57 20.31 79.56 51.75 68.64 60.41

ϵ = 8

AUG-PE 11.71 0.19/0.03 5.03/12.18 0.01 40.73 13.28 78.13 53.49 63.24 59.03
FastDP 4.51 0.31/0.10 2.88/5.88 0.02 48.58 16.40 80.74 51.57 69.79 61.59

Term2Note (ϵn = 8) 0.39 0.40/0.13 0.47/1.14 0.53 49.71 21.28 80.03 52.80 67.49 61.48
(ϵn = 8, ϵt = 8) 0.16 0.38/0.13 0.62/1.15 0.37 52.31 26.50 78.19 50.17 67.81 57.36
(ϵn = 8, ϵt = 5) 0.15 0.39/0.13 0.64/1.16 0.46 49.52 21.36 79.08 50.11 68.29 60.68
(ϵn = 8, ϵt = 2) 0.19 0.38/0.12 0.61/1.18 0.38 53.25 24.66 78.85 49.41 68.31 59.91

ϵ = 5

AUG-PE 11.70 0.11/0.01 7.75/13.58 0.01 48.10 17.44 77.78 53.33 63.01 56.94
FastDP 3.40 0.29/0.09 2.97/5.67 0.04 49.30 16.23 80.54 54.22 67.31 61.98

Term2Note (ϵn = 5) 0.20 0.41/0.14 0.42/1.17 0.39 47.94 20.31 79.29 51.19 66.04 61.69
(ϵn = 5, ϵt = 5) 0.20 0.38/0.13 0.63/1.19 0.43 54.83 28.96 78.20 50.32 64.56 57.18
(ϵn = 5, ϵt = 2) 0.36 0.38/0.12 0.64/1.32 0.36 51.26 21.45 79.05 50.44 66.36 60.49

ϵ = 2

AUG-PE 12.11 0.19/0.03 5.42/11.85 0.01 40.90 13.57 78.29 53.38 63.74 60.10
FastDP 9.67 0.14/0.03 5.79/10.89 0.01 51.06 20.04 79.98 51.31 66.32 59.99

Term2Note (ϵn = 2) 0.43 0.39/0.12 0.48/1.17 0.31 51.78 23.36 79.00 50.60 67.00 59.52
(ϵn = 2, ϵt = 2) 0.48 0.37/0.12 0.68/1.29 0.31 51.87 23.06 79.43 51.30 69.45 60.31

Table 1: Fidelity and utility evaluation of synthetic datasets generated by different methods on
Llama-3.2-1B. Utility metrics are reported with the average score across 5-fold cross-validation.
The best result among all methods to generate synthetic datasets is shown in bold, and the
best result at the same privacy cost is underlined. Additional results on Gemma-3-1B, and evalu-
ation results, including the standard deviations of utility metrics, precision and recall scores, are
provided in Appendix I.

Evaluation The automatic evaluation of synthetic data typically encompasses three key aspects:
fidelity, privacy, and utility. In this work, we mainly focus on fidelity and utility. While privacy is
formally guaranteed through DP, we additionally conduct a preliminary empirical privacy analysis
to assess potential leakage risks. The results of this experiment show encouraging outcomes and are
presented in Appendix G.
Fidelity assesses how closely synthetic notes resemble real data across structural, syntactic, and
semantic dimensions. Structural similarity is measured by comparing text length distributions using
Kullback–Leibler (KL) divergence. Syntactic similarity focuses on clinical term overlap, evaluated
via Jaccard similarity and KL divergence over unary and binary term sets, where binary terms refer
to co-occurring pairs in the same note. Semantic similarity is evaluated using MAUVE (Pillutla
et al., 2021). MAUVE assesses global distributional fidelity in a semantic embedding space, which
we use as a proxy for high-level semantic similarity between synthetic and real notes. BioMistral-7B
(Labrak et al., 2024) serves as the language model to ensure domain-relevant representations.
Utility evaluates the usefulness of the synthetic data for downstream clinical applications, where we
assess the performance of models trained on synthetic notes and tested on real data. Specifically, we
consider ICD coding prediction as the downstream task, leveraging the ICD labels available in the
private dataset. The ICD coding task is defined as follows: given a discharge note, the model is re-
quired to predict all applicable ICD codes associated with it. Due to the large number of fine-grained
codes in both ICD-9 and ICD-10, direct prediction is highly challenging. To simplify the task, we
normalise all ICD codes to their chapter-level categories and further merge the ICD-9 and ICD-10
codes into a unified set of 20 code groups. The complete mapping from ICD-9/10 codes to these
unified categories is provided in Appendix H. We assess the utility of synthetic notes by compar-
ing model performance in two training settings: (1) Train-Real-Test-Real, where the model is both
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trained and tested on the original dataset; (2) Train-Synthetic-Test-Real, where the model is trained
on the synthetic dataset and tested on the original dataset. We report standard multi-label classifi-
cation metrics, including the micro and macro average of F1 score and AUC, and Precision@k. To
handle the long input sequences, we adopt Clinical-Longformer (Li et al., 2023b) as our classifier.
This model supports input lengths exceeding 4k tokens and is pre-trained on clinical corpora, mak-
ing it well-suited for our task. For evaluation, we use the private test set Dsrc

test, which contains 204
notes in total. We further split it into a training subset Dsrc

test-train and a testing subset Dsrc
test-test. The

classifier is trained on D
src/syn
test-train and evaluated on Dsrc

test-test. Due to the limited dataset size, we employ
80:20 train-test 5-fold cross-validation.

Human Evaluation is additionally conducted with three licensed physicians to assess the clinical
quality of the generated notes. The evaluation follows a pairwise comparison protocol, where each
physician is presented with a randomly selected pair of notes and asked to indicate which one is
clinically better. The pairs are sampled from outputs generated by three different models under
ϵ = 8, as well as from the original (real) notes. Each physician evaluates a minimum of 100 pairs,
resulting in a total of 412 pairwise comparisons across all annotators. Based on these annotations,
we estimate pairwise model preferences and infer a global ranking using the Bradley-Terry (BT)
(Bradley & Terry, 1952) model. The BT model also allows us to estimate the probability that one
modelM1 is preferred over another modelM2, based on the aggregated comparison outcomes.

5 RESULTS

Figure 2: Distribution of n-gram frequencies in
clinical notes generated by different DP meth-
ods under ϵ = 8. Note: density estimates may
extend below zero due to smoothing; all ob-
served frequencies are positive integers.

Figure 3: Human evaluation results summarised
using the BT model. Term2Note (FP) denotes
the full privacy setting, where both terms and
notes are synthesised under DP constraints.

Term2Note consistently achieves better structural, syntactic, and semantic similarity to the
original data, despite operating under stronger privacy constraints and fewer assumptions.
In terms of structural similarity, Term2Note achieves the lowest KL divergence in text length dis-
tribution (as low as 0.15), indicating faithful preservation of note structure. For syntactic similarity,
it obtains the (almost) highest Jaccard scores for both unary and binary clinical terms, alongside the
lowest KL divergence in term frequency distribution, suggesting close alignment with real clinical
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Original

Medications on Admission:
  Aspirin X mg daily; Omeprazole X mg daily
  Saline Nasal spray daily; 
  (...)
Discharge Medications: 
  Patient expired
Discharge Disposition: 
  Expired
Discharge Diagnosis:
  Hypoxic respiratory failure; Anuric renal failure
  Atrial fibrillation with RVR; Delirium
Discharge Condition:
Patient expired after having been transitioned to CMO
after progressive multiorgan system failure prompted
discussion with his family and HCP.
Discharge Instructions: 
  Patient expired.
Followup Instructions: 
  ___

Term2Note

Medications on Admission:
The Preadission Medication List is accurate and complete.
  1.ibuprofen 600 mg PO Q6H 
  2. acetaminophen 650 mg PO Q8H
  3. furosemide 40 mg PO DAILY 
  4. capsaipine extended-release 50 (...)
  5. albuterol inhaler 1 inhaler q4h 
  6. metoprolol succinate XL 
  (...)
Discharge Medications:
  1. Albuterol Inhaler 1 inhaler q4h
  2. Capsaipine Extended-Release Tablets 50 mg PO BID
  3. Metoprolol Succinate XL Tablet Oral Q24 4. Acetaminophen 325 (...)
  4. Amoxicillin CLINICALLY CONFIRMED (PRN)(...)
RX *furosemide sodium hydrochloride ___ mg PO DAILY Disp #*60 (...)
Discharge Disposition: Home With Service:
Service: Primary Care/Family Practice
Disposition Code: ERX
Facilities: ___

FastDP

Medications That Need To Be Taken After Hospitalization:
[list specific medication names and dosages]

Instructions for Care:
[insert instructions on care after hospitalization]

Follow-up Schedule:
[Insert follow-up schedule]

Special Instructions:
[Insert special instructions]

Other Notes:
[Any other important information you want included in this document.]

Figure 4: Examples of the last section in clinical notes generated by different models. For illustration
purposes, some content is redacted with “(...)”, and numeric values in the original note are de-
identified. No other modifications were made.

content. In semantic space, Term2Note substantially outperforms both baseline methods in MAUVE
score, confirming that its generated text is significantly more aligned with the original notes in the
semantic space. These advantages remain even under a strict privacy budget of ϵ = 2 and when
further enforcing DP on clinical term generation (i.e., ϵt = 2), underscoring the robustness of the
approach. Additionally, Figure 2 shows the distribution of n-gram frequencies, where Term2Note
exhibits a distribution more closely aligned with the original notes compared to the baseline meth-
ods. More results are presented in Appendix I.

Regarding utility, Term2Note demonstrates strong overall performance and consistently pre-
serves clinical utility across varying privacy budgets, even under stricter constraints on both
term and note generation. Across all privacy levels, Term2Note achieves the highest F1 scores,
outperforming both AUG-PE and FastDP, and showing the closest performance to the original data.
While AUC and Precision@k scores are comparable, rather than uniformly superior, to those of
AUG-PE and FastDP, this variation reflects the different aspects of model behaviour captured by
each metric. Notably, even when the privacy budget for note generation is reduced to ϵn = 2 and
additional constraints are applied to privatise clinical terms (with ϵt = 2), Term2Note maintains
strong utility, with F1 and AUC scores comparable to or better than the baselines operating under
looser privacy conditions.

Term2Note is consistently preferred by human experts over AUG-PE, with minimal quality
loss under full privacy. As shown in Figure 3, Term2Note achieves a win rate of 52.2%–53.5%
across DP settings, substantially outperforming AUG-PE (12.4%). The pairwise win probabilities
(lower panel) further demonstrate that Term2Note reliably outperforms AUG-PE across all condi-
tions. Importantly, introducing full privacy constraints, where both clinical terms and notes are
protected, has only a marginal effect on human preference. These results suggest that Term2Note
maintains high perceived quality while offering stronger privacy guarantees.

Term privatisation maintains a good level of semantic coherence while effectively abstract-
ing away from potentially privacy-leaking details. We evaluate the semantic alignment of the
term generation model TERMGEN on Dsrc

test by computing the cosine similarity between the embed-
dings of original and generated term lists, using the clinical term encoder EMB. Without the DP
mechanism DPRP∗, the mean cosine similarity is high (0.82), indicating strong recovery of original
terms. When DPRP∗ is applied, the mean similarity drops to 0.61, reflecting the expected privacy-
induced noise. This drop indicates that the generated terms stay semantically coherent without
closely matching the originals, reducing the risk of revealing sensitive information (see Appendix J
for case studies).

Qualitative Analysis To further assess the quality of synthetic notes, two physicians each re-
viewed 20 samples generated by Term2Note, covering both standard and full privacy settings with
ϵ = 5. As intended by the design of the evaluation, where physicians were explicitly asked to iden-
tify any potential clinical issues, the feedback focuses on shortcomings rather than general plausi-
bility. Importantly, not all notes contained identifiable issues. In one physician’s review, 45% were
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judged to have no clinical problems, indicating that a substantial proportion of generations were
considered clinically plausible. Both physicians agreed that many synthetic notes were plausible as
discharge summaries and generally exhibited sound structural organisation. However, recurring is-
sues emerged around clinical accuracy and coherence. The first physician highlighted problems such
as missing or misordered sections, internal inconsistencies (e.g., conflicting medications), and vague
or overly generic phrasing; under full privacy constraints, repetition was more common. The second
physician, who reviewed a different set of examples, reported more content-level issues, including
medication misclassifications (e.g., labelling omeprazole as an antibiotic), illogical or irrelevant nar-
rative insertions, and errors in clinical reasoning. These observations suggest that while Term2Note
performs well in preserving structural fidelity, improvements are needed in clinical fact consistency
and terminology use. Figure 4 illustrates examples of final note sections, demonstrating the model’s
ability to maintain coherence in longer contexts. Although Term2Note occasionally omits sections,
its outputs more closely align with the structure of the original note compared to the baseline model.

The qualitative feedback highlights important areas where clinical reliability can be further strength-
ened. A key challenge lies in ensuring factual accuracy and preventing clinical inconsistencies (e.g.,
incorrect medication classes or contradictory clinical states). One promising direction is to integrate
clinical fact-checking mechanisms into the generation process. Another complementary approach
is to incorporate structured consistency checks, such as verifying that medications align with listed
conditions, either as part of the decoding process or through post-generation filtering. Finally, incor-
porating lightweight clinical reasoning or rule-based validators could help detect illogical narrative
transitions and prevent contractions across sections. We view these techniques as natural extension
of Term2Note and plan to explore them in future work to further enhance clinical usefulness and
safety.

6 CONCLUSIONS

In this paper, we introduce Term2Note, a novel framework for DP clinical note generation by syn-
thesising section-wise clinical content conditioned on medical terms while providing formal privacy
guarantees. Experimental results demonstrate that Term2Note consistently outperforms existing
baselines by a substantial margin. It achieves the highest fidelity, closely matching original notes
in terms of structure, semantics, and medical term distribution. Furthermore, Term2Note attains
comparable utility to real notes on a downstream ICD coding task, confirming the practical effec-
tiveness of the synthetic data. Human evaluation further supports the superiority of Term2Note,
showing that clinical experts consistently prefer its outputs over those of baseline models. Overall,
Term2Note provides a promising and principled solution to the data scarcity problem in healthcare
NLP, enabling generating of high-quality, privacy-preserving synthetic clinical notes, facilitating
privacy-conscious data sharing.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have taken several steps across the main text, appendix, and supple-
mentary materials. First, we provide pseudocode for Term2Note in Algorithm 1, which outlines the
core components of our method in a concise and implementation-ready format. Second, Section 4
offers a detailed description of the dataset preprocessing pipeline, including normalisation proce-
dures, filtering criteria, and the grouping of sections (with additional details in Appendix D). This
section (along with Appendix F) also specifies all hyperparameters used in training and evaluation,
as well as the computational resources required to reproduce our experiments. Third, we report the
evaluation protocol in detail, including the choice of evaluation model, metrics, and sampling strate-
gies, to make our experimental setup transparent. Fourth, Appendix C provides a complete proof
of our privacy guarantees, with all assumptions and derivations made explicit. Finally, we include
the full source code and experiment scripts as supplementary materials to facilitate direct replication
and extension of our results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely as a general-purpose writing aid. The initial drafts were written by the
authors, and LLMs were employed to polish grammar and improve coherence. All suggested edits
were manually reviewed and selectively incorporated by the authors. LLMs did not contribute to
research ideation, experimental design, implementation, or original writing beyond this assistive
role.

B DPRP∗ ALGORITHM

Algorithm 2 presents the pseudocode for DPRP∗.

Algorithm 2 DPRP∗

Input: Embeddings E, privacy parameters (ϵ, δ) , privacy allocation b = 0.85
Output: Privatised Embeddings EDP with (ϵ, δ)-DP

1: (ϵ1, δ1), (ϵ2, δ2)← 0.85 ∗ (ϵ, δ), 0.15 ∗ (ϵ, δ)
2: Derive σi from (ϵ1i, δ1i); i ∈ [1, 2]
3: E′ = E +N (0, σ2

1)
4: E′

C = ETE +N (0, σ2
2)

5: V ′Σ′V ′T = SVD(E′
C)

6: V ′
k = V ′[1, ..., k]; k = 0.6 ∗ Ehdim

7: EDP = E′V ′
k
T+

V ′
k
T // + refers to the Moore-Penrose pseudoinverse

8: return EDP

C PRIVACY PROOF

Recall our privacy analysis,

(ϵ, δ) =

{
(ϵn, δn), if Ti = T src

i ,

(max(ϵn, ϵt),max(δn, δt)), if Ti = T syn
i .

When Ti = T src
i , there is only one DP component, i.e., NOTEGEN which satisfies (ϵn, δn)-DP,

therefore, the (ϵ, δ) = (ϵn, δn), i.e., Term2Note satisfies (ϵn, δn)-DP.

Proof. We prove that for the full privatisation setting (Ti = T syn
i ), Term2Note achieves

(max(ϵn, ϵt),max(δn, δt))-DP by applying the parallel composition theorem.

Step 1: Parallel Composition Lemma

First, we establish the parallel composition property.

Lemma 3 (Parallel Composition). Let dataset D = D1∪D2, and D1∩D2 = ∅. LetM1 : N|X1| →
R1 be (ϵ1, δ1)-DP andM2 : N|X2| → R2 be (ϵ2, δ2)-DP. ThenM(D) = (M1(D1),M2(D2)) is
(max(ϵ1, ϵ2),max(δ1, δ2))-DP.

Proof of Lemma. Let D and D′ be neighboring datasets differing by one record. Since D1∩D2 = ∅,
the differing record is in either D1 or D2, but not both.

Case 1: The differing record is in D1, so D1 ̸= D′
1 but D2 = D′

2.
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For any measurable sets B1 ⊆ R1, B2 ⊆ R2:

P [M(D) ∈ B1 ×B2]

= P [M1(D1) ∈ B1] · P [M2(D2) ∈ B2]

≤ (eϵ1P [M1(D
′
1) ∈ B1] + δ1) · P [M2(D2) ∈ B2]

= (eϵ1P [M1(D
′
1) ∈ B1] + δ1) · P [M2(D

′
2) ∈ B2]

= eϵ1P [M(D′) ∈ B1 ×B2] + δ1P [M2(D
′
2) ∈ B2]

≤ eϵ1P [M(D′) ∈ B1 ×B2] + δ1

Case 2: The differing record is in D2, so D1 = D′
1 but D2 ̸= D′

2. Similarly:

P [M(D) ∈ B1 ×B2] ≤ eϵ2P [M(D′) ∈ B1 ×B2] + δ2

Combining cases: For arbitrary neighbouring datasets, we have:

P [M(D) ∈ B1 ×B2]

≤ emax(ϵ1,ϵ2)P [M(D′) ∈ B1 ×B2] + max(δ1, δ2)

Therefore,M is (max(ϵ1, ϵ2),max(δ1, δ2))-DP.

Step 2: Application to Term2Note

Now we apply the parallel composition lemma to Term2Note.

We have:

• M1 = NOTEGEN training on Dtrain, which is (ϵn, δn)-DP

• M2 = TERMGEN processing on Dtest, which is (ϵt, δt)-DP

• Dtrain ∩Dtest = ∅

Term2Note can be written as:

Term2Note(D) = f(M1(Dtrain),M2(Dtest))

where f is a deterministic function that applies the trained NOTEGEN model to the synthetic terms
from TERMGEN.

Since f is a post-processing function applied to the outputs of the parallel composition, and post-
processing preserves differential privacy, we have:

Term2Note(D) is (max(ϵn, ϵt),max(δn, δt))-DP

D SECTION GROUPING

Table 2 presents the section grouping taxonomy for our SECSPLIT.

E DATASET STATISTICS

Table 3 summarises key statistics of the three datasets used in this study, including the number of
clinical notes, and average note length, among other relevant attributes.
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Group Name Sections
Patient Information “Name”, “Unit No”, “Admission Date”, “Discharge Date”, “Date of

Birth”, “Sex”, “Service”, “Allergies”, “Attending”

Clinical Course &
History

“Chief Complaint”, “Major Surgical or Invasive Procedure”, “History
of Present Illness”, “Review of Systems”, “Past Medical History”,
“Social History”, “Family History”

Examinations &
Findings

“Physical Exam”

Laboratory & Imag-
ing Results

“Pertinent Results”

Hospital Stay &
Treatment

“Brief Hospital Course”

Medications & Dis-
charge Plan

“Medications on Admission”, “Discharge Medications”, “Discharge
Disposition, “Discharge Diagnosis”, “Discharge Condition”, “Dis-
charge Instructions”, “Followup Instructions”

Table 2: The grouped section titles.

Corpus MIMIC-III MIMIC-IV
Dataset Dpublic Dsrc

train Dsrc
test

# notes 52,722 122,202 204
avg. # tokens 3327.93 3360.60 2818.63

avg. # sections 4.59 5.77 5.79
avg. # terms 176.26 203.20 173.33

avg. # ICD codes - - 6.73

Table 3: Dataset statistics. avg. refers to the average of. # tokens is calculated by taking the average
of tokens in each note, tokenised by Llama-3.2-1B-Instruct.

F HYPERPARAMETERS

TERMGEN We fine-tune GPT-2-large on section-wise clinical terms extracted from Dpublic for
up to 5 epochs. The final model is selected based on the checkpoint with the highest F1 score,
evaluated on a held-out set of 500 notes. During training, we set the embedding perturbation scale
σemb = 0.05, with a batch size of 8 and a learning rate of 2e-5. At inference, we use a batch size of 16
and a maximum generation length of 512 tokens. To ensure reproducibility, decoding is performed
with a temperature of 0.1 and top-p set to 1.0.

NOTEGEN Training: We fine-tune Llama-3.2-1B-Instruct or Gemma-3-1B-IT on Dsrc
train for up to

2 epochs using 2 GPUs. The batch size per device is 2, with a gradient accumulation step of 64 and
a learning rate of 5e-5. We enable DeepSpeed ZeRO Stage 3 to optimise memory usage. Inference:
We adapt vLLM for faster generation, with decoding parameters set as temperature = 0.1, top-p =
1.0, repetition penalty = 1.2 and max tokens per section = 2048 across all experiments. Llama-3.2
tends to generate overly long outputs during section-wise generation, so we apply a logit bias on
the EOS token to encourage early stopping. This bias is set between 0.5 and 6.0: for DP-enabled
models, the value is 0.5 or 1.0; for the non-private setting (ϵ = ∞), it is set to 6.0. Additionally,
DP-enabled models use a frequency penalty of 0.4 to further discourage repetition.

For the FastDP baseline, which produces relatively short outputs, we apply only a repetition penalty
during inference. Before applying the DP quality maximiser, we generate multiple candidates per
input: 4 for Term2Note and FastDP, and 7 for AUG-PE, using the same decoding settings described
above.
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G DISTANCE-BASED PRIVACY EVALUATION

Figure 5: Distribution of minimum cosine distances for all evaluated synthetic strategies compared
to the baseline of original test notes. Here, ϵt and ϵn are the privacy budgets for TERMGEN and
NOTEGEN, respectively.

A preliminary privacy evaluation is conducted to assess the privacy-preserving properties of the
synthetic clinical notes using a membership inference attack (MIA) framework. We compare the
distribution of minimum cosine distances between the synthetic notes generated by Term2Note and
the original training data to a baseline of real, non-member test notes. As illustrated in Figure 5,
the synthetic notes are, on average, located significantly further from the training data than the test
notes. Notably, the setting with ϵn =∞, which is generated without DP, exhibited the most overlap
with the test set’s distribution. This expected outcome highlights the privacy benefits of the other
DP settings, and provides a clear baseline for comparison.

In future work, we intend to expand our privacy evaluation using canary-based membership infer-
ence attacks. This approach involves injecting specially crafted canaries into the training data to
establish a worst-case lower bound on privacy risks.

H ICD CODES GROUPING

Table 4 shows the mapping between our combined ICD categories and the corresponding ICD-9 and
ICD-10 chapter headings. For fine-tuning Clinical-Longformer on this classification task, we train
for 30 epochs per setting (i.e., model and data fold), with a batch size of 8 and a learning rate of
2e-5.

I SUPPLEMENTARY EXPERIMENTAL RESULTS

I.1 FIDELITY

Table 5 presents supplementary fidelity evaluation results, including an ablation analysis of the DP
Quality Maximiser. These results further support the effectiveness of our approach in preserving
structural and semantic fidelity under DP constraints.

Larger Model We present preliminary results using a larger model, Llama-3.3-70B, evaluated
with two non-private methods: Retrieval-Augmented Generation (RAG) and LoRA-based fine-
tuning. In the RAG setup, we retrieve the top-5 most similar sections from the training set Dsrc

train
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Combined ICD Category ICD-9 ICD-10

Certain Infectious And Parasitic Diseases Infectious And Parasitic Diseases Certain Infectious And Parasitic Diseases

Neoplasms Neoplasms Neoplasms

Endocrine, Nutritional And Metabolic Dis-
eases, And Immunity Disorders

Endocrine, Nutritional And Metabolic Dis-
eases, And Immunity Disorders

Endocrine, Nutritional And Metabolic Dis-
eases

Diseases Of The Blood And Blood-
Forming Organs And Certain Disorders In-
volving The Immune Mechanism

Diseases Of The Blood And Blood-
Forming Organs

Diseases Of The Blood And Blood-
Forming Organs And Certain Disorders In-
volving The Immune Mechanism

Mental And Behavioural Disorders Mental Disorders Mental And Behavioural Disorders

Diseases Of The Nervous System And
Sense Organs

Diseases Of The Nervous System And
Sense Organs

Diseases Of The Nervous System

Diseases Of The Circulatory System Diseases Of The Circulatory System Diseases Of The Circulatory System

Diseases Of The Respiratory System Diseases Of The Respiratory System Diseases Of The Respiratory System

Diseases Of The Digestive System Diseases Of The Digestive System Diseases Of The Digestive System

Diseases Of The Genitourinary System Diseases Of The Genitourinary System Diseases Of The Genitourinary System

Complications Of Pregnancy, Childbirth,
And The Puerperium

Complications Of Pregnancy, Childbirth,
And The Puerperium

Complications Of Pregnancy, Childbirth,
And The Puerperium

Diseases Of The Skin And Subcutaneous
Tissue

Diseases Of The Skin And Subcutaneous
Tissue

Diseases Of The Skin And Subcutaneous
Tissue

Diseases Of The Musculoskeletal System
And Connective Tissue

Diseases Of The Musculoskeletal System
And Connective Tissue

Diseases Of The Musculoskeletal System
And Connective Tissue

Congenital Malformations, Deformations
And Chromosomal Abnormalities

Congenital Anomalies Diseases Of The Musculoskeletal System
And Connective Tissue

Congenital Malformations, Deformations
And Chromosomal Abnormalities

- Congenital Malformations, Deformations
And Chromosomal Abnormalities

Certain Conditions Originating In The
Perinatal Period

Certain Conditions Originating In The
Perinatal Period

Certain Conditions Originating In The
Perinatal Period

Symptoms, Signs And Abnormal Clinical
And Laboratory Findings, Not Elsewhere
Classified

Symptoms, Signs, And Ill-Defined Condi-
tions

Symptoms, Signs And Abnormal Clinical
And Laboratory Findings, Not Elsewhere
Classified

Injury, Poisoning And Certain Other Con-
sequences Of External Causes

Injury And Poisoning Injury, Poisoning And Certain Other Con-
sequences Of External Causes

External Causes Of Morbidity And Mor-
tality, Injusy and Poisoning

External Causes Of Injury And Poisoning External Causes Of Morbidity And Mor-
tality, Injusy and Poisoning

Factors Influencing Health Status And
Contact With Health Services

Factors Influencing Health Status And
Contact With Health Services

Factors Influencing Health Status And
Contact With Health Services

Diseases Of The Eye And Adnexa - Diseases Of The Eye And Adnexa

Diseases Of The Ear And Mastoid Process - Diseases Of The Ear And Mastoid Process

Codes For Special Purposes - Codes For Special Purposes

Table 4: The grouped ICD codes.

to assist section-wise generation. While neither approach offers privacy guarantees, they serve as
reference points for performance with large-scale models. As shown in the results, fine-tuning sig-
nificantly outperforms RAG, highlighting the importance of parameter adaptation for note synthesis.
However, the high computational cost of fine-tuning such large models motivates our focus on effi-
cient methods based on smaller models, such as the 1B-parameter version used in Term2Note.

DP Quality Maximiser We evaluate the effectiveness of our proposed DP quality maximiser on
models trained with ϵ = 8. As shown in the results, it consistently improves MAUVE scores for both
Term2Note and FastDP. For FastDP, improvements extend across all fidelity metrics, highlighting
the value of the maximiser in enhancing output quality under DP constraints.

Beyond perplexity, we investigate a range of reference-free (RF) metrics to guide the selection of
high-quality generations, including maximum and mean sentence length (in words and characters),
self-BLEU, and distinct-n variants. To evaluate these metrics, we manually annotate a small set
of synthetic sections as “good” or “bad” based on readability, with approximately 12% labelled as
“bad”. Metrics are evaluated on their ability to identify these poor-quality sections via scalar thresh-
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Length Unary/Binary Term Semantic
mean KL Div.↓ Jaccard↑ KL Div.↓ MAUVE↑

Original Data 2819 - - - -
Sy

nt
he

tic
ϵ =∞

AUG-PE 282 11.96 0.14/0.02 7.59/16.34 0.01
Term2Note 3552 0.25 0.52/0.20 0.22/1.08 0.59
Term2Note (Llama-3.3-70b 4-bit) 4115 0.87 0.55/0.23 0.17/2.23 0.38
RAG (Llama-3.3-70b) 3220 0.75 0.43/0.17 0.62/1.60 0.22

ϵ = 8

AUG-PE 203 11.71 0.19/0.03 5.03/12.18 0.01
FastDP 961 4.51 0.31/0.10 2.88/5.88 0.02

449.25±148.65 7.79±2.03 0.25±.03/0.07±.02 3.53±.48/5.37±1.16 0.01±.0
Term2Note 3768 0.39 0.40/0.13 0.47/1.14 0.53

3364.43±118.37 0.39±.11 0.41±.0/0.13±.0 0.43±.01/1.14±.02 0.42±.13

Table 5: Supplementary results for fidelity evaluation: text length, term distribution, and semantic
similarity (MAUVE). The best result among all methods to generate synthetic datasets is shown in
bold, and the best result at the same privacy cost is underlined. Values in gray are aggregated across
multiple inferences without DP quality maximiser applied.

olds. We then assess how well each metric identifies poor-quality sections using scalar thresholds.
Our results indicate that metrics based on sentence length—particularly maximum sentence char-
acter count—align most closely with human annotations. A rejection threshold of 2181 characters
yields the strongest correspondence. Table 6 reports the KL divergence and MAUVE values of
synthetic notes after integrating this metric into the inference process. Specifically, if a generated
section exceeds the threshold, it is discarded and regenerated until acceptance. Incorporating this
simple criterion yields measurable improvements, suggesting that lightweight, reference-free filters
can enhance the realism of DP synthetic text. Future work may extend this approach by combining
multiple RF metrics for greater robustness.

Dataset KL Divergence↓ MAUVE↑
w/o RF metric 1.99±0.37 0.24±0.04
w/ RF metric 1.03±0.10 0.36±0.07

Table 6: Fidelity evaluation of synthetic notes generated with and without integrating the RF metric
(maximum sentence character count) into the inference process.

Comparison under ϵ = 8 Figure 6 shows the distribution of sequence lengths for clinical notes
generated by different methods under a fixed privacy budget of ϵ = 8. While all synthetic methods
shift the length distribution away from the original data to some extent, Term2Note exhibits the
closest alignment. Its distribution captures the broad length range and multi-modal structure of the
original notes more faithfully than the baselines. In contrast, AUG-PE produces much shorter and
more narrowly distributed sequences, indicating a loss of structural richness. FastDP also generates
relatively short sequences, with a sharp peak around 500 tokens. These deviations suggest that
Term2Note is better able to preserve the structural properties of real clinical notes, which is crucial
for downstream utility and realism in synthetic data.

I.2 UTILITY

Table 7 presents the detailed precision and recall scores for the downstream task evaluation.

I.3 GEMMA

Experimental results for Gemma are reported in Table 8. Both fidelity and utility metrics are compa-
rable to those of Llama in Table 1, although the MAUVE score for Gemma without DP (i.e., ϵ =∞)
is higher than that of Llama. Overall, the same trend holds across both models: stricter privacy
guarantees lead to reduced fidelity, while full privatisation still preserves strong fidelity and utility.
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Figure 6: Text length distribution.

Method F1 Precision Recall AUC Precision@k

Micro Macro Micro Macro Micro Macro Micro Macro k = 3 k = 5

Original Data 57.03±3.59 30.80±2.20 60.14±4.51 34.66±4.56 54.40±4.26 30.88±2.66 82.01±1.36 58.88±2.73 68.93±4.53 62.14±3.20

Sy
nt

he
tic

ϵ =∞
AUG-PE 45.82±2.33 14.84±2.97 67.30±5.10 17.91±5.33 34.94±3.19 16.27±2.67 79.52±1.23 54.35±1.75 68.48±6.11 61.77±3.03
FastDP 53.02±3.03 25.51±1.92 56.19±5.62 26.83±2.31 50.99±6.67 27.27±4.23 79.35±1.55 51.05±2.48 69.77±4.99 60.39±4.44

Term2Note (ϵn =∞) 49.95±4.77 21.89±3.90 65.37±6.31 28.69±1.26 41.02±6.64 21.05±3.86 81.40±1.78 55.43±2.40 69.77±3.52 61.96±5.70
w. ϵt =∞ 49.24±2.63 21.9±2.01 61.07±4.02 26.75±2.9 41.61±4.73 21.64±3.29 80.24±1.56 51.54±1.81 67.81±3.66 61.08±3.71

ϵ = 8

AUG-PE 40.73±9.22 13.28±4.71 60.68±4.70 15.14±4.77 31.43±9.80 16.01±5.81 78.13±1.85 53.49±3.08 63.24±4.65 59.03±4.59
FastDP 48.58±5.93 16.40±4.01 64.79±1.33 16.70±3.67 39.49±8.78 18.89±5.16 80.74±1.41 51.57±3.46 69.79±2.25 61.59±4.42

Term2Note (ϵn =∞) 49.71±1.90 21.28±1.28 61.37±4.28 25.17±1.55 41.96±2.98 21.31±1.63 80.03±1.44 52.80±1.15 67.49±4.42 61.48±4.45
w. ϵt =∞ 48.16±4.39 20.63±3.18 59.07±4.04 26.64±5.14 40.84±5.3 20.68±3.41 78.72±0.85 50.01±4.19 65.35±5.21 58.72±3.9
w. ϵt = 8 52.31±4.45 26.5±3.95 53.04±3.34 26.9±2.62 51.87±6.45 28.66±4.65 78.19±0.91 50.17±2.33 67.81±5.88 57.36±3.3
w. ϵt = 5 49.52±4.44 21.36±3.11 58.74±6.32 24.59±5.36 43.23±5.68 22.04±3.52 79.08±1.34 50.11±4.08 68.29±5.36 60.68±4.65
w. ϵt = 2 53.25±1.1 24.66±1.82 56.93±2.49 28.23±4.52 50.16±2.52 26.94±2.17 78.85±0.98 49.41±2.86 68.31±5.53 59.91±3.34

ϵ = 5

AUG-PE 48.10±2.08 17.44±2.70 60.59±8.29 18.28±3.69 40.73±5.59 21.02±4.88 77.78±3.11 53.33±2.60 63.01±12.42 56.94±5.20
FastDP 49.30±4.04 16.23±3.04 64.49±6.50 15.57±2.73 40.84±7.33 19.70±4.87 80.54±1.36 54.22±1.97 67.31±7.22 61.98±3.34

Term2Note (ϵn =∞) 47.94±4.47 20.31±3.40 60.88±4.95 25.76±4.44 40.15±6.22 20.20±3.71 79.29±1.49 51.19±3.40 66.04±5.73 61.69±4.86
w. ϵt =∞ 51.0±1.41 22.73±2.22 56.7±4.95 24.89±4.24 46.79±3.93 24.62±3.03 78.8±1.78 50.37±1.78 67.15±5.88 59.91±3.12
w. ϵt = 5 54.83±2.24 28.96±1.81 51.64±4.44 29.07±4.58 58.92±4.33 34.06±2.99 78.2±0.8 50.32±3.94 64.56±4.1 57.18±3.09
w. ϵt = 2 51.26±1.97 21.45±1.88 58.92±4.45 25.08±3.48 45.63±3.55 23.28±1.99 79.05±1.37 50.44±3.5 66.36±5.89 60.49±4.89

ϵ = 2

AUG-PE 40.9±7.43 13.57±3.88 64.75±7.31 15.2±4.82 30.7±9.22 14.83±5.29 78.29±0.8 53.38±1.79 63.74±5.0 60.1±4.37
FastDP 51.06±5.7 20.04±4.34 58.78±5.13 19.77±4.27 45.94±8.57 23.72±5.52 79.98±1.95 51.31±3.32 66.32±6.66 59.99±5.35

Term2Note (ϵn =∞) 51.78±3.99 3.36±3.87 57.45±5.97 25.59±4.84 47.21±3.16 25.26±2.64 79.00±1.67 50.60±2.75 67.00±3.39 59.52±5.59
w. ϵt =∞ 48.57±0.89 20.31±1.25 59.92±5.19 24.63±2.69 41.23±3.46 20.75±2.05 79.56±1.08 51.75±0.85 68.64±3.55 60.41±3.43
w. ϵt = 2 51.87±2.73 23.06±2.51 57.77±6.18 26.58±5.04 47.37±2.88 24.77±2.01 79.43±1.41 51.3±2.96 69.45±4.73 60.31±5.39

Table 7: Supplementary results for utility evaluation: F1, Precision, Recall, AUC, and Precision@k,
with mean±standard deviation values reported.

J CASE STUDIES FOR TERM GENERATION

Table 9 presents examples of synthetic clinical terms generated with and without the application of
DPRP∗. The original list contains five salient terms extracted from a real clinical note. When no DP
is applied, the generated list recovers only two of these terms (“air” and “discharge”), suggesting
limited coverage despite the absence of privacy constraints. In contrast, the DP-enabled output
does not directly replicate any of the original terms beyond “discharge”, but instead generates a
substantially longer and more diverse list of medically plausible terms.

This illustrates a key trade-off: the DP mechanism introduces sufficient variability to obscure direct
term recovery, thus enhancing privacy protection. At the same time, the generated list remains
semantically coherent and clinically relevant, containing realistic phrases such as “hemodynamically
stable,” “chronic low back pain,” and “pulmonary vein,” which contribute to the naturalness and
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Method
Fidelity Utility

Length Unary/Binary Term Semantic F1 AUC Precision@k

KL Div.↓ Jaccard↑ KL Div.↓ MAUVE↑ Micro Macro Micro Macro k = 3 k = 5

Original Data 57.03 30.80 82.01 58.88 68.93 62.14
Sy

nt
he

tic

ϵ = ϵn =∞
Term2Note 0.18 0.61/0.34 0.23/1.55 0.80 52.56 25.32 80.81 55.09 67.30 60.78

w. ϵt =∞ 0.36 0.40/0.18 0.77/1.52 0.66 53.77 25.72 79.94 51.86 66.98 60.71

ϵ = ϵn = 8

Term2Note 0.40 0.39/0.13 0.53/1.66 0.48 48.41 20.89 78.55 48.89 67.50 59.31
w. ϵt =∞ 0.40 0.37/0.13 0.64/1.82 0.38 47.63 20.19 78.87 50.5 66.83 59.53
w. ϵt = 8 0.40 0.37/0.13 0.75/2.05 0.32 55.46 26.73 79.68 49.92 69.30 60.60
w. ϵt = 5 0.41 0.38/0.13 0.70/1.71 0.38 51.82 21.67 80.44 51.28 70.92 60.88
w. ϵt = 2 0.51 0.36/0.12 0.76/1.89 0.30 52.34 22.50 80.02 51.71 69.62 60.01

ϵ = ϵn = 5

Term2Note 0.36 0.38/0.13 0.56/1.52 0.31 51.20 21.18 80.03 53.10 67.65 61.38
w. ϵt =∞ 0.25 0.37/0.13 0.65/1.76 0.32 49.98 21.50 79.77 52.57 68.14 59.91
w. ϵt = 5 0.39 0.36/0.12 0.75/1.79 0.32 52.79 23.74 79.54 49.64 67.99 58.92
w. ϵt = 2 0.41 0.36/0.13 0.77/1.83 0.21 55.06 27.86 79.42 49.19 69.30 59.82

ϵ = ϵn = 2

Term2Note 0.49 0.36/0.12 0.60/1.65 0.27 49.26 21.17 79.21 50.33 67.16 59.24
w. ϵt =∞ 0.31 0.36/0.13 0.69/1.59 0.35 48.11 20.87 79.49 52.83 65.51 57.17
w. ϵt = 2 0.46 0.35/0.12 0.80/1.78 0.31 53.66 24.43 79.91 50.26 69.28 61.08

Table 8: Fidelity and utility evaluation of synthetic datasets generated by Term2Note with Gemma-
3-1B as the base model for NOTEGEN.

utility of the resulting synthetic note. These findings align with our earlier quantitative analysis,
confirming that DPRP∗ balances semantic fidelity with privacy-preserving diversity.

Method Terms
Original [“Physical”, “Discharge”, “Laparoscopic”, “incisions”, “air”]

No DP [“air”, “discharge”]

DP [“brief”, “discharge”, “negative”, “medications”, “placement”, “drainage”,
“hemodynamically stable”, “therapy”, “chronic low back pain”, “symptoms”,
“right chest”, “referred to cardiac surgery”, “chest discomfort”, “pulmonary
vein”, “hyperlipidemia: he”, “hypertension-”, “difficulty”, “surgical service”,
“anticoagulation”, “discontinued”, “increased”, “afebrile”, “asymptomatic”,
“admission”, “intervention”, “hospitalization”, “cardiac enzymes x3”]

Table 9: Example of synthetic terms.

K EXAMPLE DEMONSTRATION
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MIMIC Clinical Note
Name:  ___                  Unit No:   ___ 
Admission Date:  ___              Discharge Date:   ___
Date of Birth:  ___             Sex:   M
Service: SURGERY
Allergies: Penicillins
Attending: ___.

Chief Complaint:
Biliary pancreatitis

Major Surgical or Invasive Procedure:
__:
Laparoscopic cholecystectomy

History of Present Illness:

__ is a __ who had severe biliary pancreatitis
resulting in pancreatic necrosis for which he was
treated with nasojejunal feedings and pancreatic rest.
He had initially had multisystem organ failure, which
improved.
....

Section 
Splitter

Medical Term
Extractor

Section-wise 
Medical Terms

Patient Information

Admission, Discharge, Birth,

Sex, Service, SUGERY,

Allergies, Penicillins, Attending

Clinical Course & History

Surgical, Procedure, 

Laparoscopic cholecystectomy

Illness, pancreatic necrosis

...

Clinical Text
Embedder

Term 
Generation

Model

Synthetic Section-wise  Medical Terms

Patient Information

service, hypotension, discharge

allergies, admission, neurosurgery

Clinical Course & History

back, pancreatic, esophagus

laparoscopic cholecystectomy
...

Note 
Generation

Model

Synthetic Clinical Note(s)

Synthetic Note 1

Patient Information

Name:  __           Unit No:
Admission Date:                      __
Discharge Date:            09:55AM
Date of Birth:     __ Sex:        F
__ Medications (current/maintance):
1. Acetaminophen 1000 mg PO Q8H 
...

Synthetic Note N

Patient Information Clinical Course &
History

...

Clinical Course & History

Discharge Complaint:
Back pain and nausea from recent abdominal
sugery

Major Surgical or Invasive Procedure:
Laparoscopic Cholecystectomy
...

DP Quality
Maximiser

Synthetic Clinical Note
Name:  ___                  Unit No:   
Admission Date:  ___              
Discharge Date:   ___        Discharge Time:          09:30AM
Date of Birth:  ___             Sex:   F
Medications (current/maintenance):
1. Atorvastatin 40 mg PO DAILY
2. Omeprazole 20 mg PO BID
Akkergies: No Known Allergies / Adverse Drug Reactions
Service: Surgery
Attending: __

Chief Complaint: Back pain and nausea from recent abdominal surgeries
Major Surgical or Invasive Procedure(s): None
History of Present Illness: Ms. __ is currently admitted after undergoing two
separate procedures at the time of her hospitalization.
...

Figure 7: Example to demonstrate Term2Note.
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