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ABSTRACT

Conventional representation learning algorithms for knowledge graphs (KG) map
each entity to a unique embedding vector, ignoring the rich information con-
tained in the neighborhood. We propose a method named StarGraph, which gives
a novel way to utilize the neighborhood information for large-scale knowledge
graphs to obtain entity representations. An incomplete two-hop neighborhood
subgraph for each target node is at first generated, then processed by a modified
self-attention network to obtain the entity representation, which is used to replace
the entity embedding in conventional methods. We achieved SOTA performance
on ogbl-wikikg?2 and got competitive results on fb15k-237. The experimental re-
sults proves that StarGraph is efficient in parameters, and the improvement made
on ogbl-wikikg?2 demonstrates its great effectiveness of representation learning on
large-scale knowledge graphs.

1 INTRODUCTION

A Knowledge Graph (KG) is a directed graph with real-world entities as nodes and relationships
between entities as edges. In this graph, each directed edge together with its head and tail entities
forms a triple (head entity, relation, tail entity), indicating that the head and tail entities are connected
by a relation.

Knowledge graph embedding (KGE), also known as knowledge representation learning (KRL), aims
to embed entities and relations into low-dimensional continuous vector spaces to characterize their
latent semantic features. A scoring function is defined to measure the plausibility for triples in such
spaces, then the embeddings of entities and relations are learned by maximizing the total plausibility
of the observed triples. These learned embeddings can be used to implement various tasks such as
knowledge graph completion (Bordes et al.,[2013;Wang et al.,2014)), relationship extraction (Riedel
et al.,|2013), entity classification (Nickel et al.,[2011)), etc. The plausibility of each triple is calculated
on the embeddings of the entities and relations in it, and the embeddings are directly taken out from
the embedding tables. Such a shallow lookup decides that those models are inherently transductive.
Moreover, the rich contextual information contained in the neighboring triples is not taken into
account.

Compared with shallow embedding models, methods that are able to encode neighborhood informa-
tion, usually perform much better across various KG datasets (Zhang & Chenl [2018} Zhang et al.,
2021; [Wang et al, 2019). Any generic graph neural networks could be employed as the encoder.
However, there is a problem adopting these methods to large-scale knowledge graphs, for previous
work (Nathani et al., 2019; Wang et al.|, [2020) takes the multi-hop subgraph of the node as input.
Due to the large number of nodes and edges, multi-hop subgraphs in large-scale graphs can easily
exceed the size limitation, and the subgraphs generation and network calculations can both be very
time-consuming.

The neighborhood surely contains information for the target node, therefore can be used for learning
its representation. In order to adopt neighborhood neural encoders in large-scale KG, an intuitive
idea is to utilize partial neighborhood information instead of the complete multi-hop subgraph.
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Figure 1: Illustration of a subgraph generated by StarGraph. Dots and lines represent nodes and
edges in the graph, respectively, with larger dots indicating anchors. The color red indicates the
example target node and the sampled subgraph.

In this paper, we propose to learn the knowledge representation for each target node based on its
incomplete 2-hop neighborhood subgraph. Neighbors out of reach within two hops are not as closely
related to the target node according to us, so are not taken into consideration. An example of a
complete 2-hop subgraph is given in Figure[I[(a), where we can see, even in such a small knowledge
graph, the 2-hop subgraph comprises quite a few nodes and edges and seems to contain a lot of
redundant information. It is more efficient to construct a proper incomplete subgraph with a few
nodes and edges.

We got inspiration from the anchor-based strategy (Galkin et al.,|2022)), which selects a small frac-
tion of all the graph nodes as anchors and learn embeddings only for anchors instead of all nodes.
In our work, we sample anchors from the 2-hop neighborhood, along with the edges to reach each
anchor, to construct the incomplete 2-hop subgraph, which is illustrated in Figure[I(b). The incom-
plete subgraph is not restricted to contain only anchors, we can also sample some general nodes into
the subgraph as supplementary information.

In order to reasonably model the subgraph structure and enable sufficient interaction of node em-
beddings, we adopt a self-attention network to extract the neighborhood information. Taking the
characteristics of knowledge graphs into consideration, we modify the attention module to be more
efficient and propose a novel way to embed the edges in a graph.

Comparing the subgraphs in Figure[I|a) and (b), the trimmed subgraph is much more efficient and is
likely to be more effective to describe the target node, especially for large-scale knowledge graphs.
And this is demonstrated by our experimental results. The way a node being represented by the
incomplete subgraph is like how to locate a star in the sky, which is to use a few bright stars (anchors)
to indicate the location. For the incomplete subgraph in the entire graph looks like a constellation
among the stars, we call the proposed method StarGraph.

2 RELATED WORK

Distance-based models consist a major branch of knowledge graph embedding methods. TransE
(Bordes et al. 2013) embeds relations and entities into the same vector space, and the relation
embedding is interpreted as a translation from the embeddings of the head entity to the tail entity.
RotatE (Sun et al., |2018)) uses the rotations of vectors to explain various relations, where the inverse
relations can be modeled by complex embeddings. PairRE (Chao et al.| |2021) propose to learn two
embeddings for each relation, respectively used to map head and tail entity embeddings into the
corresponding relation space. TripleRE (Yu et al.|[2021) learns another embedding for each relation
on the basis of PairRE, and the extra relation embedding is used as a translation vector between the
mapped entity embeddings of head and tail.



Under review as a conference paper at ICLR 2023

Contextual information has been widely used for knowledge graphs to enhance model perfor-
mance, but in many different ways. CoKE (Wang et al., 2019) treats link prediction as a natural lan-
guage processing (NLP) task, and trains the NLP model with long entity-relation-sequences taken
from the graph, linking entities originally distant from each other more closely. GC-OTE (Tang et al.,
2020) directly integrates the graph context into the distance scoring function by considering tail/head
entities with the same head/tail entity and relation all at once and minimizing the distance between
their embeddings. NodePiece (Galkin et al.l [2022) borrows the idea of subword-tokenization from
NLP and proposes to use a small number of nodes as anchors, constructs vocabulary for each en-
tity using surrounded anchors and relations, which implicitly includes contextual information, and
calculates node representations from this.

Graph encoders can be conventional graph neural networks, e.g, GCN (Kipf & Welling, 2017)
and GraphSAGE (Hamilton et al.l 2017), or the recently proposed Graph Transformer (Dwivedi
& Bresson, 2021)) and Graphormer (Ying et al., 2021)), whose work are developed on the basis of
Transformer (Vaswani et al.,|2017)). The basic unit in Transformer is the self-attention module, which
provides a novel way to deal with the inputs. It takes a sequence of feature vectors, (tokens as being
called) as inputs and updates each token with all others within the sequence, which is controlled
with an attention matrix. It provides an effective way for information exchange and allows the
tokens staying unordered, which seems suitable to process the structure of graphs.

The graph attention networks (Nathani et al., 2019) and graph attenuated attention networks (Wang
et al., 2020) base their work on ConvVB (Dai Quoc Nguyen et al.| 2018) and CapsE (Vu et al.,
2019), which are proved invalid by Sun et al.| (2020), thus will not be compared with in this paper.

3 METHODOLOGY

The StarGraph is a method to obtain entity representations based on incomplete neighborhood infor-
mation, which includes two stages, generating and encoding a subgraph for each node. The obtained
entity representations, together with the relation embeddings, are used to compute the scores of the
triples by a distance-based score function, and optimized with the self-adverse negative sampling
loss (Sun et al., 2018)). We will describe each part in detail below.

3.1 SUBGRAPH GENERATION

To generate the proper incomplete subgraphs, we should start with select part of the nodes to form
the anchor set. For ease of description, we denote the anchor set as A, all nodes of the total graph
as N. There are A € N, and |A| < |N|. Then for each target node, we pick part of the anchors and
nodes within its 2-hop neighborhood to construct the subgraph.

3.1.1 ANCHOR SET

At first, a minority of nodes are selected as anchors. When the number of anchors is fixed and much
less than the number of graph nodes, the most intuitive idea is that the anchors should be selected
according to the degree of centrality in order to provide common information to as many nodes
as possible. Following this idea, |Galkin et al| (2022) employs the deterministic anchor selection
strategy where 40% of the total number of anchors are nodes with top Personalized Page Rank
(Page et al., |1998) scores, 40% are top degree nodes, but remaining 20% are selected randomly for
they found random anchor selection to be as effective as centrality-based strategies. We argue that
the random part introduce the uncertainty, and anchor sets generated by the same strategy may have
different performances in experiments. Besides, there is no need to use two centrality measures, and
we only use the degree of nodes as the measure.

If the selected anchors are too concentrated, it may result in that some nodes are surrounded by
too many anchors while some other nodes have no anchors around them. To alleviate this problem,
we introduce a hyper-parameter skip-threshold. When the percentage of anchors in the neighboring
nodes of a node exceeds the threshold, that node will not be selected as an anchor. We also need to
specify the anchor-set-size, i.e., how many nodes are selected as anchors. The process of generating
the anchor set can be seen in Algorithm |1} Detailed discussion on the effect of skip-threshold can
be found in Appendix |A] but in the main text the value is fixed at 0.5.
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Algorithm 1: Generate the anchor set for the graph

Input: graph_nodes N, skip_threshold, anchorset_size
Output: anchor_set A
sorted_nodes < sortInDescendingOrderO f Degree(graph_nodes)
anchor_set < ()
for node € sorted_nodes do
nbors < oneHopN eighbors(node)
anchor_nbors < nbors N anchor_set
if size(anchor_nbors)/size(nbors) > skip_thresh then
\ continue // many anchors around, skip this node
end
anchor_set < anchor_set U {node}
if size(anchor_set) > anchorset_size then
\ break // got enough anchors, end the loop
end

end

& .4 ©®
(a) 2-hop subgraph (b) BFS (c) balanced

Figure 2: Six anchors sampled from the 2-hop subgraph of the target node ® adopting different
strategies. Dots and lines represent nodes and edges, where colored dots are anchors and solid lines
indicate how we reach the anchors. The numbers on dots indicate the sampling order of anchors.

3.1.2 ANCHORS SAMPLING

For each node, a fixed number of anchors are sampled from its 2-hop neighbors, together with the
paths to reach the anchors, to construct the incomplete subgraph. When the anchors within two hops
are more than needed, for example, sampling six anchors for the target node from its 2-hop subgraph
given in Figure[2{(a), only the first part of the anchors sampled will be retained. The easiest sampling
order to think of is breadth-first-search (BFS), but it might induce severe imbalance in anchors
distribution, as shown in Figure |Zkb). The sampled anchors are concentrated around node#2, and
this sampling strategy fails to associate the target node with some non-anchor neighbors.

We propose a more balanced sampling strategy that aims to share more anchors with the non-anchor
neighbors, by sampling one-hop anchors of the target node and its every non-anchor neighbor in turn.
The detailed steps are described in Algorithm 2] and the sampling results of this strategy are shown
in Figure 2[c). Note that anchors with smaller degrees will be selected in preference according to
line#7 and #13 in Algorithm [2] It is based on the considering that 1) less-popular anchors make
each target node more recognizable from others; 2) less-popular anchors can be visited more often
to alleviate the long-tail distribution problem in the usage of anchors.

3.1.3 NEIGHBORS & CENTER

Neighbors refer to a fixed number of nodes sampled from one-hop neighborhood of the target node,
and center refers to the target node itself. We use these nodes as additional information to further
enrich the description of the target node. Different from anchors, that are picked from the predefined
anchor set, neighbors and centers could be any node in the graph. We sample the neighbors in a
degree-decreasing order, trying to use them to make a common description for each target node.
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Algorithm 2: Sample anchors for subgraph of each node

Input: anchor_set A, node, sample_size
Output: subgraph_anchors
Def one Hop Anchors(node) as oneHopN eighbors(node) N anchor_set
non_anc_nbors < oneHopN eighbors(node) — oneHopAnchors(node)
subgraph_anchors + ()
while size(subgraph_anchors) < sample_size do
remaining_ancs < oneHopAnchors(node) — subgraph_anchors
if remaining_ancs # () then
next_anc « nodeWithMinimumDegree(remaining_ancs)
subgraph_anchors < subgraph_anchors U {next_anc}
end
for nbor € non_anc_nbors do
remaining_ancs < oneHopAnchors(nbor) — subgraph_anchors
if remaining_ancs # () then
next_anc « nodeWithMinimumDegree(remaining_ancs)
subgraph_anchors < subgraph_anchors U {next_anc}
end

end
end

3.2 SUBGRAPH ENCODING

A self-attention network (Vaswani et al.l 2017)), whose input is considered as a sequence though, its
operation on each element within the sequence is naturally global and undifferentiated. Therefore,
we consider it a perfect choice to encode graphs. The network takes the embeddings of nodes
within a generated subgraph as inputs, each node treated as a token. Since a self-attention layer
has a global receptive field, one layer can adequately mix the information of all nodes. We use
a single transformer block, i.e. one attention layer followed by two linear layers, to construct the
network. After this, the output node features are aggregated by mean-pooling across the subgraph
to get the representation of target node. More discussion on the choice of encoders can be found in

Appendix [B]
3.2.1 REDUCED ATTENTION MODULE

The attention module consumes a lot of computational resources, so we try to explore a more ef-
ficient way to implement the attention mechanism. For a standard k-heads attention layer, it takes
X € RLXDnidacn gg input, sets the dimension of each head as Dpcqq = Dhidden/k, and gets the
output Y = [Y1,Ys, -+, Yi] € REXPridden by concatenating the outputs of k heads together. The
output of the i-th head Y; € RL*Pread ig calculated by

XWqo Wk X"
\ Dhead

where W i, Wik i, Wy,; € RPnidaen*Dhead gre model parameters to be learned.

Y; = softmax( )XWy, (1

The role of the attention module is to integrate information from all nodes in the subgraph. Ensuring
this, we make two modifications to attention-head to reduce the amount of computation. Firstly, to
get a usable attention matrix, the second dimension of W, ; and W g ; is not forced to equals D4,
so setting a smaller dimension D g4y, < Dpeqq Will reduce the computational complexity. Secondly,
with an MLP afterward, there is no need to transform the features in the information mixing step.
Since Dpeqq = Dhidden/k, we can directly slice X into k parts with the same shape of XWy; to
omit the multiplication operation of X and Wy, ;. The output of the i-th head Y; € REXDheaa of g
reduced attention layer is calculated by

XWq Wi X"
V Dattn

Y; = softmax( )X, 2
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where X; € RL*Pnead gre directly taken out from X = [Xy,Xs, -, X], and Wg ;, Wk, €
RPnidadenx Datin are model parameters to be learned.

Beside the attention layer, the computational complexity of MLP can be reduced by decreasing the
intermediate dimension Dp,;qqen * mip-ratio. The default value of hyper-parameter mlp-ratio is 4,
and a smaller value can be considered.

3.2.2 PATH INFORMATION FUSION

Treating each anchor as a token, the anchor path, i.e., edges the anchor needs to pass to reach the
target node, should be considered as the position information. Instead of following the practice of
previous work, where the position embeddings are directly added onto the token embeddings, we
propose to take the characteristics of KGE into consideration. Insprired by the score function of
TripleRE (Yu et al.| 2021)),

Fr(hit) = =[[ho (¢" +1) —to (r +1) + 1], 3)
based on the assumption that

to(r'+1)~ho(r"+1)+r, 4)
we simplify the conditions and assume that
t~ho(r"+1)+r. ()

Substituting “head, relation, tail” with “anchor, path, token”, respectively, we can get token embed-
ding by adding path information to 1-hop or 2-hop anchor as

anchor o (p¢ + 1) + p} when path = {p1},
[anchor o (pf + 1) +p{] o (p3 +1) +p3  when path = {p1, p2}.
Note that after incorporating the path information, the token embedding is more like the represen-

tation of the target node rather than the original anchor, therefore mean-pooling is a proper way to
aggregate information from the tokens.

token = { (6)

3.2.3 SUPPLEMENTARY NODES

As described in section[3.1.3] a subgraph may contain nodes sampled from N, providing additional
information for the target node. As with the entire graph, each node keeps some unique information,
while only a small group of nodes are anchors, carrying much general information. Denoting the
embedding sizes of Aand N as D 4 and Dy, we set alarge D 4 to improve the information capacity,
and a small Dy to reduce the probability of overfitting. To get the tokens of the same embedding
size, D 4 is used as Dp;qqden, the hidden size for attention module, and the node embeddings are
mapped to dimension D 4 by a linear layer ahead.

Type embedding is added to the token embedding before the attention module, indicating each node
within the subgraph to be the type of anchor, neighbor or center.

3.3 SCORE FUNCTION

We adopt a score function that is modified upon TripleRE (Yu et al., [2021), a recently proposed
distance-based method. The formula of TripleREv2 is

fr(hit) = =[[ho (¢" +u-1) —to (r' +u-1) +r|], (7)
where o denotes the element-wise product, h and t correspond to the head and tail entity embeddings
respectively, [r”, rf, r] comprise the relation embedding, u is a constant specified by users, set to 1

in the original work. We modify equation (7) by switching 1 with r"/r?, so that the coefficient u
acts on the relation embedding. Now the score of triplets (h, r, t) is calculated as

Jo(hyt) = ~[[ho (u-r" +1) —to (w-r + 1) + 1] = —[[h —t+r+u-(hor’ - tor)|,
®)
which can be interpreted as a boosting method based on TransE and PairRE. The new form is referred
to as TripleRE’ in the rest of this paper. Although TripleRE’ is exactly the same as TripleREv2 when
u equals 1, according to our experimental results, TripleRE’ usually performs better than TripleREv2
during tuning the hyper-parameter w.
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3.4 OPTIMIZATION

We utilize the self-adversarial negative sampling loss (Sun et al., 2018) as objective for training,

_ _ N L _exp(afe(hiti))
b= losolr = ) ;wlloga(ﬁ(h“m M Z;L:1€XP(Oéfr(hj7tj))’

where -y is a fixed margin and o is the sigmoid function. We randomly sample n negative triples for
each positive one, and (h;, r, t;) is the i-th negative triple.

€))

4 EXPERIMENTS

4.1 DATASETS AND METRIC

ogbl-wikikg2 (Hu et al.}[2020) is a large-scale knowledge graph extracted from the Wikidata knowl-
edge base (VrandeCi¢ & Krotzsch, [2014), containing 2,500,604 entities, 535 relation types and
17,137,181 triplet edges (head, relation, tail). fb15k-237 (Toutanova & Chenl 2015) is a subset
of fb15k (Bordes et al.,|2013)), that consists of triples from Freebase, with inverse relations removed.
It contains 14,505 entities, 237 relation types and 310,079 triplet edges.

Task and Metric The task is to predict new triplet edges given the training edges. The evaluation
metric follows the standard filtered metric widely used in KG. Specifically, each test triplet edges
are corrupted by replacing its head or tail with negative entities. The goal is to rank the true head (or
tail) entities higher than the negative entities, which is measured by Mean Reciprocal Rank (MRR).

4.2 DETAILED SETTINGS

We set batch-size to 512, negative-sampling-size to 64, and train the model for 500,000 steps on
ogbi-wikikg2 and 100,000 steps on fb15k-237. The learning rate is initialized to 0.0001 unless
otherwise stated, and decreased by 0.1 at half the maximum training step. Dropout is adopted after
each linear layer, and the drop-ratio is 0.05. AdamW is used as the optimizer in our experiments.

For the generated incomplete subgraphs, anchors are always required. The paths and the supplemen-
tary nodes are optional, which are not included in subgraphs unless being specified. The number
of anchors and neighbors (if used) sampled for each subgraph is fixed to 20 and 5 respectively, and
any shortfall is filled with the [PAD] token. The default values for the embedding dimension are
D4 = 256, Dy = 32. Hyper-parameter v in equation is tuned and set to 0.1 on ogbi-wikikg2
and 1.0 on fb15k-237, and + in equation @) is set to 6.0 following PairRE (Chao et al., [2021]).

4.3 ABLATION STUDY

Anchors The strategies for anchor set generation and anchors sampling are proposed in sec-
tion [3.1.1] and [3.1.7] respectively, and display the effects of them in Table [[] Comparison be-
tween the first two rows validates the effectiveness of the proposed sampling strategy by a 1.5%
gap. The results of the second and third rows are close to each other, despite the uncertainty in
degree+PPR+rand does not exist in our generation strategy. Comparing the last two rows, the
performance gain shows that a larger anchor set performs better, at least under the condition that
|A| < |N|. For the following experiments, the row marked in gray is used as the default setting
with anchors unless otherwise specified.

Network The first two rows in Table [2| show that, the larger dimension of features (also known as
D 4 and hidden-dim in this paper) the better result, meantime the higher computational complexity.
Comparing the overall performance of network 256-32-4 with its reduced counterpart 256-R32-4,
we can see that the reduced attention module proposed in section saves a little training time
without degrading the results. With further adaptation of attn-dim and mlp-ratio, network 512-R8-2
achieves a better trade-off between the results and the consumption of training time. The row marked
in gray is used as the default network for the following experiments, unless otherwise specified.
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Table 1: The results on ogbl-wikikg2 with different anchor sets and anchor-sampling strategies.

Anchor Set |A| Sampling | Test MRR ~ Valid MRR
degree+PPR+rand (Galkin et al.,2022) 20,000 BFS 0.6899 0.6953
degree+PPR+rand (Galkin et al.|[2022) 20,000  balanced 0.7040 0.7104
degree-skip0.5 20,000 balanced 0.7042 0.7093
degree-skip0.5 80,000 balanced 0.7084 0.7164

Table 2: The results on ogbl-wikikg2 with different networks. The ‘R’ in Network ID indicates the
reduced’ attention module, operating like equation (2). Train Time refers to the practical time spent
for a whole training process, and every experiment is performed on a single A100 GPU.

Network ID | hidden-dim  attn-dim  mlp-ratio | Train Time Test MRR  Valid MRR

256-32-4 256 32 4 28.7h 0.7042 0.7093
512-64-4 512 64 4 48.7h 0.7141 0.7189
256-R32-4 256 32 4 27.4h 0.7067 0.7085
512-R8-2 512 8 2 33.3h 0.7129 0.7146

Subgraph Components On the basis of anchors, other types of information are added to sub-
graphs in turn. The results in Table [3] show that the addition of both path and supplementary nodes
information can make obvious improvement. The subgraphs containing all kinds of information
have the best results overall.

4.4 RESULTS ON OGBL-WIKIKG2 & FB15K-237

We combine the advantaged strategies and modifications in section[d.3]to conduct experiments, and
present some of our best results in Table ] and[5] with the corresponding experiment settings given
in Appendix |C] showing the trade-off between the number of parameters and the results.

Our method achieves state-of-the-art results on ogbl-wikikg2 with a significant 3%-ish improve-
ment. We presume that the construction of incomplete multi-hop subgraphs is a summarization and
extraction of the basic concepts in a knowledge graph, and much information is already stored in
subgraph structures, making the learning task easier and thus leading to better results, especially
for large-scale knowledge graphs. On fb15k-237, our results are constrained by the distance-based
model, for the parameters in StarGraph are optimized through the score function of TripleRE’. So
we directly train the embeddings of entities and relations with TripleRE’ as the conduct group.
StarGraph does not achieve as significant improvement on fb15k-237 as on ogbl-wikikg?2 though,
the results are still comparable with its conventional KGE counterpart with less parameters, which
validates that StarGraph dose work on smaller KGs as well.

As with the number of parameters, the efficiency of StarGraph is more evident on large-scale KGs,
as the network itself takes up a certain amount of parameters. Comparing the #Params marked in
gray, the number of embedding parameters of StarGraph on fb15k-237 is only about 30%~= (2304 x
512) /(14505 x 256) of the control item, but the total number of parameters is about 80%; the number

Table 3: The results on ogbl-wikikg2 with subgraphs containing different types of information. The
v'indicates the corresponding type of information to be contained.

anchors path center neighbors | Test MRR  Valid MRR

v 0.7067 0.7085
v v 0.7222 0.7373
v v 0.7197 0.7235
v v 0.7248 0.7307
v v v 0.7248 0.7319
v v v v 0.7239 0.7403
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Table 4: The results on ogbl-wikikg2. Results of related work are taken from the OGB Leaderboard.

Model #Dims #Params Test MRR Valid MRR
TransE 500 1,250,569,500 0.4256+0.0030 0.4272+0.0030
RotatE 250 1,250,435,750 0.4332+0.0025 0.4353+0.0028
PairRE 200 500,334,800 0.5208+0.0027 0.5423+0.0020
AutoSF - 500,227,800 0.5458+0.0052 0.5510+0.0063
ComplEx 250 1,250,569,500 0.5027+0.0027 0.3759+0.0016
TripleRE 200 500,763,337  0.5794+0.0020 0.6045+0.0024
TripleREv2 200 500,763,337 0.6045+0.0017 0.6117+0.0008
ComplEx-RP 50 250,167,400 0.6392+0.0045 0.6561%0.0070
AutoSF + NodePiece - 6,860,602 0.5703+0.0035 0.5806+0.0047
TripleREv2 + NodePiece 200 7,289,002 0.6582+0.0020 0.6616+0.0018
TripleREv3 + NodePiece 200 36,421,802 0.6866x0.0014 0.6955+0.0008
InterHT + NodePiece 200 19,215,402 0.6779+0.0018 0.6893+0.0015
TranS + NodePiece 200 19,215,402  0.6882+0.0019  0.6988+0.0006
TranS(large) + NodePiece - 38,430,804 0.6939+0.0011 0.7058+0.0018
256 7,148,802 0.7222 0.7373
StarGraph + TripleRE’ 512 44,819,970 0.7263 0.7407
512/32 93,039,522 0.7290 0.7327

Table 5: The results on fb15k-237. Results of related work are taken from the corresponding papers,
despite TransE being provided by |Dai Quoc Nguyen et al.|(2018).

Model #Dims #Params Test Hit@10 Test MRR
TransE 100 1474200 0465 0.294
RotatE 1000 29484000  0.533 0.338
PairRE 1500 22468500  0.544 0351
GC-OTE 400 i 0.550 0361
CoKE 256  ~ 10,190,000  0.549 0.364
NodePiece + RotatE 200 ~3200000 0420 0.256
R 256 3.895296  0.5429 03455
p 1000 15216000  0.5520 0.3514
512 3.148290  0.5454 0.3426
StarGraph + TripleRE” 5, 4275714 0.5475 0.3459

of of embedding parameters of StarGraph on ogbl-wikikg2 is 1%~z (20000 x 256) /(2500604 x 200)
of the control item and the total number of parameters is only 1.4%.

5 CONCLUSION

In this paper, we propose StarGraph, a novel method to learn knowledge representations by generat-
ing and encoding the incomplete 2-hop subgraph for the node. The experimental results verify that
our method is parameters-efficient and can obtain better or comparative results with fewer parame-
ters on different datasets. More importantly, StarGraph achieves significant improvement of results
on large-scale knowledge graphs.

Based upon the core idea of incomplete subgraph, we have proposed several strategies and modi-
fications for the implementation. Though each strategy and modification is proved to be effective
alone, it is worth further exploration on how to make them work collaboratively to the best effect and
whether there are better alternatives. Additionally, beside the transductive link prediction, StarGraph
is also able to perform other related tasks, such as inductive link prediction, node classification, etc.
All these are treated as future work.
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Table 6: The results on ogbl-wikikg?2 with different anchor sets.
skip-threshold  anchor-set-size  anchor-ratio |A| | Test MRR Valid MRR

1.0 20,000 0.008 20,000 70.88 71.09
0.5 20,000 0.008 20,000 70.67 70.85
0.2 20,000 0.008 20,000 70.65 70.85
1.0 80,000 0.032 80,000 71.01 71.30
0.5 80,000 0.032 80,000 71.12 71.53
0.2 80,000 0.032 79,157 71.03 71.66

Table 7: The results on fb15k-237 with different anchor sets.
skip-threshold  anchor-set-size  anchor-ratio |A] | TestHit@10 Valid Hit@10

1.0 1,450 0.1 1,450 .53.55 54.15
0.5 1,450 0.1 1,450 53.97 54.58
0.2 1,450 0.1 1,450 53.80 54.43
1.0 14,505 1.0 14,505 54.33 54.93
0.5 14,505 1.0 4,503 54.75 55.06
0.2 14,505 1.0 2,304 54.54 55.12

A EXPERIENCE ON ANCHOR SET GENERATION

During the generation of anchor set, the hyper-parameter skip-threshold is used to control the spar-
sity of anchors, the smaller value the sparser anchors; anchor-set-size decides the maximum number
of anchors, which can also be set with anchor-ratio, the proportion of anchors occupying in the
graph. Note that when skip-threshold is small, skipping too many nodes may cause the actual size
of the anchor set | A| to be smaller than the specified anchor-set-size.

The experimental results with different values of skip-threshold and anchor-set-size are displayed
in Table[6]and [7] where we can summarise some experience as follows. When the skip-threshold is
fixed, the larger |A|, the better results. But when the skip-threshold varies, the situation becomes a
little tricky. Comparing the results on ogbl-wikikg2 when skip-threshold=20,000, we can draw the
conclusion that when the anchor ratio is extremely small, a high skip-threshold to keep the best few
known nodes as anchors should bring better results. But when the anchor set exceeds a certain size,
such as 80,000 on ogbl-wikikg2 and 2,000+ on fb15k-237, a lower skip-threshold leads to better
results with an equal or even smaller |A|. Anyway, a proper skip-threshold helps to make a better
trade-off between the number of parameters and the results.

B EXPERIMENTS WITH DIFFERENT ENCODERS

To explore the effectiveness of self-attention network to encode graphs, we conduct the control
experiment of different encoders and present the results in Table[8] MLP consists of two linear layers
and a non-linear activation between them, Attention+Mean is the encoder adopted in StarGraph, and
Mean omitting the attention module is just a mean-pooling operation performed over all tokens. Note
that the case marked in gray is actually the same method as NodePiece, in spite of the mlp-ratio here
is 4 instead of 2 in their experiments.

Table 8: The Test/Valid MRR on ogbl-wikikg2 with different encoders in different situations,

Sampling path \ MLP Mean Attention+Mean
BFS 0.6886/0.6924 0.6749/0.6733  0.6899/0.6953
balanced 0.7079/0.7152  0.6596/0.6587  0.7067/0.7085

balanced v | 0.7094/0.7247 0.7101/0.7250  0.7222/0.7373
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Table 9: Experiment settings for StarGraph on ogbl-wikikg?2.

|A] Sampling Network ID path nbors&center learning rate \ Test MRR  Valid MRR

20,000 balanced  256-R32-4 v le-4 0.7222 0.7373
80,000  balanced 512-R8-2 v Se-5 0.7263 0.7407
20,000  balanced 512-R8-2 v 2e-4 0.7290 0.7327

Table 10: Experiment settings for StarGraph on tb15k-237.

|A]  Sampling Network ID path nbors&center learning rate | Test Hit@10 Test MRR

2,304  balanced 512-R8-2 v Se-4 0.5454 0.3426
4,503 balanced 512-R8-2 v Se-4 0.5475 0.3459

Compare results with different anchors-sampling strategies, the balanced sampling proposed by us
achieves 1%+ improvement for both MLP and StarGraph. But when it comes to the introduction of
path information, MLP does not process the subgraphs as effectively as StarGraph. By the way, it is
interesting to compare the results of Mean with or without the path information. The proposed infu-
sion way of path information, which is developed form the KG distance-based model as mentioned
in section[3.2.2], are proved to be effective for the graph structure by the 5%+ improvement.

Overall, the experimental results confirm that the self-attention network cooperates the best with our
subgraph-based representation learning.

C IMPLEMENTATION AND HYPER-PARAMETERS

The experiment settings for StarGraph in Table [] is given in Table [9} For each setting, the best
learning rate is chosen from {5e-5, le-4, 2e-4} according to the experimental results.

For the results in Table [5] model TripleRE’ corresponds to the conventional KGE method, the di-
mension of embeddings is provided as #Dim, and the best learning rate is 2e-4 in {1e-4, 2e-4, 5e-4,
le-3}. The experiment settings for StarGraph is given in Table and the learning rate is chosen
from {le-4, 2e-4, Se-4, le-3}.

The selection of the feature dimension and the combination of different modifications are in fact
restricted, mainly due to the video memory size. Note that adopting multiple advantaged strategies
and modifications does not always result in the sum of improvements, and the best learning rates for
different networks or different sizes of anchor sets are usually different. It will take a lot of work in
the future to explore more of the potential for StarGraph.
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